1
|
Denaro N, Nazzaro G, Murgia G, Scarfì F, Cauchi C, Carrera CG, Cattaneo A, Solinas C, Scartozzi M, Marzano AV, Garrone O, Passoni E. A Multidisciplinary Approach to Patients with Psoriasis and a History of Malignancies or On-Treatment for Solid Tumors: A Narrative Literature Review. Int J Mol Sci 2023; 24:17540. [PMID: 38139369 PMCID: PMC10743950 DOI: 10.3390/ijms242417540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Psoriasis is a chronic immune-mediated disease that is linked to an increased risk of cancer. Although numerous studies have explored whether neoplasms are concurrent conditions or are induced by psoriasis, a definitive definition remains elusive. In this study, we conducted a comprehensive narrative literature review to offer practical guidance to oncologists and dermatologists regarding the initiation and discontinuation of biologics for psoriasis. The findings indicate that a customized approach is recommended for each patient, and that a history of malignancies does not constitute an absolute contraindication for biologics. Growing evidence supports the treatment of selected patients, emphasizing a nuanced assessment of benefits and risks. There is a lack of data specifying a safe timeframe to initiate biologics following a neoplasm diagnosis due to influences from cancer-related and patient-specific characteristics impacting prognosis. Some patients may continue anti-psoriasis therapy during cancer treatments. Enhanced comprehension of the biological mechanisms in cancer progression and the immune microenvironment of psoriasis holds promise for refining therapeutic strategies. In conclusion, a personalized treatment approach necessitates collaboration between oncologists and dermatologists, considering factors such as cancer prognosis, psoriasis clinical manifestations, patient characteristics, and preferences when making treatment decisions.
Collapse
Affiliation(s)
- Nerina Denaro
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.C.); (O.G.)
| | - Gianluca Nazzaro
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.N.); (G.M.); (C.G.C.); (A.C.); (A.V.M.); (E.P.)
| | - Giulia Murgia
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.N.); (G.M.); (C.G.C.); (A.C.); (A.V.M.); (E.P.)
| | - Federica Scarfì
- UOSD Dermatology, USL Toscana Centro-Prato Hospital, 59100 Prato, Italy;
- Section of Dermatology, Department of Health Sciences, University of Florence, 50134 Florence, Italy
| | - Carolina Cauchi
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.C.); (O.G.)
| | - Carlo Giovanni Carrera
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.N.); (G.M.); (C.G.C.); (A.C.); (A.V.M.); (E.P.)
| | - Angelo Cattaneo
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.N.); (G.M.); (C.G.C.); (A.C.); (A.V.M.); (E.P.)
| | - Cinzia Solinas
- Medical Oncology Department, University of Cagliari, 09042 Cagliari, Italy; (C.S.); (M.S.)
| | - Mario Scartozzi
- Medical Oncology Department, University of Cagliari, 09042 Cagliari, Italy; (C.S.); (M.S.)
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.N.); (G.M.); (C.G.C.); (A.C.); (A.V.M.); (E.P.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Ornella Garrone
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.C.); (O.G.)
| | - Emanuela Passoni
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.N.); (G.M.); (C.G.C.); (A.C.); (A.V.M.); (E.P.)
| |
Collapse
|
2
|
Hagey DW, Kvedaraite E, Akber M, Görgens A, Javadi J, Von Bahr Greenwood T, Björklund C, Åkefeldt SO, Hannegård-Hamrin T, Arnell H, Dobra K, Herold N, Svensson M, El Andaloussi S, Henter JI, Lourda M. Myeloid cells from Langerhans cell histiocytosis patients exhibit increased vesicle trafficking and an altered secretome capable of activating NK cells. Haematologica 2023; 108:2422-2434. [PMID: 36924254 PMCID: PMC10483349 DOI: 10.3324/haematol.2022.282638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Langerhans cell histiocytosis (LCH) is a potentially life-threatening inflammatory myeloid neoplasia linked to pediatric neurodegeneration, whereby transformed LCH cells form agglomerated lesions in various organs. Although MAP-kinase pathway mutations have been identified in LCH cells, the functional consequences of these mutations and the mechanisms that cause the pathogenic behavior of LCH cells are not well understood. In our study, we used an in vitro differentiation system and RNA-sequencing to compare monocyte-derived dendritic cells from LCH patients to those derived from healthy controls or patients with Crohn's disease, a non-histiocytic inflammatory disease. We observed that interferon-γ treatment exacerbated intrinsic differences between LCH patient and control cells, including strikingly increased endo- and exocytosis gene activity in LCH patients. We validated these transcriptional patterns in lesions and functionally confirmed that LCH cells exhibited increased endo- and exocytosis. Furthermore, RNA-sequencing of extracellular vesicles revealed the enrichment of pathological transcripts involved in cell adhesion, MAP-kinase pathway, vesicle trafficking and T-cell activation in LCH patients. Thus, we tested the effect of the LCH secretome on lymphocyte activity and found significant activation of NK cells. These findings implicate extracellular vesicles in the pathology of LCH for the first time, in line with their established roles in the formation of various other tumor niches. Thus, we describe novel traits of LCH patient cells and suggest a pathogenic mechanism of potential therapeutic and diagnostic importance.
Collapse
Affiliation(s)
- Daniel W Hagey
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 141 52 Sweden; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, 171 77 Sweden.
| | - Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, 171 77 Sweden; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, 141 52 Sweden; Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, 171 76 Sweden
| | - Mira Akber
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, 141 52 Sweden
| | - André Görgens
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 141 52 Sweden; Institute for Transfusion Medicine, University Hospital Essen, Essen, 451 47 Germany
| | - Joman Javadi
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 141 52 Sweden
| | - Tatiana Von Bahr Greenwood
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, 171 77 Sweden; Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, 171 76 Sweden
| | - Caroline Björklund
- Department of Pediatric Hematology and Oncology, Umeå University Hospital, Umeå, 901 89 Sweden
| | - Selma Olsson Åkefeldt
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, 171 77 Sweden; Theme of Children's Health, Karolinska University Hospital, Stockholm, 171 76 Sweden
| | - Tova Hannegård-Hamrin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 171 77 Sweden; Department of Pediatric Anesthesia and Intensive Care, Karolinska University Hospital, Stockholm, 171 76 Sweden
| | - Henrik Arnell
- Pediatric Gastroenterology, Hepatology and Nutrition, Astrid Lindgren Children's Hospital, Karolinska University Hospital; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, 171 76 Sweden
| | - Katalin Dobra
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 141 52 Sweden
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, 171 77 Sweden; Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, 171 76 Sweden
| | - Mattias Svensson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, 141 52 Sweden
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 141 52 Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, 171 77 Sweden; Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, 171 76 Sweden
| | - Magda Lourda
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, 171 77 Sweden; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, 141 52 Sweden.
| |
Collapse
|
3
|
Qiao X, Zhu L, Song R, Shang C, Guo Y. METTL3/14 and IL-17 signaling contribute to CEBPA-DT enhanced oral cancer cisplatin resistance. Oral Dis 2023; 29:942-956. [PMID: 34807506 DOI: 10.1111/odi.14083] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer. Chemotherapy has been recognized as an optional combination treatment, which enhance the overall survival of OSCC patients. However, the majority of patients would suffer therapeutic resistance, which led to the treatment failure and poor prognosis. MATERIALS AND METHODS To explore the mechanism of chemoresistance in OSCC, we first constructed two chemoresistant cell lines using Cal27 and HSC4. Then MeRIP sequencing together with bioinformatics analysis and a series of in vitro experiments were used to assess the possible regulation manner of RNA methylation on OSCC chemoresistance. Finally, xenograft models were constructed to confirm the relationship among OSCC chemoresistance. RESULTS METTL3/METTL14 upregulation could enhance OSCC chemoresistance. CEBPA-DT overexpression could regulate METTL3/METTL14 expression and further activate downstream BHLHB9. CEBPA-DT overexpression could inhibit the activity of IL-17 signaling, resulting in the homeostasis breakdown of immune infiltration and cytokine release. CEBPA-DT overexpression could significantly enhance chemoresistance through METTL3/METTL14/BHLHB9 in vivo, which accelerated the tumor growth. CONCLUSIONS Our results suggest that CEBPA-DT might regulate OSCC chemoresistance through BHLHB9 gene manipulated by METTL3/METTL14 as well as through IL-17 signaling inhibition, which may contribute to the assessment of potential therapeutic targets in OSCC chemoresistance.
Collapse
Affiliation(s)
- Xue Qiao
- Department of Central Laboratory, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
- Department of Oral Biology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Li Zhu
- Department of Central Laboratory, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Rongbo Song
- Department of Central Laboratory, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Chao Shang
- Department of Neurobiology, China Medical University, Shenyang, China
| | - Yan Guo
- Department of Central Laboratory, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
- Department of Oral Biology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Jenei V, Burai S, Molnár T, Kardos B, Mácsik R, Tóth M, Debreceni Z, Bácsi A, Mázló A, Koncz G. Comparison of the immunomodulatory potential of platinum-based anti-cancer drugs and anthracyclins on human monocyte-derived cells. Cancer Chemother Pharmacol 2023; 91:53-66. [PMID: 36451019 DOI: 10.1007/s00280-022-04497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Macrophages and dendritic cells (DCs) are important contributors to anti-tumor immune responses. However, these highly plastic cells are also the primary targets of tumor manipulation, which may result in the development of tumor-promoting subtypes. The effect of chemotherapeutic agents on tumor cells is an area of intense study, but little is known about their effects on innate immune cells.We investigated the effects of four chemotherapeutic drugs (two platinum-based agents; oxaliplatin and cisplatin, and two anthracyclines; doxorubicin and epirubicin) on the differentiation, function, and viability of macrophages and DCs. Macrophages and DCs were differentiated from monocytes in the presence of these chemotherapeutic drugs and we compared their cell surface receptor expression, cytokine production, and chemotactic- and T-cell-polarizing ability.We have shown that differentiation in the presence of anthracyclines dose-dependently increases CTLA-4 expression in DCs. Antineoplastic agent-driven differentiation strongly modified the CCL2- or CCL5-induced chemotactic activity of both macrophages and DCs. DCs differentiated in the presence of high-dose cisplatin and a low dose of epirubicin promoted regulatory T-cell development, whereas oxaliplatin at specific doses induced both DCs and macrophages to enhance cytotoxic T-cell responses. Furthermore, we found that inflammatory macrophages are more sensitive to doxorubicin-induced cell death than their counterparts.In summary, our results confirm that chemotherapeutic agents acting on a similar basis may have different effects on the anti-tumor immune response. Treatment with optimal dose, combinations, and timing of chemotherapy may determine tumor immunity and the metastatic potential of tumors.
Collapse
Affiliation(s)
- Viktória Jenei
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem Square 1, Debrecen, 4032, Hungary
| | - Sára Burai
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem Square 1, Debrecen, 4032, Hungary
| | - Tamás Molnár
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem Square 1, Debrecen, 4032, Hungary
| | - Balázs Kardos
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem Square 1, Debrecen, 4032, Hungary
| | - Rebeka Mácsik
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem Square 1, Debrecen, 4032, Hungary
| | - Márta Tóth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem Square 1, Debrecen, 4032, Hungary
| | - Zsuzsanna Debreceni
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem Square 1, Debrecen, 4032, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem Square 1, Debrecen, 4032, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem Square 1, Debrecen, 4032, Hungary.
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem Square 1, Debrecen, 4032, Hungary.
| |
Collapse
|
5
|
Åkefeldt SO, Ismail MB, Belot A, Salvatore G, Bissay N, Gavhed D, Aricò M, Henter JI, Valentin H, Delprat C. Neutralizing Anti-IL-17A Antibody Demonstrates Preclinical Activity Enhanced by Vinblastine in Langerhans Cell Histiocytosis. Front Oncol 2022; 11:780191. [PMID: 35127485 PMCID: PMC8814633 DOI: 10.3389/fonc.2021.780191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasm characterised by the accumulation into granulomas of apoptosis-resistant pathological dendritic cells (LCH-DCs). LCH outcome ranges from self-resolving to fatal. Having previously shown that, (i) monocyte-derived DCs (Mo-DCs) from LCH patients differentiate into abnormal and pro-inflammatory IL-17A-producing DCs, and (ii) recombinant IL-17A induces survival and chemoresistance of healthy Mo-DCs, we investigated the link between IL-17A and resistance to apoptosis of LCH-DCs. In LCH granulomas, we uncovered the strong expression of BCL2A1 (alias BFL1), an anti-apoptotic BCL2 family member. In vitro, intracellular IL-17A expression was correlated with BCL2A1 expression and survival of Mo-DCs from LCH patients. Based on the chemotherapeutic drugs routinely used as first or second line LCH therapy, we treated these cells with vinblastine, or cytarabine and cladribine. Our preclinical results indicate that high doses of these drugs decreased the expression of Mcl-1, the main anti-apoptotic BCL2 family member for myeloid cells, and killed Mo-DCs from LCH patients ex vivo, without affecting BCL2A1 expression. Conversely, neutralizing anti-IL-17A antibodies decreased BCL2A1 expression, the downregulation of which lowered the survival rate of Mo-DCs from LCH patients. Interestingly, the in vitro combination of low-dose vinblastine with neutralizing anti-IL-17A antibodies killed Mo-DCs from LCH patients. In conclusion, we show that BCL2A1 expression induced by IL-17A links the inflammatory environment to the unusual pro-survival gene activation in LCH-DCs. Finally, these preclinical data support that targeting both Mcl-1 and BCL2A1 with low-dose vinblastine and anti-IL-17A biotherapy may represent a synergistic combination for managing recurrent or severe forms of LCH.
Collapse
Affiliation(s)
- Selma Olsson Åkefeldt
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Mohamad Bachar Ismail
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Faculty of Science, Lebanese University, Tripoli, Lebanon
| | - Alexandre Belot
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.,Pediatric Nephrology, Rheumatology, Dermatology Unit, HFME, Hospices Civils de Lyon, Bron, France
| | - Giulia Salvatore
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Radiotherapy Unit, Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Nathalie Bissay
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Unité de recherche "Lymphoma Immuno-Biology", Faculté de Médecine Lyon-Sud, Oullins, France
| | - Désirée Gavhed
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Hélène Valentin
- Centre de Recherche en Cancérologie de Lyon (CRCL) - INSERM U1052 - CNRS UMR5286 - Centre Léon Bérard, Lyon, France
| | - Christine Delprat
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Centre de Recherche en Cancérologie de Lyon (CRCL) - INSERM U1052 - CNRS UMR5286 - Centre Léon Bérard, Lyon, France
| |
Collapse
|
6
|
Kawaguchi H, Sakamoto T, Koya T, Togi M, Date I, Watanabe A, Yoshida K, Kato T, Nakamura Y, Ishigaki Y, Shimodaira S. Quality Verification with a Cluster-Controlled Manufacturing System to Generate Monocyte-Derived Dendritic Cells. Vaccines (Basel) 2021; 9:vaccines9050533. [PMID: 34065520 PMCID: PMC8160655 DOI: 10.3390/vaccines9050533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Dendritic cell (DC) vaccines for cancer immunotherapy have been actively developed to improve clinical efficacy. In our previous report, monocyte−derived DCs induced by interleukin (IL)−4 with a low−adherence dish (low−adherent IL-4−DCs: la−IL-4−DCs) improved the yield and viability, as well as relatively prolonged survival in vitro, compared to IL-4−DCs developed using an adherent culture protocol. However, la−IL-4−DCs exhibit remarkable cluster formation and display heterogeneous immature phenotypes. Therefore, cluster formation in la−IL-4−DCs needs to be optimized for the clinical development of DC vaccines. In this study, we examined the effects of cluster control in the generation of mature IL-4−DCs, using cell culture vessels and measuring spheroid formation, survival, cytokine secretion, and gene expression of IL-4−DCs. Mature IL-4−DCs in cell culture vessels (cluster−controlled IL-4−DCs: cc−IL-4−DCs) displayed increased levels of CD80, CD86, and CD40 compared with that of la−IL-4−DCs. cc−IL-4−DCs induced antigen−specific cytotoxic T lymphocytes (CTLs) with a human leukocyte antigen (HLA)−restricted melanoma antigen recognized by T cells 1 (MART−1) peptide. Additionally, cc−IL-4−DCs produced higher levels of IFN−γ, possessing the CTL induction. Furthermore, DNA microarrays revealed the upregulation of BCL2A1, a pro−survival gene. According to these findings, the cc−IL-4−DCs are useful for generating homogeneous and functional IL-4−DCs that would be expected to promote long−lasting effects in DC vaccines.
Collapse
Affiliation(s)
- Haruhiko Kawaguchi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
| | - Takuya Sakamoto
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Terutsugu Koya
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Misa Togi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Ippei Date
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
| | - Asuka Watanabe
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
| | - Kenichi Yoshida
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Tomohisa Kato
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (T.K.J.); (Y.N.); (Y.I.)
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (T.K.J.); (Y.N.); (Y.I.)
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (T.K.J.); (Y.N.); (Y.I.)
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
- Correspondence: ; Tel.: +81-76-218-8304
| |
Collapse
|
7
|
Regen T, Isaac S, Amorim A, Núñez NG, Hauptmann J, Shanmugavadivu A, Klein M, Sankowski R, Mufazalov IA, Yogev N, Huppert J, Wanke F, Witting M, Grill A, Gálvez EJC, Nikolaev A, Blanfeld M, Prinz I, Schmitt-Kopplin P, Strowig T, Reinhardt C, Prinz M, Bopp T, Becher B, Ubeda C, Waisman A. IL-17 controls central nervous system autoimmunity through the intestinal microbiome. Sci Immunol 2021; 6:6/56/eaaz6563. [PMID: 33547052 DOI: 10.1126/sciimmunol.aaz6563] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/24/2020] [Indexed: 12/17/2022]
Abstract
Interleukin-17A- (IL-17A) and IL-17F-producing CD4+ T helper cells (TH17 cells) are implicated in the development of chronic inflammatory diseases, such as multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). TH17 cells also orchestrate leukocyte invasion of the central nervous system (CNS) and subsequent tissue damage. However, the role of IL-17A and IL-17F as effector cytokines is still confused with the encephalitogenic function of the cells that produce these cytokines, namely, TH17 cells, fueling a long-standing debate in the neuroimmunology field. Here, we demonstrated that mice deficient for IL-17A/F lose their susceptibility to EAE, which correlated with an altered composition of their gut microbiota. However, loss of IL-17A/F in TH cells did not diminish their encephalitogenic capacity. Reconstitution of a wild-type-like intestinal microbiota or reintroduction of IL-17A specifically into the gut epithelium of IL-17A/F-deficient mice reestablished their susceptibility to EAE. Thus, our data demonstrated that IL-17A and IL-17F are not encephalitogenic mediators but rather modulators of intestinal homeostasis that indirectly alter CNS-directed autoimmunity.
Collapse
Affiliation(s)
- Tommy Regen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sandrine Isaac
- Department of Genomics and Health, Center for Advanced Research in Public Health, FISABIO, Valencia, Spain
| | - Ana Amorim
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Judith Hauptmann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Arthi Shanmugavadivu
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Berta-Ottenstein-Program for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nir Yogev
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jula Huppert
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florian Wanke
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, Munich, Germany.,Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University Munich, Munich, Germany
| | - Alexandra Grill
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Alexei Nikolaev
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michaela Blanfeld
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, Munich, Germany.,Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University Munich, Munich, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center for NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Carles Ubeda
- Department of Genomics and Health, Center for Advanced Research in Public Health, FISABIO, Valencia, Spain.,Center of Biomedical Research Network (CIBER), Epidemiology and Public Health, Madrid, Spain
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany. .,Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
8
|
Lai X, Dreyer FS, Cantone M, Eberhardt M, Gerer KF, Jaitly T, Uebe S, Lischer C, Ekici A, Wittmann J, Jäck HM, Schaft N, Dörrie J, Vera J. Network- and systems-based re-engineering of dendritic cells with non-coding RNAs for cancer immunotherapy. Theranostics 2021; 11:1412-1428. [PMID: 33391542 PMCID: PMC7738891 DOI: 10.7150/thno.53092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that induce and regulate adaptive immunity by presenting antigens to T cells. Due to their coordinative role in adaptive immune responses, DCs have been used as cell-based therapeutic vaccination against cancer. The capacity of DCs to induce a therapeutic immune response can be enhanced by re-wiring of cellular signalling pathways with microRNAs (miRNAs). Methods: Since the activation and maturation of DCs is controlled by an interconnected signalling network, we deploy an approach that combines RNA sequencing data and systems biology methods to delineate miRNA-based strategies that enhance DC-elicited immune responses. Results: Through RNA sequencing of IKKβ-matured DCs that are currently being tested in a clinical trial on therapeutic anti-cancer vaccination, we identified 44 differentially expressed miRNAs. According to a network analysis, most of these miRNAs regulate targets that are linked to immune pathways, such as cytokine and interleukin signalling. We employed a network topology-oriented scoring model to rank the miRNAs, analysed their impact on immunogenic potency of DCs, and identified dozens of promising miRNA candidates, with miR-15a and miR-16 as the top ones. The results of our analysis are presented in a database that constitutes a tool to identify DC-relevant miRNA-gene interactions with therapeutic potential (https://www.synmirapy.net/dc-optimization). Conclusions: Our approach enables the systematic analysis and identification of functional miRNA-gene interactions that can be experimentally tested for improving DC immunogenic potency.
Collapse
Affiliation(s)
- Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Florian S. Dreyer
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Martina Cantone
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Kerstin F. Gerer
- RNA Group, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Tanushree Jaitly
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Steffen Uebe
- Department of Human Genetics, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christopher Lischer
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Arif Ekici
- Department of Human Genetics, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jürgen Wittmann
- Division of Molecular Immunology, Department of Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Niels Schaft
- RNA Group, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Jan Dörrie
- RNA Group, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| |
Collapse
|
9
|
miR-126-5p regulates H9c2 cell proliferation and apoptosis under hypoxic conditions by targeting IL-17A. Exp Ther Med 2020; 21:67. [PMID: 33365067 DOI: 10.3892/etm.2020.9499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has indicated that microRNAs (miRNAs/miRs) regulate the occurrence and development of various diseases, including diabetes, osteoporosis and cardiovascular conditions. However, the role of miRNAs in acute myocardial infarction (AMI) is not completely understood. The present study aimed to evaluate the therapeutic efficacy and mechanisms underlying the effects of miR-126-5p on H9c2 cell proliferation and apoptosis by targeting interleukin (IL)-17A. A total of 40 patients with AMI and 40 healthy volunteers were recruited in the present study and the expression levels of serum miR-126-5p and IL-17A were determined. Following confirmation that IL-17A was a target of miR-126-5p via a dual-luciferase reporter assay, H9c2 cells were exposed to hypoxic conditions. H9c2 cell viability and apoptosis were subsequently assessed. Additionally, the protein expression levels of apoptosis-associated proteins were detected following transfection. Compared with healthy individuals, miR-126-5p expression was significantly decreased in the serum samples of patients with AMI, whereas IL-17A, the target of miR-126-5p, was significantly increased. Following hypoxic treatment, miR-126-5p overexpression enhanced H9c2 cell viability compared with the NC group, which was subsequently reversed following co-transfection with pcDNA3.1-IL-17A. Additionally, the results indicated that hypoxia-induced H9c2 cell apoptosis was significantly reduced following transfection with miR-126-5p mimics via the PI3K/AKT signaling pathway compared with the NC group. The present study indicated that miR-126-5p may serve as a novel miRNA that regulates H9c2 cell viability and apoptosis by targeting IL-17A under hypoxic conditions. Therefore, miR-126-5p may serve as a crucial biomarker for the diagnosis of AMI.
Collapse
|
10
|
Abstract
The cytokine IL-17 is now a target for an array of therapeutic monoclonal antibodies supposed to treat a variety of inflammatory diseases. The forerunner Secukinumab, an IL-17A neutralizing antibody, is meanwhile approved as first-line treatments for moderate-to-severe plaque psoriasis, and as second-line treatment for psoriatic arthritis and ankylosing spondylitis. Ixekizumab and Brodalumab, both also targeting the IL-17 pathway, were also recently approved by the FDA for plaque psoriasis. Using mice overexpressing IL-17A in a tissue of choice, we showed that the ectopic expression of this cytokine in keratinocytes resulted in a spontaneous and very strong form of psoriasis-like dermatitis. Interestingly, this model showed some typical comorbidities found in humans with psoriasis. In this review, we will discuss why IL-17 is a good target especially in psoriasis and what we learned from mouse models about its functions in pathological situations.
Collapse
Affiliation(s)
- Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany.
| | - Sonja Moos
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
| |
Collapse
|
11
|
Carrington EM, Zhan Y, Brady JL, Zhang JG, Sutherland RM, Anstee NS, Schenk RL, Vikstrom IB, Delconte RB, Segal D, Huntington ND, Bouillet P, Tarlinton DM, Huang DC, Strasser A, Cory S, Herold MJ, Lew AM. Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death Differ 2017; 24:878-888. [PMID: 28362427 DOI: 10.1038/cdd.2017.30] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/12/2022] Open
Abstract
Survival of various immune cell populations has been proposed to preferentially rely on a particular anti-apoptotic BCL-2 family member, for example, naive T cells require BCL-2, while regulatory T cells require MCL-1. Here we examined the survival requirements of multiple immune cell subsets in vitro and in vivo, using both genetic and pharmacological approaches. Our findings support a model in which survival is determined by quantitative participation of multiple anti-apoptotic proteins rather than by a single anti-apoptotic protein. This model provides both an insight into how the sum of relative levels of anti-apoptotic proteins BCL-2, MCL-1 and A1 influence survival of T cells, B cells and dendritic cells, and a framework for ascertaining how these different immune cells can be optimally targeted in treatment of immunopathology, transplantation rejection or hematological cancers.
Collapse
Affiliation(s)
- Emma M Carrington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jamie L Brady
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jian-Guo Zhang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Robyn M Sutherland
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Natasha S Anstee
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Robyn L Schenk
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ingela B Vikstrom
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rebecca B Delconte
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - David Segal
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Philippe Bouillet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - David M Tarlinton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Department of Immunology & Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - David Cs Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Department of Microbiology & Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
12
|
Wang H, Zhang Y, Liu Z, Zhang Y, Zhao H, Du S. The IL-17A G-197A and IL-17F 7488T/C polymorphisms are associated with increased risk of cancer in Asians: a meta-analysis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5159-68. [PMID: 26445528 PMCID: PMC4590416 DOI: 10.2147/dddt.s84092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Interleukin-17 (IL-17) is a family of emerged pro-inflammatory cytokines. The IL-17A and IL-17F are two important members of IL-17 family. Previous studies have shown that the functional IL-17A G-197A and IL-17F 7488T/C polymorphisms may contribute to susceptibility to cancer but the results were inconclusive. This meta-analysis was performed to determine the exact association between IL-17 polymorphisms and cancer risk. Methods Online databases were searched to identify eligible case–control studies. Pooled odds ratios (ORs) and confidence intervals (CIs) were calculated by fixed-effect models or random-effect models. Publication bias was detected by Egger’s test and Begg’s test. Results Nine eligible case–control studies of IL-17A G-197A and seven studies of IL-17F 7488T/C, including 3,181 cases and 4,005 controls, were identified. Pooled analysis suggested the variant IL-17A-197A allele was associated with increased risk cancer (GA/AA vs GG, OR =1.27, 95% CI: 1.15, 1.41, Pheterogeneity =0.374; and A vs G, OR =1.30, 95% CI: 1.17, 1.45, Pheterogeneity =0.021). For IL-17F 7488T/C, the homozygote 7488CC genotype significantly increased risk of cancer (CC vs TC/TT, OR =1.36, 95% CI: 0.97, 1.91, Pheterogeneity =0.875; and CC vs TT, OR =1.39, 95% CI: 1.03, 1.88, Pheterogeneity =0.979), especially for gastric cancer. Conclusion The variant IL-17A-197A allele and IL-17F 7488CC genotype were associated with increased risk of cancer, especially for gastric cancer.
Collapse
Affiliation(s)
- Huifen Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhaolan Liu
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yin Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Hongchuan Zhao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
13
|
Salvatore G, Bernoud-Hubac N, Bissay N, Debard C, Daira P, Meugnier E, Proamer F, Hanau D, Vidal H, Aricò M, Delprat C, Mahtouk K. Human monocyte-derived dendritic cells turn into foamy dendritic cells with IL-17A. J Lipid Res 2015; 56:1110-22. [PMID: 25833686 DOI: 10.1194/jlr.m054874] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Indexed: 02/07/2023] Open
Abstract
Interleukin 17A (IL-17A) is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases. In the field of immunometabolism, we have studied the impact of IL-17A on the lipid metabolism of human in vitro-generated monocyte-derived dendritic cells (DCs). Microarrays and lipidomic analysis revealed an intense remodeling of lipid metabolism induced by IL-17A in DCs. IL-17A increased 2-12 times the amounts of phospholipids, cholesterol, triglycerides, and cholesteryl esters in DCs. Palmitic (16:0), stearic (18:0), and oleic (18:ln-9c) acid were the main fatty acid chains present in DCs. They were strongly increased in response to IL-17A while their relative proportion remained unchanged. Capture of extracellular lipids was the major mechanism of lipid droplet accumulation, visualized by electron microscopy and Oil Red O staining. Besides this foamy phenotype, IL-17A induced a mixed macrophage-DC phenotype and expression of the nuclear receptor NR1H3/liver X receptor-α, previously identified in the context of atherosclerosis as the master regulator of cholesterol homeostasis in macrophages. These IL-17A-treated DCs were as competent as untreated DCs to stimulate allogeneic naive T-cell proliferation. Following this first characterization of lipid-rich DCs, we propose to call these IL-17A-dependent cells "foamy DCs" and discuss the possible existence of foamy DCs in atherosclerosis, a metabolic and inflammatory disorder involving IL-17A.
Collapse
Affiliation(s)
- Giulia Salvatore
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université de Lyon, 69003 Lyon, France Université de Lyon 1, 69622 Villeurbanne, France Université de Florence, 50134 Florence, Italy
| | - Nathalie Bernoud-Hubac
- INSERM, U 1060 (CarMeN), INRA U1235, Institut Multidisciplinaire de Biochimie des Lipides, Institut National des Sciences Appliqués, 69621 Villeurbanne, France
| | - Nathalie Bissay
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université de Lyon, 69003 Lyon, France Université de Lyon 1, 69622 Villeurbanne, France
| | - Cyrille Debard
- INSERM, U 1060 (CarMeN), INRA U1235, Institut Multidisciplinaire de Biochimie des Lipides, Institut National des Sciences Appliqués, 69621 Villeurbanne, France
| | - Patricia Daira
- Functional Lipidomics Platform, Institut Multidisciplinaire de Biochimie des Lipides/Carnot Lisa, INSA-Lyon, 69622 Villeurbanne, France
| | - Emmanuelle Meugnier
- INSERM, U 1060 (CarMeN), INRA U1235, Institut Multidisciplinaire de Biochimie des Lipides, Institut National des Sciences Appliqués, 69621 Villeurbanne, France
| | - Fabienne Proamer
- Unité Mixte de Recherche Santé UMR S949, Institut National de la Santé et de la Recherche Médicale, 67000 Strasbourg, France Université de Strasbourg, 67400 Strasbourg, France Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, 67000 Strasbourg, France
| | - Daniel Hanau
- Unité Mixte de Recherche Santé UMR S949, Institut National de la Santé et de la Recherche Médicale, 67000 Strasbourg, France Université de Strasbourg, 67400 Strasbourg, France Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, 67000 Strasbourg, France
| | - Hubert Vidal
- INSERM, U 1060 (CarMeN), INRA U1235, Institut Multidisciplinaire de Biochimie des Lipides, Institut National des Sciences Appliqués, 69621 Villeurbanne, France
| | - Maurizio Aricò
- Istituto Toscano Tumori (I.T.T), 50139 Florence, Italy Azienda Sanitaria Provinciale 7, 97100 Ragusa, Italy
| | - Christine Delprat
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université de Lyon, 69003 Lyon, France Université de Lyon 1, 69622 Villeurbanne, France Institut Universitaire de France, 75005 Paris, France
| | - Karène Mahtouk
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université de Lyon, 69003 Lyon, France Université de Lyon 1, 69622 Villeurbanne, France
| |
Collapse
|
14
|
Aricò M, Astigarraga I, Braier J, Donadieu J, Gadner H, Glogova E, Grois N, Henter JI, Janka G, McClain KL, Ladisch S, Pötschger U, Rosso D, Thiem E, Weitzman S, Windebank K, Minkov M. Lack of bone lesions at diagnosis is associated with inferior outcome in multisystem langerhans cell histiocytosis of childhood. Br J Haematol 2014; 169:241-8. [DOI: 10.1111/bjh.13271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/17/2014] [Indexed: 12/21/2022]
Affiliation(s)
| | - Itziar Astigarraga
- Servicio de Pediatria; Bio Cruces Health Research Institute; Hospital Universitario Cruces; Barakaldo Bizkaia Spain
- Departamento de Pediatria; Universidad del Pais Vasco UPV/EHU; Barakaldo Bizkaia Spain
| | - Jorge Braier
- Hospital Nacional de Pediatría J. Garrahan; Buenos Aires Argentina
| | | | - Helmut Gadner
- Children's Cancer Research Institute and St. Anna Children's Hospital; Vienna Austria
| | - Evgenia Glogova
- Children's Cancer Research Institute and St. Anna Children's Hospital; Vienna Austria
| | - Nicole Grois
- Children's Cancer Research Institute and St. Anna Children's Hospital; Vienna Austria
| | - Jan-Inge Henter
- Childhood Cancer Research Unit; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
| | - Gritta Janka
- Department of Haematology and Oncology; University Medical Centre; Hamburg Germany
| | | | - Stephan Ladisch
- Children's Research Institute; Children's National Medical Center; Washington DC USA
| | - Ulrike Pötschger
- Children's Cancer Research Institute and St. Anna Children's Hospital; Vienna Austria
| | - Diego Rosso
- Hospital de Niños Elizalde and Hospital de Clinicas UBA; Buenos Aires Argentina
| | - Elfriede Thiem
- Children's Cancer Research Institute and St. Anna Children's Hospital; Vienna Austria
| | - Sheila Weitzman
- Hospital for Sick Children; Division of Hematology/Oncology; Toronto ON Canada
| | | | - Milen Minkov
- Children's Cancer Research Institute and St. Anna Children's Hospital; Vienna Austria
| | | |
Collapse
|
15
|
Li Q, Liu L, Zhang Q, Liu S, Ge D, You Z. Interleukin-17 Indirectly Promotes M2 Macrophage Differentiation through Stimulation of COX-2/PGE2 Pathway in the Cancer Cells. Cancer Res Treat 2014; 46:297-306. [PMID: 25038765 PMCID: PMC4132449 DOI: 10.4143/crt.2014.46.3.297] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/11/2013] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Interleukin-17 (IL-17) is a proinflammatory cytokine that plays important roles in inflammation, autoimmunity, and cancer. The purpose of this study was to determine if IL-17 indirectly regulates macrophage differentiation through up-regulation of cyclooxygenase-2 (COX-2) expression in the cancer cell lines. MATERIALS AND METHODS Human cervical cancer HeLa, human lung cancer A549, and mouse prostate cancer Myc-CaP/CR cell lines were treated with recombinant IL-17; Western blot analysis, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction analysis were utilized to examine the cellular responses. RESULTS IL-17 up-regulated expression of COX-2 mRNA and protein in HeLa, A549, and Myc- CaP/CR cell lines. IL-17's effects were mediated through nuclear factor-κB and ERK1/2 signaling pathways as the inhibitors of these pathways could inhibit IL-17- induced COX-2 expression. The conditional medium obtained from the cancer cells contained prostaglandin E2, the levels of which were increased by IL-17 treatment. When treated with the conditional medium, particularly with the IL-17-induced conditional medium, mouse RAW264.7 macrophages and human THP-1 monocytes expressed higher levels of IL-10 (a marker of M2 macrophages) than inducible nitric oxide synthase or tumor necrosis factor α (markers of M1 macrophages). In contrast, when RAW264.7 and THP-1 cells were treated directly with IL-17, expression of these marker genes was not markedly changed. CONCLUSION The results of this study suggest that IL-17 indirectly promotes M2 macrophage differentiation through stimulation of the COX-2/PGE2 pathway in the cancer cells, thus IL-17 plays an indirect role in regulating the tumor immune microenvironment.
Collapse
Affiliation(s)
- Qingli Li
- Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA ; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
16
|
Detection of IL-17A-producing peripheral blood monocytes in Langerhans cell histiocytosis patients. Clin Immunol 2014; 153:112-22. [DOI: 10.1016/j.clim.2014.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/03/2014] [Accepted: 04/07/2014] [Indexed: 01/13/2023]
|
17
|
Abstract
Langerhans cell histiocytosis (LCH) is a rare disease affecting people of any age, with widely variable clinical manifestations and different outcomes. The precise chain of events driving lesional granuloma formation has remained elusive for many years. There is evidence for inherited predisposition to and derangement of apoptosis and inflammation in lesional dendritic cells. Recently somatic BRAF(V600E) mutation in myeloid precursor dendritic cells was associated with the more aggressive form of the disease, although the same mutation in a more differentiated dendritic cell might drive a less aggressive disease. Whether this picture convincingly put LCH in the field of myeloid neoplasm remains to be determined. Altogether, these findings suggest that future therapeutic strategy might incorporate a screening of this genetic mutation for high-risk patients potentially suitable for target therapy.
Collapse
|
18
|
Zarogoulidis P, Katsikogianni F, Tsiouda T, Sakkas A, Katsikogiannis N, Zarogoulidis K. Interleukin-8 and interleukin-17 for cancer. Cancer Invest 2014; 32:197-205. [PMID: 24669909 DOI: 10.3109/07357907.2014.898156] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pro-inflammatory cytokines have been associated with chronic inflammation and inflammatory diseases. Increased levels of interleukins (ILs) have been associated with inflammatory disease exacerbation. ILs levels have been observed to be associated with advance stage cancer for several types of cancer and a poor prognostic maker for malignant disease. Moreover; increased levels of cytokines induce tumorigenesis. There are several paradigms such as the hepatocellular carcinoma induced from chronic inflammation of an underlying hepatitis. In the current review, we will focus on IL-8 and -17. These two ILs as in the case of others, induce neo-angiogenesis through activation of the vascular endothelial growth (VEGF) factor pathway. Additionally, they enhance the activity of matrix metalloproteinase-2 and -9 (MMP-2,-9) which in turn increase the metastatic activity of the underlying malignancy. Inhibition of cytokine production could be a potential treatment both for chronic inflammatory diseases and tumor modulation. Local microenvironment modulation could be applied in surgery resected patients as in the case of lung cancer in order to enhance the local immune activity.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Department of Pulmonary, Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
19
|
Rizzo FM, Cives M, Simone V, Silvestris F. New insights into the molecular pathogenesis of langerhans cell histiocytosis. Oncologist 2014; 19:151-63. [PMID: 24436311 DOI: 10.1634/theoncologist.2013-0341] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is a rare proliferative disorder characterized by an accumulation of cells sharing the major phenotypic features of cutaneous Langerhans cells. Given its variable clinical evolution, ranging from self-limiting lesions to multisystemic forms with a poor prognosis, in the last decades it has been debated whether LCH might not have a neoplastic rather than an inflammatory nature. However, although the fundamental events underlying the pathogenesis of LCH are still elusive, recent advances have strikingly improved our understanding of the disease. In particular, the identification of multiple interplays between LCH cells and their tumor microenvironment, along with the recognition of the lesional cytokine storm as a key determinant of LCH progression, has substantiated new opportunities for devising targeted therapeutic approaches. Strikingly, the detection of the rapidly accelerated fibrosarcoma isoform B(V600E) gain-of-function mutation as a genetic alteration recurring in more than 50% of patients has fueled the paradoxical picture of LCH as a tumor of the antigen-presenting cells that can evade rejection by the immune system. Thus, new evidence regarding the ontogeny of LCH cells, as well as a better understanding of the putative immune system frustrating strategy in LCH, may help to define the precise pathogenesis.
Collapse
Affiliation(s)
- Francesca M Rizzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | | | | | | |
Collapse
|
20
|
IL-17A is produced by breast cancer TILs and promotes chemoresistance and proliferation through ERK1/2. Sci Rep 2013; 3:3456. [PMID: 24316750 PMCID: PMC3856404 DOI: 10.1038/srep03456] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/22/2013] [Indexed: 01/06/2023] Open
Abstract
The proinflammatory cytokine Interleukin 17A (hereafter named IL–17A) or IL-17A producing cells are elevated in breast tumors environment and correlate with poor prognosis. Increased IL-17A is associated with ER(−) or triple negative tumors and reduced Disease Free Survival. However, the pathophysiological role of IL-17A in breast cancer remains unclear although several studies suggested its involvement in cancer cell dissemination. Here we demonstrated that a subset of breast tumors is infiltrated with IL-17A-producing cells. Increased IL-17A seems mainly associated to ER(−) and triple negative/basal-like tumors. Isolation of tumor infiltrating T lymphocytes (TILs) from breast cancer biopsies revealed that these cells secreted significant amounts of IL-17A. We further established that recombinant IL-17A recruits the MAPK pathway by upregulating phosphorylated ERK1/2 in human breast cancer cell lines thereby promoting proliferation and resistance to conventional chemotherapeutic agents such as docetaxel. We also confirmed here that recombinant IL-17A stimulates migration and invasion of breast cancer cells as previously reported. Importantly, TILs also induced tumor cell proliferation, chemoresistance and migration and treatment with IL-17A-neutralizing antibodies abrogated these effects. Altogether these results demonstrated the pathophysiological role of IL-17A-producing cell infiltrate in a subset of breast cancers. Therefore, IL-17A appears as potential therapeutic target for breast cancer.
Collapse
|
21
|
Georgess D, Mazzorana M, Terrado J, Delprat C, Chamot C, Guasch RM, Pérez-Roger I, Jurdic P, Machuca-Gayet I. Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts. Mol Biol Cell 2013; 25:380-96. [PMID: 24284899 PMCID: PMC3907278 DOI: 10.1091/mbc.e13-07-0363] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Two-step transcriptomic profiling of bone-resorbing OCs versus nonresorbing MGCs generated a list of 115 genes potentially involved in bone resorption. Of these, RhoE was investigated. Its role in podosome dynamics is central for OC migration, SZ formation, and, ultimately, bone resorption. The function of osteoclasts (OCs), multinucleated giant cells (MGCs) of the monocytic lineage, is bone resorption. To resorb bone, OCs form podosomes. These are actin-rich adhesive structures that pattern into rings that drive OC migration and into “sealing-zones” (SZs) that confine the resorption lacuna. Although changes in actin dynamics during podosome patterning have been documented, the mechanisms that regulate these changes are largely unknown. From human monocytic precursors, we differentiated MGCs that express OC degradation enzymes but are unable to resorb the mineral matrix. We demonstrated that, despite exhibiting bona fide podosomes, these cells presented dysfunctional SZs. We then performed two-step differential transcriptomic profiling of bone-resorbing OCs versus nonresorbing MGCs to generate a list of genes implicated in bone resorption. From this list of candidate genes, we investigated the role of Rho/Rnd3. Using primary RhoE-deficient OCs, we demonstrated that RhoE is indispensable for OC migration and bone resorption by maintaining fast actin turnover in podosomes. We further showed that RhoE activates podosome component cofilin by inhibiting its Rock-mediated phosphorylation. We conclude that the RhoE-Rock-cofilin pathway, by promoting podosome dynamics and patterning, is central for OC migration, SZ formation, and, ultimately, bone resorption.
Collapse
Affiliation(s)
- Dan Georgess
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France Laboratoire de Biologie Moléculaire de la Cellule, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France Departamento Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, 46115 Alfara del Patriarca, Valencia, Spain Plateau Technique Imagerie/Microscopie Facility, SFR Biosciences (UMS3444/US8), Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France Laboratory of Cellular Pathology, 46012 Valencia, Spain Departamento Ciencias Biomédicas-Seminario Salud, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Targeting BCL2 family in human myeloid dendritic cells: a challenge to cure diseases with chronic inflammations associated with bone loss. Clin Dev Immunol 2013; 2013:701305. [PMID: 23762095 PMCID: PMC3674653 DOI: 10.1155/2013/701305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/08/2013] [Accepted: 04/22/2013] [Indexed: 11/25/2022]
Abstract
Rheumatoid arthritis (RA) and Langerhans cell histiocytosis (LCH) are common and rare diseases, respectively. They associate myeloid cell recruitment and survival in inflammatory conditions with tissue destruction and bone resorption. Manipulating dendritic cell (DC), and, especially, regulating their half-life and fusion, is a challenge. Indeed, these myeloid cells display pathogenic roles in both diseases and may be an important source of precursors for differentiation of osteoclasts, the bone-resorbing multinucleated giant cells. We have recently documented that the proinflammatory cytokine IL-17A regulates long-term survival of DC by inducing BCL2A1 expression, in addition to the constitutive MCL1 expression. We summarize bibliography of the BCL2 family members and their therapeutic targeting, with a special emphasis on MCL1 and BCL2A1, discussing their potential impact on RA and LCH. Our recent knowledge in the survival pathway, which is activated to perform DC fusion in the presence of IL-17A, suggests that targeting MCL1 and BCL2A1 in infiltrating DC may affect the clinical outcomes in RA and LCH. The development of new therapies, interfering with MCL1 and BCL2A1 expression, to target long-term surviving inflammatory DC should be translated into preclinical studies with the aim to increase the well-being of patients with RA and LCH.
Collapse
|