1
|
Lyu Y, Wang D, Yuan L, Feng E, Zhu L, Pan C, Guo Y, Liu X, Wang H. Rapid Identification of Bacillus anthracis In Silico and On-Site Using Novel Single-Nucleotide Polymorphisms. Microbiol Spectr 2022; 10:e0228521. [PMID: 35575735 PMCID: PMC9241702 DOI: 10.1128/spectrum.02285-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis is a spore-forming bacterium that causes life-threatening infections in animals and humans and has been used as a bioterror agent. Rapid and reliable detection and identification of B. anthracis are of primary interest for both medical and biological threat-surveillance purposes. Few chromosomal sequences provide enough polymorphisms to clearly distinguish B. anthracis from closely related species. We analyzed 18 loci of the chromosome of B. anthracis and discovered eight novel single-nucleotide polymorphism (SNP) sites that can be used for the specific identification of B. anthracis. Using these SNP sites, we developed software-named AGILE V1.1 (anthracis genome-based identification with high-fidelity E-probe)-for easy, user-friendly identification of B. anthracis from whole-genome sequences. We also developed a recombinase polymerase amplification-Cas12a-based method that uses nucleic acid extracts for the specific, rapid, in-the-field identification of B. anthracis based on these SNPs. Via this method and B. anthracis-specific CRISPR RNAs for the target CR5_2, CR5_1, and Ba813 SNPs, we clearly detected 5 aM genomic DNA. This study provides two simple and reliable methods suitable for use in local hospitals and public health programs for the detection of B. anthracis. IMPORTANCE Bacillus anthracis is the etiologic agent of anthrax, a fatal disease and a potential biothreat. A specific, accurate, and rapid method is urgently required for the identification of B. anthracis. We demonstrate the potential of using eight novel SNPs for the rapid and accurate detection of B. anthracis via in silico and laboratory-based testing methods. Our findings have important implications for public health responses to disease outbreaks and bioterrorism threats.
Collapse
Affiliation(s)
- Yufei Lyu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Dongshu Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Lu Yuan
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Erling Feng
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xiankai Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hengliang Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Jeon JH, Kim YH, Kim KA, Kim YR, Woo SJ, Choi YJ, Rhie GE. A putative exosporium lipoprotein GBAA0190 of Bacillus anthracis as a potential anthrax vaccine candidate. BMC Immunol 2021; 22:20. [PMID: 33743606 PMCID: PMC7981958 DOI: 10.1186/s12865-021-00414-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus ancthracis causes cutaneous, pulmonary, or gastrointestinal forms of anthrax. B. anthracis is a pathogenic bacterium that is potentially to be used in bioterrorism because it can be produced in the form of spores. Currently, protective antigen (PA)-based vaccines are being used for the prevention of anthrax, but it is necessary to develop more safe and effective vaccines due to their prolonged immunization schedules and adverse reactions. METHODS We selected the lipoprotein GBAA0190, a potent inducer of host immune response, present in anthrax spores as a novel potential vaccine candidate. Then, we evaluated its immune-stimulating activity in the bone marrow-derived macrophages (BMDMs) using enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Protective efficacy of GBAA0190 was evaluated in the guinea pig (GP) model. RESULTS The recombinant GBAA0190 (r0190) protein induced the expression of various inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1α (MIP-1α) in the BMDMs. These immune responses were mediated through toll-like receptor 1/2 via activation of mitogen-activated protein (MAP) kinase and Nuclear factor-κB (NF-κB) pathways. We demonstrated that not only immunization of r0190 alone, but also combined immunization with r0190 and recombinant PA showed significant protective efficacy against B. anthracis spore challenges in the GP model. CONCLUSIONS Our results suggest that r0190 may be a potential target for anthrax vaccine.
Collapse
Affiliation(s)
- Jun Ho Jeon
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Yeon Hee Kim
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Kyung Ae Kim
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Yu-Ri Kim
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Sun-Je Woo
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Ye Jin Choi
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Gi-Eun Rhie
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea.
| |
Collapse
|
3
|
Chateau A, Van der Verren SE, Remaut H, Fioravanti A. The Bacillus anthracis Cell Envelope: Composition, Physiological Role, and Clinical Relevance. Microorganisms 2020; 8:E1864. [PMID: 33255913 PMCID: PMC7759979 DOI: 10.3390/microorganisms8121864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022] Open
Abstract
Anthrax is a highly resilient and deadly disease caused by the spore-forming bacterial pathogen Bacillus anthracis. The bacterium presents a complex and dynamic composition of its cell envelope, which changes in response to developmental and environmental conditions and host-dependent signals. Because of their easy to access extracellular locations, B. anthracis cell envelope components represent interesting targets for the identification and development of novel therapeutic and vaccine strategies. This review will focus on the novel insights regarding the composition, physiological role, and clinical relevance of B. anthracis cell envelope components.
Collapse
Affiliation(s)
- Alice Chateau
- Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France;
| | - Sander E. Van der Verren
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
4
|
Manish M, Verma S, Kandari D, Kulshreshtha P, Singh S, Bhatnagar R. Anthrax prevention through vaccine and post-exposure therapy. Expert Opin Biol Ther 2020; 20:1405-1425. [DOI: 10.1080/14712598.2020.1801626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Manish Manish
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shashikala Verma
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Parul Kulshreshtha
- Department of Zoology, Shivaji College, University of Delhi, Delhi, India
| | - Samer Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
SpoVG is Necessary for Sporulation in Bacillus anthracis. Microorganisms 2020; 8:microorganisms8040548. [PMID: 32290166 PMCID: PMC7232415 DOI: 10.3390/microorganisms8040548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 01/24/2023] Open
Abstract
The Bacillus anthracis spore constitutes the infectious form of the bacterium, and sporulation is an important process in the organism’s life cycle. Herein, we show that disruption of SpoVG resulted in defective B. anthracis sporulation. Confocal microscopy demonstrated that a ΔspoVG mutant could not form an asymmetric septum, the first morphological change observed during sporulation. Moreover, levels of spoIIE mRNA were reduced in the spoVG mutant, as demonstrated using β-galactosidase activity assays. The effects on sporulation of the ΔspoVG mutation differed in B. anthracis from those in B. subtilis because of the redundant functions of SpoVG and SpoIIB in B. subtilis. SpoVG is highly conserved between B. anthracis and B. subtilis. Conversely, BA4688 (the protein tentatively assigned as SpoIIB in B. anthracis) and B. subtilis SpoIIB (SpoIIBBs) share only 27.9% sequence identity. On complementation of the B. anthracis ΔspoVG strain with spoIIBBs, the resulting strain pBspoIIBBs/ΔspoVG could not form resistant spores, but partially completed the prespore engulfment stage. In agreement with this finding, mRNA levels of the prespore engulfment gene spoIIM were significantly increased in strain pBspoIIBBs/ΔspoVG compared with the ΔspoVG strain. Transcription of the coat development gene cotE was similar in the pBspoIIBBs/ΔspoVG and ΔspoVG strains. Thus, unlike in B. subtilis, SpoVG appears to be required for sporulation in B. anthracis, which provides further insight into the sporulation mechanisms of this pathogen.
Collapse
|
6
|
Kumar M, Puranik N, Varshney A, Tripathi N, Pal V, Goel AK. BA3338, a surface layer homology domain possessing protein augments immune response and protection efficacy of protective antigen against Bacillus anthracis in mouse model. J Appl Microbiol 2020; 129:443-452. [PMID: 32118336 DOI: 10.1111/jam.14624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
AIM Category A classified Bacillus anthracis is highly fatal pathogen that causes anthrax and creates challenges for global security and public health. In this study, development of a safe and ideal next-generation subunit anthrax vaccine has been evaluated in mouse model. METHOD AND RESULTS Protective antigen (PA) and BA3338, a surface layer homology (SLH) domain possessing protein were cloned, expressed in heterologous system and purified by IMAC. Recombinant PA and BA3338 with alum were administered in mouse alone or in combination. The humoral and cell-mediated immune response was measured by ELISA and vaccinated animals were challenged with B. anthracis spores via intraperitoneal route. The circulating IgG antibody titre of anti-PA and anti-BA3338 was found significantly high in the first and second booster sera. A significant enhanced level of IL-4, IFN-γ and IL-12 was observed in antigens stimulated supernatant of splenocytes of PA + BA3338 vaccinated animals. A combination of PA and BA3338 provided 80% protection against 20 LD50 lethal dose of B. anthracis spores. CONCLUSION Both antigens induced admirable humoral and cellular immune response as well as protective efficacy against B. anthracis spores. SIGNIFICANCE AND IMPACT OF THE STUDY This study has been evaluated for the first time using BA3338 as a vaccine candidate alone or in combination with well-known anthrax vaccine candidate PA. The findings of this study demonstrated that BA3338 could be a co-vaccine candidate for development of dual subunit vaccine against anthrax.
Collapse
Affiliation(s)
- M Kumar
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - N Puranik
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - A Varshney
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - N Tripathi
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - V Pal
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - A K Goel
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
7
|
Chitlaru T, Israeli M, Rotem S, Elia U, Bar-Haim E, Ehrlich S, Cohen O, Shafferman A. A novel live attenuated anthrax spore vaccine based on an acapsular Bacillus anthracis Sterne strain with mutations in the htrA, lef and cya genes. Vaccine 2017; 35:6030-6040. [DOI: 10.1016/j.vaccine.2017.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/24/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
|
8
|
Zheng J, Chen L, Liu L, Li H, Liu B, Zheng D, Liu T, Dong J, Sun L, Zhu Y, Yang J, Zhang X, Jin Q. Proteogenomic Analysis and Discovery of Immune Antigens in Mycobacterium vaccae. Mol Cell Proteomics 2017; 16:1578-1590. [PMID: 28733429 DOI: 10.1074/mcp.m116.065813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 07/05/2017] [Indexed: 11/06/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide, especially in developing countries. Neonatal BCG vaccination occurs in various regions, but the level of protection varies in different populations. Recently, Mycobacterium vaccae is found to be an immunomodulating therapeutic agent that could confer a significant level of protection against TB. It is the only vaccine in a phase III trial from WHO to assess its efficacy and safety in preventing TB disease in people with latent TB infection. However, the mechanism of immunotherapy of M. vaccae remains poorly understood. In this study, the full genome of M. vaccae was obtained by next-generation sequencing technology, and a proteogenomic approach was successfully applied to further perform genome annotation using high resolution and high accuracy MS data. A total of 3,387 proteins (22,508 unique peptides) were identified, and 581 proteins annotated as hypothetical proteins in the genome database were confirmed. Furthermore, 38 novel protein products not annotated at the genome level were detected and validated. Additionally, the translational start sites of 445 proteins were confirmed, and 98 proteins were validated through extension of their translational start sites based on N terminus-derived peptides. The physicochemical characteristics of the identified proteins were determined. Thirty-five immunogenic proteins of M. vaccae were identified by immunoproteomic analysis, and 20 of them were selected to be expressed and validated by Western blot for immunoreactivity to serum from patients infected with M. tuberculosis The results revealed that eight of them showed strong specific reactive signals on the immunoblots. Furthermore, cellular immune response was further examined and one protein displayed a higher cellular immune level in pulmonary TB patients. Twelve identified immunogenic proteins have orthologous in H37Rv and BCG. This is the first study to obtain the full genome and annotation of M. vaccae using a proteogenomic approach, and some immunogenic proteins that were validated by immunoproteomic analysis could contribute to the understanding of the mechanism of M. vaccae immunotherapy.
Collapse
Affiliation(s)
- Jianhua Zheng
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lihong Chen
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liguo Liu
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haifeng Li
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dandan Zheng
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Liu
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Dong
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lilian Sun
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yafang Zhu
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Yang
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaobing Zhang
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- ‡From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Ramage JG, Prentice KW, DePalma L, Venkateswaran KS, Chivukula S, Chapman C, Bell M, Datta S, Singh A, Hoffmaster A, Sarwar J, Parameswaran N, Joshi M, Thirunavkkarasu N, Krishnan V, Morse S, Avila JR, Sharma S, Estacio PL, Stanker L, Hodge DR, Pillai SP. Comprehensive Laboratory Evaluation of a Highly Specific Lateral Flow Assay for the Presumptive Identification of Bacillus anthracis Spores in Suspicious White Powders and Environmental Samples. Health Secur 2017; 14:351-65. [PMID: 27661796 DOI: 10.1089/hs.2016.0041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We conducted a comprehensive, multiphase laboratory evaluation of the Anthrax BioThreat Alert(®) test strip, a lateral flow immunoassay (LFA) for the rapid detection of Bacillus anthracis spores. The study, conducted at 2 sites, evaluated this assay for the detection of spores from the Ames and Sterne strains of B. anthracis, as well as those from an additional 22 strains. Phylogenetic near neighbors, environmental background organisms, white powders, and environmental samples were also tested. The Anthrax LFA demonstrated a limit of detection of about 10(6) spores/mL (ca. 1.5 × 10(5) spores/assay). In this study, overall sensitivity of the LFA was 99.3%, and the specificity was 98.6%. The results indicated that the specificity, sensitivity, limit of detection, dynamic range, and repeatability of the assay support its use in the field for the purpose of qualitatively evaluating suspicious white powders and environmental samples for the presumptive presence of B. anthracis spores.
Collapse
|
10
|
Lv J, Zhang YY, Lu X, Zhang H, Wei L, Gao J, Hu B, Hu WW, Hu DZ, Jia N, Feng X. Comparisons of the humoral and cellular immunity induced by live A16R attenuated spore and AVA-like anthrax vaccine in mice. Biologicals 2017; 46:130-138. [PMID: 28215694 DOI: 10.1016/j.biologicals.2017.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 11/16/2022] Open
Abstract
The live attenuated anthrax vaccine and anthrax vaccine adsorbed (AVA) are two main types of anthrax vaccines currently used in human. However, the immunoprotective mechanisms are not fully understood. In this study, we compared humoral and cellular immunity induced by live A16R spore vaccine and A16R strain derived AVA-like vaccine in mice peripheral blood, spleen and bone marrow. Both A16R spores and AVA-like vaccines induced a sustained IgG antibody response with IgG1/IgG2b subtype dominance. However, A16R spores vaccine induced higher titer of IgG2a compared with AVA-like vaccine, indicating a stronger Th1 response to A16R spores. Using antigen-specific ELISpot assay, we observed a significant response of ASCs (antibody secreting cells) and IL4-CSCs (cytokine secreting cells) in mice. Specially, there was a positive correlation between the frequencies of antigen specific ASCs and IL4-CSCs in bone marrow derived cells, either by A16R spore or AVA-like vaccine vaccination. Moreover, we also found A16R spore vaccine, not AVA-like vaccine, could induce sustained frequency of IFN-γ-CSCs in bone marrow derived cells. Collectively, both the vaccines induced a mixed Th1/Th2 response with Th2 dominance in mice and A16R spore vaccine might provide a more comprehensive protection because of humoral and cellular immunity induced in bone marrow.
Collapse
Affiliation(s)
- Jin Lv
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Ying-Ying Zhang
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Xun Lu
- The Second Military Medical University, Shanghai, China
| | - Hao Zhang
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Lin Wei
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Jun Gao
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Bin Hu
- The First Affiliated Hospital of the PLA General Hospital, Beijing, China
| | - Wen-Wei Hu
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Dun-Zhong Hu
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Xin Feng
- The General Hospital of the PLA Rocket Force, Beijing, China.
| |
Collapse
|
11
|
Wang L, Wu ZW, Li Y, Dong JG, Zhang LY, Liang PS, Liu YL, Zhao YH, Song CX. Profiling and Identification of Novel Immunogenic Proteins of Staphylococcus hyicus ZC-4 by Immunoproteomic Assay. PLoS One 2016; 11:e0167686. [PMID: 27930728 PMCID: PMC5145190 DOI: 10.1371/journal.pone.0167686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 11/18/2016] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus hyicus has caused great losses in the swine industry by inducing piglet exudative epidermitis (EE), sow mastitis, metritis, and other diseases and is a threat to human health. The pathogenesis of EE, sow mastitis, and metritis involves the interaction between the host and virulent protein factors of S. hyicus, however, the proteins that interact with the host, especially the host immune system, are unclear. In the present study, immunoproteomics was used to screen the immunogenic proteins of S. hyicus strain ZC-4. The cellular and secreted proteins of S. hyicus strain ZC-4 were obtained, separated by 2D gel electrophoresis, and further analyzed by western blot with S. hyicus strain ZC-4-infected swine serum. Finally, 28 specific immunogenic proteins including 15 cellular proteins and 13 secreted proteins, 26 of which were novel immunogenic proteins from S. hyicus, were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. To further verify their immunogenicity, two representative proteins (acetate kinase [cellular] and enolase [secreted]) were chosen for expression, and the resultant recombinant proteins could react with S. hyicus ZC-4-infected swine serum. In mice, both acetate kinase and enolase activated the immune response by increasing G-CSF and MCP-5 expression, and acetate kinase further activated the immune response by increasing IL-12 expression. Enolase can confer better protection against S.hycius than acetate kinase in mice. For the first time to our knowledge, our results provide detailed descriptions of the cellular and secreted proteins of S. hyicus strain ZC-4. These immunogenic proteins may contribute to investigation and elucidation of the pathogenesis of S. hyicus and provide new candidates for subunit vaccines in the future.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Zhi-wei Wu
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Yan Li
- Institute of Animal Health, Guangdong Academy of Agriculture Sciences, Guangzhou, China
| | - Jian-guo Dong
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
- Xinyang Animal Disease Prevention and Control Engineering Research Center, Xinyang College of Agriculture and Forestry, Xinyang, China
| | - Le-yi Zhang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Peng-shuai Liang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Yan-ling Liu
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Ya-hua Zhao
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
- * E-mail: , (CXS); (YHZ)
| | - Chang-xu Song
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agriculture Sciences, Guangzhou, China
- * E-mail: , (CXS); (YHZ)
| |
Collapse
|
12
|
Quantitative Determination of Lethal Toxin Proteins in Culture Supernatant of Human Live Anthrax Vaccine Bacillus anthracis A16R. Toxins (Basel) 2016; 8:toxins8030056. [PMID: 26927174 PMCID: PMC4810201 DOI: 10.3390/toxins8030056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis (B. anthracis) is the etiological agent of anthrax affecting both humans and animals. Anthrax toxin (AT) plays a major role in pathogenesis. It includes lethal toxin (LT) and edema toxin (ET), which are formed by the combination of protective antigen (PA) and lethal factor (LF) or edema factor (EF), respectively. The currently used human anthrax vaccine in China utilizes live-attenuated B. anthracis spores (A16R; pXO1+, pXO2−) that produce anthrax toxin but cannot produce the capsule. Anthrax toxins, especially LT, have key effects on both the immunogenicity and toxicity of human anthrax vaccines. Thus, determining quantities and biological activities of LT proteins expressed by the A16R strain is meaningful. Here, we explored LT expression patterns of the A16R strain in culture conditions using another vaccine strain Sterne as a control. We developed a sandwich ELISA and cytotoxicity-based method for quantitative detection of PA and LF. Expression and degradation of LT proteins were observed in culture supernatants over time. Additionally, LT proteins expressed by the A16R and Sterne strains were found to be monomeric and showed cytotoxic activity, which may be the main reason for side effects of live anthrax vaccines. Our work facilitates the characterization of anthrax vaccines components and establishment of a quality control standard for vaccine production which may ultimately help to ensure the efficacy and safety of the human anthrax vaccine A16R.
Collapse
|
13
|
Zhang L, Huang X, Xue B, Peng Q, Wang Z, Yan T, Wang L. Immunization against Rumen Methanogenesis by Vaccination with a New Recombinant Protein. PLoS One 2015; 10:e0140086. [PMID: 26445479 PMCID: PMC4596829 DOI: 10.1371/journal.pone.0140086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/20/2015] [Indexed: 01/30/2023] Open
Abstract
Vaccination through recombinant proteins against rumen methanogenesis provides a mitigation approach to reduce enteric methane (CH4) emissions in ruminants. The objective of present study was to evaluate the in vivo efficacy of a new vaccine candidate protein (EhaF) on methanogenesis and microbial population in the rumen of goats. We amplified the gene mru 1407 encoding protein EhaF using fresh rumen fluid samples of mature goats and successfully expressed recombinant protein (EhaF) in Escherichia coli Rosetta. This product was evaluated using 12 mature goats with half for control and other half injected with 400ug/goat the purified recombinant protein in day 1 and two subsequent booster immunizations in day 35 and 49. All measurements were undertaken from 63 to 68 days after the initial vaccination, with CH4 emissions determined using respiration calorimeter chambers. The results showed that the vaccination caused intensive immune responses in serum and saliva, although it had no significant effect on total enteric CH4 emissions and methanogen population in the rumen, when compared with the control goats. However, the vaccination altered the composition of rumen bacteria, especially the abundance of main phylum Firmicutes and genus Prevotella. The results indicate that protein EhaF might not be an effective vaccine to reduce enteric CH4 emissions but our vaccine have potential to influence the rumen ecosystem of goats.
Collapse
Affiliation(s)
- Litai Zhang
- Institute of animal nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Xiaofeng Huang
- Institute of animal nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Bai Xue
- Institute of animal nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Quanhui Peng
- Institute of animal nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Zhisheng Wang
- Institute of animal nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Tianhai Yan
- Agri-Food and Biosciences Institute, Hillsborough, United Kingdom
| | - Lizhi Wang
- Institute of animal nutrition, Sichuan Agricultural University, Yaan, Sichuan, China
- * E-mail:
| |
Collapse
|
14
|
Kempsell KE, Kidd SP, Lewandowski K, Elmore MJ, Charlton S, Yeates A, Cuthbertson H, Hallis B, Altmann DM, Rogers M, Wattiau P, Ingram RJ, Brooks T, Vipond R. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis. Front Microbiol 2015; 6:747. [PMID: 26322022 PMCID: PMC4534840 DOI: 10.3389/fmicb.2015.00747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/07/2015] [Indexed: 01/26/2023] Open
Abstract
A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis “infectome.” These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from the same study.
Collapse
Affiliation(s)
| | | | | | | | - Sue Charlton
- Public Health England Porton Down, Salisbury, UK
| | | | | | | | - Daniel M Altmann
- Department of Medicine, University College London, Hammersmith Hospital London, UK
| | - Mitch Rogers
- Public Health England Porton Down, Salisbury, UK
| | - Pierre Wattiau
- Department of Bacterial Diseases, CODA-CERVA (Veterinary and Agrochemical Research Centre) Brussels, Belgium
| | - Rebecca J Ingram
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Belfast, UK
| | - Tim Brooks
- Public Health England Porton Down, Salisbury, UK
| | | |
Collapse
|
15
|
Díaz-González F, Milano M, Olguin-Araneda V, Pizarro-Cerda J, Castro-Córdova P, Tzeng SC, Maier CS, Sarker MR, Paredes-Sabja D. Protein composition of the outermost exosporium-like layer of Clostridium difficile 630 spores. J Proteomics 2015; 123:1-13. [PMID: 25849250 DOI: 10.1016/j.jprot.2015.03.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/23/2015] [Accepted: 03/29/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Clostridium difficile spores are considered the morphotype of infection, transmission and persistence of C. difficile infections. There is a lack of information on the composition of the outermost exosporium layer of C. difficile spores. Using recently developed exosporium removal methods combined with MS/MS, we have established a gel-free approach to analyze the proteome of the exosporium of C. difficile spores of strain 630. A total of 184 proteins were found in the exosporium layer of C. difficile spores. We identified 7 characterized spore coat and/or exosporium proteins; 6 proteins likely to be involved in spore resistance; 6 proteins possibly involved in pathogenicity; 13 uncharacterized proteins; and 146 cytosolic proteins that might have been encased into the exosporium during assembly, similarly as reported for Bacillus anthracis and Bacillus cereus spores. We demonstrate through Flag-fusions that CotA and CotB are mainly located in the spore coat, while the exosporium collagen-like glycoproteins (i.e. BclA1, BclA2 and BclA3), the exosporium morphogenetic proteins CdeC and CdeM, and the uncharacterized exosporium proteins CdeA and CdeB are mainly located in the exosporium layer of C. difficile 630 spores. This study offers novel candidates of C. difficile exosporium proteins as suitable targets for detection, removal and spore-based therapies. BIOLOGICAL SIGNIFICANCE This study offers a novel strategy to identify proteins of the exosporium layer of C. difficile spores and complements previous proteomic studies on the entire C. difficile spores and spore coat since it defines the proteome of the outermost layer of C. difficile spores, the exosporium. This study suggests that C. difficile spores have several proteins involved in protection against environmental stress as well as putative virulence factors that might play a role during infection. Spore exosporium structural proteins were also identified providing the ground basis for further functional studies of these proteins. Overall this work provides new protein target for the diagnosis and/or therapeutics that may contribute to combat C. difficile infections.
Collapse
Affiliation(s)
- Fernando Díaz-González
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Mauro Milano
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Valeria Olguin-Araneda
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Jaime Pizarro-Cerda
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Pablo Castro-Córdova
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Shin-Chen Tzeng
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA; Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Daniel Paredes-Sabja
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
16
|
Division of labour and terminal differentiation in a novel Bacillus thuringiensis strain. ISME JOURNAL 2014; 9:286-96. [PMID: 25083932 DOI: 10.1038/ismej.2014.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/12/2014] [Accepted: 06/11/2014] [Indexed: 11/08/2022]
Abstract
A major challenge in bacterial developmental biology has been to understand the mechanisms underlying cell fate decisions. Some differentiated cell types display cooperative behaviour. Cooperation is one of the greatest mysteries of evolutionary biology and microbes have been considered as an excellent system for experimentally testing evolution theories. Bacillus thuringiensis (Bt) is a spore-forming bacterium, which is genetically closely related to B. anthracis, the agent of anthrax, and to B. cereus, an opportunistic human pathogen. The defining feature that distinguishes Bt from its relatives is its ability to produce crystal inclusions in the sporulating cells. These toxins are solubilized after ingestion and are cooperative public goods in insect hosts. In this study, we describe a Bt strain LM1212 that presents the unique ability to terminally differentiate into crystal producers and spore formers. Transcriptional analysis based on lacZ and gfp reporter genes suggested that this phenotype is the consequence of a new type of cell differentiation associated with a novel regulation mode of cry gene expression. The differentiating crystal-producer phenotype has higher spore productivity than a typical Bt strain and is better able to compete with Cry toxin null 'cheaters'. Potentially, this division of labour provides additional fitness benefits in terms of spore viability or durability of Cry toxin.
Collapse
|
17
|
Sumithra T, Chaturvedi V, Gupta P, Sunita S, Rai A, Kutty M, Laxmi U, Murugan M. Development of a simple and rapid method for the specific identification of organism causing anthrax by slide latex agglutination. Lett Appl Microbiol 2013; 58:401-7. [DOI: 10.1111/lam.12204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 11/30/2022]
Affiliation(s)
- T.G. Sumithra
- College of Veterinary and Animal Sciences; Pookode Kerala India
| | | | - P.K. Gupta
- Indian Veterinary Research Institute; Izatnagar U.P. India
| | - S.C. Sunita
- Indian Veterinary Research Institute; Izatnagar U.P. India
| | - A.K. Rai
- Indian Veterinary Research Institute; Izatnagar U.P. India
| | - M.V.H. Kutty
- Indian Veterinary Research Institute; Izatnagar U.P. India
| | - U. Laxmi
- Indian Veterinary Research Institute; Izatnagar U.P. India
| | - M.S. Murugan
- Indian Veterinary Research Institute; Izatnagar U.P. India
| |
Collapse
|