1
|
Lin N, Song H, Zhang Y, Chen F, Xu J, Wu W, Tian Q, Luo C, Yao K, Hu L, Chen X. Truncation mutations of CRYGD gene in congenital cataracts cause protein aggregation by disrupting the structural stability of γD-crystallin. Int J Biol Macromol 2024; 277:134292. [PMID: 39084439 DOI: 10.1016/j.ijbiomac.2024.134292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Congenital cataracts, a prevalent cause of blindness in children, are associated with protein aggregation. γD-crystallin, essential for sustaining lens transparency, exists as a monomer and exhibits excellent structural stability. In our cohort, we identified a nonsense mutation (c.451_452insGACT, p.Y151X) in the CRYGD gene. To explore the effect of truncation mutations on the structure of γD-crystallin, we examined the Y151X and T160RfsX8 mutations, both located in the Greek key motif 4 at the cellular and protein level in this study. Both truncation mutations induced protein misfolding and resulted in the formation of insoluble aggregates when overexpressed in HLE B3 and HEK 293T cells. Moreover, heat, UV irradiation, and oxidative stress increased the proportion of aggregates of mutants in the cells. We next purified γD-crystallin to estimate its structural changes. Truncation mutations led to conformational disruption and a concomitant decrease in protein solubility. Molecular dynamics simulations further demonstrated that partial deletion of the conserved domain within the Greek key motif 4 markedly compromised the overall stability of the protein structure. Finally, co-expression of α-crystallins facilitated the proper folding of truncated mutants and mitigated protein aggregation. In summary, the structural integrity of the Greek key motif 4 in γD-crystallin is crucial for overall structural stability.
Collapse
Affiliation(s)
- Ningqin Lin
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Hang Song
- Department of Ophthalmology, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Beijing 100730, China
| | - Ying Zhang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Fanrui Chen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Wei Wu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Qing Tian
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Chenqi Luo
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China.
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China.
| |
Collapse
|
2
|
Watthanasakphuban N, Ninchan B, Pinmanee P, Rattanaporn K, Keawsompong S. In Silico Analysis and Development of the Secretory Expression of D-Psicose-3-Epimerase in Escherichia coli. Microorganisms 2024; 12:1574. [PMID: 39203416 PMCID: PMC11356227 DOI: 10.3390/microorganisms12081574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
D-psicose-3-epimerase (DPEase), a key enzyme for D-psicose production, has been successfully expressed in Escherichia coli with high yield. However, intracellular expression results in high downstream processing costs and greater risk of lipopolysaccharide (LPS) contamination during cell disruption. The secretory expression of DPEase could minimize the number of purification steps and prevent LPS contamination, but achieving the secretion expression of DPEase in E. coli is challenging and has not been reported due to certain limitations. This study addresses these challenges by enhancing the secretion of DPEase in E. coli through computational predictions and structural analyses. Signal peptide prediction identified PelB as the most effective signal peptide for DPEase localization and enhanced solubility. Supplementary strategies included the addition of 0.1% (v/v) Triton X-100 to promote protein secretion, resulting in higher extracellular DPEase (0.5 unit/mL). Low-temperature expression (20 °C) mitigated the formation of inclusion bodies, thus enhancing DPEase solubility. Our findings highlight the pivotal role of signal peptide selection in modulating DPEase solubility and activity, offering valuable insights for protein expression and secretion studies, especially for rare sugar production. Ongoing exploration of alternative signal peptides and refinement of secretion strategies promise further enhancement in enzyme secretion efficiency and process safety, paving the way for broader applications in biotechnology.
Collapse
Affiliation(s)
- Nisit Watthanasakphuban
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Boontiwa Ninchan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Phitsanu Pinmanee
- Enzyme Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand;
| | - Kittipong Rattanaporn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Suttipun Keawsompong
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| |
Collapse
|
3
|
Shawky H, Tabll AA, Elshenawy RM, Helmy NM, Moustafa RI, Elesnawy YK, Abdelghany MM, El-Abd YS. Glycylglycine promotes the solubility and antigenic utility of recombinant HCV structural proteins in a point-of-care immunoassay for detection of active viremia. Microb Cell Fact 2024; 23:25. [PMID: 38238770 PMCID: PMC10795219 DOI: 10.1186/s12934-024-02297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Although E. coli is generally a well-opted platform for the overproduction of recombinant antigens as heterologous proteins, the optimization of expression conditions to maximize the yield of functional proteins remains empirical. Herein, we developed an optimized E. coli (BL21)-based system for the overproduction of soluble immunoreactive HCV core/envelope proteins that were utilized to establish a novel immunoassay for discrimination of active HCV infection. METHODS The core/E1-E2 genes were amplified and expressed in E. coli BL21 (DE3) in the absence/presence of glycylglycine. The antigenic performance of soluble proteins was assessed against 63 HCV-seronegative (Ab-) sera that included normal and interferent sera (HBV and/or chronic renal failure), and 383 HCV-seropositive (Ab+) samples that included viremic (chronic/relapsers) and recovered patients' sera. The color intensity (OD450) and S/Co values were estimated. RESULTS The integration of 0.1-0.4M glycylglycine in the growth media significantly enhanced the solubility/yield of recombinant core and envelope proteins by ~ 225 and 242 fold, respectively. This was reflected in their immunoreactivity and antigenic performance in the developed immunoassay, where the soluble core/E1/E2 antigen mixture showed 100% accuracy in identifying HCV viremic sera with a viral RNA load as low as 3800 IU/mL, without cross-reactivity against normal/interferent HCV-Ab-sera. The ideal S/Co threshold predicting active viremia (> 2.75) showed an AUC value of 0.9362 (95% CI: 0.9132 to 0.9593), with 87.64, 91.23% sensitivity and specificity, and 94.14, 82.11% positive and negative predictive values, respectively. The different panels of samples assayed with our EIA showed a good concordance with the viral loads and also significant correlations with the golden standards of HCV diagnosis in viremic patients. The performance of the EIA was not affected by the immunocompromised conditions or HBV co-infection. CONCLUSION The applicability of the proposed platform would extend beyond the reported approach, where glycylglycine, low inducer concentration and post-induction temperature, combined with the moderately-strong constitutive promoter enables the stable production of soluble/active proteins, even those with reported toxicity. Also, the newly developed immunoassay provides a cost-effective point-of-care diagnostic tool for active HCV viremia that could be useful in resource-limited settings.
Collapse
Affiliation(s)
- Heba Shawky
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ashraf A Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Reem M Elshenawy
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Naiera M Helmy
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Rehab I Moustafa
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | | | - Marwa M Abdelghany
- National Committee for Control of Viral Hepatitis (NCCVH), Ministry of Health and Population, Cairo, Egypt
| | - Yasmine S El-Abd
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
4
|
Shapira M, Dobysh A, Liaudanskaya A, Aucharova H, Dzichenka Y, Bokuts V, Jovanović-Šanta S, Yantsevich A. New insights into the substrate specificity of cholesterol oxidases for more aware application. Biochimie 2023; 220:1-10. [PMID: 38104713 DOI: 10.1016/j.biochi.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Cholesterol oxidases (ChOxes) are enzymes that catalyze the oxidation of cholesterol to cholest-4-en-3-one. These enzymes find wide applications across various diagnostic and industrial settings. In addition, as a pathogenic factor of several bacteria, they have significant clinical implications. The current classification system for ChOxes is based on the type of bond connecting FAD to the apoenzyme, which does not adequately illustrate the enzymatic and structural characteristics of these proteins. In this study, we have adopted an integrative approach, combining evolutionary analysis, classic enzymatic techniques and computational approaches, to elucidate the distinct features of four various ChOxes from Rhodococcus sp. (RCO), Cromobacterium sp. (CCO), Pseudomonas aeruginosa (PCO) and Burkhoderia cepacia (BCO). Comparative and evolutionary analysis of substrate-binding domain (SBD) and FAD-binding domain (FBD) helped to reveal the origin of ChOxes. We discovered that all forms of ChOxes had a common ancestor and that the structural differences evolved later during divergence. Further examination of amino acid variations revealed SBD as a more variable compared to FBD independently of FAD coupling mechanism. Revealed differences in amino acid positions turned out to be critical in determining common for ChOxes properties and those that account for the individual differences in substrate specificity. A novel look with the help of chemical descriptors on found distinct features were sufficient to attempt an alternative classification system aimed at application approach. While univocal characteristics necessary to establish such a system remain elusive, we were able to demonstrate the substrate and protein features that explain the differences in substrate profile.
Collapse
Affiliation(s)
- Michail Shapira
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus.
| | - Alexandra Dobysh
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | | | - Hanna Aucharova
- Technical University of Dortmund, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
| | - Yaraslau Dzichenka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Volha Bokuts
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Suzana Jovanović-Šanta
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Novi Sad, Serbia
| | - Aliaksey Yantsevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
5
|
Watthanasakphuban N, Srila P, Pinmanee P, Sompinit K, Rattanaporn K, Peterbauer C. Development of high cell density Limosilactobacillus reuteri KUB-AC5 for cell factory using oxidative stress reduction approach. Microb Cell Fact 2023; 22:86. [PMID: 37120528 PMCID: PMC10149017 DOI: 10.1186/s12934-023-02076-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/31/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Expression systems for lactic acid bacteria have been developed for metabolic engineering applications as well as for food-grade recombinant protein production. But the industrial applications of lactic acid bacteria as cell factories have been limited due to low biomass formation resulted in low efficiency of biomanufacturing process. Limosilactobacillus reuteri KUB-AC5 is a safe probiotic lactic acid bacterium that has been proven as a gut health enhancer, which could be developed as a mucosal delivery vehicle for vaccines or therapeutic proteins, or as expression host for cell factory applications. Similar to many lactic acid bacteria, its oxygen sensitivity is a key factor that limits cell growth and causes low biomass production. The aim of this study is to overcome the oxidative stress in L. reuteri KUB-AC5. Several genes involved in oxidative and anti-oxidative stress were investigated, and strain improvement for higher cell densities despite oxidative stress was performed using genetic engineering. RESULTS An in-silico study showed that L. reuteri KUB-AC5 genome possesses an incomplete respiratory chain lacking four menaquinone biosynthesis genes as well as a complete biosynthesis pathway for the production of the precursor. The presence of an oxygen consuming enzyme, NADH oxidase (Nox), leads to high ROS formation in aerobic cultivation, resulting in strong growth reduction to approximately 25% compared to anaerobic cultivation. Recombinant strains expressing the ROS scavenging enzymes Mn-catalase and Mn-superoxide dismutase were successfully constructed using the pSIP expression system. The Mn-catalase and Mn-SOD-expressing strains produced activities of 873 U/ml and 1213 U/ml and could minimize the ROS formation in the cell, resulting in fourfold and sevenfold higher biomass formation, respectively. CONCLUSIONS Expression of Mn-catalase and Mn-SOD in L. reuteri KUB-AC5 successfully reduced oxidative stress and enhanced growth. This finding could be applied for other lactic acid bacteria that are subject to oxidative stress and will be beneficial for applications of lactic acid bacteria for cell factory applications.
Collapse
Affiliation(s)
- Nisit Watthanasakphuban
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Pimsiriya Srila
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Phitsanu Pinmanee
- Enzyme Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, 12120, Thailand
| | - Kamonwan Sompinit
- Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Kittipong Rattanaporn
- Fermentation Technology Research Center, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Clemens Peterbauer
- Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, 1190, Vienna, Austria.
| |
Collapse
|
6
|
Voulgaridou GP, Theologidis V, Venetikidou M, Tsochantaridis I, Tsolou A, Koffa M, Panayiotidis MI, Pappa A. Investigating the Functional Roles of Aldehyde Dehydrogenase 3A1 in Human Corneal Epithelial Cells. Int J Mol Sci 2023; 24:ijms24065845. [PMID: 36982917 PMCID: PMC10056195 DOI: 10.3390/ijms24065845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Aldehyde dehydrogenase 3A1 (ALDH3A1) oxidizes medium-chain aldehydes to their corresponding carboxylic acids. It is expressed at high rates in the human cornea, where it has been characterized as a multi-functional protein displaying various cytoprotective modes of action. Previous studies identified its association with the DNA damage response (DDR) pathway. Here, we utilized a stable transfected HCE-2 (human corneal epithelium) cell line expressing ALDH3A1, to investigate the molecular mechanisms underlying the cytoprotective role(s) of ALDH3A1. Our data revealed morphological differences among the ALDH3A1-expressing and the mock-transfected HCE-2 cells accompanied by differential expression of E-cadherin. Similarly, the ALDH3A1/HCE-2 cells demonstrated higher mobility, reduced proliferation, upregulation of ZEB1, and downregulation of CDK3, and p57. The expression of ALDH3A1 also affected cell cycle progression by inducing the sequestration of HCE-2 cells at the G2/M phase. Following 16 h cell treatments with either H2O2 or etoposide, a significantly lower percentage of ALDH3A1/HCE-2 cells were apoptotic compared to the respective treated mock/HCE-2 cells. Interestingly, the protective effect of ALDH3A1 expression under these oxidative and genotoxic conditions was accompanied by a reduced formation of γ-H2AX foci and higher levels of total and phospho (Ser15) p53. Finally, ALDH3A1 was found to be localized both in the cytoplasm and the nucleus of transfected HCE-2 cells. Its cellular compartmentalization was not affected by oxidant treatment, while the mechanism by which ALDH3A1 translocates to the nucleus remains unknown. In conclusion, ALDH3A1 protects cells from both apoptosis and DNA damage by interacting with key homeostatic mechanisms associated with cellular morphology, cell cycle, and DDR.
Collapse
Affiliation(s)
- Georgia-Persephoni Voulgaridou
- Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Vasileios Theologidis
- Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Venetikidou
- Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Ilias Tsochantaridis
- Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Avgi Tsolou
- Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Koffa
- Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
7
|
Voulgaridou GP, Theologidis V, Xanthis V, Papagiannaki E, Tsochantaridis I, Fadouloglou VE, Pappa A. Identification of a peptide ligand for human ALDH3A1 through peptide phage display: Prediction and characterization of protein interaction sites and inhibition of ALDH3A1 enzymatic activity. Front Mol Biosci 2023; 10:1161111. [PMID: 37021113 PMCID: PMC10067601 DOI: 10.3389/fmolb.2023.1161111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Aldehyde dehydrogenase 3A1 (ALDH3A1) by oxidizing medium chain aldehydes to their corresponding carboxylic acids, is involved in the detoxification of toxic byproducts and is considered to play an important role in antioxidant cellular defense. ALDH3A1 has been implicated in various other functions such as cell proliferation, cell cycle regulation, and DNA damage response. Recently, it has been identified as a putative biomarker of prostate, gastric, and lung cancer stem cell phenotype. Although ALDH3A1 has multifaceted functions in both normal and cancer homeostasis, its modes of action are currently unknown. To this end, we utilized a random 12-mer peptide phage display library to identify efficiently human ALDH3A1-interacting peptides. One prevailing peptide (P1) was systematically demonstrated to interact with the protein of interest, which was further validated in vitro by peptide ELISA. Bioinformatic analysis indicated two putative P1 binding sites on the protein surface implying biomedical potential and potent inhibitory activity of the P1 peptide on hALDH3A1 activity was demonstrated by enzymatic studies. Furthermore, in search of potential hALDH3A1 interacting players, a BLASTp search demonstrated that no protein in the database includes the full-length amino acid sequence of P1, but identified a list of proteins containing parts of the P1 sequence, which may prove potential hALDH3A1 interacting partners. Among them, Protein Kinase C Binding Protein 1 and General Transcription Factor II-I are candidates of high interest due to their cellular localization and function. To conclude, this study identifies a novel peptide with potential biomedical applications and further suggests a list of protein candidates be explored as possible hALDH3A1-interacting partners in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aglaia Pappa
- *Correspondence: Vasiliki E. Fadouloglou, ; Aglaia Pappa,
| |
Collapse
|
8
|
Cardoso V, Brás JLA, Costa IF, Ferreira LMA, Gama LT, Vincentelli R, Henrissat B, Fontes CMGA. Generation of a Library of Carbohydrate-Active Enzymes for Plant Biomass Deconstruction. Int J Mol Sci 2022; 23:ijms23074024. [PMID: 35409382 PMCID: PMC8999789 DOI: 10.3390/ijms23074024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
In nature, the deconstruction of plant carbohydrates is carried out by carbohydrate-active enzymes (CAZymes). A high-throughput (HTP) strategy was used to isolate and clone 1476 genes obtained from a diverse library of recombinant CAZymes covering a variety of sequence-based families, enzyme classes, and source organisms. All genes were successfully isolated by either PCR (61%) or gene synthesis (GS) (39%) and were subsequently cloned into Escherichia coli expression vectors. Most proteins (79%) were obtained at a good yield during recombinant expression. A significantly lower number (p < 0.01) of proteins from eukaryotic (57.7%) and archaeal (53.3%) origin were soluble compared to bacteria (79.7%). Genes obtained by GS gave a significantly lower number (p = 0.04) of soluble proteins while the green fluorescent protein tag improved protein solubility (p = 0.05). Finally, a relationship between the amino acid composition and protein solubility was observed. Thus, a lower percentage of non-polar and higher percentage of negatively charged amino acids in a protein may be a good predictor for higher protein solubility in E. coli. The HTP approach presented here is a powerful tool for producing recombinant CAZymes that can be used for future studies of plant cell wall degradation. Successful production and expression of soluble recombinant proteins at a high rate opens new possibilities for the high-throughput production of targets from limitless sources.
Collapse
Affiliation(s)
- Vânia Cardoso
- Centro de Investigação Interdisciplinar em Sanidade Animal—Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (L.M.A.F.); (L.T.G.)
- NZYTech Ltd., Estrada do Paço do Lumiar, Campus do Lumiar, 1649-038 Lisboa, Portugal; (J.L.A.B.); (I.F.C.)
- Correspondence: (V.C.); (C.M.G.A.F.)
| | - Joana L. A. Brás
- NZYTech Ltd., Estrada do Paço do Lumiar, Campus do Lumiar, 1649-038 Lisboa, Portugal; (J.L.A.B.); (I.F.C.)
| | - Inês F. Costa
- NZYTech Ltd., Estrada do Paço do Lumiar, Campus do Lumiar, 1649-038 Lisboa, Portugal; (J.L.A.B.); (I.F.C.)
| | - Luís M. A. Ferreira
- Centro de Investigação Interdisciplinar em Sanidade Animal—Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (L.M.A.F.); (L.T.G.)
| | - Luís T. Gama
- Centro de Investigação Interdisciplinar em Sanidade Animal—Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (L.M.A.F.); (L.T.G.)
| | - Renaud Vincentelli
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7257, Université Aix-Marseille, 13288 Marseille, France; (R.V.); (B.H.)
- Institut National de la Recherche Agronomique, Unité sous Contrat 1408 Architecture et Fonction des Macromolécules Biologiques, 13288 Marseille, France
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7257, Université Aix-Marseille, 13288 Marseille, France; (R.V.); (B.H.)
- Institut National de la Recherche Agronomique, Unité sous Contrat 1408 Architecture et Fonction des Macromolécules Biologiques, 13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Carlos M. G. A. Fontes
- Centro de Investigação Interdisciplinar em Sanidade Animal—Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (L.M.A.F.); (L.T.G.)
- NZYTech Ltd., Estrada do Paço do Lumiar, Campus do Lumiar, 1649-038 Lisboa, Portugal; (J.L.A.B.); (I.F.C.)
- Correspondence: (V.C.); (C.M.G.A.F.)
| |
Collapse
|
9
|
Perez-Riverol A, Musacchio-Lasa A, Fernandes LGR, dos Santos-Pinto JRA, Esteves FG, Bazon ML, Zollner RDL, Palma MS, Brochetto-Braga MR. Improved production of the recombinant phospholipase A1 from Polybia paulista wasp venom expressed in bacterial cells for use in routine diagnostics. 3 Biotech 2020; 10:217. [PMID: 32355591 DOI: 10.1007/s13205-020-02202-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/09/2020] [Indexed: 12/27/2022] Open
Abstract
Phospholipase A1 (PLA1) is one of the three major allergens identified in the venom of P. paulista (Hymenoptera: Vespidae), a clinically relevant wasp from southeastern Brazil. The recombinant form of this allergen (rPoly p 1) could be used for the development of molecular diagnostic of venom allergy. Early attempts to produce rPoly p 1 using Escherichia coli BL21 (DE3) cells rendered high yields of the insoluble rPoly p 1 but with low levels of solubilized protein recovery (12%). Here, we aimed to improve the production of rPoly p 1 in E. coli by testing different conditions of expression, solubilization of the inclusion bodies and protein purification. The results showed that the expression at 16 °C and 0.1 mM of IPTG increased the production of rPoly p 1, still in the insoluble form, but with high solubilized protein yields after incubation with citrate-phosphate buffer with 0.15 M NaCl, 6 M urea, pH 2.6 at 25 ºC for 2 h. The venom allergen was also cloned in pPICZαA vector for soluble expression as a secreted protein in Pichia pastoris X-33 cells, rendering almost undetectable levels (nanograms) in the culture supernatant. In contrast, a sevenfold increase of the solubilized and purified rPoly p 1 yields (1.5 g/L of fermentation broth) was obtained after improved production in E. coli. The identity of the protein was confirmed with an anti-His antibody and MS spectra. Allergen-specific IgE (sIgE)-mediated recognition was evaluated in immunoblotting with sera of allergic patients (n = 40). Moreover, rPoly p 1 showed high levels of diagnostic sensitivity (95%). The optimized strategy for rPoly p 1 production described here, will provide the amounts of allergen necessary for the subsequent protein refolding, immunological characterization steps, and ultimately, to the development of molecular diagnostic for P. paulista venom allergy.
Collapse
|
10
|
Barkhordari F, Sohrabi N, Davami F, Mahboudi F, Garoosi YT. Cloning, expression and characterization of a HER2-alpha luffin fusion protein in Escherichia coli. Prep Biochem Biotechnol 2019; 49:759-766. [PMID: 31032734 DOI: 10.1080/10826068.2019.1608447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent decades, immunotoxins have attracted significant attention in treatment of a wide range of diseases including cancers due to their natural origins and their role in blocking crucial pathways within the cells. Ribosome inactivating proteins (RIPs) are efficient molecules in blocking protein synthesis through interactions with ribosomal rRNA molecules. cDNA molecule encoding HER2 scFv antibody fragment originated from trastuzumab attached to the mature alpha luffin gene fragment was subcloned into pET28a expression vector and expressed in different E. coli expression hosts. Identity of the expressed recombinant protein was investigated through western blotting and the fusion protein was purified using Ni-NTA affinity chromatography. The biological activity (toxicity) of the protein was investigated on DNA and RNA samples. A 58 kDa protein was expressed in E. coli. The best protein expression level was achieved in 0.2 mM IPTG at 30 °C in TB medium using E. coli BL21 (DE3) host strain. The fusion protein showed RNase and DNA glycosylase activity on tested RNA and DNA samples. DNA glycosylase activity of the recombinant fusion protein showed that alpha luffin part of this protein is active in conjugation to the scFv molecule and the expressed protein can be further studied in targeted biological in vitro assays.
Collapse
Affiliation(s)
- Farzaneh Barkhordari
- a Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran.,b Department of Biochemistry, Payame Noor University , Tehran , Iran
| | - Nooshin Sohrabi
- c Department of Biology, Payame Noor University , Tehran , Iran
| | - Fatemeh Davami
- a Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran
| | - Fereidoun Mahboudi
- a Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran
| | | |
Collapse
|
11
|
Malekian R, Sima S, Jahanian-Najafabadi A, Moazen F, Akbari V. Improvement of soluble expression of GM-CSF in the cytoplasm of Escherichia coli using chemical and molecular chaperones. Protein Expr Purif 2019; 160:66-72. [PMID: 30998976 DOI: 10.1016/j.pep.2019.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/27/2022]
Abstract
The most common approaches to improve soluble expression of heterologous proteins are applications of molecular chaperones such as DnaK, DnaJ, GrpE, GroEL and GroES. The aim of present study was to enhance soluble expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) in Escherichia coli by different approaches including modification of cultivation and induction conditions, and thermally, genetically and chemically enhancement of expression of cellular chaperones. To genetically enhance amount of molecular chaperones, co-expression of pET28-GM-CSF and pKJE7 plasmids was performed. The soluble expressed protein was affinity purified and subjected to endotoxin removal. Co-expression with molecular chaperones significantly increased soluble expression of GM-CSF. Addition of chemical chaperones and osmolytes like NaCl (0.5 M), sucrose (0.5 M), sorbitol (0.5 M) and MgCl2 (1 mM) to growing media could improve solubility of GM-CSF. Biological activity of purified GM-CSF was confirmed based on its proliferative effect on HL-60 cell lines. The approach developed in the present study can be applied to improve soluble expression of other recombinant protein proteins.
Collapse
Affiliation(s)
- Raziyeh Malekian
- Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Setareh Sima
- Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Moazen
- Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
12
|
Lu J, Zhao Y, Zhang J. High-level expression of Aerococcus viridans pyruvate oxidase in Escherichia coli by optimization of vectors and induction conditions. Lett Appl Microbiol 2018; 67:262-269. [PMID: 29856486 DOI: 10.1111/lam.13013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 01/24/2023]
Abstract
Pyruvate oxidase is an important enzyme used as a reagent in kits and biochemical analyses; however, the yield of pyruvate oxidase from wild microbial strains is low. In this study, high-level expression of Aerococcus viridans pyruvate oxidase was achieved in recombinant Escherichia coli by optimizing the expression system and induction conditions. Three recombinant pET vectors were constructed for pyruvate oxidase expression in E. coli. The isopropyl-β-d-thiogalactoside (IPTG) concentration and induction temperature were optimized, with the result that the highest pyruvate oxidase yield (4106·9 U l-1 ) of the recombinant E. colipET28a-pod was obtained under conditions of 25°C, 0·5 mmol l-1 IPTG, 0·5 OD600 , after 24 h of induction, which was 34·2 times the yield achieved with the wild-type strain. The soluble pyruvate oxidase contributed 99·6% of the total pyruvate oxidase expressed. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates that a highly soluble pyruvate oxidase can be obtained in recombinant Escherichia coli by optimizing vectors and induction conditions. The pyruvate oxidase yield achieved is the highest reported so far, which provides a convenient and cost-saving way to produce pyruvate oxidase. This research promotes pyruvate oxidase application in the pharmaceutical and biochemical industries.
Collapse
Affiliation(s)
- J Lu
- Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Y Zhao
- Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - J Zhang
- Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
13
|
Inhibiting the Catalytic Activity of Family GH11 Xylanases by Recombinant Rice Xylanase-Inhibiting Protein. Catal Letters 2018. [DOI: 10.1007/s10562-018-2431-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Choi TJ, Geletu TT. High level expression and purification of recombinant flounder growth hormone in E. coli. J Genet Eng Biotechnol 2018; 16:347-355. [PMID: 30733745 PMCID: PMC6353774 DOI: 10.1016/j.jgeb.2018.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Recombinant flounder growth hormone was overproduced in E. coli by using codon optimized synthetic gene and optimized expression conditions for high level production. The gene was cloned into PET-28a expression vector and transformed into E. coli BL21 (DE3). Induction at lower temperature, lower IPTG concentrations and richer growth media during expression resulted in increased expression level. The protein expression profile was analyzed by SDS-PAGE, the authenticity was confirmed by western blotting and the concentration was determined by Bradford assay. In addition, several attempts were made to produce soluble product and all resulted in insoluble product. The overexpressed protein was efficiently purified from inclusion bodies by moderate speed centrifugation after cell lysis. Among the solubilization buffers examined, buffer with 1% N-lauroylsarcosine in the presence of reducing agent DTT at alkaline pH resulted in efficient solubilization and recovery. The denaturant was removed by filtration and dialysis. The amount of the growth hormone recovered was significantly higher than previous reports that expressed native growth hormone genes in E. coli. The methodology adapted in this study, can be used to produce flounder growth hormone at large scale level so that it can be used in aquaculture. This approach may also apply to other proteins if high level expression and efficient purification is sought in E. coli.
Collapse
Key Words
- DTT, dithiothreitol
- Expression
- Growth hormone
- IPTG, isopropyl β-D-1-thiogalactopyranoside
- Kan, kanamycin
- Purification
- Recombinant
- SDS-PAGE, sodium dodecyl sulfate- polyacrylamide gel electrophoresis
- TEMED, tetramethylethylenediamine
- bp, base pair
- cDNA, complementary DNA
- fGH, flounder growth hormone
- kDa, kilo Dalton
- kb, kilo base
Collapse
Affiliation(s)
- Tae-Jin Choi
- Pukyong National University, Department of Microbiology, Busan 608-737, Republic of Korea
| | - Temesgen Tola Geletu
- Haramaya University, School of Biological Sciences and Biotechnology, Dire Dawa 138, Ethiopia
- Corresponding author at: P.O. Box, 81, Dire Dawa, Ethiopia.
| |
Collapse
|
15
|
Efficient osmolyte-based procedure to increase expression level and solubility of infectious hematopoietic necrosis virus (IHNV) nucleoprotein in E. coli. Appl Microbiol Biotechnol 2018; 102:4087-4100. [DOI: 10.1007/s00253-018-8907-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/21/2023]
|
16
|
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 2018; 106:803-822. [DOI: 10.1016/j.ijbiomac.2017.08.080] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/02/2017] [Accepted: 08/12/2017] [Indexed: 12/29/2022]
|
17
|
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2017.08.080 10.1242/jeb.069716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Mahalik S, Sharma AK, Jain P, Mukherjee KJ. Identifying genomic targets for protein over-expression by "omics" analysis of Quiescent Escherichia coli cultures. Microb Cell Fact 2017; 16:133. [PMID: 28754100 PMCID: PMC5534100 DOI: 10.1186/s12934-017-0744-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background A cellular stress response is triggered upon induction of recombinant protein expression which feedback inhibits both growth as well as protein synthesis. In order to separate these two effects, it was decided to study “quiescent cultures” which continue to be metabolically active and express recombinant proteins even after growth cessation. The idea was to identify and up-regulate genes which are responsible for protein synthesis in the absence of growth. This would ensure that, even if growth were adversely affected post induction, there would be no attendant reduction in the protein expression capability of the cells. This strategy allowed us to design host strains, which did not grow better post induction but had significantly higher levels of protein expression. Results A quiescent Escherichia coli culture, which is able to sustain recombinant protein expression in the absence of growth, was analyzed by transcriptomic and proteomic profiling. Many genes involved in carbon utilization, biosynthesis of building blocks and stress protection were found to be up-regulated in the quiescent phase. Analysis of the global regulators showed that fis, which tends to get down-regulated as the cells enter stationary phase, remained up-regulated throughout the non-growing quiescent phase. The downstream genes regulated by fis like carB, fadB, nrfA, narH and queA were also up-regulated in the quiescent phase which could be the reason behind the higher metabolic activity and protein expression ability of these non-growing cells. To test this hypothesis, we co-expressed fis in a control culture expressing recombinant l-asparaginase and observed a significantly higher buildup of l-asparaginase in the culture medium. Conclusions This work represents an important breakthrough in the design of a superior host platform where a gene not directly associated with protein synthesis was used to generate a phenotype having higher protein expression capability. Many alternative gene targets were also identified which may have beneficial effects on expression ability. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0744-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shubhashree Mahalik
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashish Kumar Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanka Jain
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
19
|
Voulgaridou GP, Tsochantaridis I, Mantso T, Franco R, Panayiotidis MI, Pappa A. Human aldehyde dehydrogenase 3A1 (ALDH3A1) exhibits chaperone-like function. Int J Biochem Cell Biol 2017; 89:16-24. [PMID: 28526614 DOI: 10.1016/j.biocel.2017.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/18/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
Aldehyde dehydrogenase 3A1 (ALDH3A1) is a metabolic enzyme that catalyzes the oxidation of various aldehydes. Certain types of epithelial tissues in mammals, especially those continually exposed to environmental stress (e.g., corneal epithelium), express ALDH3A1 at high levels and its abundance in such tissues is perceived to help to maintain cellular homeostasis under conditions of oxidative stress. Metabolic as well as non-metabolic roles for ALDH3A1 have been associated with its mediated resistance to cellular oxidative stress. In this study, we provide evidence that ALDH3A1 exhibits molecular chaperone-like activity further supporting its multifunctional role. Specifically, we expressed and purified the human ALDH3A1 in E. coli and used the recombinant protein to investigate its in vitro ability to protect SmaI and citrate synthase (from precipitation and/or deactivation) under thermal stress conditions. Our results indicate that recombinant ALDH3A1 exhibits significant chaperone function in vitro. Furthermore, over-expression of the fused histidine-tagged ALDH3A1 confers host E. coli cells with enhanced resistance to thermal shock, while ALDH3A1 over-expression in the human corneal cell line HCE-2 was sufficient for protecting them from the cytotoxic effects of both hydrogen peroxide and tert-butyl hydroperoxide. These results further support the chaperone-like function of human ALDH3A1. Taken together, ALDH3A1, in addition to its primary metabolic role in fundamental cellular detoxification processes, appears to play an essential role in protecting cellular proteins against aggregation under stress conditions.
Collapse
Affiliation(s)
- Georgia-Persephoni Voulgaridou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis 68100, Greece
| | - Ilias Tsochantaridis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis 68100, Greece
| | - Theodora Mantso
- Department of Molecular Biology & Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis 68100, Greece; Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom
| | - Rodrigo Franco
- Redox Biology Center, School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis 68100, Greece.
| |
Collapse
|
20
|
Viktorova J, Rehorova K, Musilova L, Suman J, Lovecka P, Macek T. New findings in potential applications of tobacco osmotin. Protein Expr Purif 2017; 129:84-93. [PMID: 27654923 DOI: 10.1016/j.pep.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023]
Abstract
The osmotin protein is involved in both monocot and dicot plant responses to biotic and abiotic stress. To determine the biological activity of osmotin, the gene was amplified from tobacco genomic DNA, fused with the hexahistidine tag motif and successfully expressed in Escherichia coli, after which the recombinant osmotin was purified and renatured. Various activities were then tested, including hemolytic activity, toxicity against human embryonic kidney cells, and the antifungal activity of the recombinant osmotin. We found that osmotin had no adverse effects on human kidney cells up to a concentration of 500 μg.ml-1. However, the purified osmotin also had significant antimicrobial activity, specifically against fungal pathogens causing candidiasis and otitis, and against the common food pathogens. Using the osmotin-Agrobacterium construct, the osmotin gene was inserted into tobacco plants in order to facilitate the isolation of recombinant protein. Using qPCR, the presence and copy number of the transgene was detected in the tobacco plant DNA. The transgene was also quantified using mRNA, and results indicated a strong expression profile, however the native protein has been never isolated. Once the transgene presence was confirmed, the transgenic tobacco plants were grown in high saline concentrations and monitored for seed germination and chlorophyll content as indicators of overall plant health. Results indicated that the transgenic tobacco plants had a higher tolerance for osmotic stress. These results indicate that the osmotin gene has the potential to increase crop tolerance to stresses such as fungal attack and unfavorable osmotic conditions.
Collapse
Affiliation(s)
- Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Katerina Rehorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Lucie Musilova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Petra Lovecka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Tomas Macek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
21
|
Soleymani B, Hafezian SH, Mianji GR, Mansouri K, Chaharaein B, Tajehmiri A, Sharifi Tabar M, Mostafaie A. Bovine Sex Determining Region Y: Cloning, Optimized Expression, and Purification. Anim Biotechnol 2016; 28:44-52. [DOI: 10.1080/10495398.2016.1198796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Bijan Soleymani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Animal Science, Faculty of Animal and Fishery Sciences, Agricultural Science and Natural Resources University of Sari, Sari, Iran
| | - Sayed Hassan Hafezian
- Department of Animal Science, Faculty of Animal and Fishery Sciences, Agricultural Science and Natural Resources University of Sari, Sari, Iran
| | - Ghodratollah Rahimi Mianji
- Department of Animal Science, Faculty of Animal and Fishery Sciences, Agricultural Science and Natural Resources University of Sari, Sari, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Broomand Chaharaein
- Agricultural Research Center, Jehad-e Keshavarzi Institute, Kermanshah, Iran
| | - Ahmad Tajehmiri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Sharifi Tabar
- Schools of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Ali Mostafaie
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
22
|
Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:460-469. [PMID: 27030586 DOI: 10.1128/cvi.00081-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/23/2016] [Indexed: 12/25/2022]
Abstract
Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses.
Collapse
|
23
|
Aldehyde dehydrogenase 3A1 promotes multi-modality resistance and alters gene expression profile in human breast adenocarcinoma MCF-7 cells. Int J Biochem Cell Biol 2016; 77:120-128. [PMID: 27276244 DOI: 10.1016/j.biocel.2016.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/21/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
Abstract
Aldehyde dehydrogenases participate in a variety of cellular homeostatic mechanisms like metabolism, proliferation, differentiation, apoptosis, whereas recently, they have been implicated in normal and cancer cell stemness. We explored roles for ALDH3A1 in conferring resistance to chemotherapeutics/radiation/oxidative stress and whether ectopic overexpression of ALDH3A1 could lead to alterations of gene expression profile associated with cancer stem cell-like phenotype. MCF-7 cells were stably transfected either with an empty vector (mock) or human aldehyde dehydrogenase 3A1 cDNA. The expression of aldehyde dehydrogenase 3A1 in MCF-7 cells was associated with altered cell proliferation rate and enhanced cell resistance against various chemotherapeutic drugs (4-hydroxyperoxycyclophosphamide, doxorubicin, etoposide, and 5-fluorouracil). Aldehyde dehydrogenase 3A1 expression also led to increased tolerance of MCF-7 cells to gamma radiation and hydrogen peroxide-induced stress. Furthermore, aldehyde dehydrogenase 3A1-expressing MCF-7 cells exhibited gene up-regulation of cyclins A, B1, B2, and down-regulation of cyclin D1 as well as transcription factors p21, CXR4, Notch1, SOX2, SOX4, OCT4, and JAG1. When compared to mock cells, no changes were observed in mRNA levels of ABCA2 and ABCB1 protein pumps with only a minor decrease of the ABCG2 pump in the aldehyde dehydrogenase 3A1-expressing cells. Also, the adhesion molecules EpCAM and CD49F were also found to be up-regulated in aldehyde dehydrogenase 3A1expressing cells. Taken together, ALDH3A1 confers a multi-modality resistance phenotype in MCF-7 cells associated with slower growth rate, increased clonogenic capacity, and altered gene expression profile, underlining its significance in cell homeostasis.
Collapse
|
24
|
McDonnell T, Pericleous C, Laurine E, Tommasi R, Garza-Garcia A, Giles I, Ioannou Y, Rahman A. Development of a high yield expression and purification system for Domain I of Beta-2-glycoprotein I for the treatment of APS. BMC Biotechnol 2015; 15:104. [PMID: 26576675 PMCID: PMC4650279 DOI: 10.1186/s12896-015-0222-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 11/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this paper we describe a novel method to achieve high yield bacterial expression of a small protein domain with considerable therapeutic potential; Domain I of Beta-2-glycoprotein I (β2GPI). β2GPI is intrinsic to the pathological progression of the Antiphospholipid Syndrome (APS). Patients develop autoantibodies targeting an epitope located on the N-terminal Domain I of β2GPI rendering this domain of interest as a possible therapeutic. RESULTS This new method of production of Domain I of β2GPI has increased the production yield by ~20 fold compared to previous methods in E.coli. This largely scalable, partially automated method produces 50-75 mg of pure, folded, active Domain I of β2GPI per litre of expression media. CONCLUSION The application of this method may enable production of Domain I on sufficient scale to allow its use as a therapeutic.
Collapse
Affiliation(s)
- Thomas McDonnell
- Centre for Rheumatology, Division of Medicine, University College London, Rayne Institute, 5 University Street, London, WC1E 6JF, UK.
| | - Charis Pericleous
- Centre for Rheumatology, Division of Medicine, University College London, Rayne Institute, 5 University Street, London, WC1E 6JF, UK.
| | - Emmanuelle Laurine
- PolyTherics, Babraham Research Campus, Babraham, CB22 3AT, Cambridge, UK.
| | - Rita Tommasi
- PolyTherics, Babraham Research Campus, Babraham, CB22 3AT, Cambridge, UK.
| | - Acely Garza-Garcia
- Structural Biology, Medical Research Council National Institute for Medical Research, London, UK.
| | - Ian Giles
- Centre for Rheumatology, Division of Medicine, University College London, Rayne Institute, 5 University Street, London, WC1E 6JF, UK.
| | - Yiannis Ioannou
- Centre for Rheumatology, Division of Medicine, University College London, Rayne Institute, 5 University Street, London, WC1E 6JF, UK. .,Arthritis Research UK Centre for Adolescent Rheumatology, University College London, London, UK.
| | - Anisur Rahman
- Centre for Rheumatology, Division of Medicine, University College London, Rayne Institute, 5 University Street, London, WC1E 6JF, UK.
| |
Collapse
|
25
|
Gupta SK, Shukla P. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Crit Rev Biotechnol 2015; 36:1089-1098. [DOI: 10.3109/07388551.2015.1084264] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Sanjeev K. Gupta
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India and
- Advanced Biotech Lab (Centre for Research & Development), Ipca Laboratories Ltd., Kandivli (west), Mumbai, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India and
| |
Collapse
|
26
|
Grigoroudis AI, McInnes C, Premnath PN, Kontopidis G. Efficient soluble expression of active recombinant human cyclin A2 mediated by E. coli molecular chaperones. Protein Expr Purif 2015; 113:8-16. [PMID: 25956535 DOI: 10.1016/j.pep.2015.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/06/2015] [Accepted: 01/12/2015] [Indexed: 12/25/2022]
Abstract
Bacterial expression of human proteins continues to present a critical challenge in protein crystallography and drug design. While human cyclin A constructs have been extensively characterized in complex with cyclin dependent kinase 2 (CDK2), efforts to express the monomeric human cyclin A2 in Escherichia coli in a stable form, without the kinase subunit, have been laden with technical difficulties, including solubility, yield and purity. Here, optimized conditions are described with the aim of generating for first time, sufficient quantities of human recombinant cyclin A2 in a soluble and active form for crystallization and ligand characterization purposes. The studies involve implementation of a His-tagged heterologous expression system under conditions of auto-induction and mediated by molecular chaperone-expressing plasmids. A high yield of human cyclin A2 was obtained in natively folded and soluble form, through co-expression with groups of molecular chaperones from E. coli in various combinations. A one-step affinity chromatography method was utilized to purify the fusion protein products to homogeneity, and the biological activity confirmed through ligand-binding affinity to inhibitory peptides, representing alternatives for the key determinants of the CDK2 substrate recruitment site on the cyclin regulatory subunit. As a whole, obtaining the active cyclin A without the CDK partner (referred to as monomeric in this work) in a straightforward and facile manner will obviate protein--production issues with the CDK2/cyclin A complex and enable drug discovery efforts for non-ATP competitive CDK inhibition through the cyclin groove.
Collapse
Affiliation(s)
- Asterios I Grigoroudis
- Institute for Research and Technology-Thessaly (I.RE.TE.TH.) Centre for Research & Technology Hellas (CE.R.TH.), 95 Dimitriados & Pavlou Mela Street, GR 38333, Volos, Greece; Laboratory of Biochemistry, Faculty of Veterinary Science, University of Thessaly, GR-43100 Karditsa, Greece
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, United States
| | - Padmavathy Nandha Premnath
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, United States
| | - George Kontopidis
- Institute for Research and Technology-Thessaly (I.RE.TE.TH.) Centre for Research & Technology Hellas (CE.R.TH.), 95 Dimitriados & Pavlou Mela Street, GR 38333, Volos, Greece; Laboratory of Biochemistry, Faculty of Veterinary Science, University of Thessaly, GR-43100 Karditsa, Greece.
| |
Collapse
|
27
|
Arya R, Sabir JSM, Bora RS, Saini KS. Optimization of culture parameters and novel strategies to improve protein solubility. Methods Mol Biol 2015; 1258:45-63. [PMID: 25447858 DOI: 10.1007/978-1-4939-2205-5_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The production of recombinant proteins, in soluble form in a prokaryotic expression system, still remains a challenge for the biotechnologist. Innovative strategies have been developed to improve protein solubility in various protein overexpressing hosts. In this chapter, we would focus on methods currently available and amenable to "desired modifications," such as (a) the use of molecular chaperones; (b) the optimization of culture conditions; (c) the reengineering of a variety of host strains and vectors with affinity tags; and (d) optimal promoter strengths. All these parameters are evaluated with the primary objective of increasing the solubilization of recombinant protein(s) during overexpression in Escherichia coli.
Collapse
Affiliation(s)
- Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | | | |
Collapse
|
28
|
Chen A, Li Y, Liu X, Long Q, Yang Y, Bai Z. Soluble expression of pullulanase from Bacillus acidopullulyticus in Escherichia coli by tightly controlling basal expression. ACTA ACUST UNITED AC 2014; 41:1803-10. [DOI: 10.1007/s10295-014-1523-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/27/2014] [Indexed: 11/27/2022]
Abstract
Abstract
Bacillus acidopullulyticus pullulanase (BaPul13A) is a widely used debranching enzyme in the starch industry. A few details have been reported on the heterologous expression of BaPul13A in Escherichia coli (E. coli). This study compares different E. coli expression systems to improve the soluble expression level of BaPul13A. When pET22b(+)/pET28a(+) was used as the expression vector, the soluble expression of BaPul13A can be achieved by tightly controlling basal expression, whereas pET-20b(+)/pGEX4T2 leads to insoluble inclusion bodies. An efficient process control strategy aimed at minimizing the formation of inclusion bodies and enhancing the production of pullulanase was developed by a step decrease of the temperature in a 5-L fermentor. The highest total enzyme activity of BaPul13A reached 1,156.32 U/mL. This work reveals that the T7 promoter with lac operator and lacI gene collectively contribute to the soluble expression of BaPul13A, whereas either a T7 promoter alone or combined with the lac operator and lacI gene results in poor solubility. Basal expression in the initial growth phase of the host significantly affects the solubility of BaPul13A in E. coli.
Collapse
Affiliation(s)
- Ana Chen
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- grid.461986.4 0000000417607968 School of Biochemical Engineering Anhui Polytechnic University 241000 Wuhu China
| | - Yamei Li
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| | - Xiuxia Liu
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
| | - Quan Long
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
| | - Yankun Yang
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
| | - Zhonghu Bai
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
| |
Collapse
|
29
|
Boonyuen U, Promnares K, Junkree S, Day NPJ, Imwong M. Efficient in vitro refolding and functional characterization of recombinant human liver carboxylesterase (CES1) expressed in E. coli. Protein Expr Purif 2014; 107:68-75. [PMID: 25462813 PMCID: PMC4294421 DOI: 10.1016/j.pep.2014.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/10/2014] [Accepted: 11/16/2014] [Indexed: 11/16/2022]
Abstract
Expression of recombinant human carboxylesterase I in E.coli is mainly insoluble. Refolding using a combination of 1% glycerol and 2 mM β-mercaptoethanol in Tris–HCl, pH 7.5 significantly improved solubility. Purified recombinant human CES1 is functionally active and stable. We provided efficient method to produce large amount and catalytically active CES1.
Human liver carboxylesterase 1 (CES1) plays a critical role in the hydrolysis of various ester- and amide-containing molecules, including active metabolites, drugs and prodrugs. However, it has been problematic to express recombinant CES1 in bacterial expression systems due to low solubility, with the CES1 protein being mainly expressed in inclusion bodies, accompanied by insufficient purity issues. In this study, we report an efficient in vitro method for refolding recombinant CES1 from inclusion bodies. A one-step purification with an immobilized-metal affinity column was utilized to purify His-tagged recombinant CES1. Conveniently, both denaturant and imidazole can be removed while the enzyme is refolded via buffer exchange, a dilution method. We show that the refolding of recombinant CES1 was successful in Tris–HCl at pH 7.5 containing a combination of 1% glycerol and 2 mM β-mercaptoethanol, whereas a mixture of other additives (trehalose, sorbitol and sucrose) and β-mercaptoethanol failed to recover a functional protein. His-tagged recombinant CES1 retains its biological activity after refolding and can be used directly without removing the fusion tag. Altogether, our results provide an alternative method for obtaining a substantial amount of functionally active protein, which is advantageous for further investigations such as structural and functional studies.
Collapse
Affiliation(s)
- Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Kamoltip Promnares
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand.
| | - Suwapat Junkree
- Central Equipment Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Nichloas P J Day
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, Oxford, United Kingdom.
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
30
|
Engineering cells to improve protein expression. Curr Opin Struct Biol 2014; 26:32-8. [PMID: 24704806 DOI: 10.1016/j.sbi.2014.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 12/22/2022]
Abstract
Cellular engineering of bacteria, fungi, insect cells and mammalian cells is a promising methodology to improve recombinant protein production for structural, biochemical, and commercial applications. Increased understanding of the host organism biology has suggested engineering strategies targeting bottlenecks in transcription, translation, protein processing and secretory pathways, as well as cell growth and survival. A combination of metabolic engineering and synthetic biology has been used to improve the properties of cells for protein production, which has resulted in enhanced yields of multiple protein classes.
Collapse
|