1
|
Jallet A, Friedrich A, Schacherer J. Impact of the acquired subgenome on the transcriptional landscape in Brettanomyces bruxellensis allopolyploids. G3 (BETHESDA, MD.) 2023; 13:jkad115. [PMID: 37226280 PMCID: PMC10320193 DOI: 10.1093/g3journal/jkad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/21/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Gene expression variation can provide an overview of the changes in regulatory networks that underlie phenotypic diversity. Certain evolutionary trajectories such as polyploidization events can have an impact on the transcriptional landscape. Interestingly, the evolution of the yeast species Brettanomyces bruxellensis has been punctuated by diverse allopolyploidization events leading to the coexistence of a primary diploid genome associated with various haploid acquired genomes. To assess the impact of these events on gene expression, we generated and compared the transcriptomes of a set of 87 B. bruxellensis isolates, selected as being representative of the genomic diversity of this species. Our analysis revealed that acquired subgenomes strongly impact the transcriptional patterns and allow discrimination of allopolyploid populations. In addition, clear transcriptional signatures related to specific populations have been revealed. The transcriptional variations observed are related to some specific biological processes such as transmembrane transport and amino acids metabolism. Moreover, we also found that the acquired subgenome causes the overexpression of some genes involved in the production of flavor-impacting secondary metabolites, especially in isolates of the beer population.
Collapse
Affiliation(s)
- Arthur Jallet
- CNRS, GMGM UMR 7156, Université de Strasbourg, 67000 Strasbourg, France
| | - Anne Friedrich
- CNRS, GMGM UMR 7156, Université de Strasbourg, 67000 Strasbourg, France
| | - Joseph Schacherer
- CNRS, GMGM UMR 7156, Université de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
2
|
Varela C, Borneman AR. Molecular approaches improving our understanding of Brettanomyces physiology. FEMS Yeast Res 2022; 22:6585649. [PMID: 35561744 DOI: 10.1093/femsyr/foac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Brettanomyces species and particularly B. bruxellensis as the most studied representative, are strongly linked to industrial fermentation processes. This association is considered either positive or undesirable depending on the industry. While in some brewing applications and in kombucha production Brettanomyces yeasts contribute to the flavour and aroma profile of these beverages, in winemaking and bioethanol production Brettanomyces is considered a spoilage or contaminant microorganism. Nevertheless, understanding Brettanomyces biology and metabolism in detail will benefit all industries. This review discusses recent molecular biology tools including genomics, transcriptomics and genetic engineering techniques that can improve our understanding of Brettanomyces physiology and how these approaches can be used to make the industrial potential of this species a reality.
Collapse
Affiliation(s)
- Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia.,School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia.,School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
3
|
Harrouard J, Eberlein C, Ballestra P, Dols-Lafargue M, Masneuf-Pomarede I, Miot-Sertier C, Schacherer J, Albertin W. Brettanomyces bruxellensis: Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol Ecol 2022; 32:2374-2395. [PMID: 35318747 DOI: 10.1111/mec.16439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g. winemaking, bioethanol production) or as a beneficial microorganism (e.g. production of specific beers, kombucha). Besides its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the co-existence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g. nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.
Collapse
Affiliation(s)
- Jules Harrouard
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Chris Eberlein
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
| | - Patricia Ballestra
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| | - Isabelle Masneuf-Pomarede
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,BSA, 33170, Gradignan
| | - Cécile Miot-Sertier
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| | - Warren Albertin
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| |
Collapse
|
4
|
Dekker WJC, Jürgens H, Ortiz-Merino RA, Mooiman C, van den Berg R, Kaljouw A, Mans R, Pronk JT. OUP accepted manuscript. FEMS Yeast Res 2022; 22:6523363. [PMID: 35137036 PMCID: PMC8862043 DOI: 10.1093/femsyr/foac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
While thermotolerance is an attractive trait for yeasts used in industrial ethanol production, oxygen requirements of known thermotolerant species are incompatible with process requirements. Analysis of oxygen-sufficient and oxygen-limited chemostat cultures of the facultatively fermentative, thermotolerant species Ogataea parapolymorpha showed its minimum oxygen requirements to be an order of magnitude larger than those reported for the thermotolerant yeast Kluyveromyces marxianus. High oxygen requirements of O. parapolymorpha coincided with a near absence of glycerol, a key NADH/NAD+ redox-cofactor-balancing product in many other yeasts, in oxygen-limited cultures. Genome analysis indicated absence of orthologs of the Saccharomyces cerevisiae glycerol-3-phosphate-phosphatase genes GPP1 and GPP2. Co-feeding of acetoin, whose conversion to 2,3-butanediol enables reoxidation of cytosolic NADH, supported a 2.5-fold increase of the biomass concentration in oxygen-limited cultures. An O. parapolymorpha strain in which key genes involved in mitochondrial reoxidation of NADH were inactivated did produce glycerol, but transcriptome analysis did not reveal a clear candidate for a responsible phosphatase. Expression of S. cerevisiae GPD2, which encodes NAD+-dependent glycerol-3-phosphate dehydrogenase, and GPP1 supported increased glycerol production by oxygen-limited chemostat cultures of O. parapolymorpha. These results identify dependence on respiration for NADH reoxidation as a key contributor to unexpectedly high oxygen requirements of O. parapolymorpha.
Collapse
Affiliation(s)
- Wijbrand J C Dekker
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Hannes Jürgens
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Raúl A Ortiz-Merino
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Christiaan Mooiman
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Remon van den Berg
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Astrid Kaljouw
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Corresponding author: Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands. Tel: +31 15 2783214; E-mail:
| |
Collapse
|
5
|
Bouwknegt J, Koster CC, Vos AM, Ortiz-Merino RA, Wassink M, Luttik MAH, van den Broek M, Hagedoorn PL, Pronk JT. Class-II dihydroorotate dehydrogenases from three phylogenetically distant fungi support anaerobic pyrimidine biosynthesis. Fungal Biol Biotechnol 2021; 8:10. [PMID: 34656184 PMCID: PMC8520639 DOI: 10.1186/s40694-021-00117-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background In most fungi, quinone-dependent Class-II dihydroorotate dehydrogenases (DHODs) are essential for pyrimidine biosynthesis. Coupling of these Class-II DHODHs to mitochondrial respiration makes their in vivo activity dependent on oxygen availability. Saccharomyces cerevisiae and closely related yeast species harbor a cytosolic Class-I DHOD (Ura1) that uses fumarate as electron acceptor and thereby enables anaerobic pyrimidine synthesis. Here, we investigate DHODs from three fungi (the Neocallimastigomycete Anaeromyces robustus and the yeasts Schizosaccharomyces japonicus and Dekkera bruxellensis) that can grow anaerobically but, based on genome analysis, only harbor a Class-II DHOD. Results Heterologous expression of putative Class-II DHOD-encoding genes from fungi capable of anaerobic, pyrimidine-prototrophic growth (Arura9, SjURA9, DbURA9) in an S. cerevisiae ura1Δ strain supported aerobic as well as anaerobic pyrimidine prototrophy. A strain expressing DbURA9 showed delayed anaerobic growth without pyrimidine supplementation. Adapted faster growing DbURA9-expressing strains showed mutations in FUM1, which encodes fumarase. GFP-tagged SjUra9 and DbUra9 were localized to S. cerevisiae mitochondria, while ArUra9, whose sequence lacked a mitochondrial targeting sequence, was localized to the yeast cytosol. Experiments with cell extracts showed that ArUra9 used free FAD and FMN as electron acceptors. Expression of SjURA9 in S. cerevisiae reproducibly led to loss of respiratory competence and mitochondrial DNA. A cysteine residue (C265 in SjUra9) in the active sites of all three anaerobically active Ura9 orthologs was shown to be essential for anaerobic activity of SjUra9 but not of ArUra9. Conclusions Activity of fungal Class-II DHODs was long thought to be dependent on an active respiratory chain, which in most fungi requires the presence of oxygen. By heterologous expression experiments in S. cerevisiae, this study shows that phylogenetically distant fungi independently evolved Class-II dihydroorotate dehydrogenases that enable anaerobic pyrimidine biosynthesis. Further structure–function studies are required to understand the mechanistic basis for the anaerobic activity of Class-II DHODs and an observed loss of respiratory competence in S. cerevisiae strains expressing an anaerobically active DHOD from Sch. japonicus. Supplementary Information The online version contains supplementary material available at 10.1186/s40694-021-00117-4.
Collapse
Affiliation(s)
- Jonna Bouwknegt
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Charlotte C Koster
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Aurin M Vos
- Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Raúl A Ortiz-Merino
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Mats Wassink
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Marijke A H Luttik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Peter L Hagedoorn
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
6
|
Do Kombucha Symbiotic Cultures of Bacteria and Yeast Affect Bacterial Cellulose Yield in Molasses? J Fungi (Basel) 2021; 7:jof7090705. [PMID: 34575743 PMCID: PMC8470359 DOI: 10.3390/jof7090705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial cellulose (BC) is a valuable biopolymer typically observed in Kombucha with many potential food applications. Many studies highlight yeast's roles in providing reducing sugars, used by the bacteria to grow and produce BC. However, whether yeast could enhance the BC yields remains unclear. This study investigates the effect of yeast Dekkera bruxellensis on bacteria Komagataeibacter intermedius growth and BC production in molasses medium. The results showed that the co-culture stimulated K. intermedius by ~2 log CFU/mL, which could be attributed to enhanced reducing sugar utilization. However, BC yields decreased by ~24%, suggesting a negative impact of D. bruxellensis on BC production. In contrast to other studies, regardless of D. bruxellensis, K. intermedius increased the pH to ~9.0, favoring the BC production. Furthermore, pH increase was slower in co-culture as compared to single culture cultivation, which could be the reason for lower BC yields. This study indicates that co-culture could promote synergistic growth but results in the BC yield reduction. This knowledge can help design a more controlled fermentation process for optimum bacterial growth and, ultimately, BC production.
Collapse
|
7
|
Comparative proteomic analyses reveal the metabolic aspects and biotechnological potential of nitrate assimilation in the yeast Dekkera bruxellensis. Appl Microbiol Biotechnol 2021; 105:1585-1600. [PMID: 33538877 DOI: 10.1007/s00253-021-11117-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/28/2020] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
The yeast Dekkera bruxellensis is well-known for its adaptation to industrial ethanol fermentation processes, which can be further improved if nitrate is present in the substrate. To date, the assimilation of nitrate has been considered inefficient because of the apparent energy cost imposed on cell metabolism. Recent research, however, has shown that nitrate promotes growth rate and ethanol yield when oxygen is absent from the environment. Given this, the present work aimed to identify the biological mechanisms behind this physiological behaviour. Proteomic analyses comparing four contrasting growth conditions gave some clues on how nitrate could be used as primary nitrogen source by D. bruxellensis GDB 248 (URM 8346) cells in anaerobiosis. The superior anaerobic growth in nitrate seems to be a consequence of increased cell metabolism (glycolytic pathway, production of ATP and NADPH and anaplerotic reactions providing metabolic intermediates) regulated by balanced activation of TORC1 and NCR de-repression mechanisms. On the other hand, the poor growth observed in aerobiosis is likely due to an oxidative stress triggered by nitrate when oxygen is present. These results represent a milestone regarding the knowledge about nitrate metabolism and might be explored for future use of D. bruxellensis as an industrial yeast. KEY POINTS: • Nitrate can be regarded as preferential nitrogen source for D. bruxellensis. • Oxidative stress limits the growth of D. bruxellensis in nitrate in aerobiosis. • Nitrate is a nutrient for novel industrial bioprocesses using D. bruxellensis.
Collapse
|
8
|
Valdetara F, Škalič M, Fracassetti D, Louw M, Compagno C, du Toit M, Foschino R, Petrovič U, Divol B, Vigentini I. Transcriptomics unravels the adaptive molecular mechanisms of Brettanomyces bruxellensis under SO2 stress in wine condition. Food Microbiol 2020; 90:103483. [DOI: 10.1016/j.fm.2020.103483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/05/2020] [Accepted: 03/02/2020] [Indexed: 01/23/2023]
|
9
|
Tiukova IA, Møller-Hansen I, Belew ZM, Darbani B, Boles E, Nour-Eldin HH, Linder T, Nielsen J, Borodina I. Identification and characterisation of two high-affinity glucose transporters from the spoilage yeast Brettanomyces bruxellensis. FEMS Microbiol Lett 2020; 366:5610216. [PMID: 31665273 PMCID: PMC6847091 DOI: 10.1093/femsle/fnz222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
The yeast Brettanomyces bruxellensis (syn. Dekkera bruxellensis) is an emerging and undesirable contaminant in industrial low-sugar ethanol fermentations that employ the yeast Saccharomyces cerevisiae. High-affinity glucose import in B. bruxellensis has been proposed to be the mechanism by which this yeast can outcompete S. cerevisiae. The present study describes the characterization of two B. bruxellensis genes (BHT1 and BHT3) believed to encode putative high-affinity glucose transporters. In vitro-generated transcripts of both genes as well as the S. cerevisiae HXT7 high-affinity glucose transporter were injected into Xenopus laevis oocytes and subsequent glucose uptake rates were assayed using 14C-labelled glucose. At 0.1 mM glucose, Bht1p was shown to transport glucose five times faster than Hxt7p. pH affected the rate of glucose transport by Bht1p and Bht3p, indicating an active glucose transport mechanism that involves proton symport. These results suggest a possible role for BHT1 and BHT3 in the competitive ability of B. bruxellensis.
Collapse
Affiliation(s)
- Ievgeniia A Tiukova
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| | - Iben Møller-Hansen
- The Novo Nordisk Foundation for Biosustainability, Technical University of Denmark, Building 220, 2800 Kongens Lyngby, Denmark
| | - Zeinu M Belew
- Department of Plant and Environmental Sciences, DynaMo Center, Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Behrooz Darbani
- The Novo Nordisk Foundation for Biosustainability, Technical University of Denmark, Building 220, 2800 Kongens Lyngby, Denmark
| | - Eckhard Boles
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany
| | - Hussam H Nour-Eldin
- Department of Plant and Environmental Sciences, DynaMo Center, Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Tomas Linder
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas allé 5, 750 07 Uppsala, Sweden
| | - Jens Nielsen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation for Biosustainability, Technical University of Denmark, Building 220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Navarrete C, L. Martínez J. Non-conventional yeasts as superior production platforms for sustainable fermentation based bio-manufacturing processes. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
11
|
Tiukova IA, Jiang H, Dainat J, Hoeppner MP, Lantz H, Piskur J, Sandgren M, Nielsen J, Gu Z, Passoth V. Assembly and Analysis of the Genome Sequence of the Yeast Brettanomyces naardenensis CBS 7540. Microorganisms 2019; 7:microorganisms7110489. [PMID: 31717754 PMCID: PMC6921048 DOI: 10.3390/microorganisms7110489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 01/21/2023] Open
Abstract
Brettanomyces naardenensis is a spoilage yeast with potential for biotechnological applications for production of innovative beverages with low alcohol content and high attenuation degree. Here, we present the first annotated genome of B. naardenensis CBS 7540. The genome of B. naardenensis CBS 7540 was assembled into 76 contigs, totaling 11,283,072 nucleotides. In total, 5168 protein-coding sequences were annotated. The study provides functional genome annotation, phylogenetic analysis, and discusses genetic determinants behind notable stress tolerance and biotechnological potential of B. naardenensis.
Collapse
Affiliation(s)
- Ievgeniia A. Tiukova
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden;
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-75007 Uppsala, Sweden; (M.S.); (V.P.)
- Correspondence: ; Tel.: +46-31-772-3801
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
| | - Jacques Dainat
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 752 37 Uppsala, Sweden; (J.D.); (M.P.H.); (H.L.)
- National Bioinformatics Infrastructure Sweden (NBIS), 752 37 Uppsala, Sweden
| | - Marc P. Hoeppner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 752 37 Uppsala, Sweden; (J.D.); (M.P.H.); (H.L.)
- National Bioinformatics Infrastructure Sweden (NBIS), 752 37 Uppsala, Sweden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Henrik Lantz
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 752 37 Uppsala, Sweden; (J.D.); (M.P.H.); (H.L.)
- National Bioinformatics Infrastructure Sweden (NBIS), 752 37 Uppsala, Sweden
| | - Jure Piskur
- Department of Biology, Lund University, 223 62 Lund, Sweden;
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-75007 Uppsala, Sweden; (M.S.); (V.P.)
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden;
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA;
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-75007 Uppsala, Sweden; (M.S.); (V.P.)
| |
Collapse
|
12
|
Menoncin M, Bonatto D. Molecular and biochemical aspects ofBrettanomycesin brewing. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marcelo Menoncin
- Brewing Yeast Research Group, Biotechnology Center of the Federal University of Rio Grande do Sul, Department of Molecular Biology and Biotechnology; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Diego Bonatto
- Brewing Yeast Research Group, Biotechnology Center of the Federal University of Rio Grande do Sul, Department of Molecular Biology and Biotechnology; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| |
Collapse
|
13
|
Varela C, Lleixà J, Curtin C, Borneman A. Development of a genetic transformation toolkit for Brettanomyces bruxellensis. FEMS Yeast Res 2019; 18:5049007. [PMID: 29982550 DOI: 10.1093/femsyr/foy070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Brettanomyces bruxellensis is usually considered a spoilage microorganism, responsible for significant economic losses during the production of fermented beverages such as wine, beer and cider, though for some styles of beer its influence is essential. In recent years, the competitiveness of this yeast in bioethanol production processes has brought to attention its broader biotechnological potential. Furthermore, the species has evolved key fermentation traits in parallel with Saccharomyces cerevisiae. Attempts to better understand B. bruxellensis physiology through genomics-driven research have been hampered by a lack of functional genomics tools. Genetic transformation for B. bruxellensis has only been developed recently and with limited efficiency. Here we describe gene transformation cassettes tailored for B. bruxellensis, which provide multiple drug-resistant markers and the ability to tag B. bruxellensis with different fluorescent proteins. All marker cassettes resulted in increased transformation efficiency compared to the maximum reported in literature, with one cassette, TDH1p natMX, showing five times greater efficiency. Transformation cassettes encoding fluorescent proteins enabled discrimination between subpopulations of transformed B. bruxellensis cells by flow cytometry and fluorescent microscopy. Thus, the genetic transformation toolkit described here unlocks several molecular applications such as strain tagging, insertional mutagenesis and potentially targeted gene deletion.
Collapse
Affiliation(s)
- Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia
| | - Jessica Lleixà
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia.,Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, C/ Marcellí Domingo s/n, 43007 Tarragona, Spain
| | - Chris Curtin
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia
| | - Anthony Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia
| |
Collapse
|
14
|
Tiukova IA, Pettersson ME, Hoeppner MP, Olsen RA, Käller M, Nielsen J, Dainat J, Lantz H, Söderberg J, Passoth V. Chromosomal genome assembly of the ethanol production strain CBS 11270 indicates a highly dynamic genome structure in the yeast species Brettanomyces bruxellensis. PLoS One 2019; 14:e0215077. [PMID: 31042716 PMCID: PMC6493715 DOI: 10.1371/journal.pone.0215077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
Here, we present the genome of the industrial ethanol production strain Brettanomyces bruxellensis CBS 11270. The nuclear genome was found to be diploid, containing four chromosomes with sizes of ranging from 2.2 to 4.0 Mbp. A 75 Kbp mitochondrial genome was also identified. Comparing the homologous chromosomes, we detected that 0.32% of nucleotides were polymorphic, i.e. formed single nucleotide polymorphisms (SNPs), 40.6% of them were found in coding regions (i.e. 0.13% of all nucleotides formed SNPs and were in coding regions). In addition, 8,538 indels were found. The total number of protein coding genes was 4897, of them, 4,284 were annotated on chromosomes; and the mitochondrial genome contained 18 protein coding genes. Additionally, 595 genes, which were annotated, were on contigs not associated with chromosomes. A number of genes was duplicated, most of them as tandem repeats, including a six-gene cluster located on chromosome 3. There were also examples of interchromosomal gene duplications, including a duplication of a six-gene cluster, which was found on both chromosomes 1 and 4. Gene copy number analysis suggested loss of heterozygosity for 372 genes. This may reflect adaptation to relatively harsh but constant conditions of continuous fermentation. Analysis of gene topology showed that most of these losses occurred in clusters of more than one gene, the largest cluster comprising 33 genes. Comparative analysis against the wine isolate CBS 2499 revealed 88,534 SNPs and 8,133 indels. Moreover, when the scaffolds of the CBS 2499 genome assembly were aligned against the chromosomes of CBS 11270, many of them aligned completely, some have chunks aligned to different chromosomes, and some were in fact rearranged. Our findings indicate a highly dynamic genome within the species B. bruxellensis and a tendency towards reduction of gene number in long-term continuous cultivation.
Collapse
Affiliation(s)
- Ievgeniia A. Tiukova
- Chalmers University of Technology, Department of Biology and Biological Engineering, Systems and Synthetic Biology, Göteborg, Sweden
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Uppsala, Sweden
| | - Mats E. Pettersson
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| | - Marc P. Hoeppner
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Uppsala, Sweden
- Christian-Albrechts-University of Kiel, Institute of Clinical Molecular Biology, Kiel, Germany
| | - Remi-Andre Olsen
- Science for Life Laboratory, Division of Gene Technology, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - Max Käller
- Royal Institute of Technology, Biotechnology and Health, School of Engineering Sciences in Chemistry, SciLifeLab, Stockholm, Sweden
- Stockholm University, Department of Biochemistry and Biophysics, SciLifeLab, Stockholm, Sweden
| | - Jens Nielsen
- Chalmers University of Technology, Department of Biology and Biological Engineering, Systems and Synthetic Biology, Göteborg, Sweden
| | - Jacques Dainat
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Uppsala, Sweden
| | - Henrik Lantz
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Uppsala, Sweden
| | - Jonas Söderberg
- Uppsala University, Department of Cell and Molecular Biology, Molecular Evolution, Uppsala, Sweden
| | - Volkmar Passoth
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Uppsala, Sweden
| |
Collapse
|
15
|
De Roos J, De Vuyst L. Microbial acidification, alcoholization, and aroma production during spontaneous lambic beer production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:25-38. [PMID: 30246252 DOI: 10.1002/jsfa.9291] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/04/2018] [Accepted: 07/25/2018] [Indexed: 05/18/2023]
Abstract
Acidic beers, such as Belgian lambic beers and American and other coolship ales, are becoming increasingly popular worldwide thanks to their refreshing acidity and fruity notes. The traditional fermentation used to produce them does not apply pure yeast cultures but relies on spontaneous, environmental inoculation. The fermentation and maturation process is carried out in wooden barrels and can take up to three years. It is characterized by different microbial species belonging to the enterobacteria, acetic acid bacteria, lactic acid bacteria, and yeasts. This review provides an introduction to the technology and four fermentation strategies of beer production, followed by the microbiology of acidic beer production, focusing on the main microorganisms present during the long process used for the production of Belgian lambic beers. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonas De Roos
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
16
|
Peña-Moreno IC, Castro Parente D, da Silva JM, Andrade Mendonça A, Rojas LAV, de Morais Junior MA, de Barros Pita W. Nitrate boosts anaerobic ethanol production in an acetate-dependent manner in the yeast Dekkera bruxellensis. J Ind Microbiol Biotechnol 2018; 46:209-220. [PMID: 30539327 DOI: 10.1007/s10295-018-2118-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022]
Abstract
In the past few years, the yeast Dekkera bruxellensis has gained much of attention among the so-called non-conventional yeasts for its potential in the biotechnological scenario, especially in fermentative processes. This yeast has been regarded as an important competitor to Saccharomyces cerevisiae in bioethanol production plants in Brazil and several studies have reported its capacity to produce ethanol. However, our current knowledge concerning D. bruxellensis is restricted to its aerobic metabolism, most likely because wine and beer strains cannot grow in full anaerobiosis. Hence, the present work aimed to fulfil a gap regarding the lack of information on the physiology of Dekkera bruxellensis growing in the complete absence of oxygen and the relationship with assimilation of nitrate as nitrogen source. The ethanol strain GDB 248 was fully capable of growing anaerobically and produces ethanol at the same level of S. cerevisiae. The presence of nitrate in the medium increased this capacity. Moreover, nitrate is consumed faster than ammonium and this increased rate coincided with a higher speed of glucose consumption. The profile of gene expression helped us to figure out that even in anaerobiosis, the presence of nitrate drives the yeast cells to an oxidative metabolism that ultimately incremented both biomass and ethanol production. These results finally provide the clues to explain most of the success of this yeast in industrial processes of ethanol production.
Collapse
Affiliation(s)
| | - Denise Castro Parente
- Department of Genetics, Federal University of Pernambuco, Recife, PE, 50760-901, Brazil
| | | | | | | | | | - Will de Barros Pita
- Department of Antibiotics, Federal University of Pernambuco, Recife, PE, 50760-901, Brazil.
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Avenida Professor Artur de Sá, Cidade Universitária, 50740520, Recife, PE, Brazil.
| |
Collapse
|
17
|
Serra Colomer M, Funch B, Forster J. The raise of Brettanomyces yeast species for beer production. Curr Opin Biotechnol 2018; 56:30-35. [PMID: 30173102 DOI: 10.1016/j.copbio.2018.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
The adequate application of Brettanomyces species could raise a potential opportunity for the beer industry, generating new products and optimizing production processes. Several valuable properties like high ethanol yield, tolerance to low pH and production of unique flavors have brought this yeast species into the spotlight. Aroma and flavor production of Brettanomyces in beer is currently under discussion, and it can be adjusted if the mechanism insights are understood. This review summarizes the recent findings in physiological, genetic and biochemical traits related to the application of Brettanomyces species for brewing.
Collapse
Affiliation(s)
- Marc Serra Colomer
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Birgitte Funch
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Jochen Forster
- Carlsberg Research Laboratory, Carlsberg A/S, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| |
Collapse
|
18
|
Godoy L, Silva-Moreno E, Mardones W, Guzman D, Cubillos FA, Ganga A. Genomics Perspectives on Metabolism, Survival Strategies, and Biotechnological Applications of Brettanomyces bruxellensis LAMAP2480. J Mol Microbiol Biotechnol 2017; 27:147-158. [PMID: 28595177 DOI: 10.1159/000471924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/22/2017] [Indexed: 01/28/2023] Open
Abstract
Wine production is an important commercial issue for the liquor industry. The global production was estimated at 275.7 million hectoliters in 2015. The loss of wine production due to Brettanomyces bruxellensis contamination is currently a problem. This yeast causes a "horse sweat" flavor in wine, which is an undesired organoleptic attribute. To date, 6 B. bruxellensis annotated genome sequences are available (LAMAP2480, AWRI1499, AWRI1608, AWRI1613, ST05.12/22, and CBS2499), and whole genome comparisons between strains are limited. In this article, we reassembled and reannotated the genome of B. bruxellensis LAMAP2480, obtaining a 27-Mb assembly with 5.5 kb of N50. In addition, the genome of B. bruxellensis LAMAP2480 was analyzed in the context of spoilage yeast and potential as a biotechnological tool. In addition, we carried out an exploratory transcriptomic analysis of this strain grown in synthetic wine. Several genes related to stress tolerance, micronutrient acquisition, ethanol production, and lignocellulose assimilation were found. In conclusion, the analysis of the genome of B. bruxellensis LAMAP2480 reaffirms the biotechnological potential of this strain. This research represents an interesting platform for the study of the spoilage yeast B. bruxellensis.
Collapse
Affiliation(s)
- Liliana Godoy
- Laboratorio de Microbiología Aplicada y Biotecnología, Departamento en Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | | | | | | | | | | |
Collapse
|
19
|
Comparative transcriptome assembly and genome-guided profiling for Brettanomyces bruxellensis LAMAP2480 during p-coumaric acid stress. Sci Rep 2016; 6:34304. [PMID: 27678167 PMCID: PMC5039629 DOI: 10.1038/srep34304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/07/2016] [Indexed: 11/08/2022] Open
Abstract
Brettanomyces bruxellensis has been described as the main contaminant yeast in wine production, due to its ability to convert the hydroxycinnamic acids naturally present in the grape phenolic derivatives, into volatile phenols. Currently, there are no studies in B. bruxellensis which explains the resistance mechanisms to hydroxycinnamic acids, and in particular to p-coumaric acid which is directly involved in alterations to wine. In this work, we performed a transcriptome analysis of B. bruxellensis LAMAP248rown in the presence and absence of p-coumaric acid during lag phase. Because of reported genetic variability among B. bruxellensis strains, to complement de novo assembly of the transcripts, we used the high-quality genome of B. bruxellensis AWRI1499, as well as the draft genomes of strains CBS2499 and0 g LAMAP2480. The results from the transcriptome analysis allowed us to propose a model in which the entrance of p-coumaric acid to the cell generates a generalized stress condition, in which the expression of proton pump and efflux of toxic compounds are induced. In addition, these mechanisms could be involved in the outflux of nitrogen compounds, such as amino acids, decreasing the overall concentration and triggering the expression of nitrogen metabolism genes.
Collapse
|
20
|
Kranjc L, Čadež N, Šergan M, Gjuračić K, Raspor P. Physiological profiles relevant for novel alcoholic beverage design amongDekkera bruxellensisstrains from different provenances. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luka Kranjc
- Faculty of Health Sciences; University of Primorska, Polje 42; 6310 Izola Slovenia
- Department of Food Science and Technology, Biotechnical Faculty; University of Ljubljana, Jamnikarjeva 101; 1000 Ljubljana Slovenia
| | - Neža Čadež
- Department of Food Science and Technology, Biotechnical Faculty; University of Ljubljana, Jamnikarjeva 101; 1000 Ljubljana Slovenia
| | - Matej Šergan
- Department of Food Science and Technology, Biotechnical Faculty; University of Ljubljana, Jamnikarjeva 101; 1000 Ljubljana Slovenia
| | | | | |
Collapse
|
21
|
Smith BD, Divol B. Brettanomyces bruxellensis, a survivalist prepared for the wine apocalypse and other beverages. Food Microbiol 2016; 59:161-75. [PMID: 27375257 DOI: 10.1016/j.fm.2016.06.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
Brettanomyces bruxellensis is a common red wine spoilage yeast. Yet, in addition to wine, it has been isolated from other ecological niches that are just as nutritionally deficient as wine. B. bruxellensis can therefore be regarded as a survivor, well adapted to colonise harsh environments not often inhabited by other yeasts. This review is focused on the nutritional requirements of B. bruxellensis and the relevance thereof for its adaptation to the different matrices within which it occurs. Furthermore, the environmental conditions necessary (e.g. aerobic or anaerobic conditions) for the assimilation of the carbon or nitrogenous sources are discussed in this review. From literature, several confusing inconsistencies, regarding nutritional sources necessary for B. bruxellensis survival, in these specialist ecological niches are evidenced. The main focus of this review is wine but other products and niches that B. bruxellensis inhabits namely beer, cider, fruit juices and bioethanol production plants are also considered. This review highlights the lack of knowledge regarding B. bruxellensis when considering its nutritional requirements in comparison to Saccharomyces cerevisiae. However, there is a large enough body of evidence showing that the nutritional needs of B. bruxellensis are meagre, explaining its ability to colonise harsh environments.
Collapse
Affiliation(s)
- Brendan D Smith
- Institute of Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Benoit Divol
- Institute of Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
22
|
Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts. PLoS One 2016; 11:e0155140. [PMID: 27152421 PMCID: PMC4859550 DOI: 10.1371/journal.pone.0155140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/25/2016] [Indexed: 11/19/2022] Open
Abstract
Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya). However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD) but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase) function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage.
Collapse
|
23
|
Schifferdecker AJ, Siurkus J, Andersen MR, Joerck-Ramberg D, Ling Z, Zhou N, Blevins JE, Sibirny AA, Piškur J, Ishchuk OP. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast. Appl Microbiol Biotechnol 2016; 100:3219-31. [PMID: 26743658 PMCID: PMC4786601 DOI: 10.1007/s00253-015-7266-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/13/2015] [Accepted: 12/19/2015] [Indexed: 01/05/2023]
Abstract
Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the “Custer effect”. Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.
Collapse
Affiliation(s)
| | - Juozas Siurkus
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Dorte Joerck-Ramberg
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Zhihao Ling
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - Nerve Zhou
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - James E Blevins
- Consulting statistician, Pinnmöllevägen 48, SE-24755, Dalby, Sweden
| | - Andriy A Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv, 79005, Ukraine.,Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowizca 4, Rzeszow, 35-601, Poland
| | - Jure Piškur
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - Olena P Ishchuk
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden.
| |
Collapse
|
24
|
Blomqvist J, Passoth V. Dekkera bruxellensis--spoilage yeast with biotechnological potential, and a model for yeast evolution, physiology and competitiveness. FEMS Yeast Res 2015; 15:fov021. [PMID: 25956542 DOI: 10.1093/femsyr/fov021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 02/04/2023] Open
Abstract
Dekkera bruxellensis is a non-conventional yeast normally considered a spoilage organism in wine (off-flavours) and in the bioethanol industry. But it also has potential as production yeast. The species diverged from Saccharomyces cerevisiae 200 mya, before the whole genome duplication. However, it displays similar characteristics such as being Crabtree- and petite positive, and the ability to grow anaerobically. Partial increases in ploidy and promoter rewiring may have enabled evolution of the fermentative lifestyle in D. bruxellensis. On the other hand, it has genes typical for respiratory yeasts, such as for complex I or the alternative oxidase AOX1. Dekkera bruxellensis grows more slowly than S. cerevisiae, but produces similar or greater amounts of ethanol, and very low amounts of glycerol. Glycerol production represents a loss of energy but also functions as a redox sink for NADH formed during synthesis of amino acids and other compounds. Accordingly, anaerobic growth required addition of certain amino acids. In spite of its slow growth, D. bruxellensis outcompeted S. cerevisiae in glucose-limited cultures, indicating a more efficient energy metabolism and/or higher affinity for glucose. This review tries to summarize the latest discoveries about evolution, physiology and metabolism, and biotechnological potential of D. bruxellensis.
Collapse
Affiliation(s)
- Johanna Blomqvist
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Volkmar Passoth
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7025, 750 07 Uppsala, Sweden
| |
Collapse
|
25
|
Dashko S, Zhou N, Tinta T, Sivilotti P, Lemut MS, Trost K, Gamero A, Boekhout T, Butinar L, Vrhovsek U, Piskur J. Use of non-conventional yeast improves the wine aroma profile of Ribolla Gialla. J Ind Microbiol Biotechnol 2015; 42:997-1010. [PMID: 25903098 DOI: 10.1007/s10295-015-1620-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/10/2015] [Indexed: 12/23/2022]
Abstract
Consumer wine preferences are changing rapidly towards exotic flavours and tastes. In this work, we tested five non-conventional yeast strains for their potential to improve Ribolla Gialla wine quality. These strains were previously selected from numerous yeasts interesting as food production candidates. Sequential fermentation of Ribolla Gialla grape juice with the addition of the Saccharomyces cerevisiae T73 Lalvin industrial strain was performed. Zygosaccharomyces kombuchaensis CBS8849 and Kazachstania gamospora CBS10400 demonstrated positive organoleptic properties and suitable fermentation dynamics, rapid sugar consumption and industrial strain compatibility. At the same time, Torulaspora microellipsoides CBS6641, Dekkera bruxellensis CBS2796 and Dekkera anomala CBS77 were unsuitable for wine production because of poor fermentation dynamics, inefficient sugar consumption and ethanol production levels and major organoleptic defects. Thus, we selected strains of K. gamospora and Z. kombuchaensis that significantly improved the usually plain taste of Ribolla wine by providing additional aromatic complexity in a controlled and reproducible manner.
Collapse
Affiliation(s)
- Sofia Dashko
- University of Nova Gorica, Glavni Trg 8, SI 5271, Vipava, Slovenia,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Steensels J, Daenen L, Malcorps P, Derdelinckx G, Verachtert H, Verstrepen KJ. Brettanomyces yeasts--From spoilage organisms to valuable contributors to industrial fermentations. Int J Food Microbiol 2015; 206:24-38. [PMID: 25916511 DOI: 10.1016/j.ijfoodmicro.2015.04.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/23/2015] [Accepted: 04/03/2015] [Indexed: 12/13/2022]
Abstract
Ever since the introduction of controlled fermentation processes, alcoholic fermentations and Saccharomyces cerevisiae starter cultures proved to be a match made in heaven. The ability of S. cerevisiae to produce and withstand high ethanol concentrations, its pleasant flavour profile and the absence of health-threatening toxin production are only a few of the features that make it the ideal alcoholic fermentation organism. However, in certain conditions or for certain specific fermentation processes, the physiological boundaries of this species limit its applicability. Therefore, there is currently a strong interest in non-Saccharomyces (or non-conventional) yeasts with peculiar features able to replace or accompany S. cerevisiae in specific industrial fermentations. Brettanomyces (teleomorph: Dekkera), with Brettanomyces bruxellensis as the most commonly encountered representative, is such a yeast. Whilst currently mainly considered a spoilage organism responsible for off-flavour production in wine, cider or dairy products, an increasing number of authors report that in some cases, these yeasts can add beneficial (or at least interesting) aromas that increase the flavour complexity of fermented beverages, such as specialty beers. Moreover, its intriguing physiology, with its exceptional stress tolerance and peculiar carbon- and nitrogen metabolism, holds great potential for the production of bioethanol in continuous fermentors. This review summarizes the most notable metabolic features of Brettanomyces, briefly highlights recent insights in its genetic and genomic characteristics and discusses its applications in industrial fermentation processes, such as the production of beer, wine and bioethanol.
Collapse
Affiliation(s)
- Jan Steensels
- Laboratory for Genetics and Genomics, Department of Microbial and Molecular Systems (M(2)S), Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Luk Daenen
- AB-InBev SA/NV, Brouwerijplein 1, B-3000 Leuven, Belgium
| | | | - Guy Derdelinckx
- Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M(2)S), LFoRCe, KU Leuven, Kasteelpark Arenberg 33, 3001 Leuven, Belgium
| | - Hubert Verachtert
- Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M(2)S), LFoRCe, KU Leuven, Kasteelpark Arenberg 33, 3001 Leuven, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Department of Microbial and Molecular Systems (M(2)S), Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium.
| |
Collapse
|
27
|
Tiukova IA, de Barros Pita W, Sundell D, Haddad Momeni M, Horn SJ, Ståhlberg J, de Morais MA, Passoth V. Adaptation of Dekkera bruxellensis to lignocellulose-based substrate. Biotechnol Appl Biochem 2014; 61:51-7. [PMID: 23941546 DOI: 10.1002/bab.1145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/18/2013] [Indexed: 11/10/2022]
Abstract
Adaptation of Dekkera bruxellensis to lignocellulose hydrolysate was investigated. Cells of D. bruxellensis were grown for 72 and 192 H in batch and continuous culture, respectively (adapted cells). Cultivations in semisynthetic medium were run as controls (nonadapted cells). To test the adaptation, cells from these cultures were reinoculated in the lignocellulose medium, and growth and ethanol production characteristics were monitored. Cells adapted to lignocellulose hydrolysate had a shorter lag phase, grew faster, and produced a higher ethanol concentration as compared with nonadapted cells. A stability test showed that after cultivation in rich medium, cells partially lost the adapted phenotype but still showed faster growth and higher ethanol production as compared with nonadapted cells. Because alcohol dehydrogenase genes have been described to be involved in the adaptation to furfural in Saccharomyces cerevisiae, an analogous mechanism of adaptation to lignocelluloses hydrolysate of D. bruxellensis was hypothesized. However, gene expression analysis showed that genes homologous to S. cerevisiae ADH1 were not involved in the adaptation to lignocelluloses hydrolysate in D. bruxellensis.
Collapse
Affiliation(s)
- Ievgeniia A Tiukova
- Uppsala Biocenter, Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025750 07, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Curtin CD, Pretorius IS. Genomic insights into the evolution of industrial yeast species Brettanomyces bruxellensis. FEMS Yeast Res 2014; 14:997-1005. [PMID: 25142832 DOI: 10.1111/1567-1364.12198] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/13/2014] [Indexed: 12/14/2022] Open
Abstract
Brettanomyces bruxellensis, like its wine yeast counterpart Saccharomyces cerevisiae, is intrinsically linked with industrial fermentations. In wine, B. bruxellensis is generally considered to contribute negative influences on wine quality, whereas for some styles of beer, it is an essential contributor. More recently, it has shown some potential for bioethanol production. Our relatively poor understanding of B. bruxellensis biology, at least when compared with S. cerevisiae, is partly due to a lack of laboratory tools. As it is a nonmodel organism, efforts to develop methods for sporulation and transformation have been sporadic and largely unsuccessful. Recent genome sequencing efforts are now providing B. bruxellensis researchers unprecedented access to gene catalogues, the possibility of performing transcriptomic studies and new insights into evolutionary drivers. This review summarises these findings, emphasises the rich data sets already available yet largely unexplored and looks over the horizon at what might be learnt soon through comprehensive population genomics of B. bruxellensis and related species.
Collapse
|
29
|
Schifferdecker AJ, Dashko S, Ishchuk OP, Piškur J. The wine and beer yeast Dekkera bruxellensis. Yeast 2014; 31:323-32. [PMID: 24932634 PMCID: PMC4257070 DOI: 10.1002/yea.3023] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/19/2014] [Accepted: 06/02/2014] [Indexed: 11/26/2022] Open
Abstract
Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.
Collapse
|