1
|
Mannar V, Boro H, Patel D, Agstam S, Dalvi M, Bundela V. Epigenetics of the Pathogenesis and Complications of Type 2 Diabetes Mellitus. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:46-53. [PMID: 37313245 PMCID: PMC10258626 DOI: 10.17925/ee.2023.19.1.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/23/2023] [Indexed: 06/15/2023]
Abstract
Epigenetics of type 2 diabetes mellitus (T2DM) has widened our knowledge of various aspects of the disease. The aim of this review is to summarize the important epigenetic changes implicated in the disease risks, pathogenesis, complications and the evolution of therapeutics in our current understanding of T2DM. Studies published in the past 15 years, from 2007 to 2022, from three primary platforms namely PubMed, Google Scholar and Science Direct were included. Studies were searched using the primary term 'type 2 diabetes and epigenetics' with additional terms such as 'risks', 'pathogenesis', 'complications of diabetes' and 'therapeutics'. Epigenetics plays an important role in the transmission of T2DM from one generation to another. Epigenetic changes are also implicated in the two basic pathogenic components of T2DM, namely insulin resistance and impaired insulin secretion. Hyperglycaemia-i nduced permanent epigenetic modifications of the expression of DNA are responsible for the phenomenon of metabolic memory. Epigenetics influences the development of micro-and macrovascular complications of T2DM. They can also be used as biomarkers in the prediction of these complications. Epigenetics has expanded our understanding of the action of existing drugs such as metformin, and has led to the development of newer targets to prevent vascular complications. Epigenetic changes are involved in almost all aspects of T2DM, from risks, pathogenesis and complications, to the development of newer therapeutic targets.
Collapse
Affiliation(s)
- Velmurugan Mannar
- Department of Medicine, Aarupadai Veedu Medical College, Puducherry, India
| | - Hiya Boro
- Department of Endocrinology and Metabolism, Aadhar Health Institute, Hisar, India
| | - Deepika Patel
- Department of Endocrinology, Mediheal Hospital, Nairobi, Kenya
| | - Sourabh Agstam
- Department of Cardiology, VMMC and Safdarjung Hospital, New Delhi, India
| | - Mazhar Dalvi
- Department of Endocrinology, Mediclinic Al Noor Hospital, Abu Dhabi, United Arab Emirates
| | - Vikash Bundela
- Department of Gastroenterology, Aadhar Health Institute, Hisar, India
| |
Collapse
|
2
|
Anti-diabetic effect of hesperidin on palmitate (PA)-treated HepG2 cells and high fat diet-induced obese mice. Food Res Int 2022; 162:112059. [DOI: 10.1016/j.foodres.2022.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/17/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
|
3
|
Ravari MS, Farrokhi E, Moradi Z, Chaleshtori MH, Jami MS, Zarandi MB. Association between GPX1 and IL-6 promoter methylation and type 2 diabetes. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Rautenberg EK, Hamzaoui Y, Coletta DK. Mini-review: Mitochondrial DNA methylation in type 2 diabetes and obesity. Front Endocrinol (Lausanne) 2022; 13:968268. [PMID: 36093112 PMCID: PMC9453027 DOI: 10.3389/fendo.2022.968268] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes (T2D) and obesity are two of the most challenging public health problems of our time. Therefore, understanding the molecular mechanisms that contribute to these complex metabolic disorders is essential. An underlying pathophysiological condition of T2D and obesity is insulin resistance (IR), a reduced biological response to insulin in peripheral tissues such as the liver, adipose tissue, and skeletal muscle. Many factors contribute to IR, including lifestyle variables such as a high-fat diet and physical inactivity, genetics, and impaired mitochondrial function. It is well established that impaired mitochondria structure and function occur in insulin-resistant skeletal muscle volunteers with T2D or obesity. Therefore, it could be hypothesized that the mitochondrial abnormalities are due to epigenetic regulation of mitochondrial and nuclear-encoded genes that code for mitochondrial structure and function. In this review, we describe the normal function and structure of mitochondria and highlight some of the key studies that demonstrate mitochondrial abnormalities in skeletal muscle of volunteers with T2D and obesity. Additionally, we describe epigenetic modifications in the context of IR and mitochondrial abnormalities, emphasizing mitochondria DNA (mtDNA) methylation, an emerging area of research.
Collapse
Affiliation(s)
- Emma K. Rautenberg
- Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| | - Yassin Hamzaoui
- Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| | - Dawn K. Coletta
- Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, United States
- Department of Medicine, Division of Endocrinology, The University of Arizona College of Medicine, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Dawn K. Coletta,
| |
Collapse
|
5
|
Kang M, Lee S, Lee D, Kim S. Learning Cell-Type-Specific Gene Regulation Mechanisms by Multi-Attention Based Deep Learning With Regulatory Latent Space. Front Genet 2020; 11:869. [PMID: 33133123 PMCID: PMC7561362 DOI: 10.3389/fgene.2020.00869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Epigenetic gene regulation is a major control mechanism of gene expression. Most existing methods for modeling control mechanisms of gene expression use only a single epigenetic marker and very few methods are successful in modeling complex mechanisms of gene regulations using multiple epigenetic markers on transcriptional regulation. In this paper, we propose a multi-attention based deep learning model that integrates multiple markers to characterize complex gene regulation mechanisms. In experiments with 18 cell line multi-omics data, our proposed model predicted the gene expression level more accurately than the state-of-the-art model. Moreover, the model successfully revealed cell-type-specific gene expression control mechanisms. Finally, the model was used to identify genes enriched for specific cell types in terms of their functions and epigenetic regulation.
Collapse
Affiliation(s)
- Minji Kang
- Bioinformatics Institute, Seoul National University, Seoul, South Korea
| | - Sangseon Lee
- Bioinformatics Institute, Seoul National University, Seoul, South Korea
| | - Dohoon Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Sun Kim
- Bioinformatics Institute, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea.,Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Santos JL, Krause BJ, Cataldo LR, Vega J, Salas-Pérez F, Mennickent P, Gallegos R, Milagro FI, Prieto-Hontoria P, Riezu-Boj JI, Bravo C, Salas-Huetos A, Arpón A, Galgani JE, Martínez JA. PPARGC1A Gene Promoter Methylation as a Biomarker of Insulin Secretion and Sensitivity in Response to Glucose Challenges. Nutrients 2020; 12:nu12092790. [PMID: 32933059 PMCID: PMC7551463 DOI: 10.3390/nu12092790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Methylation in CpG sites of the PPARGC1A gene (encoding PGC1-α) has been associated with adiposity, insulin secretion/sensitivity indexes and type 2 diabetes. We assessed the association between the methylation profile of the PPARGC1A gene promoter gene in leukocytes with insulin secretion/sensitivity indexes in normoglycemic women. A standard oral glucose tolerance test (OGTT) and an abbreviated version of the intravenous glucose tolerance test (IVGTT) were carried out in n = 57 Chilean nondiabetic women with measurements of plasma glucose, insulin, and C-peptide. Bisulfite-treated DNA from leukocytes was evaluated for methylation levels in six CpG sites of the proximal promoter of the PPARGC1A gene by pyrosequencing (positions -816, -783, -652, -617, -521 and -515). A strong correlation between the DNA methylation percentage of different CpG sites of the PPARGC1A promoter in leukocytes was found, suggesting an integrated epigenetic control of this region. We found a positive association between the methylation levels of the CpG site -783 with the insulin sensitivity Matsuda composite index (rho = 0.31; p = 0.02) derived from the OGTT. The CpG hypomethylation in the promoter position -783 of the PPARGC1A gene in leukocytes may represent a biomarker of reduced insulin sensitivity after the ingestion of glucose.
Collapse
Affiliation(s)
- José L. Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (L.R.C.); (J.V.); (P.M.); (R.G.); (C.B.); (J.E.G.)
- Correspondence: ; Tel.: +56-2-354-3862; Fax: +56-2-633-8298
| | - Bernardo J. Krause
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Avenida Libertador Bernardo O’Higgins 611, Rancagua 2841935, Chile; (B.J.K.); (F.S.-P.)
| | - Luis Rodrigo Cataldo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (L.R.C.); (J.V.); (P.M.); (R.G.); (C.B.); (J.E.G.)
| | - Javier Vega
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (L.R.C.); (J.V.); (P.M.); (R.G.); (C.B.); (J.E.G.)
| | - Francisca Salas-Pérez
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Avenida Libertador Bernardo O’Higgins 611, Rancagua 2841935, Chile; (B.J.K.); (F.S.-P.)
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (F.I.M.); (J.I.R.-B.); (A.A.); (J.A.M.)
| | - Paula Mennickent
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (L.R.C.); (J.V.); (P.M.); (R.G.); (C.B.); (J.E.G.)
| | - Raúl Gallegos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (L.R.C.); (J.V.); (P.M.); (R.G.); (C.B.); (J.E.G.)
| | - Fermín I. Milagro
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (F.I.M.); (J.I.R.-B.); (A.A.); (J.A.M.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- IdiSNA, Navarra’s Health Research Institute, 31008 Pamplona, Spain
| | | | - J. Ignacio Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (F.I.M.); (J.I.R.-B.); (A.A.); (J.A.M.)
- IdiSNA, Navarra’s Health Research Institute, 31008 Pamplona, Spain
| | - Carolina Bravo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (L.R.C.); (J.V.); (P.M.); (R.G.); (C.B.); (J.E.G.)
| | - Albert Salas-Huetos
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA;
| | - Ana Arpón
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (F.I.M.); (J.I.R.-B.); (A.A.); (J.A.M.)
| | - José E. Galgani
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (L.R.C.); (J.V.); (P.M.); (R.G.); (C.B.); (J.E.G.)
- Departamento de Ciencias de la Salud, Nutrición y Dietética, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 781000, Chile
| | - J. Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (F.I.M.); (J.I.R.-B.); (A.A.); (J.A.M.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- IdiSNA, Navarra’s Health Research Institute, 31008 Pamplona, Spain
- IMDEA-Food, 28049 Madrid, Spain
| |
Collapse
|
7
|
Bhatta P, Bermano G, Williams HC, Knott RM. Meta-analysis demonstrates Gly482Ser variant of PPARGC1A is associated with components of metabolic syndrome within Asian populations. Genomics 2019; 112:1795-1803. [PMID: 31678594 DOI: 10.1016/j.ygeno.2019.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022]
Abstract
AIM To determine the association of peroxisome proliferator activated receptor gamma coactivator 1 Gly482Ser variant with components of metabolic syndrome. MATERIALS AND METHODS A systematic search was carried out using Web of Science, PubMed, EMBASE and the Cochrane library using the key words: Peroxisome proliferator activator receptor gamma coactivator 1, PPARGC1A, PGC-1, PGC-1alpha, and PGC1alpha alone or with polymorphism, Gly482Ser and rs8192678. RESULTS Data from 19 articles generated 28 separate data sets. Under the recessive model fasting plasma glucose was significantly lower in AA genotypes when compared to GG + GA in the total sample group and in non-Asian group (p < .001). The AA genotype showed significantly lower levels of total cholesterol compared to GG + GA genotype using the recessive model with the non-Asian group (p < .05). Under the dominant model, body mass index of the GG genotype was significantly higher in Asian subgroups (p < .05). CONCLUSION PPARGC1A Gly482Ser variant impacts differently in Asian population groups.
Collapse
Affiliation(s)
- Prabhakar Bhatta
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB107GJ, UK
| | - Giovanna Bermano
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB107GJ, UK
| | - Hector C Williams
- School of Health Sciences, Robert Gordon University, Aberdeen AB107GJ, UK
| | - Rachel M Knott
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB107GJ, UK.
| |
Collapse
|
8
|
Graae AS, Grarup N, Ribel-Madsen R, Lystbæk SH, Boesgaard T, Staiger H, Fritsche A, Wellner N, Sulek K, Kjolby M, Backe MB, Chubanava S, Prats C, Serup AK, Birk JB, Dubail J, Gillberg L, Vienberg SG, Nykjær A, Kiens B, Wojtaszewski JFP, Larsen S, Apte SS, Häring HU, Vaag A, Zethelius B, Pedersen O, Treebak JT, Hansen T, Holst B. ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations. Diabetes 2019; 68:502-514. [PMID: 30626608 PMCID: PMC6385758 DOI: 10.2337/db18-0418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
The ADAMTS9 rs4607103 C allele is one of the few gene variants proposed to increase the risk of type 2 diabetes through an impairment of insulin sensitivity. We show that the variant is associated with increased expression of the secreted ADAMTS9 and decreased insulin sensitivity and signaling in human skeletal muscle. In line with this, mice lacking Adamts9 selectively in skeletal muscle have improved insulin sensitivity. The molecular link between ADAMTS9 and insulin signaling was characterized further in a model where ADAMTS9 was overexpressed in skeletal muscle. This selective overexpression resulted in decreased insulin signaling presumably mediated through alterations of the integrin β1 signaling pathway and disruption of the intracellular cytoskeletal organization. Furthermore, this led to impaired mitochondrial function in mouse muscle-an observation found to be of translational character because humans carrying the ADAMTS9 risk allele have decreased expression of mitochondrial markers. Finally, we found that the link between ADAMTS9 overexpression and impaired insulin signaling could be due to accumulation of harmful lipid intermediates. Our findings contribute to the understanding of the molecular mechanisms underlying insulin resistance and type 2 diabetes and point to inhibition of ADAMTS9 as a potential novel mode of treating insulin resistance.
Collapse
Affiliation(s)
- Anne-Sofie Graae
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Ribel-Madsen
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Sara H Lystbæk
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Boesgaard
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research, Tübingen, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Niels Wellner
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Karolina Sulek
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Kjolby
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marie Balslev Backe
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sabina Chubanava
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clara Prats
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annette K Serup
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Dubail
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | | | - Sara G Vienberg
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Nykjær
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Allan Vaag
- Cardiovascular and Metabolic Disease Translational Medicine Unit, Early Clinical Development, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Björn Zethelius
- Geriatrics, Department of Public Health and Caring Services, Uppsala University, Uppsala, Sweden
| | - Oluf Pedersen
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Gill J, La Merrill MA. An emerging role for epigenetic regulation of Pgc-1α expression in environmentally stimulated brown adipose thermogenesis. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx009. [PMID: 29492311 PMCID: PMC5804549 DOI: 10.1093/eep/dvx009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/02/2017] [Accepted: 04/20/2017] [Indexed: 05/30/2023]
Abstract
Metabolic disease is a leading cause of death worldwide, and obesity, a central risk factor, is reaching epidemic proportions. Energy expenditure and brown adipose tissue (BAT) thermogenesis are implicated in metabolic disease, and it is becoming evident that impaired BAT activity is regulated by gene/environment interactions. Peroxisome proliferator-activated receptor γ coactivator 1α (Pgc-1α) is a critical regulator of BAT thermogenesis, which is highly inducible by environmental stimuli such as cold and diet. This review focuses on the environmentally mediated epigenetic and transcriptional regulation of Pgc-1α gene expression during BAT thermogenesis. We illustrate interactions between histone modifications and transcription factors at the Pgc-1α promoter that cause BAT Pgc-1α transcription in response to cold. Histone modifications also modulate BAT Pgc-1α transcription in response to nutrients though diet has been less characterized than cold with respect to regulation of Pgc-1α transcription. Pgc-1α DNA methylation and RNA expression were also correlated to indicators of adiposity and glucose homeostasis across numerous human tissues. Although post-translational modification of Pgc-1α protein has been well-characterized across diverse tissues and environments, comparatively little is known of the epigenetic mechanisms regulating Pgc-1α transcription, particularly in BAT thermogenesis.
Collapse
Affiliation(s)
- J.A. Gill
- Department of Environmental Toxicology, Genome Center, and Integrated Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Michele A. La Merrill
- Department of Environmental Toxicology, Genome Center, and Integrated Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| |
Collapse
|
10
|
Kelstrup L, Hjort L, Houshmand-Oeregaard A, Clausen TD, Hansen NS, Broholm C, Borch-Johnsen L, Mathiesen ER, Vaag AA, Damm P. Gene Expression and DNA Methylation of PPARGC1A in Muscle and Adipose Tissue From Adult Offspring of Women With Diabetes in Pregnancy. Diabetes 2016; 65:2900-10. [PMID: 27388218 DOI: 10.2337/db16-0227] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/05/2016] [Indexed: 11/13/2022]
Abstract
Prenatal exposure to maternal hyperglycemia is associated with an increased risk of later adverse metabolic health. Changes in the regulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PPARGC1A) in skeletal muscle and subcutaneous adipose tissue (SAT) is suggested to play a role in the developmental programming of dysmetabolism based on studies of human subjects exposed to an abnormal intrauterine environment (e.g., individuals with a low birth weight). We studied 206 adult offspring of women with gestational diabetes mellitus (O-GDM) or type 1 diabetes (O-T1D) and of women from the background population (O-BP) using a clinical examination, oral glucose tolerance test, and gene expression and DNA methylation of PPARGC1A in skeletal muscle and SAT. Plasma glucose was significantly higher for both O-GDM and O-T1D compared with O-BP (P < 0.05). PPARGC1A gene expression in muscle was lower in O-GDM compared with O-BP (P = 0.0003), whereas no differences were found between O-T1D and O-BP in either tissue. PPARGC1A DNA methylation percentages in muscle and SAT were similar among all groups. Decreased PPARGC1A gene expression in muscle has previously been associated with abnormal insulin function and may thus contribute to the increased risk of metabolic disease in O-GDM. The unaltered PPARGC1A gene expression in muscle of O-T1D suggests that factors other than intrauterine hyperglycemia may contribute to the decreased PPARGC1A expression in O-GDM.
Collapse
Affiliation(s)
- Louise Kelstrup
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Line Hjort
- Diabetes and Metabolism Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Danish Diabetes Academy, Odense, Denmark
| | - Azadeh Houshmand-Oeregaard
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark Diabetes and Metabolism Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tine D Clausen
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Department of Obstetrics and Gynecology, Hilleroed Hospital, University of Copenhagen, Hilleroed, Denmark
| | - Ninna S Hansen
- Diabetes and Metabolism Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christa Broholm
- Diabetes and Metabolism Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Liv Borch-Johnsen
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Elisabeth R Mathiesen
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Allan A Vaag
- Diabetes and Metabolism Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Main AM, Gillberg L, Jacobsen AL, Nilsson E, Gjesing AP, Hansen T, Pedersen O, Ribel-Madsen R, Vaag A. DNA methylation and gene expression of HIF3A: cross-tissue validation and associations with BMI and insulin resistance. Clin Epigenetics 2016; 8:89. [PMID: 27594926 PMCID: PMC5010678 DOI: 10.1186/s13148-016-0258-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/24/2016] [Indexed: 12/17/2022] Open
Abstract
Background Associations between BMI and DNA methylation of hypoxia-inducible factor 3-alpha (HIF3A) in both blood cells and subcutaneous adipose tissue (SAT) have been reported. In this study, we investigated associations between BMI and HIF3A DNA methylation in the blood and SAT from the same individuals, and whether HIF3A gene expression in SAT and skeletal muscle biopsies showed associations with BMI and insulin resistance. Furthermore, we aimed to investigate gender specificity and heritability of these traits. Methods We studied 137 first-degree relatives of type 2 diabetes (T2D) patients from 48 families, from whom we had SAT and muscle biopsies. DNA methylation of four CpG sites in the HIF3A promoter was analyzed in the blood and SAT by pyrosequencing, and HIF3A gene expression was analyzed in SAT and muscle by qPCR. An index of whole-body insulin sensitivity was estimated from oral glucose tolerance tests. Results BMI was associated with HIF3A methylation at one CpG site in the blood, and there was a positive association between the blood and SAT methylation levels at a different CpG site within the individuals. The SAT methylation level did not correlate with HIF3A gene expression. Interestingly, HIF3A expression in SAT, but not in muscle, associated negatively with BMI and whole-body insulin resistance. We found a significant effect of familiality on HIF3A methylation levels in the blood and HIF3A expression levels in skeletal muscle. Conclusions Our findings are in line with the previously reported link between BMI and DNA methylation of HIF3A in the blood. The tissue-specific results of HIF3A gene expression indicate that SAT is the more functional tissue in which a low expression may adversely affect whole-body insulin sensitivity. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0258-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ailsa Maria Main
- Department of Endocrinology, Rigshospitalet, Section 7652, Tagensvej 20, DK-2200 Copenhagen, Denmark
| | - Linn Gillberg
- Department of Endocrinology, Rigshospitalet, Section 7652, Tagensvej 20, DK-2200 Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Louisa Jacobsen
- Department of Endocrinology, Rigshospitalet, Section 7652, Tagensvej 20, DK-2200 Copenhagen, Denmark
| | - Emma Nilsson
- Department of Endocrinology, Rigshospitalet, Section 7652, Tagensvej 20, DK-2200 Copenhagen, Denmark.,Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Anette Prior Gjesing
- Section of Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Section of Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Section of Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Ribel-Madsen
- Department of Endocrinology, Rigshospitalet, Section 7652, Tagensvej 20, DK-2200 Copenhagen, Denmark.,The Danish Diabetes Academy, Odense University Hospital, Odense, Denmark
| | - Allan Vaag
- Department of Endocrinology, Rigshospitalet, Section 7652, Tagensvej 20, DK-2200 Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun 2016; 7:11089. [PMID: 27029739 PMCID: PMC4821875 DOI: 10.1038/ncomms11089] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022] Open
Abstract
Aging associates with impaired pancreatic islet function and increased type 2 diabetes (T2D) risk. Here we examine whether age-related epigenetic changes affect human islet function and if blood-based epigenetic biomarkers reflect these changes and associate with future T2D. We analyse DNA methylation genome-wide in islets from 87 non-diabetic donors, aged 26-74 years. Aging associates with increased DNA methylation of 241 sites. These sites cover loci previously associated with T2D, for example, KLF14. Blood-based epigenetic biomarkers reflect age-related methylation changes in 83 genes identified in human islets (for example, KLF14, FHL2, ZNF518B and FAM123C) and some associate with insulin secretion and T2D. DNA methylation correlates with islet expression of multiple genes, including FHL2, ZNF518B, GNPNAT1 and HLTF. Silencing these genes in β-cells alter insulin secretion. Together, we demonstrate that blood-based epigenetic biomarkers reflect age-related DNA methylation changes in human islets, and associate with insulin secretion in vivo and T2D.
Collapse
|
13
|
Placental DNA methylation of peroxisome-proliferator-activated receptor-γ co-activator-1α promoter is associated with maternal gestational glucose level. Clin Sci (Lond) 2015; 129:385-94. [PMID: 25875376 DOI: 10.1042/cs20140688] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Among all the participants, the maternal gestational glucose level was positively correlated with placental DNA methylation. The correlation between gestational 2-h post-OGTT glycaemia and CpG site-specific methylation in placenta was stronger in the gestational diabetes group.
Collapse
|
14
|
IUGR with infantile overnutrition programs an insulin-resistant phenotype through DNA methylation of peroxisome proliferator-activated receptor-γ coactivator-1α in rats. Pediatr Res 2015; 77:625-32. [PMID: 25675425 DOI: 10.1038/pr.2015.32] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 11/05/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) followed by postnatal accelerated growth (CG-IUGR) is associated with long-term adverse metabolic consequences, and an involvement of epigenetic dysregulation has been implicated. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a key orchestrator in energy homeostasis. We hypothesized that CG-IUGR programed an insulin-resistant phenotype through the alteration in DNA methylation and transcriptional activity of PGC-1α. METHODS A CG-IUGR rat model was adopted using maternal gestational nutritional restriction followed by infantile overnutrition achieved by reducing the litter size. The DNA methylation was determined by pyrosequencing. The mRNA expression and mitochondrial content were assessed by real-time PCR. The insulin-signaling protein expression was evaluated by western blotting. RESULTS Compared with controls, the CG-IUGR rats showed an increase in the DNA methylation of specific CpG sites in PGC-1α, and a decrease in the transcriptional activity of PGC-1α, mitochondrial content, protein level of PI3K and phosphorylated-Akt2 in liver and muscle tissues. The methylation of specific CpG sites in PGC-1α was positively correlated with fasting insulin concentration. CONCLUSION IUGR followed by infantile overnutrition programs an insulin-resistant phenotype, possibly through the alteration in DNA methylation and transcriptional activity of PGC-1α. The genetic and epigenetic modifications of PGC-1α provide a potential mechanism linking early-life nutrition insult to long-term metabolic disease susceptibilities.
Collapse
|
15
|
Cheema AK, Li T, Liuzzi JP, Zarini GG, Dorak MT, Huffman FG. Genetic Associations of PPARGC1A with Type 2 Diabetes: Differences among Populations with African Origins. J Diabetes Res 2015; 2015:921274. [PMID: 25977930 PMCID: PMC4419207 DOI: 10.1155/2015/921274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to assess the differences in correlation of PPARGC1A polymorphisms with type 2 diabetes (T2D) risk in adults of African origins: African Americans and Haitian Americans. The case-control study consisted of >30 years old, self-identified Haitian Americans (n = 110 cases and n = 116 controls) and African Americans (n = 124 cases and n = 122 controls) living in South Florida with and without T2D. Adjusted logistic regression indicated that both SNP rs7656250 (OR = 0.22, P = 0.005) and rs4235308 (OR = 0.42, P = 0.026) showed protective association with T2D in Haitian Americans. In African Americans, however, rs4235308 showed significant risk association with T2D (OR = 2.53, P = 0.028). After stratification with sex, in Haitian Americans, both rs4235308 (OR = 0.38, P = 0.026) and rs7656250 (OR = 0.23, P = 0.006) showed protective association with T2D in females whereas in African American males rs7656250 had statistically significant protective effect on T2D (OR = 0.37, P = 0.043). The trends observed for genetic association of PPARGC1A SNPs, rs4235308, and rs7656250 for T2D between Haitian Americans and African Americans point out differences in Black race and warrant replicative study with larger sample size.
Collapse
Affiliation(s)
- Amanpreet K. Cheema
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Tan Li
- Department of Biostatistics, Robert Stempel College of Public Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Juan P. Liuzzi
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Gustavo G. Zarini
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Mehmet T. Dorak
- School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK
| | - Fatma G. Huffman
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| |
Collapse
|
16
|
Rönn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL, Jørgensen SW, Brøns C, Jansson PA, Eriksson KF, Pedersen O, Hansen T, Groop L, Stener-Victorin E, Vaag A, Nilsson E, Ling C. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet 2015; 24:3792-813. [PMID: 25861810 DOI: 10.1093/hmg/ddv124] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/07/2015] [Indexed: 01/03/2023] Open
Abstract
Increased age, BMI and HbA1c levels are risk factors for several non-communicable diseases. However, the impact of these factors on the genome-wide DNA methylation pattern in human adipose tissue remains unknown. We analyzed the DNA methylation of ∼480 000 sites in human adipose tissue from 96 males and 94 females and related methylation to age, BMI and HbA1c. We also compared epigenetic signatures in adipose tissue and blood. Age was significantly associated with both altered DNA methylation and expression of 1050 genes (e.g. FHL2, NOX4 and PLG). Interestingly, many reported epigenetic biomarkers of aging in blood, including ELOVL2, FHL2, KLF14 and GLRA1, also showed significant correlations between adipose tissue DNA methylation and age in our study. The most significant association between age and adipose tissue DNA methylation was found upstream of ELOVL2. We identified 2825 genes (e.g. FTO, ITIH5, CCL18, MTCH2, IRS1 and SPP1) where both DNA methylation and expression correlated with BMI. Methylation at previously reported HIF3A sites correlated significantly with BMI in females only. HbA1c (range 28-46 mmol/mol) correlated significantly with the methylation of 711 sites, annotated to, for example, RAB37, TICAM1 and HLA-DPB1. Pathway analyses demonstrated that methylation levels associated with age and BMI are overrepresented among genes involved in cancer, type 2 diabetes and cardiovascular disease. Our results highlight the impact of age, BMI and HbA1c on epigenetic variation of candidate genes for obesity, type 2 diabetes and cancer in human adipose tissue. Importantly, we demonstrate that epigenetic biomarkers in blood can mirror age-related epigenetic signatures in target tissues for metabolic diseases such as adipose tissue.
Collapse
Affiliation(s)
- Tina Rönn
- Department of Clinical Sciences, Epigenetics and Diabetes and
| | - Petr Volkov
- Department of Clinical Sciences, Epigenetics and Diabetes and
| | - Linn Gillberg
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Milana Kokosar
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Box 434, 405 30 Gothenburg, Sweden
| | | | - Anna Louisa Jacobsen
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark
| | - Sine W Jørgensen
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark, Steno Diabetes Center, Niels Steensensvej 2, DK-2820 Gentofte, Denmark
| | - Charlotte Brøns
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark
| | - Per-Anders Jansson
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karl-Fredrik Eriksson
- Department of Clinical Sciences, Vascular Diseases, Lund University, 205 02 Malmö, Sweden
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen, Denmark and
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen, Denmark and
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, CRC, 205 02 Malmö, Sweden
| | - Elisabet Stener-Victorin
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Box 434, 405 30 Gothenburg, Sweden, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Allan Vaag
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Emma Nilsson
- Department of Clinical Sciences, Epigenetics and Diabetes and Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark
| | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes and
| |
Collapse
|
17
|
Kaufman BA, Li C, Soleimanpour SA. Mitochondrial regulation of β-cell function: maintaining the momentum for insulin release. Mol Aspects Med 2015; 42:91-104. [PMID: 25659350 PMCID: PMC4404204 DOI: 10.1016/j.mam.2015.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 01/15/2023]
Abstract
All forms of diabetes share the common etiology of insufficient pancreatic β-cell function to meet peripheral insulin demand. In pancreatic β-cells, mitochondria serve to integrate the metabolism of exogenous nutrients into energy output, which ultimately leads to insulin release. As such, mitochondrial dysfunction underlies β-cell failure and the development of diabetes. Mitochondrial regulation of β-cell function occurs through many diverse pathways, including metabolic coupling, generation of reactive oxygen species, maintenance of mitochondrial mass, and through interaction with other cellular organelles. In this chapter, we will focus on the importance of enzymatic regulators of mitochondrial fuel metabolism and control of mitochondrial mass to pancreatic β-cell function, describing how defects in these pathways ultimately lead to diabetes. Furthermore, we will examine the factors responsible for mitochondrial biogenesis and degradation and their roles in the balance of mitochondrial mass in β-cells. Clarifying the causes of β-cell mitochondrial dysfunction may inform new approaches to treat the underlying etiologies of diabetes.
Collapse
Affiliation(s)
- Brett A Kaufman
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Gillberg L, Ling C. The potential use of DNA methylation biomarkers to identify risk and progression of type 2 diabetes. Front Endocrinol (Lausanne) 2015; 6:43. [PMID: 25870586 PMCID: PMC4378313 DOI: 10.3389/fendo.2015.00043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/11/2015] [Indexed: 12/29/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is a slowly progressive disease that can be postponed or even avoided through lifestyle changes. Recent data demonstrate highly significant correlations between DNA methylation and the most important risk factors of T2D, including age and body mass index, in blood and human tissues relevant to insulin resistance and T2D. Also, T2D patients and individuals with increased risk of the disease display differential DNA methylation profiles and plasticity compared to controls. Accordingly, the novel clues to DNA methylation fingerprints in blood and tissues with deteriorated metabolic capacity indicate that blood-borne epigenetic biomarkers of T2D progression might become a reality. This Review will address the most recent associations between DNA methylation and diabetes-related traits in human tissues and blood. The overall focus is on the potential of future epigenome-wide studies, carried out across tissues and populations with correlations to pre-diabetes and T2D risk factors, to build up a library of epigenetic markers of risk and early progression of T2D. These markers may, tentatively in combination with other predictors of T2D development, increase the possibility of individual-based lifestyle prevention of T2D and associated metabolic diseases.
Collapse
Affiliation(s)
- Linn Gillberg
- Diabetes and Metabolism, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Linn Gillberg, Diabetes and Metabolism, Department of Endocrinology, Rigshospitalet, Tagensvej 20, Section 7652, Copenhagen, DK-2200, Denmark e-mail:
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
19
|
Tang L, Ye H, Hong Q, Wang L, Wang Q, Wang H, Xu L, Bu S, Zhang L, Cheng J, Liu P, Le Y, Ye M, Mai Y, Duan S. Elevated CpG island methylation of GCK gene predicts the risk of type 2 diabetes in Chinese males. Gene 2014; 547:329-33. [PMID: 24992032 DOI: 10.1016/j.gene.2014.06.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND The GCK gene encodes hexokinase 4, which catalyzes the first step in most glucose metabolism pathways. The purpose of our study is to assess the contribution of GCK methylation to type 2 diabetes (T2D). METHODS AND RESULTS GCK methylation was evaluated in 48 T2D cases and 48 age- and gender-matched controls using the bisulphite pyrosequencing technology. Among the four CpG sites in the methylation assay, CpG4 and the other three CpGs (CpG1-3) were not in high correlation (r<0.5). Significantly elevated methylation levels of GCK CpG4 methylation were observed in T2D patients than in the healthy controls (P=0.004). A breakdown analysis by gender indicated that the association between CpG4 methylation and T2D was specific to males (P=0.002). It is intriguing that another significant male-specific association was also found between GCK CpG4 methylation and total cholesterol (TC) concentration (r=0.304, P=0.036). CONCLUSION Our results showed that elevated GCK CpG4 methylation might suggest a risk of T2D in Chinese males. Gender disparity in GCK CpG4 methylation might provide a clue to elaborate the pathogenesis of T2D.
Collapse
Affiliation(s)
- Linlin Tang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China; The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315000, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Huadan Ye
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qingxiao Hong
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lingyan Wang
- Bank of Blood Products, Ningbo No.2 Hospital, Ningbo, Zhejiang 315010, China
| | - Qinwen Wang
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315000, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hongwei Wang
- Section of Endocrinology, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Leiting Xu
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315000, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shizhong Bu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lina Zhang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jia Cheng
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Panpan Liu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanping Le
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Meng Ye
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315000, China.
| | - Yifeng Mai
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315000, China.
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China; The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315000, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
20
|
Gillberg L, Jacobsen SC, Rönn T, Brøns C, Vaag A. PPARGC1A DNA methylation in subcutaneous adipose tissue in low birth weight subjects--impact of 5 days of high-fat overfeeding. Metabolism 2014; 63:263-71. [PMID: 24262291 DOI: 10.1016/j.metabol.2013.10.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/16/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Increased DNA methylation of the metabolic regulator peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) has been reported in skeletal muscle from type 2 diabetes (T2D) subjects and from low birth weight (LBW) subjects with an increased risk of T2D. High-fat overfeeding increases PPARGC1A DNA methylation in muscle in a birth weight dependent manner. However, PPARGC1A DNA methylation in subcutaneous adipose tissue (SAT) in LBW subjects has not previously been investigated. Our objective was to determine PPARGC1A DNA methylation and mRNA expression in basal and insulin-stimulated SAT from LBW and matched normal birth weight (NBW) subjects during control and high-fat overfeeding. MATERIALS/METHODS Nineteen young healthy men with LBW and 26 NBW controls were studied after both a 5-day high-fat overfeeding and a control diet in a randomized crossover setting. DNA methylation was assessed with bisulfite sequencing and mRNA expression with quantitative real-time PCR. RESULTS Following high-fat overfeeding, increased SAT PPARGC1A DNA methylation was observed in LBW subjects but not in NBW controls. Basal SAT PPARGC1A mRNA expression was unaffected by diet and similar in the two groups. However, LBW subjects showed an increased SAT PPARGC1A mRNA expression during insulin-stimulation. SAT PPARGC1A methylation correlated inversely with mRNA expression during insulin-stimulation. CONCLUSIONS The study adds to the increasing awareness of PPARGC1A DNA methylation being flexible and influenced by high-fat overfeeding in a birth weight dependent manner with muscle and fat responding differently. Further data are needed to understand the role of PPARGC1A DNA methylation in insulin resistance and developmental programming of T2D.
Collapse
Affiliation(s)
- Linn Gillberg
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark; Steno Diabetes Center, Niels Steensensvej 2, DK-2820 Gentofte, Denmark.
| | - Stine C Jacobsen
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark; Steno Diabetes Center, Niels Steensensvej 2, DK-2820 Gentofte, Denmark
| | - Tina Rönn
- Department of Clinical Sciences, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Charlotte Brøns
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark; Steno Diabetes Center, Niels Steensensvej 2, DK-2820 Gentofte, Denmark
| | - Allan Vaag
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark; Steno Diabetes Center, Niels Steensensvej 2, DK-2820 Gentofte, Denmark; Department of Clinical Sciences, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden; Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| |
Collapse
|