1
|
Löwenstein F. [Veterinary care for minipigs - a challenge for small animal practice]. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2025; 53:34-46. [PMID: 39965622 DOI: 10.1055/a-2516-6222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Miniature pet pigs, called Minipigs, were originally bred for experimental purposes. Since the 1990s, they have been kept as pets in private households. They are kept indoor, in stables with runs and outdoors. Mistakes in feeding and insufficient knowledge of pet owners about their animals lead to husbandry-related diseases. Veterinary practices for small animals are often visited in the case of disease or necessary care measures. In this review, the topics of breeding lines, husbandry, feeding, legal principles, clinical examination, the most important diseases and their treatment are presented.
Collapse
|
2
|
Seo YJ, Lim C, Lim B, Kim JM. Microbial-transcriptome integrative analysis of heat stress effects on amino acid metabolism and lipid peroxidation in poultry jejunum. Anim Biotechnol 2024; 35:2331179. [PMID: 38519440 DOI: 10.1080/10495398.2024.2331179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Despite the significant threat of heat stress to livestock animals, only a few studies have considered the potential relationship between broiler chickens and their microbiota. Therefore, this study examined microbial modifications, transcriptional changes and host-microbiome interactions using a predicted metabolome data-based approach to understand the impact of heat stress on poultry. After the analysis, the host functional enrichment analysis revealed that pathways related to lipid and protein metabolism were elevated under heat stress conditions. In contrast, pathways related to the cell cycle were suppressed under normal environmental temperatures. In line with the transcriptome analysis, the microbial analysis results indicate that taxonomic changes affect lipid degradation. Heat stress engendered statistically significant difference in the abundance of 11 microorganisms, including Bacteroides and Peptostreptococcacea. Together, integrative approach analysis suggests that microbiota-induced metabolites affect host fatty acid peroxidation metabolism, which is correlated with the gene families of Acyl-CoA dehydrogenase long chain (ACADL), Acyl-CoA Oxidase (ACOX) and Acetyl-CoA Acyltransferase (ACAA). This integrated approach provides novel insights into heat stress problems and identifies potential biomarkers associated with heat stress.
Collapse
Affiliation(s)
- Young-Jun Seo
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Chiwoong Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
3
|
Bertorello S, Cei F, Fink D, Niccolai E, Amedei A. The Future Exploring of Gut Microbiome-Immunity Interactions: From In Vivo/Vitro Models to In Silico Innovations. Microorganisms 2024; 12:1828. [PMID: 39338502 PMCID: PMC11434319 DOI: 10.3390/microorganisms12091828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Investigating the complex interactions between microbiota and immunity is crucial for a fruitful understanding progress of human health and disease. This review assesses animal models, next-generation in vitro models, and in silico approaches that are used to decipher the microbiome-immunity axis, evaluating their strengths and limitations. While animal models provide a comprehensive biological context, they also raise ethical and practical concerns. Conversely, modern in vitro models reduce animal involvement but require specific costs and materials. When considering the environmental impact of these models, in silico approaches emerge as promising for resource reduction, but they require robust experimental validation and ongoing refinement. Their potential is significant, paving the way for a more sustainable and ethical future in microbiome-immunity research.
Collapse
Affiliation(s)
- Sara Bertorello
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Francesco Cei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Dorian Fink
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| |
Collapse
|
4
|
Zhu L, Ma S, He C, Bai L, Tu W, Wu X. Microbial and Metabolic Profiling of Obese and Lean Luchuan Pigs: Implications for Phenotypic Divergence. Animals (Basel) 2024; 14:2111. [PMID: 39061573 PMCID: PMC11273426 DOI: 10.3390/ani14142111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Luchuan (LC) pigs are a Chinese breed renowned for their distinctive black and white coloring, superior meat quality and rapid reproduction, but their growth rate is slow. Over the course of approximately two decades of controlled breeding, the LC pigs maintained at the Shanghai Academy of Agricultural Sciences (Shanghai, China) have diverged into two phenotypes: one characterized by obesity (FLC) and the other by leanness (LLC). Recent studies indicate a correlation between microorganisms and the differentiation of host phenotypes. In this study, we examined the fecal microbiota profiles and serum metabolites of FLC and LLC pigs. The body weight, chest circumference, and alanine aminotransferase and aspartate aminotransferase enzyme activities were increased in the FLC pigs compared to the LLC pigs. Conversely, the levels of the Fusobacterium and Streptococcus genera were lower in the FLC pigs, while the number of Firmicutes, Lactobacillus, Phascolartobacterium, and Rikenellaceae_RC9_gut_group members were higher. A total of 52 metabolites were altered between the two groups, with many playing crucial roles in prolactin signaling, oocyte meiosis, and aldosterone-regulated sodium reabsorption pathways. The correlation analyses demonstrated a significant association between the modified microbiota and metabolites and the phenotypic variations observed in the LC pigs. Specifically, Jeotgalicoccus was positively correlated with the body weight and chest circumference, but was negatively correlated with metabolites such as 2-mercaptobenzothiazole and N1-pyrazin-2-yl-4-chlorobenzamide, which were positively associated with Bacteroides. These results provide compelling evidence for a novel relationship between the gut microbiome and metabolome in the phenotypic differentiation of LC pigs.
Collapse
Affiliation(s)
- Lihui Zhu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China;
| | - Shengwei Ma
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.M.); (C.H.); (L.B.)
| | - Chuan He
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.M.); (C.H.); (L.B.)
| | - Lan Bai
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.M.); (C.H.); (L.B.)
| | - Weilong Tu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China;
| | - Xiao Wu
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.M.); (C.H.); (L.B.)
| |
Collapse
|
5
|
Liu T, Ma W, Wang J, Wei Y, Wang Y, Luo Z, Zhang Y, Zeng X, Guan W, Shao D, Chen F. Dietary Protease Supplementation Improved Growth Performance and Nutrients Digestion via Modulating Intestine Barrier, Immunological Response, and Microbiota Composition in Weaned Piglets. Antioxidants (Basel) 2024; 13:816. [PMID: 39061885 PMCID: PMC11273905 DOI: 10.3390/antiox13070816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Despite mounting evidence for dietary protease benefits, the mechanisms beyond enhanced protein degradation are poorly understood. This study aims to thoroughly investigate the impact of protease addition on the growth performance, intestinal function, and microbial composition of weaned piglets. Ninety 28-day-old weaned pigs were randomly assigned to the following three experimental diets based on their initial body weight for a 28-day experiment: (1) control (CC), a basic diet with composite enzymes without protease; (2) negative control (NC), a diet with no enzymes; and (3) dietary protease (PR), a control diet with protease. The results show that dietary proteases significantly enhanced growth performance and boosted antioxidant capacity, increasing the total antioxidant capacity (T-AOC) levels (p < 0.05) while reducing malonaldehyde levels (p < 0.05). Additionally, protease addition reduced serum levels of inflammatory markers TNF-α, IL-1β, and IL-6 (p < 0.05), suppressed mRNA expression of pro-inflammatory factors in the jejunum (p < 0.01), and inhibited MAPK and NF-κB signaling pathways. Moreover, protease-supplemented diets improved intestinal morphology and barrier integrity, including zonula occludens protein 1(ZO-1), Occludin, and Claudin-1 (p < 0.05). Microbiota compositions were also significantly altered by protease addition with increased abundance of beneficial bacteria (Lachnospiraceae_AC2044_group and Prevotellaceae_UCG-001) (p < 0.05) and reduced harmful Terrisporobacter (p < 0.05). Further correlation analysis revealed a positive link between beneficial bacteria and growth performance and a negative association with inflammatory factors and intestinal permeability. In summary, dietary protease addition enhanced growth performance in weaned piglets, beneficial effects which were associated with improved intestinal barrier integrity, immunological response, and microbiota composition.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Wen Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
| | - Jun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
| | - Yulong Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
| | - Yibo Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
| | - Zheng Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Ying Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China;
| | - Wutai Guan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Fang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (W.M.); (J.W.); (Y.W.); (Y.W.); (Z.L.); (Y.Z.); (W.G.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Lützhøft DO, Bækgård C, Wimborne E, Straarup EM, Pedersen KM, Swann JR, Pedersen HD, Kristensen K, Morgills L, Nielsen DS, Hansen AK, Bracken MK, Cirera S, Christoffersen BØ. High fat diet is associated with gut microbiota dysbiosis and decreased gut microbial derived metabolites related to metabolic health in young Göttingen Minipigs. PLoS One 2024; 19:e0298602. [PMID: 38427692 PMCID: PMC10906878 DOI: 10.1371/journal.pone.0298602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024] Open
Abstract
The objectives were 1) to characterize a Göttingen Minipig model of metabolic syndrome regarding its colon microbiota and circulating microbial products, and 2) to assess whether ovariectomized female and castrated male minipigs show similar phenotypes. Twenty-four nine-week-old Göttingen Minipigs were allocated to four groups based on sex and diet: ovariectomized females and castrated males fed either chow or high-fat diet (HFD) for 12 weeks. At study end, body composition and plasma biomarkers were measured, and a mixed meal tolerance test (MMT) and an intravenous glucose tolerance test (IVGTT) were performed. The HFD groups had significantly higher weight gain, fat percentage, fasting plasma insulin and glucagon compared to the chow groups. Homeostatic model assessment of insulin resistance index (HOMA-IR) was increased and glucose effectiveness derived from the IVGTT and Matsuda´s insulin sensitivity index from the MMT were decreased in the HFD groups. The HFD groups displayed dyslipidemia, with significantly increased total-, LDL- and HDL-cholesterol, and decreased HDL/non-HDL cholesterol ratio. The colon microbiota of HFD minipigs clearly differed from the lean controls (GuniFrac distance matrix). The main bacteria families driving this separation were Clostridiaceae, Fibrobacteraceae, Flavobacteriaceae and Porphyromonadaceae. Moreover, the species richness was significantly decreased by HFD. In addition, HFD decreased the circulating level of short chain fatty acids and beneficial microbial metabolites hippuric acid, xanthine and trigonelline, while increasing the level of branched chain amino acids. Six and nine metabolically relevant genes were differentially expressed between chow-fed and HFD-fed animals in liver and omental adipose tissue, respectively. The HFD-fed pigs presented with metabolic syndrome, gut microbial dysbiosis and a marked decrease in healthy gut microbial products and thus displayed marked parallels to human obesity and insulin resistance. HFD-fed Göttingen Minipig therefore represents a relevant animal model for studying host-microbiota interactions. No significant differences between the castrated and ovariectomized minipigs were observed.
Collapse
Affiliation(s)
- Ditte Olsen Lützhøft
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Cecilie Bækgård
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Elizabeth Wimborne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | - Jonathan R. Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | | | - Dennis Sandris Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Susanna Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | |
Collapse
|
7
|
Liao SF, Ji F, Fan P, Denryter K. Swine Gastrointestinal Microbiota and the Effects of Dietary Amino Acids on Its Composition and Metabolism. Int J Mol Sci 2024; 25:1237. [PMID: 38279233 PMCID: PMC10816286 DOI: 10.3390/ijms25021237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
Many researchers consider gut microbiota (trillions of microorganisms) an endogenous organ of its animal host, which confers a vast genetic diversity in providing the host with essential biological functions. Particularly, the gut microbiota regulates not only gut tissue structure but also gut health and gut functionality. This paper first summarized those common bacterial species (dominated by the Firmicutes, Bacteroidota, and Proteobacteria phyla) in swine gut and then briefly discussed their roles in swine nutrition and health, which include roles in nutrient metabolism, pathogen exclusion, and immunity modulation. Secondly, the current knowledge on how dietary nutrients and feed additives affect the gut bacterial composition and nutrient metabolism in pigs was discussed. Finally, how dietary amino acids affect the relative abundances and metabolism of bacteria in the swine gut was reviewed. Tryptophan supplementation promotes the growth of beneficial bacteria and suppresses pathogens, while arginine metabolism affects nitrogen recycling, impacting gut immune response and health. Glutamate and glutamine supplementations elevate the levels of beneficial bacteria and mitigate pathogenic ones. It was concluded that nutritional strategies to manipulate gut microbial ecosystems are useful measures to optimize gut health and gut functions. For example, providing pigs with nutrients that promote the growth of Lactobacillus and Bifidobacterium can lead to better gut health and growth performance, especially when dietary protein is limited. Further research to establish the mechanistic cause-and-effect relationships between amino acids and the dynamics of gut microbiota will allow swine producers to reap the greatest return on their feed investment.
Collapse
Affiliation(s)
- Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Peixin Fan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Kristin Denryter
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| |
Collapse
|
8
|
Dridi C, Millette M, Salmieri S, Aguilar Uscanga BR, Lacroix S, Venneri T, Sarmast E, Allahdad Z, Di Marzo V, Silvestri C, Lacroix M. Effect of a Probiotic Beverage Enriched with Cricket Proteins on the Gut Microbiota: Composition of Gut and Correlation with Nutritional Parameters. Foods 2024; 13:204. [PMID: 38254505 PMCID: PMC10814958 DOI: 10.3390/foods13020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The health and balance of the gut microbiota are known to be linked to diet composition and source, with fermented products and dietary proteins potentially providing an exceptional advantage for the gut. The purpose of this study was to evaluate the effect of protein hydrolysis, using a probiotic beverage enriched with either cricket protein (CP) or cricket protein hydrolysates (CP.Hs), on the composition of the gut microbiota of rats. Taxonomic characterization of the gut microbiota in fecal samples was carried out after a 14-day nutritional study to identify modifications induced by a CP- and CP.H-enriched fermented probiotic product. The results showed no significant differences (p > 0.05) in the diversity and richness of the gut microbiota among the groups fed with casein (positive control), CP-enriched, and fermented CP.H-enriched probiotic beverages; however, the overall composition of the microbiota was altered, with significant modifications in the relative abundance of several bacterial families and genera. In addition, fermented CP.H-enriched probiotic beverages could be related to the decrease in the number of potential pathogens such as Enterococcaceae. The association of gut microbiota with the nutritional parameters was determined and the results showed that digestibility and the protein efficiency ratio (PER) were highly associated with the abundance of several taxa.
Collapse
Affiliation(s)
- Chaima Dridi
- Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), INRS Armand-Frappier Health Biotechnology Research Centre, Laval, QC H7V 1B7, Canada (M.M.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Mathieu Millette
- Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), INRS Armand-Frappier Health Biotechnology Research Centre, Laval, QC H7V 1B7, Canada (M.M.)
- Bio-K+, a Kerry Company, Preclinical Research Division, Laval, QC H7V 4B3, Canada
| | - Stephane Salmieri
- Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), INRS Armand-Frappier Health Biotechnology Research Centre, Laval, QC H7V 1B7, Canada (M.M.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Blanca R. Aguilar Uscanga
- Research Laboratory of Industrial Microbiology, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico;
| | - Sebastien Lacroix
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
- Faculty of Agriculture and Food Sciences (FSAA), Université Laval, Quebec, QC G1V 0A6, Canada;
| | - Tommaso Venneri
- Joint International Research Unit on Chemical and Biomolecular Research on the Microbiomeand Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Quebec, QC G1V 0A6, Canada
- Heart and Lung Institute Research Centre (IUCPQ), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Elham Sarmast
- Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), INRS Armand-Frappier Health Biotechnology Research Centre, Laval, QC H7V 1B7, Canada (M.M.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Zahra Allahdad
- Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), INRS Armand-Frappier Health Biotechnology Research Centre, Laval, QC H7V 1B7, Canada (M.M.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Joint International Research Unit on Chemical and Biomolecular Research on the Microbiomeand Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval, Quebec, QC G1V 0A6, Canada
- Heart and Lung Institute Research Centre (IUCPQ), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Cristoforo Silvestri
- Faculty of Agriculture and Food Sciences (FSAA), Université Laval, Quebec, QC G1V 0A6, Canada;
- Heart and Lung Institute Research Centre (IUCPQ), Université Laval, Quebec, QC G1V 0A6, Canada
- Nutrition, Health and Society (NUTRISS) Centre, Department of Medicine, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Monique Lacroix
- Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), INRS Armand-Frappier Health Biotechnology Research Centre, Laval, QC H7V 1B7, Canada (M.M.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
9
|
Cha YJ, Chang IA, Jin EH, Song JH, Hong JH, Jung JG, Sunwoo J. Association between LEPR Genotype and Gut Microbiome in Healthy Non-Obese Korean Adults. Biomol Ther (Seoul) 2024; 32:146-153. [PMID: 37503756 PMCID: PMC10762272 DOI: 10.4062/biomolther.2023.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
The LEPR (leptin receptor) genotype is associated with obesity. Gut microbiome composition differs between obese and non-obese adults. However, the impact of LEPR genotype on gut microbiome composition in humans has not yet been studied. In this study, the association between LEPR single nucleotide polymorphism (rs1173100, rs1137101, and rs790419) and the gut microbiome composition in 65 non-obese Korean adults was investigated. Leptin, triglyceride, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels were also measured in all participants. Mean ± SD (standard deviation) of age, body mass index, and leptin hormone levels of participants was 35.2 ± 8.1 years, 21.4 ± 1.8 kg/m2, and 7989.1 ± 6687.4 pg/mL, respectively. Gut microbiome analysis was performed at the phylum level by 16S rRNA sequencing. Among the 11 phyla detected, only one showed significantly different relative abundances between LEPR genotypes. The relative abundance of Candidatus Saccharibacteria was higher in the G/A genotype group than in the G/G genotype group for the rs1137101 single nucleotide polymorphism (p=0.0322). Participant characteristics, including body mass index, leptin levels, and other lipid levels, were similar between the rs1137101 G/G and G/A genotypes. In addition, the relative abundances of Fusobacteria and Tenericutes showed significant positive relationship with plasma leptin concentrations (p=0.0036 and p=0.0000, respectively). In conclusion, LEPR genotype and gut microbiome may be associated even in normal-weight Korean adults. However, further studies with a greater number of obese adults are needed to confirm whether LEPR genotype is related to gut microbiome composition.
Collapse
Affiliation(s)
- Yoon Jung Cha
- Clinical Trials Center, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - In Ae Chang
- Clinical Trials Center, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Eun-Heui Jin
- Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Ji Hye Song
- Clinical Trials Center, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Jang Hee Hong
- Clinical Trials Center, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Jin-Gyu Jung
- Department of Family Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Jung Sunwoo
- Clinical Trials Center, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| |
Collapse
|
10
|
Zhang J, Shu Z, Lv S, Zhou Q, Huang Y, Peng Y, Zheng J, Zhou Y, Hu C, Lan S. Fermented Chinese Herbs Improve the Growth and Immunity of Growing Pigs through Regulating Colon Microbiota and Metabolites. Animals (Basel) 2023; 13:3867. [PMID: 38136904 PMCID: PMC10740985 DOI: 10.3390/ani13243867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: the development of new antibiotic substitutes to promote pig growth and health has become an important way to solve the current dilemma and promote the pig industry. (2) Methods: to assess the effects of a fermented Chinese herbal (FCH) formula on the growth and immunity of growing pigs, 100 Duroc × Landrace × Yorshire three-way crossed growing pigs were randomly divided into control and treatment groups that were fed a basal diet, and a basal diet with 1% (group A), 2% (group B), and 3% (group C) FCH formulas, respectively. A sixty-day formal experiment was conducted, and their growth and serum indices, colonic microbiota, and metabolites were analyzed. (3) Results: the daily gain of growing pigs in groups A, B, and C increased by 7.93%, 17.68%, and 19.61%, respectively, and the feed-to-gain ratios decreased by 8.33%, 15.00%, and 14.58%, respectively. Serum immunity and antioxidant activities were significantly increased in all treatment groups. Particularly, adding a 2% FCH formula significantly changed the colon's microbial structure; the Proteobacteria significantly increased and Firmicutes significantly decreased, and the metabolite composition in the colon's contents significantly changed. (4) Conclusions: these results indicate that the FCH formula is a good feed additive for growing pigs, and the recommended addition ratio was 3%.
Collapse
Affiliation(s)
- Junhao Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Zhiheng Shu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Sixiao Lv
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Qingwen Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Yuanhao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Yingjie Peng
- Guangdong Chuangzhan Bona Agricultural Technology Co., Ltd., Guangning 526339, China;
| | - Jun Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Yi Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Chao Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Shile Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| |
Collapse
|
11
|
Moszak M, Pelczyńska M, Wesołek A, Stenclik D, Bogdański P. Does gut microbiota affect the success of weight loss? Evidence and speculation. Nutrition 2023; 116:112111. [PMID: 37562188 DOI: 10.1016/j.nut.2023.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 08/12/2023]
Abstract
Obesity is a chronic state of excessive fat accumulation in the body, characterized by significant relapse and complicated by a range of health consequences. In the treatment of obesity, a holistic approach including diet, physical activity, pharmacotherapy, bariatric surgery, and psychological support is recommended. The implications of gut microbiota (GM) as a pathogenic factor in excess body weight have been discussed, and microbial-targeted therapies-including probiotics, prebiotics, and synbiotics-are considered adjuvant in obesity management. Many studies have focused on assessing the effectiveness of probiotics, prebiotics, or synbiotics in weight control, although with inconclusive results, mainly because of the significant heterogeneity of the studies (with different strains, doses, forms, interventional durations, and outcomes). It is also unclear whether using probiotics or synbiotics accompanied by weight loss dietary interventions or as a part of bariatric surgery will be more effective in obesity management, not only in the short-term but also for long-term weight loss maintenance. The aim of this study was to collect and compare the available scientific data on the effectiveness of probiotic or synbiotic supplementation (as a single therapy versus as part of dietary interventions, pharmacotherapy, or bariatric therapy) on weight control in obesity.
Collapse
Affiliation(s)
- Małgorzata Moszak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland.
| | - Marta Pelczyńska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Wesołek
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominika Stenclik
- Student Scientific Club of Clinical Dietetics, Department of the Treatment of Obesity and Metabolic Disorders, and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
12
|
Zeng B, Chen L, Kong F, Zhang C, Chen L, Qi X, Chai J, Jin L, Li M. Dynamic changes of fecal microbiota in a weight-change model of Bama minipigs. Front Microbiol 2023; 14:1239847. [PMID: 37928663 PMCID: PMC10623433 DOI: 10.3389/fmicb.2023.1239847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Obesity is closely related to gut microbiota, however, the dynamic change of microbial diversity and composition during the occurrence and development process of obesity is not clear. Methods A weight-change model of adult Bama pig (2 years, 58 individuals) was established, and weight gain (27 weeks) and weight loss (9 weeks) treatments were implemented. The diversity and community structures of fecal microbiota (418 samples) was investigated by using 16S rRNA (V3-V4) high-throughput sequencing. Results During the weight gain period (1~27 week), the alpha diversity of fecal microbiota exhibited a "down-up-down" fluctuations, initially decreasing, recovering in the mid-term, and decreasing again in the later stage. Beta diversity also significantly changed over time, indicating a gradual deviation of the microbiota composition from the initial time point. Bacteroides, Clostridium sensu stricto 1, and Escherichia-Shigella showed positive correlations with weight gain, while Streptococcus, Oscillospira, and Prevotellaceae UCG-001 exhibited negative correlations. In the weight loss period (30~38 week), the alpha diversity further decreased, and the composition structure underwent significant changes compared to the weight gain period. Christensenellaceae R-7 group demonstrated a significant increase during weight loss and showed a negative correlation with body weight. Porphyromonas and Campylobacter were positively correlated with weight loss. Discussion Both long-term fattening and weight loss induced by starvation led to substantial alterations in porcine gut microbiota, and the microbiota changes observed during weight gain could not be recovered during weight loss. This work provides valuable resources for both obesity-related research of human and microbiota of pigs.
Collapse
Affiliation(s)
- Bo Zeng
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Chen
- Chongqing Academy of Animal Science, Chongqing, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Chengcheng Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Long Chen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xu Qi
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jin Chai
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Long Jin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Wu Y, Cheng B, Ji L, Lv X, Feng Y, Li L, Wu X. Dietary lysozyme improves growth performance and intestinal barrier function of weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:249-258. [PMID: 37662115 PMCID: PMC10472418 DOI: 10.1016/j.aninu.2023.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 09/05/2023]
Abstract
Lysozyme (LZ) is a purely natural, nonpolluting and nonspecific immune factor, which has beneficial effects on the healthy development of animals. In this study, the influences of LZ on the growth performance and intestinal barrier of weaned piglets were studied. A total of 48 weaned piglets (Landrace × Yorkshire, 22 d old) were randomly divided into a control group (basal diet) and a LZ group (0.1% LZ diet) for 19 d. The results showed that LZ could significantly improve the average daily gain (ADG, P < 0.05) and average daily feed intake (ADFI, P < 0.05). LZ also improved the intestinal morphology and significantly increased the expression of occludin in the jejunum (P < 0.05). In addition, LZ down-regulated the expression of interleukin-1β (IL-1β, P < 0.05) and tumor necrosis factor-α (TNF-α, P < 0.05), and inhibited the expression of the genes in the nuclear factor-k-gene binding (NF-κB, P < 0.05) signaling pathway. More importantly, the analysis of intestinal flora showed LZ increased the abundance of Firmicutes (P < 0.05) and the ratio of Firmicutes to Bacteroidota (P = 0.09) at the phylum level, and increased the abundance of Clostridium_sensu_stricto_1 (P < 0.05) and reduced the abundance of Olsenella and Prevotella (P < 0.05) at the genus level. In short, this study proved that LZ could effectively improve the growth performance, relieve inflammation and improve the intestinal barrier function of weaned piglets. These findings provided an important theoretical basis for the application of LZ in pig production.
Collapse
Affiliation(s)
- Yuying Wu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Bei Cheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Longxiang Ji
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian, 463000, China
| | - Xiangyun Lv
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian, 463000, China
| | - Yingying Feng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Liu’an Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
14
|
Lee JH, Kim S, Kim ES, Keum GB, Doo H, Kwak J, Pandey S, Cho JH, Ryu S, Song M, Cho JH, Kim S, Kim HB. Comparative analysis of the pig gut microbiome associated with the pig growth performance. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:856-864. [PMID: 37970497 PMCID: PMC10640952 DOI: 10.5187/jast.2022.e122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 11/17/2023]
Abstract
There are a variety of microorganisms in the animal intestine, and it has been known that they play important roles in the host such as suppression of potentially pathogenic microorganisms, modulation of the gut immunity. In addition, the gut microbiota and the livestock growth performance have long been known to be related. Therefore, we evaluated the interrelation between the growth performance and the gut microbiome of the pigs from 3 different farms, with pigs of varied ages ready to be supplied to the market. When pigs reached average market weight of 118 kg, the average age of pigs in three different farms were < 180 days, about 190 days, and > 200 days, respectively. Fecal samples were collected from pigs of age of 70 days, 100 days, 130 days, and 160 days. The output data of the 16S rRNA gene sequencing by the Illumina Miseq platform was filtered and analyzed using Quantitative Insights into Microbial Ecology (QIIME)2, and the statistical analysis was performed using Statistical Analysis of Metagenomic Profiles (STAMP). The results of this study showed that the gut microbial communities shifted as pigs aged along with significant difference in the relative abundance of different phyla and genera in different age groups of pigs from each farm. Even though, there was no statistical differences among groups in terms of Chao1, the number of observed operational taxonomic units (OTUs), and the Shannon index, our results showed higher abundances of Bifidobacterium, Clostridium and Lactobacillus in the feces of pigs with rapid growth rate. These results will help us to elucidate important gut microbiota that can affect the growth performance of pigs.
Collapse
Affiliation(s)
| | - San Kim
- BRD Korea, Hwaseong 18471,
Korea
| | - Eun Sol Kim
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Gi Beom Keum
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Hyunok Doo
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Jinok Kwak
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Sriniwas Pandey
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Jae Hyoung Cho
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Sumin Ryu
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Minho Song
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Jin Ho Cho
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Sheena Kim
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
15
|
Heo SW, Chung KS, Yoon YS, Kim SY, Ahn HS, Shin YK, Lee SH, Lee KT. Standardized Ethanol Extract of Cassia mimosoides var. nomame Makino Ameliorates Obesity via Regulation of Adipogenesis and Lipogenesis in 3T3-L1 Cells and High-Fat Diet-Induced Obese Mice. Nutrients 2023; 15:nu15030613. [PMID: 36771320 PMCID: PMC9920205 DOI: 10.3390/nu15030613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Obesity is a major cause of conditions such as type 2 diabetes and non-alcoholic fatty liver disease, posing a threat to public health worldwide. Here, we analyzed the anti-obesity effects of a standardized ethanol extract of Cassia mimosoides var. nomame Makino (EECM) in vitro and in vivo. Treatment of 3T3-L1 adipocytes with EECM suppressed adipogenesis and lipogenesis via the AMP-activated protein kinase pathway by downregulating the expression levels of CCAAT/enhancer-binding protein-alpha, peroxisome proliferator-activated receptor (PPAR)-γ, sterol regulatory element-binding protein-1, and fatty acid synthase and upregulating the acetyl-CoA carboxylase. EECM inhibited mitotic clonal expansion during early adipocyte differentiation. Oral administration of EECM for 10 weeks significantly alleviated body weight gain and body fat accumulation in high-fat diet (HFD)-fed mice. EECM mitigated adipogenesis and lipid accumulation in white adipose and liver tissues of HFD-induced obese mice. It regulated the levels of adipogenic hormones including insulin, leptin, and adipokine in the blood plasma. In brown adipose tissue, EECM induced the expression of thermogenic factors such as uncoupling protein-1, PPAR-α, PPARγ co-activator-1α, sirtuin 1, and cytochrome c oxidase IV. EECM restored the gut microbiome composition at the phylum level and alleviated dysbiosis. Therefore, EECM may be used as a promising therapeutic agent for the prevention of obesity.
Collapse
Affiliation(s)
- So-Won Heo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Young-Seo Yoon
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Soo-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Hye-Shin Ahn
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea
| | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea
| | - Sun-Hee Lee
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea
- Correspondence: (S.-H.L.); (K.-T.L.); Tel.: +82-31-8018-0390 (S.-H.L.); +82-2-961-0860 (K.-T.L.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Correspondence: (S.-H.L.); (K.-T.L.); Tel.: +82-31-8018-0390 (S.-H.L.); +82-2-961-0860 (K.-T.L.)
| |
Collapse
|
16
|
Schulze Holthausen J, Schregel J, Sciascia QL, Li Z, Tuchscherer A, Vahjen W, Metges CC, Zentek J. Effects of Oral Glutamine Supplementation, Birthweight and Age on Colonic Morphology and Microbiome Development in Male Suckling Piglets. Microorganisms 2022; 10:microorganisms10101899. [PMID: 36296176 PMCID: PMC9612066 DOI: 10.3390/microorganisms10101899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mortality, impaired development and metabolic dysfunctions of suckling low-birthweight piglets may be influenced by modulating the intestinal microbiome through glutamine supplementation. Therefore, this study examined whether glutamine supplementation may affect the colonic development and microbiome composition of male low- and normal-birthweight piglets at 5 and 12 days of age. Suckling piglets were supplemented orally with glutamine or alanine. Colonic digesta samples were obtained for 16S rDNA sequencing, determination of bacterial metabolites and histomorphological tissue analyses. Glutamine-supplemented piglets had lower concentrations of cadaverine and spermidine in the colonic digesta (p < 0.05) and a higher number of CD3+ colonic intraepithelial lymphocytes compared to alanine-supplemented piglets (p < 0.05). Low-birthweight piglets were characterised by a lower relative abundance of Firmicutes, the genera Negativibacillus and Faecalibacterium and a higher abundance of Alistipes (p < 0.05). Concentrations of cadaverine and total biogenic amines (p < 0.05) and CD3+ intraepithelial lymphocytes (p < 0.05) were lower in low- compared with normal-birthweight piglets. In comparison to the factor age, glutamine supplementation and birthweight were associated with minor changes in microbial and histological characteristics of the colon, indicating that ontogenetic factors play a more important role in intestinal development.
Collapse
Affiliation(s)
- Johannes Schulze Holthausen
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
- Correspondence: ; Tel.: +49-30-838-53984
| | - Johannes Schregel
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196 Dummerstorf, Germany
| | - Quentin L. Sciascia
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196 Dummerstorf, Germany
| | - Zeyang Li
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196 Dummerstorf, Germany
| | - Armin Tuchscherer
- Research Institute for Farm Animal Biology (FBN), Institute for Genetic and Biometry, 18196 Dummerstorf, Germany
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| | - Cornelia C. Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196 Dummerstorf, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
17
|
Xu S, Jiang X, Jia X, Jiang X, Che L, Lin Y, Zhuo Y, Feng B, Fang Z, Li J, Wang J, Ren Z, Wu D. Silymarin Modulates Microbiota in the Gut to Improve the Health of Sow from Late Gestation to Lactation. Animals (Basel) 2022; 12:ani12172202. [PMID: 36077922 PMCID: PMC9454421 DOI: 10.3390/ani12172202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory responses reduce milk production in lactating sows. Silymarin may modulate inflammatory reactions. Here, we aimed to verify whether dietary silymarin supplementation could alleviate inflammatory responses in lactating sows through microbiota change in the gut. We also investigated how silymarin impacts inflammatory response in lactating sows. One hundred and ten sows were randomly assigned to a control diet (basal diet) or treatment diet (basal diet and 40 g/d silymarin) from the 108th day of gestation to weaning. Blood, milk, and feces from sows were collected for analysis. It was shown in the results that dietary silymarin supplementation decreased the level of pro-inflammatory cytokine IL-1β (p < 0.05) on the 18th day of lactation in the blood of the sows. Dietary silymarin supplementation tended to decrease (p = 0.06) somatic cell count in the colostrum of sows. Dietary silymarin supplementation reduced the gut bacterial community and the richness of the gut microbial community (p < 0.01) using 16S rRNA gene sequencing. The fecal microbes varied at different taxonomic levels in the lactating sows with silymarin supplementation. The most representative changes included an increase in the relative abundance of Fibrobacteres and Actinobacteria (p < 0.05) and tended to reduce the relative abundance of Spirochaetaes and Tenericutes (p = 0.09, 0.06) at the phylum level. It is suggested that dietary silymarin supplementation in late gestation until lactation has anti-inflammatory effects in lactation sow, which could be associated with the modulation of gut microbiota.
Collapse
Affiliation(s)
- Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (S.X.); (D.W.)
| | - Xiaojun Jiang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinlin Jia
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (S.X.); (D.W.)
| |
Collapse
|
18
|
The Biotics Family: Current Knowledge and Future Perspectives in Metabolic Diseases. Life (Basel) 2022; 12:life12081263. [PMID: 36013442 PMCID: PMC9410396 DOI: 10.3390/life12081263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, metabolic diseases such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease pose a major public health threat. Many studies have confirmed the causal relationship between risk factors and the etiopathogenesis of these diseases. Despite this, traditional therapeutic management methods such as physical education and diet have proven insufficient. Recently, researchers have focused on other potential pathways for explaining the pathophysiological variability of metabolic diseases, such as the involvement of the intestinal microbiota. An understanding of the relationship between the microbiome and metabolic diseases is a first step towards developing future therapeutic strategies. Currently, much attention is given to the use of biotics family members such as prebiotics (lactolose, soy oligosaccharides, galactooligosaccharides, xylooligosaccharides or inulin) and probiotics (genera Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus or Enterococcus). They can be used both separately and together as synbiotics. Due to their direct influence on the composition of the intestinal microbiota, they have shown favorable results in the evolution of metabolic diseases. The expansion of the research area in the biotics family has led to the discovery of new members, like postbiotics. In the age of personalized medicine, their use as therapeutic options is of great interest to our study.
Collapse
|
19
|
Patrakeeva VP, Shtaborov VA. Nutrition and the state of the intestinal microflora in the formation of the metabolic syndrome. OBESITY AND METABOLISM 2022. [DOI: 10.14341/omet12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The literature review presents the results of modern studies of the relationship between diet and intestinal microbiota in the regulation of metabolic disorders. Metabolic syndrome, which is a symptom complex that combines abdominal obesity, insulin resistance, hyperglycemia, dyslipidemia and arterial hypertension, remains an important problem, being a risk factor for cardiovascular, neurodegenerative, oncological diseases and the development of type 2 diabetes mellitus. Although the pathogenesis of the metabolic syndrome has not yet been fully elucidated, it is known that visceral obesity and its associated complications, such as dyslipidemia and increased levels of pro-inflammatory cytokines, play a central role. The article presents data on the impact of the consumption of certain food products, the inclusion of plant biologically active substances (flavonoids, polyphenols, etc.) in the diet, as well as the use of elimination diets with the exclusion of carbohydrates or fats from the diet, on reducing the risk of cardiovascular accidents, levels of fasting glucose, total cholesterol, LDL, triglycerides, C-reactive protein, leptin, insulin, reduction in body weight and waist circumference, reduction in the level of circulating endotoxins and changes in the activity of immunocompetent cells. Data are presented on the possible influence of the intestinal microbiota in maintaining inflammation and the formation of degenerative changes in the body. The role of changes in the ratio of the levels of pathogenic microflora, bifidobacteria and lactobacilli in the formation of a pathological condition is shown.
Collapse
Affiliation(s)
- V. P. Patrakeeva
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
| | - V. A. Shtaborov
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
| |
Collapse
|
20
|
Shang P, Wei M, Duan M, Yan F, Chamba Y. Healthy Gut Microbiome Composition Enhances Disease Resistance and Fat Deposition in Tibetan Pigs. Front Microbiol 2022; 13:965292. [PMID: 35928149 PMCID: PMC9343729 DOI: 10.3389/fmicb.2022.965292] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 01/10/2023] Open
Abstract
The gut microbiota is involved in a range of physiological processes in animals, and modulating the microbiome composition is considered a novel target for identifying animal traits. Tibetan pigs show better fat deposition and disease resistance compared to Yorkshire pigs. However, studies investigating the correlation between favorable characteristics in Tibetan pigs and the gut microbial community remain scarce. In the current study, 1,249,822 high-quality sequences were obtained by amplicon sequencing of the colon contents of Tibetan and Yorkshire pigs. We found that at the boundary level, the abundance and relative abundance of colon bacterial community in Tibetan pigs were higher than that in Yorkshire pigs (P > 0.05). Phylum level, Firmicutes were the dominant colonic microflora of Tibetan and Yorkshire pigs, and the ratio of Firmicutes to Bacteroides in Tibetan pigs was slightly higher than in Yorkshire pigs. Actinobacteria and Spirobacteria were significantly higher in Tibetan pigs than in Yorkshire pigs (P < 0.05). At the genus level, the relative abundance of Bifidobacterium, Lactobacillus, and Bacteriologist, which are related to disease resistance, was significantly higher than that in Yorkshire pigs in Yorkshire pigs. In conclusion, the composition and abundance of colonic intestinal microflora in Tibetan pigs were closely related to their superior traits. Bifidobacteria, Ruminococcaceae, and Family-XIII-AD3011-Group are conducive to improving disease resistance in Tibetan pigs. Lactobacillus and Solobacterium were observed to be the main bacterial communities involved in fat deposition in Tibetan pigs. This study will provide a new reference for the development and utilization of Tibetan pigs in future.
Collapse
Affiliation(s)
- Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Mingbang Wei
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Mengqi Duan
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Feifei Yan
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
- *Correspondence: Yangzom Chamba,
| |
Collapse
|
21
|
Ma J, Chen J, Gan M, Chen L, Zhao Y, Zhu Y, Niu L, Zhang S, Zhu L, Shen L. Gut Microbiota Composition and Diversity in Different Commercial Swine Breeds in Early and Finishing Growth Stages. Animals (Basel) 2022; 12:1607. [PMID: 35804507 PMCID: PMC9264831 DOI: 10.3390/ani12131607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
The gut microbiota affects the metabolism, health and growth rate of pigs. Understanding the characteristics of gut microbiota of different pig breeds at each growth stage will enable the design of individualized feeding strategies. The present study aimed to compare the growth curves and development patterns of pigs of three different breeds (Duroc, Landrace and Yorkshire) using the mathematical models Gompertz, Logistic, Von Bertalanffy and Richards. For Duroc pigs, the Gompertz model showed the highest prediction accuracy (R2 = 0.9974). In contrast, the best models for Landrace and Yorkshire pigs were Richards (R2 = 0.9986) and Von Bertalanffy (R2 = 0.9977), respectively. Path analysis showed that body length (path coefficient = 0.507) and chest circumference (path coefficient = 0.532) contributed more significantly to the body weight of pigs at the early growth stage, while hip circumference (path coefficient = 0.312) had a greater influence on pig body weight in the late growth stage. Moreover, the composition of the gut microbiota of pigs at two growth stages (60 kg of body weight in the early growth stage and 120 kg in the finishing stage) was studied using 16S rRNA sequencing technology. Variations in gut microbiota composition of pigs at different growth stages were observed. KEGG pathway enrichment analysis of annotated metagenomes revealed that protein synthesis and amino acid metabolism pathways were significantly enriched in pigs at the early growth stage, which may be related to nutritional requirements of pigs during this stage. This study confirmed longitudinal variation in the gut microbiota of pigs pertaining to age as well as lateral variation related to pig breed. The present findings expand the current understanding of the variations in swine gut microbiota during production stages.
Collapse
Affiliation(s)
- Jianfeng Ma
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.M.); (J.C.); (M.G.); (L.C.); (Y.Z.); (L.N.); (S.Z.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyun Chen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.M.); (J.C.); (M.G.); (L.C.); (Y.Z.); (L.N.); (S.Z.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.M.); (J.C.); (M.G.); (L.C.); (Y.Z.); (L.N.); (S.Z.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.M.); (J.C.); (M.G.); (L.C.); (Y.Z.); (L.N.); (S.Z.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.M.); (J.C.); (M.G.); (L.C.); (Y.Z.); (L.N.); (S.Z.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhu
- College of Life Science, China West Normal University, Nanchong 637009, China;
| | - Lili Niu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.M.); (J.C.); (M.G.); (L.C.); (Y.Z.); (L.N.); (S.Z.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.M.); (J.C.); (M.G.); (L.C.); (Y.Z.); (L.N.); (S.Z.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.M.); (J.C.); (M.G.); (L.C.); (Y.Z.); (L.N.); (S.Z.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.M.); (J.C.); (M.G.); (L.C.); (Y.Z.); (L.N.); (S.Z.)
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
22
|
Basak S, Banerjee A, Pathak S, Duttaroy AK. Dietary Fats and the Gut Microbiota: Their impacts on lipid-induced metabolic syndrome. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
23
|
Cluzel GL, Ryan PM, Herisson FM, Caplice NM. High-fidelity porcine models of metabolic syndrome: a contemporary synthesis. Am J Physiol Endocrinol Metab 2022; 322:E366-E381. [PMID: 35224983 DOI: 10.1152/ajpendo.00413.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review aims to describe and compare porcine models of metabolic syndrome. This syndrome and its associated secondary comorbidities are set to become the greatest challenge to healthcare providers and policy makers in the coming century. However, an incomplete understanding of the pathogenesis has left significant knowledge gaps in terms of efficacious therapeutics. To further our comprehension and, in turn, management of metabolic syndrome, appropriate high-fidelity models of the disease complex are of great importance. In this context, our review aims to assess the most promising porcine models of metabolic syndrome currently available for their similarity to the human phenotype. In addition, we aim to highlight the strengths and shortcomings of each model in an attempt to identify the most appropriate application of each. Although no porcine model perfectly recapitulates the human metabolic syndrome, several pose satisfactory approximations. The Ossabaw miniature swine in particular represents a highly translatable model that develops each of the core parameters of the syndrome with many of the associated secondary comorbidities. Future high-fidelity porcine models of metabolic syndrome need to focus on secondary sequelae replication, which may require extended induction period to reveal.
Collapse
Affiliation(s)
- Gaston L Cluzel
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul M Ryan
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Florence M Herisson
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Noel M Caplice
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
24
|
Niu M, Zhao Y, Xiang L, Jia Y, Yuan J, Dai X, Chen H. 16S rRNA gene sequencing analysis of gut microbiome in a mini-pig diabetes model. Animal Model Exp Med 2022; 5:81-88. [PMID: 35213788 PMCID: PMC8879634 DOI: 10.1002/ame2.12202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Currently, increasing attention is being paid to the important role of intestinal microbiome in diabetes. However, few studies have evaluated the characteristics of gut microbiome in diabetic miniature pigs, despite it being a good model animal for assessing diabetes. METHODS In this study, a mini-pig diabetes model (DM) was established by 9-month high-fat diet (HFD) combined with low-dose streptozotocin, while the animals fed standard chow diet constituted the control group. 16S ribosomal RNA (rRNA) gene sequencing was performed to assess the characteristics of the intestinal microbiome in diabetic mini-pigs. RESULTS The results showed that microbial structure in diabetic mini-pigs was altered, reflected by increases in levels of Coprococcus_3 and Clostridium_sensu_stricto_1, which were positively correlated with diabetes, and decreases in levels of the bacteria Rikenellaceae, Clostridiales_vadinBB60_group, and Bacteroidales_RF16_group, which were inversely correlated with blood glucose and insulin resistance. Moreover, PICRUSt-predicted pathways related to the glycolysis and Entner-Doudoroff superpathway, enterobactin biosynthesis, and the l-tryptophan biosynthesis were significantly elevated in the DM group. CONCLUSION These results reveal the composition and predictive functions of the intestinal microbiome in the mini-pig diabetes model, further verifying the relationship between HFD, gut microbiome, and diabetes, and providing novel insights into the application of the mini-pig diabetes model in gut microbiome research.
Collapse
Affiliation(s)
- Miaomiao Niu
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Yuqiong Zhao
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Lei Xiang
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Yunxiao Jia
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Jifang Yuan
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Xin Dai
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Hua Chen
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| |
Collapse
|
25
|
Stockler RM, Hallowell H, Higgins KV, Groover ES, Hiltbold EM, Newcomer B, Walz PH. Characterization and Comparison of the Rumen Luminal and Epithelial Microbiome Profiles Using Metagenomic Sequencing Technique. Front Vet Sci 2022; 9:799063. [PMID: 35280141 PMCID: PMC8907629 DOI: 10.3389/fvets.2022.799063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Bacterial dysbiosis as a result of nutritional, bacterial, viral, and parasitic gastrointestinal infections can adversely affect the metabolism, productivity, and overall health of cattle. The purpose of this project was to characterize the commensal microbiota present in two locations of the rumen concomitantly in vivo with the animals undergoing habitual husbandry, as it was hypothesized that there are major differences in the commensal microbiota present in the two locations of the adult bovine major forestomach. A surgically fitted rumen cannula was used to allow ruminal lumen contents and mucosal biopsies to be collected from six crossbred yearling steers. In order to assess as much environmental and individual steer microbiota variation as possible, each animal was randomly sampled three times over a 3 week period. 16S rRNA sequencing was performed to provide a detailed descriptive analysis from phylum to genus taxonomic level. Significant differences were observed between luminal and epimural bacterial populations in the bovine rumen. As expected, a core microbiome composed by Firmicutes and Bacteroidetes represented over 90% of the microbiome, however, further analysis showed distinct diversity and distribution of the microbiome between the two locations. Characterizing the gastrointestinal microbiome in vivo is imperative. The novelty and the contribution of this study to the literature is the use of live cattle which allowed real-time sample collections and analysis of the rumen microbiome providing an understanding of what is normal in the live animal.
Collapse
Affiliation(s)
- Ricardo M. Stockler
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- *Correspondence: Ricardo M. Stockler
| | - Haley Hallowell
- Department of Biological Sciences, College of Sciences and Mathematics at Auburn University, Auburn, AL, United States
| | - Keah V. Higgins
- Department of Biological Sciences, College of Sciences and Mathematics at Auburn University, Auburn, AL, United States
| | - Erin S. Groover
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Elizabeth M. Hiltbold
- Department of Biological Sciences, College of Sciences and Mathematics at Auburn University, Auburn, AL, United States
| | - Benjamin Newcomer
- Veterinary Education, Research, and Outreach Program, Texas A&M and West Texas A&M Universities, Canyon, TX, United States
| | - Paul H. Walz
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
26
|
Lin Q, Yang L, Han L, Wang Z, Luo M, Zhu D, Liu H, Li X, Feng Y. Effects of soy hull polysaccharide on dyslipidemia and pathoglycemia in rats induced by a high-fat-high-sucrose diet. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Juan Z, Qing Z, Yongping L, Qian L, Wu W, Wen Y, Tong J, Ding B. Probiotics for the Treatment of Docetaxel-Related Weight Gain of Breast Cancer Patients-A Single-Center, Randomized, Double-Blind, and Placebo-Controlled Trial. Front Nutr 2021; 8:762929. [PMID: 34926547 PMCID: PMC8675585 DOI: 10.3389/fnut.2021.762929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Docetaxel is an important chemotherapy-agent for breast cancer treatment. One of its side-effects is weight gain, which increases the all-cause mortality rate. Considering gut microbiota is one important factor for weight regulation, we hypothesized that probiotics could be potentially used to reduce the docetaxel-related weight gain in breast cancer patients. Methods: From 10/8/2018 to 10/17/2019, 100 breast cancer (Stage I-III) patients underwent four cycles of docetaxel-based chemotherapy were enrolled and randomly assigned to receive probiotics (Bifidobacterium longum, Lactobacillus acidophilus, and Enterococcus faecalis) or placebo (supplementary material of the probiotics capsule) treatment for 84 days with three capsules per time, twice/day. The primary outcome: the changes in body weight and body-fat percentage of the patients were measured by a designated physician using a fat analyzer, and the secondary outcomes: the fasting insulin, plasma glucose, and lipids were directly obtained from the Hospital Information System (HIS); The metabolites were measured using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS); The fecal microbiome was analyzed using bacterial 16S ribosomal RNA (rRNA) gene sequence. All indicators were measured 1 day before the first cycle of docetaxel-based chemotherapy and 21 days after the last cycle of docetaxel-based chemotherapy. Results: Compared with the placebo group, the probiotic group showed significantly smaller changes in body weight (Mean [SD] 0.77 [2.58] vs. 2.70 [3.08], P = 0.03), body-fat percentage (Mean [SD] 0.04 [1.14] vs. 3.86 [11.09], P = 0.02), and low density lipoprotein (LDL) (Mean [SD]-0.05[0.68] vs. 0.39 [0.58], P = 0.002). Moreover, five of the 340 detected plasma metabolites showed significant differences between the two groups. The change of biliverdin dihydrochloride (B = -0.724, P = 0.02) was inverse correlated with weight gain. One strain of the phylum and three strains of the genus were detected to be significantly different between the two groups. Also, the changes of Bacteroides (B = -0.917, P < 0.001) and Anaerostipes (B = -0.894, P < 0.001) were inverse correlated with the change of LDL. Conclusions: Probiotics supplement during docetaxel-based chemotherapy for breast cancer treatment may help to reduce the increase in body weight, body-fat percentage, plasma LDL, and minimize the metabolic changes and gut dysbacteriosis. Clinical Trial Registration: http://www.chictr.org.cn/showproj.aspx?proj=24294, ChiCTR-INQ-17014181.
Collapse
Affiliation(s)
- Zhang Juan
- Department of Breast Surgery, Tangshan People's Hospital, Tangshan, Hebei, China
| | - Zhang Qing
- Department of Breast and Thyroid Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Liang Yongping
- Department of Medical Imaging (Ultrasound), Tangshan Central Hospital, Tangshan, China
| | - Liyuan Qian
- Department of Breast and Thyroid Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wu
- Department of Breast and Thyroid Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yanguang Wen
- Department of Breast and Thyroid Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianbin Tong
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Boni Ding
- Department of Breast and Thyroid Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Hallowell HA, Higgins KV, Roberts M, Johnson RM, Bayne J, Maxwell HS, Brandebourg T, Hiltbold Schwartz E. Longitudinal Analysis of the Intestinal Microbiota in the Obese Mangalica Pig Reveals Alterations in Bacteria and Bacteriophage Populations Associated With Changes in Body Composition and Diet. Front Cell Infect Microbiol 2021; 11:698657. [PMID: 34737972 PMCID: PMC8560744 DOI: 10.3389/fcimb.2021.698657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
Due to its immunomodulatory potential, the intestinal microbiota has been implicated as a contributing factor in the development of the meta-inflammatory state that drives obesity-associated insulin resistance and type 2 diabetes. A better understanding of this link would facilitate the development of targeted treatments and therapies to treat the metabolic complications of obesity. To this end, we validated and utilized a novel swine model of obesity, the Mangalica pig, to characterize changes in the gut microbiota during the development of an obese phenotype, and in response to dietary differences. In the first study, we characterized the metabolic phenotype and gut microbiota in lean and obese adult Mangalica pigs. Obese or lean groups were created by allowing either ad libitum (obese) or restricted (lean) access to a standard diet for 54 weeks. Mature obese pigs were significantly heavier and exhibited 170% greater subcutaneous adipose tissue mass, with no differences in muscle mass compared to their lean counterparts. Obese pigs displayed impaired glucose tolerance and hyperinsulinemia following oral glucose challenge, indicating that a metabolic phenotype also manifested with changes in body composition. Consistent with observations in human obesity, the gut microbiota of obese pigs displayed altered bacterial composition. In the second study, we characterized the longitudinal changes in the gut microbiota in response to diet and aging in growing Mangalica pigs that were either limit fed a standard diet, allowed ad libitum access to a standard diet, or allowed ad libitum access to a high fat-supplemented diet over an 18-week period. As expected, weight gain was highest in pigs fed the high fat diet compared to ad libitum and limit fed groups. Furthermore, the ad libitum and high fat groups displayed significantly greater adiposity consistent with the development of obesity relative to the limit fed pigs. The intestinal microbiota was generally resilient to differences in dietary intake (limit fed vs ad libitum), though changes in the microbiota of pigs fed the high fat diet mirrored changes observed in mature obese pigs during the first study. This is consistent with the link observed between the microbiota and adiposity. In contrast to intestinal bacterial populations, bacteriophage populations within the gut microbiota responded rapidly to differences in diet, with significant compositional changes in bacteriophage genera observed between the dietary treatment groups as pigs aged. These studies are the first to describe the development of the intestinal microbiota in the Mangalica pig, and are the first to provide evidence that changes in body composition and dietary conditions are associated with changes in the microbiome of this novel porcine model of obesity.
Collapse
Affiliation(s)
- Haley A Hallowell
- Department of Biological Sciences, Auburn University, College of Science and Mathematics, Auburn, AL, United States
| | - Keah V Higgins
- Department of Biological Sciences, Auburn University, College of Science and Mathematics, Auburn, AL, United States
| | - Morgan Roberts
- Department of Animal Sciences, College of Agriculture, Auburn University, Auburn, AL, United States
| | - Robert M Johnson
- Department of Biological Sciences, Auburn University, College of Science and Mathematics, Auburn, AL, United States
| | - Jenna Bayne
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Herris Stevens Maxwell
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Terry Brandebourg
- Department of Animal Sciences, College of Agriculture, Auburn University, Auburn, AL, United States
| | - Elizabeth Hiltbold Schwartz
- Department of Biological Sciences, Auburn University, College of Science and Mathematics, Auburn, AL, United States
| |
Collapse
|
29
|
Doelman A, Tigchelaar S, McConeghy B, Sinha S, Keung MS, Manouchehri N, Webster M, Fisk S, Morrison C, Streijger F, Nislow C, Kwon BK. Characterization of the gut microbiome in a porcine model of thoracic spinal cord injury. BMC Genomics 2021; 22:775. [PMID: 34717545 PMCID: PMC8557039 DOI: 10.1186/s12864-021-07979-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The gut microbiome is a diverse network of bacteria which inhabit our digestive tract and is crucial for efficient cellular metabolism, nutrient absorption, and immune system development. Spinal cord injury (SCI) disrupts autonomic function below the level of injury and can alter the composition of the gut microbiome. Studies in rodent models have shown that SCI-induced bacterial imbalances in the gut can exacerbate the spinal cord damage and impair recovery. In this study we, for the first time, characterized the composition of the gut microbiome in a Yucatan minipig SCI model. We compared the relative abundance of the most dominant bacterial phyla in control samples to those collected from animals who underwent a contusion-compression SCI at the 2nd or 10th Thoracic level. RESULTS We identify specific bacterial fluctuations that are unique to SCI animals, which were not found in uninjured animals given the same dietary regimen or antibiotic administration. Further, we identified a specific time-frame, "SCI-acute stage", during which many of these bacterial fluctuations occur before returning to "baseline" levels. CONCLUSION This work presents a dynamic view of the microbiome changes that accompany SCI, establishes a resource for future studies and to understand the changes that occur to gut microbiota after spinal cord injury and may point to a potential therapeutic target for future treatment.
Collapse
Affiliation(s)
- Adam Doelman
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Brian McConeghy
- Sequencing and Bioinformatics Consortium, University of British Columbia, Vancouver, BC Canada
| | - Sunita Sinha
- Sequencing and Bioinformatics Consortium, University of British Columbia, Vancouver, BC Canada
| | - Martin S. Keung
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Megan Webster
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Shera Fisk
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Charlotte Morrison
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Corey Nislow
- Sequencing and Bioinformatics Consortium, University of British Columbia, Vancouver, BC Canada
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
- Department of Orthopedics, Vancouver Spine Surgery Institute, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
30
|
Zhao P, Zheng X, Yu Y, Hou Z, Diao C, Wang H, Kang H, Ning C, Li J, Feng W, Wang W, Liu GE, Li B, Smith J, Chamba Y, Liu JF. Mining Unknown Porcine Protein Isoforms by Tissue-based Map of Proteome Enhances Pig Genome Annotation. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:772-786. [PMID: 33631433 PMCID: PMC9170766 DOI: 10.1016/j.gpb.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/05/2019] [Accepted: 11/29/2019] [Indexed: 11/29/2022]
Abstract
A lack of the complete pig proteome has left a gap in our knowledge of the pig genome and has restricted the feasibility of using pigs as a biomedical model. In this study, we developed a tissue-based proteome map using 34 major normal pig tissues. A total of 5841 unknown protein isoforms were identified and systematically characterized, including 2225 novel protein isoforms, 669 protein isoforms from 460 genes symbolized beginning with LOC, and 2947 protein isoforms without clear NCBI annotation in the current pig reference genome. These newly identified protein isoforms were functionally annotated through profiling the pig transcriptome with high-throughput RNA sequencing of the same pig tissues, further improving the genome annotation of the corresponding protein-coding genes. Combining the well-annotated genes that have parallel expression pattern and subcellular witness, we predicted the tissue-related subcellularlocations and potential functions for these unknown proteins. Finally, we mined 3081 orthologous genes for 52.7% of unknown protein isoforms across multiple species, referring to 68 KEGG pathways as well as 23 disease signaling pathways. These findings provide valuable insights and a rich resource for enhancing studies of pig genomics and biology, as well as biomedical model application to human medicine.
Collapse
Affiliation(s)
- Pengju Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xianrui Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chenguang Diao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haifei Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huimin Kang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chao Ning
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhui Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wen Feng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wen Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Bugao Li
- Department of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Yangzom Chamba
- Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
31
|
Li H, Ma L, Li Z, Yin J, Tan B, Chen J, Jiang Q, Ma X. Evolution of the Gut Microbiota and Its Fermentation Characteristics of Ningxiang Pigs at the Young Stage. Animals (Basel) 2021; 11:ani11030638. [PMID: 33673705 PMCID: PMC7997423 DOI: 10.3390/ani11030638] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The current study described the evolution of the gut microbiota of an indigenous pig breeds, Ningxiang pigs (NXP), from one week before weaning to the end of nursery. The results showed that dietary factors mainly drove the evolution of the microbial community of NXP. Our results contributed to a better understanding of the evolutionary characteristics and influencing factors of the gut microbiota of indigenous pig breeds. Abstract The current study aimed to investigate the evolution of gut microbiota and its influencing factors for NXP in youth. The results showed that Shannon index increased from d 21 to d 28 whereas the ACE index increased from d 21 until d 60. Firmicutes, mainly Lactobacillus dominated on d 21. The Bacteroides and Spirochetes showed highest relative abundance on d 28. Fiber-degrading bacteria, mainly Prevotellaceae, Lachnospiraceae, Ruminococcaceae, Muribaculaceae, and Oscillospiraceae_UCG−002, dominated the microbial communities at d 28 and d 35. The microbial communities at d 60 and d 75 contained more Clostridium_sensu_stricto_1, Terrisporobacter and Oscillospiraceae_UCG−005 than other ages, which had significantly positive correlations with acetate and total SCFAs concentration. In conclusion, the evolution of gut microbiota was mainly adapted to the change of dietary factors during NXP growth. The response of fiber-degrading bacteria at different stages may help NXP better adapt to plant-derived feeds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaokang Ma
- Correspondence: ; Tel.: +86-0731-84619706; Fax: +86-0731-84612685
| |
Collapse
|
32
|
Xu S, Dong Y, Shi J, Li Z, Che L, Lin Y, Li J, Feng B, Fang Z, Yong Z, Wang J, Wu D. Responses of Vaginal Microbiota to Dietary Supplementation with Lysozyme and its Relationship with Rectal Microbiota and Sow Performance from Late Gestation to Early Lactation. Animals (Basel) 2021; 11:ani11030593. [PMID: 33668266 PMCID: PMC7996156 DOI: 10.3390/ani11030593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The vaginal microbiota has a crucial role for the health of the sow and the newborn piglet. The purpose of this study was to investigate the effect of dietary supplementation with lysozyme in the vaginal microbiota and evaluate its relationship with the fecal microbiota of the rectum and the reproductive performance of the sow. The results suggest that, lysozyme supplementation changed vaginal microbiota composition at different taxonomic levels, the changed vaginal microbiota was associated with variations in fecal microbiota, and these changes correlated with some reproductive performance of the sow. Abstract This study was conducted to evaluate the effects of dietary lysozyme (LZM) supplementation on the vaginal microbiota, as well as the relationship between vaginal microbiota and the fecal microbiota of rectum and the reproductive performance of the sow. A total of 60 Yorkshire × Landrace sows (3–6 of parity) were arranged from day 85 of gestation to the end of lactation in a completely randomized design with three treatments (control diet, control diet + lysozyme 150 mg/kg, control diet + lysozyme 300 mg/kg). The results showed that sows fed with lysozyme increased serum interleukin-10 (IL-10, p < 0.05) on day 7 of lactation. The vaginal microbiota varied at different taxonomic levels with LZM supplementation by 16S rRNA gene sequencing. The most representative changes included a decrease in Tenericutes, Streptococcus, Bacillus and increase in Bacteroidetes, Actinobacteria, Enterococcus, and Lactobacillus (p < 0.05). There were 777 OTUs existing in both, vaginal and fecal microbiota. The addition of LZM also decreased the abundance of Tenericutes (p < 0.05) in the vagina and feces. The changes in the microbiota were correlated in some cases positively with the performance of the sow, for example, Bacillus in feces was positively correlated with the neonatal weight (p < 0.05). These results indicate that the addition of lysozyme to the diet of sow during perinatal period promote the change of vaginal bacterial community after farrowing. The variations in vaginal microbiota are also associated with the changes in the fecal microbiology of the rectum and the reproductive performance of the sow. Therefore, it is concluded that dietary supplementation with lysozyme in sows in late gestation stage until early lactation, is beneficial to establish vaginal microbiota that seems to promote maternal health and reproductive performance.
Collapse
Affiliation(s)
- Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
- Correspondence:
| | - Yanpeng Dong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Jiankai Shi
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Zhuo Yong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| |
Collapse
|
33
|
Li X, Sui Y, Xie B, Sun Z, Li S. Diabetes diminishes a typical metabolite of litchi pericarp oligomeric procyanidins (LPOPC) in urine mediated by imbalanced gut microbiota. Food Funct 2021; 12:5375-5386. [PMID: 33982735 DOI: 10.1039/d1fo00587a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Animal studies and clinical trials have shown that dietary polyphenols and polyphenol-rich foods can reduce the risk of type 2 diabetes (T2D) and its complications, but how diabetes regulates the metabolism of polyphenol has not been fully elucidated. This study investigated the effects of diabetes on litchi pericarp oligomeric procyanidin (LPOPC) dynamic metabolism and its major static metabolites in urine. First, a high-fat and streptozotocin (STZ)-induced diabetic Sprague Dawley (SD) rat model was established. In the diabetic rat model, elevated fasting blood glucose, severely impaired glucose tolerance test, and increased reactive oxygen species (ROS) levels in serum and the liver were observed. Subsequently, 200 mg per kg body weight of LPOPC was administrated to control and diabetic SD rats, and the gastrointestinal tract was collected at 0.5 h, 1 h, 3 h, and 6 h. The results showed that the retention time of LPOPC was not changed in our diabetic rat model. However, the gut microbiota were significantly altered, with elevated Proteobacteria and Verrucomicrobia abundance in diabetic rats and decreased short chain fatty acid (SCFA)-producing bacteria. Interestingly, after one dose of 300 mg per kg body weight LPOPC, the total antioxidant capacity of urine in diabetic rats significantly decreased. We then tested the static metabolites of LPOPC, demonstrating that epicatechin had not changed in urine in diabetic rats, but that shikimic acid was significantly reduced in urine in diabetic rats. The changes in shikimic acid may be due to the alteration of gut microbiota and elevated ROS levels in serum.
Collapse
Affiliation(s)
- Xiaopeng Li
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Sui
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, 430068, Wuhan, China
| | - Bijun Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Shuyi Li
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.
| |
Collapse
|
34
|
Obesity-Related Metabolome and Gut Microbiota Profiles of Juvenile Göttingen Minipigs-Long-Term Intake of Fructose and Resistant Starch. Metabolites 2020; 10:metabo10110456. [PMID: 33198236 PMCID: PMC7697781 DOI: 10.3390/metabo10110456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 01/04/2023] Open
Abstract
The metabolome and gut microbiota were investigated in a juvenile Göttingen minipig model. This study aimed to explore the metabolic effects of two carbohydrate sources with different degrees of risk in obesity development when associated with a high fat intake. A high-risk (HR) high-fat diet containing 20% fructose was compared to a control lower-risk (LR) high-fat diet where a similar amount of carbohydrate was provided as a mix of digestible and resistant starch from high amylose maize. Both diets were fed ad libitum. Non-targeted metabolomics was used to explore plasma, urine, and feces samples over five months. Plasma and fecal short-chain fatty acids were targeted and quantified. Fecal microbiota was analyzed using genomic sequencing. Data analysis was performed using sparse multi-block partial least squares regression. The LR diet increased concentrations of fecal and plasma total short-chain fatty acids, primarily acetate, and there was a higher relative abundance of microbiota associated with acetate production such as Bacteroidetes and Ruminococcus. A higher proportion of Firmicutes was measured with the HR diet, together with a lower alpha diversity compared to the LR diet. Irrespective of diet, the ad libitum exposure to the high-energy diets was accompanied by well-known biomarkers associated with obesity and diabetes, particularly branched-chain amino acids, keto acids, and other catabolism metabolites.
Collapse
|
35
|
Stockler RM, Higgins KV, Hallowell H, Groover ES, Hiltbold EM, Newcomer BW, Walz PH. In vivo Microbiome Profiling of the Luminal and Mucosal Surface of the Duodenum Using a Cannulated Yearling Bovine Model. Front Vet Sci 2020; 7:601874. [PMID: 33240966 PMCID: PMC7680733 DOI: 10.3389/fvets.2020.601874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 01/23/2023] Open
Abstract
The gut microbiome provides important metabolic functions for the host animal. Bacterial dysbiosis as a result of bacterial, viral, and parasitic gastrointestinal infections can adversely affect the metabolism, productivity, and overall health. The objective of this study is to characterize the commensal microbiome present in the lumen and the mucosal surface of the duodenum of cattle, as we hypothesize that due to metabolic processes and or host proprieties, there are differences in the natural microbiota present in the mucosal surface and luminal contents of the bovine duodenum. Duodenal lumen contents and mucosal biopsies were collected from six dairy crossbred yearling steers. A flexible video-endoscope was used to harvest biopsy samples via a T shaped intestinal cannula. In order to assess as much environmental and individual steer microbiota variation as possible, each animal was sampled three times over a 6 week period. The DNA was extracted from the samples and submitted for16S rRNA gene Ion Torrent PGM bacterial sequencing. A detailed descriptive analysis from phylum to genus taxonomic level was reported. Differences in the microbiome population between two different sites within the duodenum were successfully characterized. A great and significant microbiota diversity was found between the luminal and mucosal biopsy At the phylum taxonomic level, Firmicutes, and Bacteroidetes composed over 80% of the microbiome. Further analysis at lower taxonomic levels, class, family, and genus, showed distinct diversity and distribution of the microbiome. Characterizing the gastrointestinal microbiome in vivo is imperative. The novelty of this study is the use of live cattle undergoing customary husbandry allowing real-time analysis of the duodenum microbiome contributing to the literature with respect to the bovine duodenum microbiome.
Collapse
Affiliation(s)
- Ricardo M Stockler
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Keah V Higgins
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL, United States
| | - Haley Hallowell
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL, United States
| | - Erin S Groover
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Elizabeth M Hiltbold
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL, United States
| | - Benjamin W Newcomer
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Paul H Walz
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
36
|
Oh JK, Chae JP, Pajarillo EAB, Kim SH, Kwak MJ, Eun JS, Chee SW, Whang KY, Kim SH, Kang DK. Association between the body weight of growing pigs and the functional capacity of their gut microbiota. Anim Sci J 2020; 91:e13418. [PMID: 32648357 DOI: 10.1111/asj.13418] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/01/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022]
Abstract
Gastrointestinal microbiota impact host's biological activities, including digestion of indigestible feed components, energy harvest, and immunity. In this study, fecal microbiota of high body weight (HW) and low body weight (LW) growing pigs at 103 days of age were compared. Principal coordinates analysis separated the HW and LW groups into two clusters, indicating their potential differences between microbial community composition. Although the abundances of two major phyla, Firmicutes and Bacteroidetes, did not significantly differ between the HW and LW groups, some genera showed significant differences. Among them, Peptococcus and Eubacterium exhibited strong positive correlations with body weight (BW) and average daily gain (ADG) (Rho > 0.40), whereas Treponema, Desulfovibrio, Parabacteroides, and Ruminococcaceae_unclassified exhibited strong negative correlations with BW and ADG (Rho < -0.40). Based on these results, the structure of intestinal microbiota may affect growth traits in pigs through host-microbe interactions. Further in-depth studies will provide insights into how best to reshape host-microbe interactions in pigs and other animals as well.
Collapse
Affiliation(s)
- Ju Kyoung Oh
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jong Pyo Chae
- Biotechnology Research Institute, CJ CheilJedang, Suwon, Republic of Korea
| | | | - Sung Hun Kim
- Biotechnology Research Institute, CJ CheilJedang, Suwon, Republic of Korea
| | - Min-Jin Kwak
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jong-Su Eun
- Biotechnology Research Institute, CJ CheilJedang, Suwon, Republic of Korea
| | - Seok Woo Chee
- Biotechnology Research Institute, CJ CheilJedang, Suwon, Republic of Korea
| | - Kwang-Youn Whang
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sae-Hun Kim
- Department of Food Bioscience and Technology, Korea University, Seoul, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
37
|
A glance at the gut microbiota of five experimental animal species through fecal samples. Sci Rep 2020; 10:16628. [PMID: 33024229 PMCID: PMC7538948 DOI: 10.1038/s41598-020-73985-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Experimental animals including the ferret, marmoset, woodchuck, mini pig, and tree shrew have been used in biomedical research. However, their gut microbiota have not been fully investigated. In this study, the gut microbiota of these five experimental animals were analyzed with 16S rRNA sequencing. The phyla Firmicutes, Bacteroidetes, and Fusobacteria were present in the gut microbiota of all the species. Specific phyla were present in different animals: Proteobacteria in the ferret, Tenericutes in the marmoset, and Spirochaetes in the mini pig. Fusobacterium and unidentified Clostridiales were the dominant genera in the ferret, whereas Libanicoccus, Lactobacillus, Porphyromonas, and Peptoclostridium were specific to marmoset, mini pig, woodchuck, and tree shrew, respectively. A clustering analysis showed that the overall distribution of microbial species in the guts of these species mirrored their mammalian phylogeny, and the microbiota of the marmoset and tree shrew showed the closest bray_curtis distances to that of humans. PICRUSt functional prediction separated the woodchuck from the other species, which may reflect its herbivorous diet. In conclusion, both the evolutionary phylogeny and daily diet affect the gut microbiota of these experimental animals, which should not be neglected for their usage in biomedical research.
Collapse
|
38
|
Ribitsch I, Baptista PM, Lange-Consiglio A, Melotti L, Patruno M, Jenner F, Schnabl-Feichter E, Dutton LC, Connolly DJ, van Steenbeek FG, Dudhia J, Penning LC. Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do. Front Bioeng Biotechnol 2020; 8:972. [PMID: 32903631 PMCID: PMC7438731 DOI: 10.3389/fbioe.2020.00972] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Rapid developments in Regenerative Medicine and Tissue Engineering has witnessed an increasing drive toward clinical translation of breakthrough technologies. However, the progression of promising preclinical data to achieve successful clinical market authorisation remains a bottleneck. One hurdle for progress to the clinic is the transition from small animal research to advanced preclinical studies in large animals to test safety and efficacy of products. Notwithstanding this, to draw meaningful and reliable conclusions from animal experiments it is critical that the species and disease model of choice is relevant to answer the research question as well as the clinical problem. Selecting the most appropriate animal model requires in-depth knowledge of specific species and breeds to ascertain the adequacy of the model and outcome measures that closely mirror the clinical situation. Traditional reductionist approaches in animal experiments, which often do not sufficiently reflect the studied disease, are still the norm and can result in a disconnect in outcomes observed between animal studies and clinical trials. To address these concerns a reconsideration in approach will be required. This should include a stepwise approach using in vitro and ex vivo experiments as well as in silico modeling to minimize the need for in vivo studies for screening and early development studies, followed by large animal models which more closely resemble human disease. Naturally occurring, or spontaneous diseases in large animals remain a largely untapped resource, and given the similarities in pathophysiology to humans they not only allow for studying new treatment strategies but also disease etiology and prevention. Naturally occurring disease models, particularly for longer lived large animal species, allow for studying disorders at an age when the disease is most prevalent. As these diseases are usually also a concern in the chosen veterinary species they would be beneficiaries of newly developed therapies. Improved awareness of the progress in animal models is mutually beneficial for animals, researchers, human and veterinary patients. In this overview we describe advantages and disadvantages of various animal models including domesticated and companion animals used in regenerative medicine and tissue engineering to provide an informed choice of disease-relevant animal models.
Collapse
Affiliation(s)
- Iris Ribitsch
- Veterm, Department for Companion Animals and Horses, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pedro M. Baptista
- Laboratory of Organ Bioengineering and Regenerative Medicine, Health Research Institute of Aragon (IIS Aragon), Zaragoza, Spain
| | - Anna Lange-Consiglio
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Florien Jenner
- Veterm, Department for Companion Animals and Horses, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Schnabl-Feichter
- Clinical Unit of Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Luke C. Dutton
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - David J. Connolly
- Clinical Unit of Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
39
|
Bergamaschi M, Tiezzi F, Howard J, Huang YJ, Gray KA, Schillebeeckx C, McNulty NP, Maltecca C. Gut microbiome composition differences among breeds impact feed efficiency in swine. MICROBIOME 2020; 8:110. [PMID: 32698902 PMCID: PMC7376719 DOI: 10.1186/s40168-020-00888-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Feed efficiency is a crucial parameter in swine production, given both its economic and environmental impact. The gut microbiota plays an essential role in nutrient digestibility and is, therefore, likely to affect feed efficiency. This study aimed to characterize feed efficiency, fatness traits, and gut microbiome composition in three major breeds of domesticated swine and investigate a possible link between feed efficiency and gut microbiota composition. RESULTS Average daily feed intake (ADFI), average daily gain (ADG), feed conversion ratio (FCR), residual feed intake (RFI), backfat, loin depth, and intramuscular fat of 615 pigs belonging to the Duroc (DR), Landrace (LR), and Large White (LW) breeds were measured. Gut microbiota composition was characterized by 16S rRNA gene sequencing. Orthogonal contrasts between paternal line (DR) and maternal lines (LR+LW) and between the two maternal lines (LR versus LW) were performed. Average daily feed intake and ADG were statistically different with DR having lower ADFI and ADG compared to LR and LW. Landrace and LW had a similar ADG and RFI, with higher ADFI and FCR for LW. Alpha diversity was higher in the fecal microbial communities of LR pigs than in those of DR and LW pigs for all time points considered. Duroc communities had significantly higher proportional representation of the Catenibacterium and Clostridium genera compared to LR and LW, while LR pigs had significantly higher proportions of Bacteroides than LW for all time points considered. Amplicon sequence variants from multiple genera (including Anaerovibrio, Bacteroides, Blautia, Clostridium, Dorea, Eubacterium, Faecalibacterium, Lactobacillus, Oscillibacter, and Ruminococcus) were found to be significantly associated with feed efficiency, regardless of the time point considered. CONCLUSIONS In this study, we characterized differences in the composition of the fecal microbiota of three commercially relevant breeds of swine, both over time and between breeds. Correlations between different microbiome compositions and feed efficiency were established. This suggests that the microbial community may contribute to shaping host productive parameters. Moreover, our study provides important insights into how the intestinal microbial community might influence host energy harvesting capacity. A deeper understanding of this process may allow us to modulate the gut microbiome in order to raise more efficient animals. Video Abstract.
Collapse
Affiliation(s)
- Matteo Bergamaschi
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Jeremy Howard
- Smithfield Premium Genetics, Rose Hill, NC 28458 USA
| | - Yi Jian Huang
- Smithfield Premium Genetics, Rose Hill, NC 28458 USA
| | - Kent A. Gray
- Smithfield Premium Genetics, Rose Hill, NC 28458 USA
| | | | | | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
40
|
Comparison Between the Gut Microbiota in Different Gastrointestinal Segments of Large-Tailed Han and Small-Tailed Han Sheep Breeds with High-Throughput Sequencing. Indian J Microbiol 2020; 60:436-450. [PMID: 33087993 DOI: 10.1007/s12088-020-00885-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
Commensal microorganisms are essential to the normal development and function of many aspects of animal biology. However, the dynamic shift patterns of the microbiota of different gut segments in sheep and the correlation between fat type large-tailed phenotype and microbiota remain poorly unknown. This study therefore sought to assess the composition and distribution of the intestinal microbiome, and compared the difference of gut microbiota from different gastrointestinal segments within breeds and same intestinal sections between breeds. For these analyses, 16S rRNA V4 regions from 4 gut sections prepared from each of six individuals (3 from each breed) were sequenced to detect the microbiome composition in these samples. These analyses revealed the presence of 51,173 operational taxonomic units distributed across 24 phyla and 420 genera in these samples, with Firmicutes and Bacteroidetes being the most prevalent phyla of microbes present in these samples. Moreover, the bacterial composition showed distinct microbial communities in different gastrointestinal segments within breed, but showed similar and relative fixed bacterial abundance in the same intestinal segments from individuals of different breeds. We also found that only a few bacterial species (Lachnospiraceae, Akkermansia) were needed to distinguish between Small-tailed Han sheep (STH) and Large-tailed Han sheep (LTH) and their metabolic process maybe influence the fat type large-tailed phenotype formation in sheep. The functional profile analysis revealed that the environment information processing, genetic information processing, and metabolic pathways were enriched in all samples. The main functional roles of the gut microbiota were amino acid metabolism, replication and repair, carbohydrate metabolism, and membrane transport. Finally, our findings suggested that distinguished gut species between STH and LTH have relative fixed and the potential correlation is existing between the intestinal microorganisms and the large-tailed phenotype trait formation of sheep, which may offer clues for further investigation to detect the roles of intestinal microbiota in the metabolism and fat deposition in the tail of sheep.
Collapse
|
41
|
Liang Y, Liu D, Zhan J, Luo M, Han J, Wang P, Zhou Z. New insight into the mechanism of POP-induced obesity: Evidence from DDE-altered microbiota. CHEMOSPHERE 2020; 244:125123. [PMID: 32050320 DOI: 10.1016/j.chemosphere.2019.125123] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/27/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Although epidemiological studies demonstrate that persistent organic pollutants (POPs) could lead to metabolic syndrome, the mechanism has remained unclear. The dysbiosis of gut microbiota and the lipid metabolome have been put forward in the pathophysiology of metabolic syndrome. In this study, we used dichlorodiphenyldichloroethylene (DDE) as an example to study the effects of POP-impaired microbial composition and metabolome homeostasis on metabolic syndrome. The results showed that DDE exposure increased body weight and fat content and impaired glucose homeostasis. Further investigation revealed that DDE induced gut dysbiosis as indicated by an increased Firmicutes-to-Bacteroidetes ratio, which may impact energy harvest efficiency. Meanwhile, the plasma lipid metabolome profile was significantly altered by DDE. Furthermore, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, and triacylglycerol were identified as key metabolites affected by DDE treatment, and these altered lipid metabolites were highly correlated with changed microbiota composition. This study provides novel insight into the underlying mechanism of POP-induced obesity and diabetes, pointing to gut microbiota as one of the targets.
Collapse
Affiliation(s)
- Yiran Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, PR China; College of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing, 100083, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Jing Zhan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Mai Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Jiajun Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, PR China.
| |
Collapse
|
42
|
Fecal bacteria and metabolite responses to dietary lysozyme in a sow model from late gestation until lactation. Sci Rep 2020; 10:3210. [PMID: 32081946 PMCID: PMC7035255 DOI: 10.1038/s41598-020-60131-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Lysozyme (LZM) is a natural anti-bacterial protein that is found in the saliva, tears and milk of all mammals including humans. Its anti-bacterial properties result from the ability to cleave bacterial cell walls, causing bacterial death. The current study was conducted to investigate the effects of dietary LZM on fecal microbial composition and variation in metabolites in sow. The addition of LZM decreased the fecal short-chain fatty acids (SCFAs). Zonulin and endotoxin in the serum, and feces, were decreased with lysozyme supplementation. Furthermore, fecal concentrations of lipocalin-2 and the pro-inflammatory cytokine TNF-α were also decreased while the anti-inflammatory cytokine IL-10 was increased by lysozyme supplementation. 16S rRNA gene sequencing of the V3-V4 region suggested that fecal microbial levels changed at different taxonomic levels with the addition of LZM. Representative changes included the reduction of diversity between sows, decreased Bacteroidetes, Actinobacteria, Tenericutes and Spirochaetes during lactation as well as an increase in Lactobacillus. These findings suggest that dietary lysozyme supplementation from late gestation to lactation promote microbial changes, which would potentially be the mechanisms by which maternal metabolites and inflammatory status was altered after LZM supplementation.
Collapse
|
43
|
Baumgart J, Deigendesch N, Lindner A, Muensterer OJ, Schröder A, Heimann A, Oetzmann von Sochaczewski C. Using multidimensional scaling in model choice for congenital oesophageal atresia: similarity analysis of human autopsy organ weights with those from a comparative assessment of Aachen Minipig and Pietrain piglets. Lab Anim 2020; 54:576-587. [PMID: 32063097 DOI: 10.1177/0023677220902184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Swine models had been popular in paediatric oesophageal surgery in the past. Although being largely replaced by rodent models, swine experienced a revival with the establishment of minipig models. However, none of them has ever been investigated for similarity to humans. We conducted a pilot study to determine whether three-week old Pietrain piglets and three-month old Aachen Minipigs are suitable for experimental paediatric oesophageal atresia surgery. We tested the operation's feasibility, performed a necropsy, weighed organs, measured organ length and calculated relative weights and lengths, and measured laboratory parameters. We used multidimensional scaling to assess the similarity of the swine breeds with previously published human data. Pietrain piglets had a higher a priori bodyweight than Aachen Minipigs (Δ = 1.31 kg, 95% confidence interval (CI): 0.37-2.23, p = 0.015), while snout-to-tail length was similar. Pietrain piglets had higher absolute and relative oesophageal lengths (Δ = 5.43 cm, 95% CI: 2.2-8.6; p = 0.0062, q1* = 0.0083 and Δ = 11.4%, 95% CI: 5.1-17.6; p = 0.0025, q3* = 0.0053). Likewise, absolute and relative small intestinal lengths were higher in Pietrains, but all other parameters did not differ, with the exception of minor differences in laboratory parameters. Multidimensional scaling revealed three-week old Pietrain piglets to be similar to two-month old humans based on their thoracoabdominal organ weights. This result indicates three-week old Pietrain piglets are a suitable model of paediatric oesophageal atresia surgery, because clinically many procedures are performed at around eight weeks age. Three-month old Aachen Minipigs were more dissimilar to eight-week old humans than three-week old Pietrain piglets.
Collapse
Affiliation(s)
- Jan Baumgart
- Translational Animal Research Centre, Johannes-Gutenberg-Universität Mainz, Germany
| | | | - Andreas Lindner
- Department of Paediatric Surgery, Universitätsmedizin Mainz, Germany
| | | | - Arne Schröder
- Department of Paediatrics, Elisabeth-Krankenhaus Essen, Germany
| | - Axel Heimann
- Institute for Neurosurgical Pathophysiology, Universitätsmedizin Mainz, Germany
| | | |
Collapse
|
44
|
Li F, Zhang T, He Y, Gu W, Yang X, Zhao R, Yu J. Inflammation inhibition and gut microbiota regulation by TSG to combat atherosclerosis in ApoE -/- mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112232. [PMID: 31606534 DOI: 10.1016/j.jep.2019.112232] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/20/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 2,3,5,4'-Tetrahydroxy-stilbene-2-O-β-D-glucoside (TSG) is the main active component of Polygoni Multiflori Radix, a root of the homonymous plant widely used in traditional Chinese medicine. TSG has protective effects on the liver, reduces cholesterol and possesses anti-oxidant, anti-tumor, and anti-atherosclerotic properties. However, the pharmacological effects and mechanisms of action of Polygonum multiflorum on atherosclerosis (AS) have not been studied yet. PURPOSE The aim of this research was to study the effects of Polygoni Multiflori Radix Praeparata (PMRP) and its major active chemical constituent TSG on AS in ApoE-deficient (ApoE-/-) mice fed with high fat diets to provide a scientific basis in the use of PMRP and TSG against cardiovascular diseases. METHODS High fat diet induced AS in ApoE-/- mice were treated with PMRP, TSG (low and high doses), and simvastatin (SIM) for 8 weeks. At the end of the treatment, mouse serum lipid levels, triglycerides (TG), and total cholesterol (TC) were measured by an oxidase method (other indicators were determined by ELISA), while the content in oxidized low density lipoprotein (ox-LDL) and the expression of inflammatory factors such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), vascular cell adhesion molecule-1 (VCAM-1), and monocyte chemotactic protein-1 (MCP-1) in the serum and aortic samples were measured by ELISA. Atherosclerotic plaque morphology was evaluated by oil red O in thoracic aorta. In addition, 16S rDNA-V4 hypervariable region genome sequence of all microbes in the fecal sample from each group was analyzed to evaluate potential structure changes in the gut microbiota after treatment with PMRP and TSG. RESULTS TSG markedly inhibited AS plaque formation in ApoE-/- mice. Furthermore, PMRP and TSG improved lipid accumulation by reducing TG and ox-LDL levels. TSG inhibited inflammation by the down-regulation of IL-6, TNF-α, VCAM-1 and MCP-1 expression in serum, and PMRP inhibited inflammation by reducing VCAM-1, ICAM-1 and CCRA expression in aortic tissue. In addition, TSG reduced or prevented AS by the regulation of the composition of the overall gut microbiota, such as Firmicutes, Bacteroidetes, Tenericutes, Proteobacteria phyla, Akkermensia genera and Helicobacter pylori. CONCLUSION PMRP and TSG improved lipid accumulation and inflammation, and regulated the intestinal microbial imbalance in ApoE-/- mice. TSG exerted a preventive effect in the development and progression of AS.
Collapse
Affiliation(s)
- Fengjiao Li
- Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan Province, China
| | - Ting Zhang
- Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan Province, China
| | - Yanran He
- Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan Province, China
| | - Wen Gu
- Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan Province, China
| | - Xingxin Yang
- Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan Province, China
| | - Ronghua Zhao
- Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan Province, China
| | - Jie Yu
- Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan Province, China.
| |
Collapse
|
45
|
Gut Microbiota and Obesity: A Role for Probiotics. Nutrients 2019; 11:nu11112690. [PMID: 31703257 PMCID: PMC6893459 DOI: 10.3390/nu11112690] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Nowadays, obesity is one of the most prevalent human health problems. Research from the last 30 years has clarified the role of the imbalance between energy intake and expenditure, unhealthy lifestyle, and genetic variability in the development of obesity. More recently, the composition and metabolic functions of gut microbiota have been proposed as being able to affect obesity development. Here, we will report the current knowledge on the definition, composition, and functions of intestinal microbiota. We have performed an extensive review of the literature, searching for the following keywords: metabolism, gut microbiota, dysbiosis, obesity. There is evidence for the association between gut bacteria and obesity both in infancy and in adults. There are several genetic, metabolic, and inflammatory pathophysiological mechanisms involved in the interplay between gut microbes and obesity. Microbial changes in the human gut can be considered a factor involved in obesity development in humans. The modulation of the bacterial strains in the digestive tract can help to reshape the metabolic profile in the human obese host as suggested by several data from animal and human studies. Thus, a deep revision of the evidence pertaining to the use probiotics, prebiotics, and antibiotics in obese patients is conceivable
Collapse
|
46
|
Abstract
In recent years, tremendous advances have been made in our ability to characterize complex microbial communities such as the gut microbiota, and numerous surveys of the human gut microbiota have identified countless associations between different compositional attributes of the gut microbiota and adverse health conditions. However, most of these findings in humans are purely correlative and animal models are required for prospective evaluation of such changes as causative factors in disease initiation or progression. As in most fields of biomedical research, microbiota-focused studies are predominantly performed in mouse or rat models. Depending on the field of research and experimental question or objective, non-rodent models may be preferable due to better translatability or an inability to use rodents for various reasons. The following review describes the utility and limitations of several non-rodent model species for research on the microbiota and its influence on host physiology and disease. In an effort to balance the breadth of potential model species with the amount of detail provided, four model species are discussed: zebrafish, dogs, pigs, and rabbits.
Collapse
Affiliation(s)
- Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, United States of America
| |
Collapse
|
47
|
Hu C, Li F, Duan Y, Yin Y, Kong X. Dietary Supplementation With Leucine or in Combination With Arginine Decreases Body Fat Weight and Alters Gut Microbiota Composition in Finishing Pigs. Front Microbiol 2019; 10:1767. [PMID: 31456756 PMCID: PMC6700229 DOI: 10.3389/fmicb.2019.01767] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity was associated with change in gut microbiota composition and their metabolites. We investigated the effects of dietary supplementation with leucine (Leu) in combination with arginine (Arg) or glutamic acid (Glu) on body fat weight, composition of gut microbiota, and short-chain fatty acids (SCFAs) concentration in the colon. Forty-eight Duroc × Large White × Landrace pigs with an initial body weight of 77.08 ± 1.29 kg were randomly assigned to one of the four groups (12 pigs per group). The pigs in the control group were fed a basal diet supplemented with 2.05% alanine (isonitrogenous control, BD group), and those in the three experimental groups were fed a basal diet supplemented with 1.00% Leu + 1.37% alanine (Leu group), 1.00% Leu + 1.00% Arg (Leu_Arg group), or 1.00% Leu + 1.00% Glu (Leu_Glu group). We found that dietary supplementation with Leu alone or in combination with Arg decreased (p < 0.05) body fat weight, and increased (p < 0.05) colonic propionate and butyrate concentrations compared to the BD group. The mRNA expression levels of genes related to lipolysis increased (p < 0.05) in the Leu or Leu_Arg group compared to the BD group. Negative relationships (p < 0.05) were observed between body fat weight, colonic propionate, and butyrate concentrations. Compared to the BD group, the abundance of Actinobacteria was higher (p < 0.05) in the Leu group, and that of Clostridium_sensu_stricto_1, Terrisporobacter, and Escherichia-Shigella were higher in the Leu_Arg group. The abundance of Deinococcus-Thermus was negatively correlated (p < 0.05) with body fat weight, and was positively correlated (p < 0.05) with butyrate, isovalerate, propionate, and isobutyrate concentrations, and that of Cyanobacteria was positively correlated (p < 0.05) with butyrate, propionate, and isobutyrate concentrations. In conclusion, these findings suggest that decreased body fat weight in pigs can be induced by Leu supplementation alone or in combination with Arg and is associated with increased colonic butyrate and propionate concentrations. This provides new insights for potential therapy for obesity.
Collapse
Affiliation(s)
- Chengjun Hu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
48
|
Peñate-Medina O, Tower RJ, Peñate-Medina T, Will O, Saris PEJ, Suojanen J, Sorsa T, Huuskonen L, Hiippala K, Satokari R, Glüer CC, de Vos WM, Reunanen J. Universal membrane-labeling combined with expression of Katushka far-red fluorescent protein enables non-invasive dynamic and longitudinal quantitative 3D dual-color fluorescent imaging of multiple bacterial strains in mouse intestine. BMC Microbiol 2019; 19:167. [PMID: 31319790 PMCID: PMC6639909 DOI: 10.1186/s12866-019-1538-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/30/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The human gastrointestinal (GI) tract microbiota has been a subject of intense research throughout the 3rd Millennium. Now that a general picture about microbiota composition in health and disease is emerging, questions about factors determining development of microbiotas with specific community structures will be addressed. To this end, usage of murine models for colonization studies remains crucial. Optical in vivo imaging of either bioluminescent or fluorescent bacteria is the basis for non-invasive detection of intestinal colonization of bacteria. Although recent advances in in vivo fluorescence imaging have overcome many limitations encountered in bioluminescent imaging of intestinal bacteria, such as requirement for live cells, high signal attenuation and 2D imaging, the method is still restricted to bacteria for which molecular cloning tools are available. RESULTS Here, we present usage of a lipophilic fluorescent dye together with Katushka far-red fluorescent protein to establish a dual-color in vivo imaging system to monitor GI transit of different bacterial strains, suitable also for strains resistant to genetic labeling. Using this system, we were able to distinguish two different E. coli strains simultaneously and show their unique transit patterns. Combined with fluorescence molecular tomography, these distinct strains could be spatially and temporally resolved and quantified in 3D. CONCLUSIONS Developed novel method for labeling microbes and identify their passage both temporally and spatially in vivo makes now possible to monitor all culturable bacterial strains, also those that are resistant to conventional genetic labeling.
Collapse
Affiliation(s)
- Oula Peñate-Medina
- Molecular Imaging North Competence Center, Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Robert J. Tower
- Molecular Imaging North Competence Center, Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Tuula Peñate-Medina
- Molecular Imaging North Competence Center, Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Olga Will
- Molecular Imaging North Competence Center, Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Per E. J. Saris
- Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Juho Suojanen
- Cleft Palate and Craniofacial Centre, Department of Plastic Surgery, Helsinki University Hospital, Helsinki University Central Hospital, Topeliuksenkatu 5, 00029 Helsinki, Finland
- Päijät-Häme Joint Authority for Health and Wellbeing, Department of Oral and Maxillo-Facial Surgery, Keskussairaalankatu 7, 15850 Lahti, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4E, 00029 Helsinki, Finland
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfreds Nobels Alle 8, Huddinge, 14104 Stockholm, Sweden
| | - Laura Huuskonen
- Department of Bacteriology and Immunology and Immunobiology Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 2, 00014 Helsinki, Finland
| | - Kaisa Hiippala
- Department of Bacteriology and Immunology and Immunobiology Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 2, 00014 Helsinki, Finland
| | - Reetta Satokari
- Department of Bacteriology and Immunology and Immunobiology Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 2, 00014 Helsinki, Finland
| | - Claus C. Glüer
- Molecular Imaging North Competence Center, Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Willem M. de Vos
- Department of Bacteriology and Immunology and Immunobiology Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 2, 00014 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, 00014 Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, 6708 PB The Netherlands
| | - Justus Reunanen
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, Aapistie 5, 90220 Oulu, Finland
| |
Collapse
|
49
|
Affiliation(s)
- Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, University of Jordan, Amman, Jordan
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
50
|
Jiang X, Chen B, Gu D, Rong Z, Su X, Yue M, Zhou H, Gu W. Gut Microbial Compositions in Four Age Groups of Tibetan Minipigs. Pol J Microbiol 2019; 67:383-388. [PMID: 30451456 PMCID: PMC7256833 DOI: 10.21307/pjm-2018-038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2018] [Indexed: 11/11/2022] Open
Abstract
In this study, the gut microbiota was characterized in four age strata of Tibetan minipigs. Results indicated that the fecal bacteria of 7-, 28-, 56-, and 180-day-old minipigs did not significantly differ in terms of phylogenetic diversity (i.e., PD whole tree) or the Shannon index (both, p > 0.05). Findings of a principal coordinate analysis demonstrated that fecal bacteria of 180-day-old minipigs were discernable from those of the other three age groups. From ages seven to 56 days, the abundance of Bacteroidetes or Firmicutes appeared to vary. Regarding genera, the populations of Bacteroides and Akkermansia decreased with increasing age.
Collapse
Affiliation(s)
- Xia Jiang
- Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Bangzhu Chen
- Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Dongshu Gu
- Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Zuhua Rong
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohua Su
- Laboratory Animal Center, Guangdong Medical University, Dongguan, China
| | - Min Yue
- Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwang Gu
- Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|