1
|
Knecht DA, Zeziulia M, Bhavsar MB, Puchkov D, Maier H, Jentsch TJ. LRRC8/VRAC volume-regulated anion channels are crucial for hearing. J Biol Chem 2024; 300:107436. [PMID: 38838775 PMCID: PMC11260850 DOI: 10.1016/j.jbc.2024.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Hearing crucially depends on cochlear ion homeostasis as evident from deafness elicited by mutations in various genes encoding cation or anion channels and transporters. Ablation of ClC‑K/barttin chloride channels causes deafness by interfering with the positive electrical potential of the endolymph, but roles of other anion channels in the inner ear have not been studied. Here we report the intracochlear distribution of all five LRRC8 subunits of VRAC, a volume-regulated anion channel that transports chloride, metabolites, and drugs such as the ototoxic anti-cancer drug cisplatin, and explore its physiological role by ablating its subunits. Sensory hair cells express all LRRC8 isoforms, whereas only LRRC8A, D and E were found in the potassium-secreting epithelium of the stria vascularis. Cochlear disruption of the essential LRRC8A subunit, or combined ablation of LRRC8D and E, resulted in cochlear degeneration and congenital deafness of Lrrc8a-/- mice. It was associated with a progressive degeneration of the organ of Corti and its innervating spiral ganglion. Like disruption of ClC-K/barttin, loss of VRAC severely reduced the endocochlear potential. However, the mechanism underlying this reduction seems different. Disruption of VRAC, but not ClC-K/barttin, led to an almost complete loss of Kir4.1 (KCNJ10), a strial K+ channel crucial for the generation of the endocochlear potential. The strong downregulation of Kir4.1 might be secondary to a loss of VRAC-mediated transport of metabolites regulating inner ear redox potential such as glutathione. Our study extends the knowledge of the role of cochlear ion transport in hearing and ototoxicity.
Collapse
Affiliation(s)
- Deborah A Knecht
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Mariia Zeziulia
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; Graduate Program of the Freie Universität Berlin, Berlin, Germany
| | - Mit B Bhavsar
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Hannes Maier
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Okada Y. Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC: part 2: its activation mechanisms and essential roles in organic signal release. J Physiol Sci 2024; 74:34. [PMID: 38877402 PMCID: PMC11177392 DOI: 10.1186/s12576-024-00926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types, and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 2 review article describes, from the physiological and pathophysiological standpoints, first the pivotal roles of VSOR/VRAC in the release of autocrine/paracrine organic signal molecules, such as glutamate, ATP, glutathione, cGAMP, and itaconate, as well as second the swelling-independent and -dependent activation mechanisms of VSOR/VRAC. Since the pore size of VSOR/VRAC has now well been evaluated by electrophysiological and 3D-structural methods, the signal-releasing activity of VSOR/VRAC is here discussed by comparing the molecular sizes of these organic signals to the channel pore size. Swelling-independent activation mechanisms include a physicochemical one caused by the reduction of intracellular ionic strength and a biochemical one caused by oxidation due to stimulation by receptor agonists or apoptosis inducers. Because some organic substances released via VSOR/VRAC upon cell swelling can trigger or augment VSOR/VRAC activation in an autocrine fashion, swelling-dependent activation mechanisms are to be divided into two phases: the first phase induced by cell swelling per se and the second phase caused by receptor stimulation by released organic signals.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.
- Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan.
| |
Collapse
|
3
|
Xie ZX, Li Y, Yang AM, Wu D, Wang Q. Pathogenesis of chronic enteropathy associated with the SLCO2A1 gene: Hypotheses and conundrums. World J Gastroenterol 2024; 30:2505-2511. [PMID: 38817656 PMCID: PMC11135407 DOI: 10.3748/wjg.v30.i19.2505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/20/2024] Open
Abstract
Chronic enteropathy associated with the SLCO2A1 gene (CEAS) is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss. This review explores the potential mechanisms underlying the pathogenesis of CEAS, focusing on the role of SLCO2A1-encoded prostaglandin transporter OATP2A1 and its impact on prostaglandin E2 (PGE2) levels. Studies have suggested that elevated PGE2 levels contribute to mucosal damage, inflammation, and disruption of the intestinal barrier. The effects of PGE2 on macrophage activation and Maxi-Cl channel functionality, as well as its interaction with nonsteroidal anti-inflammatory drugs play crucial roles in the progression of CEAS. Understanding the balance between its protective and pro-inflammatory effects and the complex interactions within the gastrointestinal tract can shed light on potential therapeutic targets for CEAS and guide the development of novel, targeted therapies.
Collapse
Affiliation(s)
- Zhi-Xin Xie
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Clinical Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yue Li
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ai-Ming Yang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Dong Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qiang Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
4
|
Okada Y. Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC. Part 1: from its discovery and phenotype characterization to the molecular entity identification. J Physiol Sci 2024; 74:3. [PMID: 38238667 PMCID: PMC10795261 DOI: 10.1186/s12576-023-00897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 1 review article describes, from the physiological standpoint, first its discovery and significance in cell volume regulation, second its phenotypical properties, and third its molecular identification. Although the pore-forming core molecules and the volume-sensing subcomponent of VSOR/VRAC were identified as LRRC8 members and TRPM7 in 2014 and 2021, respectively, it is stressed that the identification of the molecular entity of VSOR/VRAC is still not complete enough to explain the full set of phenotypical properties.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan.
- Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan.
| |
Collapse
|
5
|
Wu X, Yi X, Zhao B, Zhi Y, Xu Z, Cao Y, Cao X, Pang J, Yung KKL, Zhang S, Liu S, Zhou P. The volume regulated anion channel VRAC regulates NLRP3 inflammasome by modulating itaconate efflux and mitochondria function. Pharmacol Res 2023; 198:107016. [PMID: 38006980 DOI: 10.1016/j.phrs.2023.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
The NLRP3 inflammasome is a supramolecular complex that is linked to sterile and pathogen-dependent inflammation, and its excessive activation underlies many diseases. Ion flux disturbance and cell volume regulation are both reported to mediate NLRP3 inflammasome activation, but the underlying orchestrating signaling remains not fully elucidated. The volume-regulated anion channel (VRAC), formed by LRRC8 proteins, is an important constituent that controls cell volume by permeating chloride and organic osmolytes in response to cell swelling. We now demonstrate that Lrrc8a, the essential component of VRAC, plays a central and specific role in canonical NLRP3 inflammasome activation. Moreover, VRAC acts downstream of K+ efflux for NLRP3 stimuli that require K+ efflux. Mechanically, our data demonstrate that VRAC modulates itaconate efflux and damaged mitochondria production for NLRP3 inflammasome activation. Further in vivo experiments show mice with Lrrc8a deficiency in myeloid cells were protected from lipopolysaccharides (LPS)-induced endotoxic shock. Taken together, this work identifies VRAC as a key regulator of NLRP3 inflammasome and innate immunity by regulating mitochondrial adaption for macrophage activation and highlights VRAC as a prospective drug target for the treatment of NLRP3 inflammasome and itaconate related diseases.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanxing Zhi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ziwei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ken Kin Lam Yung
- Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, China
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Liu Y, Wang XR, Jiang YH, Li T, Ling S, Wang HY, Yu JW, Jia SW, Liu XY, Hou CM, Parpura V, Wang YF. Interactions between the Astrocytic Volume-Regulated Anion Channel and Aquaporin 4 in Hyposmotic Regulation of Vasopressin Neuronal Activity in the Supraoptic Nucleus. Cells 2023; 12:1723. [PMID: 37443757 PMCID: PMC10341125 DOI: 10.3390/cells12131723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
We assessed interactions between the astrocytic volume-regulated anion channel (VRAC) and aquaporin 4 (AQP4) in the supraoptic nucleus (SON). Acute SON slices and cultures of hypothalamic astrocytes prepared from rats received hyposmotic challenge (HOC) with/without VRAC or AQP4 blockers. In acute slices, HOC caused an early decrease with a late rebound in the neuronal firing rate of vasopressin neurons, which required activity of astrocytic AQP4 and VRAC. HOC also caused a persistent decrease in the excitatory postsynaptic current frequency, supported by VRAC and AQP4 activity in early HOC; late HOC required only VRAC activity. These events were associated with the dynamics of glial fibrillary acidic protein (GFAP) filaments, the late retraction of which was mediated by VRAC activity; this activity also mediated an HOC-evoked early increase in AQP4 expression and late subside in GFAP-AQP4 colocalization. AQP4 activity supported an early HOC-evoked increase in VRAC levels and its colocalization with GFAP. In cultured astrocytes, late HOC augmented VRAC currents, the activation of which depended on AQP4 pre-HOC/HOC activity. HOC caused an early increase in VRAC expression followed by a late rebound, requiring AQP4 and VRAC, or only AQP4 activity, respectively. Astrocytic swelling in early HOC depended on AQP4 activity, and so did the early extension of GFAP filaments. VRAC and AQP4 activity supported late regulatory volume decrease, the retraction of GFAP filaments, and subside in GFAP-VRAC colocalization. Taken together, astrocytic morphological plasticity relies on the coordinated activities of VRAC and AQP4, which are mutually regulated in the astrocytic mediation of HOC-evoked modulation of vasopressin neuronal activity.
Collapse
Affiliation(s)
- Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China (H.-Y.W.)
| | - Xiao-Ran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China (H.-Y.W.)
| | - Yun-Hao Jiang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China (H.-Y.W.)
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China (H.-Y.W.)
- Neuroscience Laboratory for Translational Medicine, School of Mental Health, Qiqihar Medical University, Qiqihar 161006, China
| | - Shuo Ling
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China (H.-Y.W.)
| | - Hong-Yang Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China (H.-Y.W.)
| | - Jia-Wei Yu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China (H.-Y.W.)
| | - Shu-Wei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China (H.-Y.W.)
| | - Xiao-Yu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China (H.-Y.W.)
| | - Chun-Mei Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China (H.-Y.W.)
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China (H.-Y.W.)
| |
Collapse
|
7
|
Okada Y, Sabirov RZ, Merzlyak PG, Numata T, Sato-Numata K. Properties, Structures, and Physiological Roles of Three Types of Anion Channels Molecularly Identified in the 2010's. Front Physiol 2022; 12:805148. [PMID: 35002778 PMCID: PMC8733619 DOI: 10.3389/fphys.2021.805148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Molecular identification was, at last, successfully accomplished for three types of anion channels that are all implicated in cell volume regulation/dysregulation. LRRC8A plus LRRC8C/D/E, SLCO2A1, and TMEM206 were shown to be the core or pore-forming molecules of the volume-sensitive outwardly rectifying anion channel (VSOR) also called the volume-regulated anion channel (VRAC), the large-conductance maxi-anion channel (Maxi-Cl), and the acid-sensitive outwardly rectifying anion channel (ASOR) also called the proton-activated anion channel (PAC) in 2014, 2017, and 2019, respectively. More recently in 2020 and 2021, we have identified the S100A10-annexin A2 complex and TRPM7 as the regulatory proteins for Maxi-Cl and VSOR/VRAC, respectively. In this review article, we summarize their biophysical and structural properties as well as their physiological roles by comparing with each other on the basis of their molecular insights. We also point out unsolved important issues to be elucidated soon in the future.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan.,Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.,Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Ravshan Z Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Petr G Merzlyak
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| |
Collapse
|
8
|
Kolobkova Y, Pervaiz S, Stauber T. The expanding toolbox to study the LRRC8-formed volume-regulated anion channel VRAC. CURRENT TOPICS IN MEMBRANES 2021; 88:119-163. [PMID: 34862024 DOI: 10.1016/bs.ctm.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The volume-regulated anion channel (VRAC) is activated upon cell swelling and facilitates the passive movement of anions across the plasma membrane in cells. VRAC function underlies many critical homeostatic processes in vertebrate cells. Among them are the regulation of cell volume and membrane potential, glutamate release and apoptosis. VRAC is also permeable for organic osmolytes and metabolites including some anti-cancer drugs and antibiotics. Therefore, a fundamental understanding of VRAC's structure-function relationships, its physiological roles, its utility for therapy of diseases, and the development of compounds modulating its activity are important research frontiers. Here, we describe approaches that have been applied to study VRAC since it was first described more than 30 years ago, providing an overview of the recent methodological progress. The diverse applications reflecting a compromise between the physiological situation, biochemical definition, and biophysical resolution range from the study of VRAC activity using a classic electrophysiology approach, to the measurement of osmolytes transport by various means and the investigation of its activation using a novel biophysical approach based on fluorescence resonance energy transfer.
Collapse
Affiliation(s)
- Yulia Kolobkova
- Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, Germany
| | - Sumaira Pervaiz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Tobias Stauber
- Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany.
| |
Collapse
|
9
|
Sabirov RZ, Islam MR, Okada T, Merzlyak PG, Kurbannazarova RS, Tsiferova NA, Okada Y. The ATP-Releasing Maxi-Cl Channel: Its Identity, Molecular Partners and Physiological/Pathophysiological Implications. Life (Basel) 2021; 11:life11060509. [PMID: 34073084 PMCID: PMC8229958 DOI: 10.3390/life11060509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022] Open
Abstract
The Maxi-Cl phenotype accounts for the majority (app. 60%) of reports on the large-conductance maxi-anion channels (MACs) and has been detected in almost every type of cell, including placenta, endothelium, lymphocyte, cardiac myocyte, neuron, and glial cells, and in cells originating from humans to frogs. A unitary conductance of 300-400 pS, linear current-to-voltage relationship, relatively high anion-to-cation selectivity, bell-shaped voltage dependency, and sensitivity to extracellular gadolinium are biophysical and pharmacological hallmarks of the Maxi-Cl channel. Its identification as a complex with SLCO2A1 as a core pore-forming component and two auxiliary regulatory proteins, annexin A2 and S100A10 (p11), explains the activation mechanism as Tyr23 dephosphorylation at ANXA2 in parallel with calcium binding at S100A10. In the resting state, SLCO2A1 functions as a prostaglandin transporter whereas upon activation it turns to an anion channel. As an efficient pathway for chloride, Maxi-Cl is implicated in a number of physiologically and pathophysiologically important processes, such as cell volume regulation, fluid secretion, apoptosis, and charge transfer. Maxi-Cl is permeable for ATP and other small signaling molecules serving as an electrogenic pathway in cell-to-cell signal transduction. Mutations at the SLCO2A1 gene cause inherited bone and gut pathologies and malignancies, signifying the Maxi-Cl channel as a perspective pharmacological target.
Collapse
Affiliation(s)
- Ravshan Z. Sabirov
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Correspondence: (R.Z.S.); (Y.O.); Tel.: +81-46-858-1501 (Y.O.); Fax: +81-46-858-1542 (Y.O.)
| | - Md. Rafiqul Islam
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka 1100, Bangladesh
| | - Toshiaki Okada
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Veneno Technologies Co. Ltd., Tsukuba 305-0031, Japan
| | - Petr G. Merzlyak
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Ranokhon S. Kurbannazarova
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Nargiza A. Tsiferova
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Yasunobu Okada
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Japan
- Correspondence: (R.Z.S.); (Y.O.); Tel.: +81-46-858-1501 (Y.O.); Fax: +81-46-858-1542 (Y.O.)
| |
Collapse
|
10
|
Chorieva NM, Fayziev DD, Tsiferova NA, Toshtemirova GA, Khamidova OJ, Merzlyak PG, Kurbannazarova RS, Ziyaev KL, Gafurov MB, Sabirov RZ. Lytic and sublytic effects of gossypol on red blood cells and thymocytes. Clin Exp Pharmacol Physiol 2021; 48:227-237. [PMID: 33124084 DOI: 10.1111/1440-1681.13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/21/2023]
Abstract
Gossypol is a natural polyphenol presently considered as a promising biological phytochemical with a range of activities including anticancer. We examined volume regulation-dependent effects of gossypol using erythrocytes and thymic lymphocytes. Gossypol effectively lysed human red blood cells (RBC) with a half-maximal concentration of 67.4 ± 1.6 μmol/L and in a non-colloid osmotic manner. Sublytic gossypol doses of 1-10 μmol/L significantly protected RBC from osmotic hemolysis, but potentiated their sensitivity to the colloid-osmotic lysis induced by a pore-former nystatin. When added to the thymocytes suspension, gossypol caused a strong depression of the ability of cells to restore their volume under hypoosmotic stress with a half-maximal activity at 2.1 ± 0.3 μmol/L. Gossypol suppressed regulatory volume decrease under experimental conditions, when cationic permeability was controlled by gramicidin D, and volume recovery depended mainly on anionic conductance, suggesting that the polyphenol inhibits the swelling-induced anion permeability. In direct patch-clamp experiments, gossypol inhibited the volume-sensitive outwardly rectifying (VSOR) chloride channel in thymocytes and in human HCT116 and HeLa cells, possibly by a mechanism when gossypol molecule with a radius close to the size of channel pore plugs into the narrowest portion of the native VSOR chloride channel. Micromolar gossypol suppressed proliferation of thymocytes, HCT116 and HeLa cells. VSOR blockage may represent new mechanism of anticancer activity of gossypol in addition to its action as a BH3-mimetic.
Collapse
Affiliation(s)
- Nargiza M Chorieva
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
- Termez State University, Termez, Uzbekistan
| | - Diyor D Fayziev
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Nargiza A Tsiferova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
- Center for Advanced Technologies, Tashkent, Uzbekistan
| | - Gulnoza A Toshtemirova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Ozoda J Khamidova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Petr G Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Ranokhon Sh Kurbannazarova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
- Technical Institute of the National Guard, Tashkent, Uzbekistan
| | - Khayrulla L Ziyaev
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Makhmud B Gafurov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Ravshan Z Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
- Department of Biophysics, National University of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
11
|
Okada Y, Sabirov RZ, Sato-Numata K, Numata T. Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 1: Roles of VSOR/VRAC in Cell Volume Regulation, Release of Double-Edged Signals and Apoptotic/Necrotic Cell Death. Front Cell Dev Biol 2021; 8:614040. [PMID: 33511120 PMCID: PMC7835517 DOI: 10.3389/fcell.2020.614040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cell volume regulation (CVR) is essential for survival and functions of animal cells. Actually, normotonic cell shrinkage and swelling are coupled to apoptotic and necrotic cell death and thus called the apoptotic volume decrease (AVD) and the necrotic volume increase (NVI), respectively. A number of ubiquitously expressed anion and cation channels are involved not only in CVD but also in cell death induction. This series of review articles address the question how cell death is induced or protected with using ubiquitously expressed ion channels such as swelling-activated anion channels, acid-activated anion channels and several types of TRP cation channels including TRPM2 and TRPM7. The Part 1 focuses on the roles of the volume-sensitive outwardly rectifying anion channels (VSOR), also called the volume-regulated anion channel (VRAC), which is activated by cell swelling or reactive oxygen species (ROS) in a manner dependent on intracellular ATP. First we describe phenotypical properties, the molecular identity, and physical pore dimensions of VSOR/VRAC. Second, we highlight the roles of VSOR/VRAC in the release of organic signaling molecules, such as glutamate, glutathione, ATP and cGAMP, that play roles as double-edged swords in cell survival. Third, we discuss how VSOR/VRAC is involved in CVR and cell volume dysregulation as well as in the induction of or protection from apoptosis, necrosis and regulated necrosis under pathophysiological conditions.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ravshan Z. Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomohiro Numata
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
12
|
LRRC8/VRAC channels exhibit a noncanonical permeability to glutathione, which modulates epithelial-to-mesenchymal transition (EMT). Cell Death Dis 2019; 10:925. [PMID: 31804464 PMCID: PMC6895240 DOI: 10.1038/s41419-019-2167-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023]
Abstract
Volume-regulated anion channels (VRAC) are chloride channels activated in response to osmotic stress to regulate cellular volume and also participate in other cellular processes, including cell division and cell death. Recently, members of the LRRC8 family have been identified as the main contributors of VRAC conductance. LRRC8/VRAC is permeable to chloride ions but also exhibits significant permeability to various substrates that vary strongly in charge and size. In this study, we explored the intriguing ability of LRRC8/VRAC to transport glutathione (GSH), the major cellular reactive oxygen species (ROS) scavenger, and its involvement in epithelial-to-mesenchymal transition (EMT), a cellular process in which cellular oxidative status is a crucial step. First, in HEK293-WT cells, we showed that a hypotonic condition induced LRRC8/VRAC-dependent GSH conductance (PGSH/PCl of ~0.1) and a marked decrease in intracellular GSH content. GSH currents and GSH intracellular decrease were both inhibited by DCPIB, an inhibitor of LRRC8/VRAC, and were not observed in HEK293-LRRC8A KO cells. Then, we induced EMT by exposing renal proximal tubule epithelial cells to the pleiotropic growth factor TGFβ1, and we measured the contribution of LRRC8/VRAC in this process by measuring (i) EMT marker expression (assessed both at the gene and protein levels), (ii) cell morphology and (iii) the increase in migration ability. Interestingly, pharmacologic targeting of LRRC8/VRAC (DCPIB) or RNA interference-mediated inhibition (LRRC8A siRNA) attenuated the TGFβ1-induced EMT response by controlling GSH and ROS levels. Interestingly, TGFβ1 exposure triggered DCPIB-sensitive chloride conductance. These results suggest that LRRC8/VRAC, due to its native permeability to GSH and thus its ability to modulate ROS levels, plays a critical role in EMT and might contribute to other physiological and pathophysiological processes associated with oxidative stress.
Collapse
|
13
|
Rustamova SI, Tsiferova NA, Khamidova OJ, Kurbannazarova RS, Merzlyak PG, Khushbaktova ZA, Syrov VN, Botirov EK, Eshbakova KA, Sabirov RZ. Effect of plant flavonoids on the volume regulation of rat thymocytes under hypoosmotic stress. Pharmacol Rep 2019; 71:1079-1087. [PMID: 31629088 DOI: 10.1016/j.pharep.2019.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cell volume regulation and volume-regulated anion channels are critical for cell survival in non-isosmotic conditions, and dysregulation of this system is detrimental. Although genes and proteins underlying this basic cellular machinery were recently identified, the pharmacology remains poorly explored. METHODS We examined effects of 16 flavonoids on the regulatory volume decrease (RVD) of thymocytes under hypoosmotic stress assessed by light transmittance and on the activity of volume-sensitive chloride channel by patch-clamp technique. RESULTS Comparison of effects of flavonoids on RVD revealed a group of four active substances with lehmannin being the strongest inhibitor (IC50 = 8.8 μM). Structure-functional comparison suggested that hydrophobicity brought about by methoxy, prenyl or lavandulyl groups as well as by the absence of glucosyl fragment together with localization of the phenyl ring B at the position C2 (which is at C3 in totally inactive isoflavones) are important structural determinants for the flavonoids activity as volume regulation inhibitors. All active flavonoids suppressed RVD under Gramicidin D-NMDG hypotonic stress conditions when cationic permeability was increased by an ionophore, gramicidin D, with all extracellular monovalent cations replaced with bulky NMDG+ suggesting that they target volume-sensitive anionic permeability. While effects of hispidulin and pulicarin were only partial, lehmannin and pinocembrin completely abolished RVD under Gramicidin D-NMDG conditions. In direct patch-clamp experiments, lehmannin and pinocembrin produced a strong inhibiting effect on the swelling-induced whole-cell chloride conductance in a voltage-independent manner. CONCLUSION Lehmannin, pinocembrin, and possibly hispidulin and pulicarin may serve as leads for developing effective low-toxic immunomodulators.
Collapse
Affiliation(s)
- Sarvinoz I Rustamova
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Nargiza A Tsiferova
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan; Center for Advanced Technologies, Tashkent, Uzbekistan
| | - Ozoda J Khamidova
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Ranokhon Sh Kurbannazarova
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Petr G Merzlyak
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Zainab A Khushbaktova
- Institute of Chemistry of Plant Substances, Academy Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Vladimir N Syrov
- Institute of Chemistry of Plant Substances, Academy Sciences of Uzbekistan, Tashkent, Uzbekistan
| | | | - Kamila A Eshbakova
- Institute of Chemistry of Plant Substances, Academy Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Ravshan Z Sabirov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan; Department of Biophysics, National University of Uzbekistan, Tashkent, Uzbekistan.
| |
Collapse
|
14
|
Tannins, novel inhibitors of the volume regulation and the volume-sensitive anion channel. EUROPEAN PHARMACEUTICAL JOURNAL 2019. [DOI: 10.2478/afpuc-2019-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
The volume-sensitive outwardly rectifying anion channel (VSOR) is a key component of volume regulation system critical for cell survival in non-isosmotic conditions. The aim of the present study was to test the effects of four tannin extracts with defined compositions on cell volume regulation and VSOR. Preparation I (98% of hydrolysable tannins isolated from leaves of sumac Rhus typhina L.) and Preparation II (100% of hydrolysable tannins isolated from leaves of broadleaf plantain Plantago major L) completely and irreversibly abolished swelling-activated VSOR currents in HCT116 cells. Both preparations profoundly suppressed the volume regulation in thymocytes with half-maximal effects of 40.9 μg/ml and 12.3 μg/ml, respectively. The inhibition was more efficient at lower concentrations but reverted at higher doses due to possible non-specific membrane-permeabilizing activity. Preparations III and IV (54,7% and 54.3% of hydrolysable tannins isolated, respectively, from roots and aboveground parts of Fergana spurge Euphorbia ferganensis B.Fedtch) inhibited VSOR activity in a partially reversible manner and suppressed the volume regulation with substantially higher half-maximal doses of 270 and 278 μg/ml, respectively, with no secondary reversion at higher doses. Hydrolysable tannins represent a novel class of VSOR channel inhibitors with the capacity to suppress the cell volume regulation machinery.
Collapse
|
15
|
Sabirov RZ, Merzlyak PG, Islam MR, Okada T, Okada Y. The properties, functions, and pathophysiology of maxi-anion channels. Pflugers Arch 2016; 468:405-20. [DOI: 10.1007/s00424-015-1774-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 01/19/2023]
|
16
|
Mongin AA. Volume-regulated anion channel--a frenemy within the brain. Pflugers Arch 2015; 468:421-41. [PMID: 26620797 DOI: 10.1007/s00424-015-1765-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
Abstract
The volume-regulated anion channel (VRAC) is a ubiquitously expressed yet highly enigmatic member of the superfamily of chloride/anion channels. It is activated by cellular swelling and mediates regulatory cell volume decrease in a majority of vertebrate cells, including those in the central nervous system (CNS). In the brain, besides its crucial role in cellular volume regulation, VRAC is thought to play a part in cell proliferation, apoptosis, migration, and release of physiologically active molecules. Although these roles are not exclusive to the CNS, the relative significance of VRAC in the brain is amplified by several unique aspects of its physiology. One important example is the contribution of VRAC to the release of the excitatory amino acid neurotransmitters glutamate and aspartate. This latter process is thought to have impact on both normal brain functioning (such as astrocyte-neuron signaling) and neuropathology (via promoting the excitotoxic death of neuronal cells in stroke and traumatic brain injury). In spite of much work in the field, the molecular nature of VRAC remained unknown until less than 2 years ago. Two pioneer publications identified VRAC as the heterohexamer formed by the leucine-rich repeat-containing 8 (LRRC8) proteins. These findings galvanized the field and are likely to result in dramatic revisions to our understanding of the place and role of VRAC in the brain, as well as other organs and tissues. The present review briefly recapitulates critical findings in the CNS and focuses on anticipated impact on the LRRC8 discovery on further progress in neuroscience research.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave., Albany, NY, 12208, USA.
| |
Collapse
|
17
|
Tong X, Lopez W, Ramachandran J, Ayad WA, Liu Y, Lopez-Rodriguez A, Harris AL, Contreras JE. Glutathione release through connexin hemichannels: Implications for chemical modification of pores permeable to large molecules. J Gen Physiol 2015; 146:245-54. [PMID: 26324677 PMCID: PMC4555470 DOI: 10.1085/jgp.201511375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/12/2015] [Indexed: 12/14/2022] Open
Abstract
Cysteine-scanning mutagenesis combined with thiol reagent modification is a powerful method with which to define the pore-lining elements of channels and the changes in structure that accompany channel gating. Using the Xenopus laevis oocyte expression system and two-electrode voltage clamp, we performed cysteine-scanning mutagenesis of several pore-lining residues of connexin 26 (Cx26) hemichannels, followed by chemical modification using a methanethiosulfonate (MTS) reagent, to help identify the position of the gate. Unexpectedly, we observed that the effect of MTS modification on the currents was reversed within minutes of washout. Such a reversal should not occur unless reducing agents, which can break the disulfide thiol-MTS linkage, have access to the site of modification. Given the permeability to large metabolites of connexin channels, we tested whether cytosolic glutathione (GSH), the primary cell reducing agent, was reaching the modified sites through the connexin pore. Inhibition of gamma-glutamylcysteine synthetase by buthionine sulfoximine decreased the cytosolic GSH concentration in Xenopus oocytes and reduced reversibility of MTS modification, as did acute treatment with tert-butyl hydroperoxide, which oxidizes GSH. Cysteine modification based on thioether linkages (e.g., maleimides) cannot be reversed by reducing agents and did not reverse with washout. Using reconstituted hemichannels in a liposome-based transport-specific fractionation assay, we confirmed that homomeric Cx26 and Cx32 and heteromeric Cx26/Cx32 are permeable to GSH and other endogenous reductants. These results show that, for wide pores, accessibility of cytosolic reductants can lead to reversal of MTS-based thiol modifications. This potential for reversibility of thiol modification applies to on-cell accessibility studies of connexin channels and other channels that are permeable to large molecules, such as pannexin, CALHM, and VRAC.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103 Department of Pharmacology, Bengbu Medical College, Bengbu, Anhui Province 233000, China
| | - William Lopez
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Jayalakshmi Ramachandran
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Wafaa A Ayad
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Yu Liu
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Angelica Lopez-Rodriguez
- Molecular Neurophysiology Section, Porter Neuroscience Research Center, National Institutes of Health, Bethesda, MD 20892
| | - Andrew L Harris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| |
Collapse
|
18
|
Wang F, Franco R, Skotak M, Hu G, Chandra N. Mechanical stretch exacerbates the cell death in SH-SY5Y cells exposed to paraquat: mitochondrial dysfunction and oxidative stress. Neurotoxicology 2014; 41:54-63. [PMID: 24462953 DOI: 10.1016/j.neuro.2014.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/03/2013] [Accepted: 01/12/2014] [Indexed: 12/21/2022]
Abstract
Recent studies suggest that traumatic brain injury (TBI) and pesticide exposure increase the risk of Parkinson's disease (PD), but the molecular mechanisms involved remain unclear. Using an in vitro model of TBI, we evaluated the role of mitochondrial membrane potential (ΔΨm) and mitochondrial reactive oxygen species (ROS) induced by stretch on dopaminergic cell death upon paraquat exposure. Human dopaminergic neuroblastoma SH-SY5Y cells grown on silicone membrane were stretched at mild (25%) and moderate (50%) strain prior to paraquat exposure. We observed that moderate stretch (50% strain) increased the vulnerability of cells to paraquat demonstrated by the loss of plasma membrane integrity (propidium iodide-uptake) and decreased mitochondrial activity (MTT assay). Mitochondrial depolarization occurred immediately after stretch, while mitochondrial ROS increased rapidly and remained elevated for up to 4h after the stretch injury. Intracellular glutathione (GSH) stores were also transiently decreased immediately after moderate stretch. Cells treated with paraquat, or moderate stretch exhibited negligible mitochondrial depolarization at 48h post treatment, whereas in cells stretched prior to paraquat exposure, a significant mitochondrial depolarization occurred compared to samples exposed to either paraquat or stretch. Moderate stretch also increased mitochondrial ROS formation, as well as exacerbated intracellular GSH loss induced by paraquat. Overexpression of manganese superoxide dismutase (MnSOD) markedly diminished the deleterious effects of stretch in paraquat neurotoxicity. Our findings demonstrate that oxidative stress induced by mitochondrial dysfunction plays a critical role in the synergistic toxic effects of stretch (TBI) and pesticide exposure. Mitigation of oxidative stress via mitochondria-targeted antioxidants appears an attractive route for treatment of neurodegeneration mediated by TBI.
Collapse
Affiliation(s)
- Fang Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, USA
| | - Rodrigo Franco
- Redox Biology Center & School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA
| | - Maciej Skotak
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, USA
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Namas Chandra
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA.
| |
Collapse
|