1
|
Jeon C, Kim D, Kim KM, Lee SH, Lee JH, Kim SH, Kim JS, Kang YM, Jo S, Kim TH, Son CN. Complement factor H-related protein 5 alleviates joint inflammation and osteoclast differentiation by disrupting RANK-JNK signaling in collagen antibody-induced arthritis mouse model. Cytokine 2024; 184:156790. [PMID: 39461285 DOI: 10.1016/j.cyto.2024.156790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Complement Factor H-Related protein 5 (CFHR5) belongs to the factor H/CFHR family and regulates the complement system by modulating factor H's inhibitory activity against C3b. Despite its known role, the impact of CFHR5 on autoimmune arthritis and its relationship to pathophysiological changes in arthritis and bone loss remain unclear. This study aimed to assess the effect of CFHR5 on aggressive osteoclast activity and arthritis using a murine model of collagen antibody-induced arthritis (CAIA). METHODS The effect of recombinant CFHR5 protein (rCFHR5) on arthritis were evaluated in CAIA. The mice were divided into three group and intraperitoneally treated with rCFHR5, methotrexate (MTX) as positive control or PBS as negative control. In the CAIA mouse model, the rCFHR5-treated group significantly reduced the incidence and clinical arthritis equivalent to the MTX group. Clinical arthritis scores, incidence and body weight were measured, and histological analysis of ankle joints was performed by Hematoxylin and Eosin (H&E) and Safranin O - Fast green (SOFG), Tartrate-resistant acid phosphatase (TRAP) staining and Immunohistochemistry. Moreover, to investigate the rCFHR5 role, we isolated murine osteoclast precursor cells (OCPs) from each group, induced osteoclasts with M-CSF and RANKL, and performed TRAP and F-actin staining. To verify the mechanism, mRNA and protein analyses were performed in OCPs. RESULTS Histological examination of ankle joints revealed substantial reductions in synovial hyperplasia, bone marrow inflammation, bone erosion, cartilage destruction and TRAP-positive cells in the rCFHR5 group compared to the vehicle group. The ankle joints of the rCFHR5 group showed markedly decreased expression of proinflammatory cytokines (TNF-α, IL-1β and IL-6). Mechanically, treatment with rCFHR5 inhibited RANKL-mediated osteoclast differentiation from OCPs and disrupted the RANK-JNK signaling. These findings demonstrate that treatment with rCFHR5 attenuates joint inflammation and reduces osteoclast differentiation, indicating its potential anti-inflammatory effect in autoimmune arthritis models.
Collapse
Affiliation(s)
- Chanhyeok Jeon
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, Republic of Korea; Deparment of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dongju Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, Republic of Korea; Deparment of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Kyung-Me Kim
- Department of Rheumatology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Republic of Korea; Eulji Rheumatology Research Institute, Eulji University, Uijeongbu, Republic of Korea
| | - Seung Hoon Lee
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, Republic of Korea
| | - Ji-Hyun Lee
- Department of Rheumatology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Republic of Korea; Eulji Rheumatology Research Institute, Eulji University, Uijeongbu, Republic of Korea
| | - Sang-Hyon Kim
- Division of Rheumatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Mo Kang
- Preclina Inc, Incheon, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sungsin Jo
- Department of Biology, Soonchunhyang University, Asan, Republic of Korea.
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, Republic of Korea; Deparment of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea; Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea.
| | - Chang-Nam Son
- Department of Rheumatology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Republic of Korea; Eulji Rheumatology Research Institute, Eulji University, Uijeongbu, Republic of Korea.
| |
Collapse
|
2
|
Tao S, Yu H, You T, Kong X, Wei X, Zheng Z, Zheng L, Feng Z, Huang B, Zhang X, Chen F, Chen X, Song H, Li J, Chen B, Chen J, Yao Q, Zhao F. A Dual-Targeted Metal-Organic Framework Based Nanoplatform for the Treatment of Rheumatoid Arthritis by Restoring the Macrophage Niche. ACS NANO 2023. [PMID: 37429012 DOI: 10.1021/acsnano.3c03828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Inflammatory infiltration and bone destruction are important pathological features of rheumatoid arthritis (RA), which originate from the disturbed niche of macrophages. Here, we identified a niche-disrupting process in RA: due to overactivation of complement, the barrier function of VSIg4+ lining macrophages is disrupted and mediates inflammatory infiltration within the joint, thereby activating excessive osteoclastogenesis and bone resorption. However, complement antagonists have poor biological applications due to superphysiologic dose requirements and inadequate effects on bone resorption. Therefore, we developed a dual-targeted therapeutic nanoplatform based on the MOF framework to achieve bone-targeted delivery of the complement inhibitor CRIg-CD59 and pH-responsive sustained release. The surface-mineralized zoledronic acid (ZA) of ZIF8@CRIg-CD59@HA@ZA targets the skeletal acidic microenvironment in RA, and the sustained release of CRIg-CD59 can recognize and prevent the complement membrane attack complex (MAC) from forming on the surface of healthy cells. Importantly, ZA can inhibit osteoclast-mediated bone resorption, and CRIg-CD59 can promote the repair of the VSIg4+ lining macrophage barrier to achieve sequential niche remodeling. This combination therapy is expected to treat RA by reversing the core pathological process, circumventing the pitfalls of traditional therapy.
Collapse
Affiliation(s)
- Siyue Tao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Hao Yu
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang, China
| | - Tao You
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Xiangxi Kong
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Xiaoan Wei
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Zeyu Zheng
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Lin Zheng
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Zhenhua Feng
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Bao Huang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Xuyang Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Feng Chen
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Xiao Chen
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Haixin Song
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Jie Li
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, 315100 Zhejiang, China
| | - Binhui Chen
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, 315100 Zhejiang, China
| | - Jian Chen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
- Department of Orthopedic Surgery, Wenzhou Medical University First Affiliated Hospital, Wenzhou, 325000 Zhejiang, China
| | - Qingqing Yao
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang, China
| | - Fengdong Zhao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
- Department of Orthopedic Surgery, Wenzhou Medical University First Affiliated Hospital, Wenzhou, 325000 Zhejiang, China
| |
Collapse
|
3
|
Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmun Rev 2022; 21:103104. [PMID: 35452851 DOI: 10.1016/j.autrev.2022.103104] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
The presence of autoantibodies directed against the muscle nicotinic acetylcholine receptor (AChR) is the most common cause of myasthenia gravis (MG). These antibodies damage the postsynaptic membrane of the neuromuscular junction and cause muscle weakness by depleting AChRs and thus impairing synaptic transmission. As one of the best-characterized antibody-mediated autoimmune diseases, AChR-MG has often served as a reference model for other autoimmune disorders. Classical pharmacological treatments, including broad-spectrum immunosuppressive drugs, are effective in many patients. However, complete remission cannot be achieved in all patients, and 10% of patients do not respond to currently used therapies. This may be attributed to production of autoantibodies by long-lived plasma cells which are resistant to conventional immunosuppressive drugs. Hence, novel therapies specifically targeting plasma cells might be a suitable therapeutic approach for selected patients. Additionally, in order to reduce side effects of broad-spectrum immunosuppression, targeted immunotherapies and symptomatic treatments will be required. This review presents established therapies as well as novel therapeutic approaches for MG and related conditions, with a focus on AChR-MG.
Collapse
|
4
|
Khella CM, Horvath JM, Asgarian R, Rolauffs B, Hart ML. Anti-Inflammatory Therapeutic Approaches to Prevent or Delay Post-Traumatic Osteoarthritis (PTOA) of the Knee Joint with a Focus on Sustained Delivery Approaches. Int J Mol Sci 2021; 22:8005. [PMID: 34360771 PMCID: PMC8347094 DOI: 10.3390/ijms22158005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation plays a central role in the pathogenesis of knee PTOA after knee trauma. While a comprehensive therapy capable of preventing or delaying post-traumatic osteoarthritis (PTOA) progression after knee joint injury does not yet clinically exist, current literature suggests that certain aspects of early post-traumatic pathology of the knee joint may be prevented or delayed by anti-inflammatory therapeutic interventions. We discuss multifaceted therapeutic approaches that may be capable of effectively reducing the continuous cycle of inflammation and concomitant processes that lead to cartilage degradation as well as those that can simultaneously promote intrinsic repair processes. Within this context, we focus on early disease prevention, the optimal timeframe of treatment and possible long-lasting sustained delivery local modes of treatments that could prevent knee joint-associated PTOA symptoms. Specifically, we identify anti-inflammatory candidates that are not only anti-inflammatory but also anti-degenerative, anti-apoptotic and pro-regenerative.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs—University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (J.M.H.); (R.A.); (B.R.)
| |
Collapse
|
5
|
Galindo-Izquierdo M, Pablos Alvarez JL. Complement as a Therapeutic Target in Systemic Autoimmune Diseases. Cells 2021; 10:cells10010148. [PMID: 33451011 PMCID: PMC7828564 DOI: 10.3390/cells10010148] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
The complement system (CS) includes more than 50 proteins and its main function is to recognize and protect against foreign or damaged molecular components. Other homeostatic functions of CS are the elimination of apoptotic debris, neurological development, and the control of adaptive immune responses. Pathological activation plays prominent roles in the pathogenesis of most autoimmune diseases such as systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, dermatomyositis, and ANCA-associated vasculitis. In this review, we will review the main rheumatologic autoimmune processes in which complement plays a pathogenic role and its potential relevance as a therapeutic target.
Collapse
|
6
|
Chen Y, Shao S, Huang J, Gu Y, Cheng Y, Zhu X. Therapeutic Efficacy of a Trichinella Spiralis Paramyosin-Derived Peptide Modified With a Membrane-Targeting Signal in Mice With Antigen-Induced Arthritis. Front Microbiol 2020; 11:608380. [PMID: 33424810 PMCID: PMC7785802 DOI: 10.3389/fmicb.2020.608380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Helminth-derived molecules have the ability to modulate the host immune system. Our previous study identified a tetradecapeptide derived from Trichinella spiralis paramyosin (Ts-pmy) that could bind to human complement component C9 to inhibit its polymerization, making the peptide a candidate therapeutic agent for complement-related immune disorders. Here, the peptide underwent an N-terminal modification with a membrane-targeting signal (a unique myristoylated peptide) to improve its therapeutic efficacy. We found that the modified peptide had a binding affinity to human C9 that was similar to that of the original peptide, as confirmed by microscale thermophoresis assays. The binding of the modified peptide to human C9 resulted in the inhibition of C9-related complement activation, as reflected by the decreased Zn2+-induced C9 polymerization and the decreased C9-dependent lysis of rabbit erythrocytes. In addition, the original and modified peptides could both bind to recombinant mouse C9 and inhibit the C9-dependent lysis of rabbit erythrocytes in normal mouse serum (NMS), which meant that the peptides could cross the species barrier to inhibit complement activity in mice. Further in vitro and in vivo analyses confirmed that the peptide modification increased the retention time of the peptide. Furthermore, intraarticular injection of the modified peptide markedly ameliorated knee swelling and joint damage in mice with antigen-induced arthritis (AIA), as assessed histologically. These results suggested that the Ts-pmy-derived peptide modified with a membrane-targeting signal was a reasonable candidate therapeutic agent for membrane attack complex (MAC)-related diseases [such as rheumatoid arthritis (RA)] and the study presented a new modification method to improve the potential therapeutic effects of the peptide.
Collapse
Affiliation(s)
- Yi Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuai Shao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuan Gu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuli Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Bordron A, Bagacean C, Tempescul A, Berthou C, Bettacchioli E, Hillion S, Renaudineau Y. Complement System: a Neglected Pathway in Immunotherapy. Clin Rev Allergy Immunol 2020; 58:155-171. [PMID: 31144209 DOI: 10.1007/s12016-019-08741-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Approved for the treatment of autoimmune diseases, hematological malignancies, and solid cancers, several monoclonal antibodies (mAb) make use of complement in their mechanism of action. Such an assessment is based on comprehensive investigations that used mouse models, in vitro studies, and analyses from patients at initiation (basal level to highlight deficiencies) and after treatment initiation (mAb impact on complement), which have further provided key insights into the importance of the complement activation and/or complement deficiencies in mAb activity. Accordingly, new approaches can now be developed with the final objective of increasing the clinical efficacy of mAb. These improvements include (i) the concurrent administration of fresh frozen plasma during mAb therapy; (ii) mAb modifications such as immunoglobulin G subclass switching, Fc mutation, or IgG hexamerization to improve the fixation and activation of C1q; (iii) optimization of the target recognition to induce a higher complement-dependent cytotoxicity (CDC) and/or complement-dependant cellular cytotoxicity (CDCC); and (iv) the control of soluble and cellular complement inhibitors.
Collapse
Affiliation(s)
- Anne Bordron
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Cristina Bagacean
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | - Adrian Tempescul
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | - Christian Berthou
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | | | - Sophie Hillion
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHU de Brest, Brest, France
| | - Yves Renaudineau
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France. .,Laboratory of Immunology and Immunotherapy, CHU de Brest, Brest, France.
| |
Collapse
|
8
|
Baboci L, Capolla S, Di Cintio F, Colombo F, Mauro P, Dal Bo M, Argenziano M, Cavalli R, Toffoli G, Macor P. The Dual Role of the Liver in Nanomedicine as an Actor in the Elimination of Nanostructures or a Therapeutic Target. JOURNAL OF ONCOLOGY 2020; 2020:4638192. [PMID: 32184825 PMCID: PMC7060440 DOI: 10.1155/2020/4638192] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
The development of nanostructures for therapeutic purpose is rapidly growing, following the results obtained in vivo in animal models and in the clinical trials. Unfortunately, the potential therapeutic efficacy is not completely exploited, yet. This is mainly due to the fast clearance of the nanostructures in the body. Nanoparticles and the liver have a unique interaction because the liver represents one of the major barriers for drug delivery. This interaction becomes even more relevant and complex when the drug delivery strategies employing nanostructures are proposed for the therapy of liver diseases, such as hepatocellular carcinoma (HCC). In this case, the selective delivery of therapeutic nanoparticles to the tumor microenvironment collides with the tendency of nanostructures to be quickly eliminated by the organ. The design of a new therapeutic approach based on nanoparticles to treat HCC has to particularly take into consideration passive and active mechanisms to avoid or delay liver elimination and to specifically address cancer cells or the cancer microenvironment. This review will analyze the different aspects concerning the dual role of the liver, both as an organ carrying out a clearance activity for the nanostructures and as target for therapeutic strategies for HCC treatment.
Collapse
Affiliation(s)
- Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Federico Colombo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Prisca Mauro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Paolo Macor
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
9
|
Dapas B, Pozzato G, Zorzet S, Capolla S, Macor P, Scaggiante B, Coan M, Guerra C, Gnan C, Gattei V, Zanconati F, Grassi G. Effects of eEF1A1 targeting by aptamer/siRNA in chronic lymphocytic leukaemia cells. Int J Pharm 2020; 574:118895. [PMID: 31862491 DOI: 10.1016/j.ijpharm.2019.118895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The effectiveness of therapies for chronic lymphocytic leukemia (CLL), the most common leukemia in Western countries adults, can be improved via a deeper understanding of its molecular abnormalities. Whereas the isoforms of the eukaryotic elongation factor 1A (eEF1A1 and eEF1A2) are implicated in different tumors, no information are available in CLL. METHODS eEF1A1/eEF1A2 amounts were quantitated in the lymphocytes of 46 CLL patients vs normal control (real time PCR, western blotting). eEF1A1 role in CLL was investigated in a cellular (MEC-1) and animal model of CLL via its targeting by an aptamer (GT75) or a siRNA (siA1) delivered by electroporation (in vitro) or lipofection (in vivo). RESULTS eEF1A1/eEF1A2 were elevated in CLL lymphocytes vs control. eEF1A1 but not eEF1A2 levels were higher in patients which died during the study compared to those surviving. eEF1A1 targeting (GT75/siA1) resulted in MEC-1 viability reduction/autophagy stimulation and in vivo tumor growth down-regulation. CONCLUSIONS The increase of eEF1A1 in dead vs surviving patients may confer to eEF1A1 the role of a prognostic marker for CLL and possibly of a therapeutic target, given its involvement in MEC-1 survival. Specific aptamer/siRNA released by optimized delivery systems may allow the development of novel therapeutic options.
Collapse
Affiliation(s)
- Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Sonia Zorzet
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Sara Capolla
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Michela Coan
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Chiara Guerra
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Chiara Gnan
- Institute for Maternal and Child Health - "IRCCS Burlo Garofolo", Via dell'Istria, 65, 34137 Trieste, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Via Franco Gallini, 2, 33081 Aviano, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy.
| |
Collapse
|
10
|
Colombo F, Durigutto P, De Maso L, Biffi S, Belmonte B, Tripodo C, Oliva R, Bardini P, Marini GM, Terreno E, Pozzato G, Rampazzo E, Bertrand J, Feuerstein B, Javurek J, Havrankova J, Pitzalis C, Nuñez L, Meroni P, Tedesco F, Sblattero D, Macor P. Targeting CD34+ cells of the inflamed synovial endothelium by guided nanoparticles for the treatment of rheumatoid arthritis. J Autoimmun 2019; 103:102288. [DOI: 10.1016/j.jaut.2019.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/30/2022]
|
11
|
Nandakumar KS. Targeting IgG in Arthritis: Disease Pathways and Therapeutic Avenues. Int J Mol Sci 2018; 19:E677. [PMID: 29495570 PMCID: PMC5877538 DOI: 10.3390/ijms19030677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a polygenic and multifactorial syndrome. Many complex immunological and genetic interactions are involved in the final outcome of the clinical disease. Autoantibodies (rheumatoid factors, anti-citrullinated peptide/protein antibodies) are present in RA patients' sera for a long time before the onset of clinical disease. Prior to arthritis onset, in the autoantibody response, epitope spreading, avidity maturation, and changes towards a pro-inflammatory Fc glycosylation phenotype occurs. Genetic association of epitope specific autoantibody responses and the induction of inflammation dependent and independent changes in the cartilage by pathogenic autoantibodies emphasize the crucial contribution of antibody-initiated inflammation in RA development. Targeting IgG by glyco-engineering, bacterial enzymes to specifically cleave IgG/alter N-linked Fc-glycans at Asn 297 or blocking the downstream effector pathways offers new avenues to develop novel therapeutics for arthritis treatment.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
12
|
Durigutto P, Sblattero D, Biffi S, De Maso L, Garrovo C, Baj G, Colombo F, Fischetti F, Di Naro AF, Tedesco F, Macor P. Targeted Delivery of Neutralizing Anti-C5 Antibody to Renal Endothelium Prevents Complement-Dependent Tissue Damage. Front Immunol 2017; 8:1093. [PMID: 28932227 PMCID: PMC5592221 DOI: 10.3389/fimmu.2017.01093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/22/2017] [Indexed: 11/13/2022] Open
Abstract
Complement activation is largely implicated in the pathogenesis of several clinical conditions and its therapeutic neutralization has proven effective in preventing tissue and organ damage. A problem that still needs to be solved in the therapeutic control of complement-mediated diseases is how to avoid side effects associated with chronic neutralization of the complement system, in particular, the increased risk of infections. We addressed this issue developing a strategy based on the preferential delivery of a C5 complement inhibitor to the organ involved in the pathologic process. To this end, we generated Ergidina, a neutralizing recombinant anti-C5 human antibody coupled with a cyclic-RGD peptide, with a distinctive homing property for ischemic endothelial cells and effective in controlling tissue damage in a rat model of renal ischemia/reperfusion injury (IRI). As a result of its preferential localization on renal endothelium, the molecule induced complete inhibition of complement activation at tissue level, and local protection from complement-mediated tissue damage without affecting circulating C5. The ex vivo binding of Ergidina to surgically removed kidney exposed to cold ischemia supports its therapeutic use to prevent posttransplant IRI leading to delay of graft function. Moreover, the finding that the ex vivo binding of Ergidina was not restricted to the kidney, but was also seen on ischemic heart, suggests that this RGD-targeted anti-C5 antibody may represent a useful tool to treat organs prior to transplantation. Based on this evidence, we propose preliminary data showing that Ergidina is a novel targeted drug to prevent complement activation on the endothelium of ischemic kidney.
Collapse
Affiliation(s)
- Paolo Durigutto
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Stefania Biffi
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Luca De Maso
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Chiara Garrovo
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Gabriele Baj
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Federico Colombo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Fabio Fischetti
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, University of Trieste, Trieste, Italy
| | | | | | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
13
|
Trouw LA, Pickering MC, Blom AM. The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol 2017; 13:538-547. [DOI: 10.1038/nrrheum.2017.125] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Meniscal Ossicles as micro-CT Imaging Biomarker in a Rodent Model of Antigen-Induced Arthritis: a Synchrotron-Based X-ray Pilot Study. Sci Rep 2017; 7:7544. [PMID: 28790437 PMCID: PMC5548769 DOI: 10.1038/s41598-017-08025-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/05/2017] [Indexed: 12/05/2022] Open
Abstract
It is increasingly recognized that early detection of bone erosion plays an important role in the overall evaluation of rheumatoid arthritis and in the choice of the correct treatment approach. Since an appropriate use of imaging biomarkers in preclinical settings offers the prospect of smaller and optimized sample size, in the present study we define an anatomical imaging biomarker that could be objectively measured from micro-CT imaging data as an indicator of bone erosion in arthritis process. The well-characterized antigen-induced arthritis (AIA) model in rats was used. The animals were divided into 2 groups: arthritic disease control and arthritic having been administrated with the tumor necrosis factor alpha-blocking agent (Humira). Rats were sacrificed in the acute phase of AIA; peripheral blood and synovial tissue were collected for assessment of arthritis. Ex vivo micro-CT tomography of knee joints was performed at the Elettra synchrotron light source (Trieste, Italy). Overall, results from this study suggest that use of high-resolution micro-CT analysis coupled with meniscal ossicles bone parameters quantification provide a powerful combination to enhance data interpretation and assessment of disease-modifying drugs in an animal model of arthritis.
Collapse
|
15
|
Biffi S, Andolfi L, Caltagirone C, Garrovo C, Falchi AM, Lippolis V, Lorenzon A, Macor P, Meli V, Monduzzi M, Obiols-Rabasa M, Petrizza L, Prodi L, Rosa A, Schmidt J, Talmon Y, Murgia S. Cubosomes for in vivo fluorescence lifetime imaging. NANOTECHNOLOGY 2017; 28:055102. [PMID: 28032617 DOI: 10.1088/1361-6528/28/5/055102] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Herein we provided the first proof of principle for in vivo fluorescence optical imaging application using monoolein-based cubosomes in a healthy mouse animal model. This formulation, administered at a non-cytotoxic concentration, was capable of providing both exogenous contrast for NIR fluorescence imaging with very high efficiency and chemospecific information upon lifetime analysis. Time-resolved measurements of fluorescence after the intravenous injection of cubosomes revealed that the dye rapidly accumulated mainly in the liver, while lifetimes profiles obtained in vivo allowed for discriminating between free dye or dye embedded within the cubosome nanostructure after injection.
Collapse
Affiliation(s)
- Stefania Biffi
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Petitbarat M, Durigutto P, Macor P, Bulla R, Palmioli A, Bernardi A, De Simoni MG, Ledee N, Chaouat G, Tedesco F. Critical Role and Therapeutic Control of the Lectin Pathway of Complement Activation in an Abortion-Prone Mouse Mating. THE JOURNAL OF IMMUNOLOGY 2015; 195:5602-7. [DOI: 10.4049/jimmunol.1501361] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/14/2015] [Indexed: 11/19/2022]
|
17
|
Orlowsky EW, Kraus VB. The role of innate immunity in osteoarthritis: when our first line of defense goes on the offensive. J Rheumatol 2015; 42:363-71. [PMID: 25593231 PMCID: PMC4465583 DOI: 10.3899/jrheum.140382] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although osteoarthritis (OA) has existed since the dawn of humanity, its pathogenesis remains poorly understood. OA is no longer considered a "wear and tear" condition but rather one driven by proteases where chronic low-grade inflammation may play a role in perpetuating proteolytic activity. While multiple factors are likely active in this process, recent evidence has implicated the innate immune system, the older or more primitive part of the body's immune defense mechanisms. The roles of some of the components of the innate immune system have been tested in OA models in vivo including the roles of synovial macrophages and the complement system. This review is a selective overview of a large and evolving field. Insights into these mechanisms might inform our ability to identify patient subsets and give hope for the advent of novel OA therapies.
Collapse
Affiliation(s)
- Eric W Orlowsky
- From the Department of Medicine, Duke Molecular Physiology Institute, and the Division of Rheumatology, Duke University School of Medicine, Durham, North Carolina, USA.E.W. Orlowsky, MD, Postdoctoral Fellow, Division of Rheumatology, Duke University School of Medicine; V.B. Kraus, MD, PhD, Professor of Medicine, Department of Medicine, Duke Molecular Physiology Institute, and Division of Rheumatology, Duke University School of Medicine
| | - Virginia Byers Kraus
- From the Department of Medicine, Duke Molecular Physiology Institute, and the Division of Rheumatology, Duke University School of Medicine, Durham, North Carolina, USA.E.W. Orlowsky, MD, Postdoctoral Fellow, Division of Rheumatology, Duke University School of Medicine; V.B. Kraus, MD, PhD, Professor of Medicine, Department of Medicine, Duke Molecular Physiology Institute, and Division of Rheumatology, Duke University School of Medicine.
| |
Collapse
|
18
|
Melis JPM, Strumane K, Ruuls SR, Beurskens FJ, Schuurman J, Parren PWHI. Complement in therapy and disease: Regulating the complement system with antibody-based therapeutics. Mol Immunol 2015; 67:117-30. [PMID: 25697848 DOI: 10.1016/j.molimm.2015.01.028] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/23/2022]
Abstract
Complement is recognized as a key player in a wide range of normal as well as disease-related immune, developmental and homeostatic processes. Knowledge of complement components, structures, interactions, and cross-talk with other biological systems continues to grow and this leads to novel treatments for cancer, infectious, autoimmune- or age-related diseases as well as for preventing transplantation rejection. Antibodies are superbly suited to be developed into therapeutics with appropriate complement stimulatory or inhibitory activity. Here we review the design, development and future of antibody-based drugs that enhance or dampen the complement system.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul W H I Parren
- Genmab, Utrecht, The Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
19
|
Gracie R, Barcellos C, Magalhães M, Souza-Santos R, Barrocas PRG. Geographical scale effects on the analysis of leptospirosis determinants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:10366-83. [PMID: 25310536 PMCID: PMC4210984 DOI: 10.3390/ijerph111010366] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/03/2014] [Accepted: 09/10/2014] [Indexed: 01/03/2023]
Abstract
Leptospirosis displays a great diversity of routes of exposure, reservoirs, etiologic agents, and clinical symptoms. It occurs almost worldwide but its pattern of transmission varies depending where it happens. Climate change may increase the number of cases, especially in developing countries, like Brazil. Spatial analysis studies of leptospirosis have highlighted the importance of socioeconomic and environmental context. Hence, the choice of the geographical scale and unit of analysis used in the studies is pivotal, because it restricts the indicators available for the analysis and may bias the results. In this study, we evaluated which environmental and socioeconomic factors, typically used to characterize the risks of leptospirosis transmission, are more relevant at different geographical scales (i.e., regional, municipal, and local). Geographic Information Systems were used for data analysis. Correlations between leptospirosis incidence and several socioeconomic and environmental indicators were calculated at different geographical scales. At the regional scale, the strongest correlations were observed between leptospirosis incidence and the amount of people living in slums, or the percent of the area densely urbanized. At the municipal scale, there were no significant correlations. At the local level, the percent of the area prone to flooding best correlated with leptospirosis incidence.
Collapse
Affiliation(s)
- Renata Gracie
- FIOCRUZ, ICICT/LIS, Núcleo de Geoprocessamento, Avenida Brasil, 4365 Pavilhão Haity Moussatché, sala 231, Rio de Janeiro 21045-900, Brazil.
| | - Christovam Barcellos
- FIOCRUZ, ICICT/LIS, Núcleo de Geoprocessamento, Avenida Brasil, 4365 Pavilhão Hai ty Moussatché, sala 231- Manguinhos, Rio de Janeiro 21045-900, Brazil.
| | - Mônica Magalhães
- FIOCRUZ, ICICT/LIS, Núcleo de Geoprocessamento, Avenida Brasil, 4365 Pavilhão Hai ty Moussatché, sala 231- Manguinhos, Rio de Janeiro 21045-900, Brazil.
| | - Reinaldo Souza-Santos
- FIOCRUZ, ENSP/DENSP, Rua Leopoldo Bulhões, 1480 ENSP, sala 607-Manguinhos, Rio de Janeiro, ENSP 21041-210, Brazil.
| | | |
Collapse
|
20
|
Chen J, Zhang H, Zhou Z, Yang Z, Ding Y, Zhou Z, Zhong E, Arulanandam B, Baseman J, Zhong G. Chlamydial induction of hydrosalpinx in 11 strains of mice reveals multiple host mechanisms for preventing upper genital tract pathology. PLoS One 2014; 9:e95076. [PMID: 24736397 PMCID: PMC3988139 DOI: 10.1371/journal.pone.0095076] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/22/2014] [Indexed: 11/18/2022] Open
Abstract
The female lower genital tract is constantly exposed to microbial infection, some of which can ascend to and cause pathology such as hydrosalpinx in the upper genital tract, which can affect fertility. To understand host mechanisms for preventing upper genital tract pathology, we screened 11 inbred strains of mice for hydrosalpinx induction by C. muridarum. When examined on days 60 to 80 after intravaginal infection, the 11 strains fell into 3 groups based on their hydrosalpinx severity: CBA/J and SJL/J mice were highly susceptible with a hydrosalpinx score of 5 or greater; Balb/c, C57BL/6J, C57BL/10J, C3H/HeJ and C3H/HeN were susceptible with a score between 1 and <5; NOD/ShiLtJ, DBA/1J, DBA/2J and A/J were resistant with a score of <1. The diverse range of mouse susceptibility to hydrosalpinx induction may reflect the varied clinical outcomes of C. trachomatis-infected women. When the 11 strains were infected via an intrauterine inoculation to bypass the requirement for ascension, higher incidence and more severe hydrosalpinges were induced in most mice, indicating that the interaction between chlamydial ascension and host control of ascension is critical for determining susceptibility to hydrosalpinx development in many mice. However, a few mouse strains resisted significant exacerbation of hydrosalpinx by intrauterine infection, indicating that these mice have evolved ascension-independent mechanisms for preventing upper genital tract pathology. Together, the above observations have demonstrated that different strains of mice can prevent upper genital tract pathology by using different mechanisms.
Collapse
Affiliation(s)
- Jianlin Chen
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Departments of Obstetrics and Gynecology, Pathology and Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbo Zhang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Departments of Obstetrics and Gynecology, Pathology and Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhou Zhou
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Zhangsheng Yang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Yiling Ding
- Departments of Obstetrics and Gynecology, Pathology and Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Departments of Obstetrics and Gynecology, Pathology and Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Edward Zhong
- Department of Economics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bernard Arulanandam
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Joel Baseman
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Lack of long-lasting hydrosalpinx in A/J mice correlates with rapid but transient chlamydial ascension and neutrophil recruitment in the oviduct following intravaginal inoculation with Chlamydia muridarum. Infect Immun 2014; 82:2688-96. [PMID: 24711570 DOI: 10.1128/iai.00055-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lower genital tract infection with Chlamydia trachomatis and C. muridarum can induce long-lasting hydrosalpinx in the upper genital tract of women and female mice, respectively. However, A/J mice were highly resistant to induction of long-lasting hydrosalpinx by C. muridarum. We further compared host inflammatory responses and chlamydial infection courses between the hydrosalpinx-resistant A/J mice and CBA/J mice known to be susceptible to hydrosalpinx induction. Both mouse strains developed robust pyosalpinx during the acute phase followed by hydrosalpinx during the chronic phase. However, the hydrosalpinges disappeared in A/J mice by day 60 after infection, suggesting that some early hydrosalpinges are reversible. Although the overall inflammatory responses were indistinguishable between CBA/J and A/J mice, we found significantly more neutrophils in oviduct lumen of A/J mice on days 7 and 10, which correlated with a rapid but transient oviduct invasion by C. muridarum with a peak infection on day 7. In contrast, CBA/J mice developed a delayed and extensive oviduct infection. These comparisons have revealed an important role of the interactions of oviduct infection with inflammatory responses in chlamydial induction of long-lasting hydrosalpinx, suggesting that a rapid but transient invasion of oviduct by chlamydial organisms can prevent the development of the long-lasting hydrosalpinges.
Collapse
|
22
|
Poursharifi P, Lapointe M, Fisette A, Lu H, Roy C, Munkonda MN, Fairlie DP, Cianflone K. C5aR and C5L2 act in concert to balance immunometabolism in adipose tissue. Mol Cell Endocrinol 2014; 382:325-333. [PMID: 24397921 DOI: 10.1016/j.mce.2013.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/15/2013] [Indexed: 12/24/2022]
Abstract
Recent studies suggested that the immunometabolic receptors; C5aR and C5L2, constitutively self-associate into homo-/heterodimers and that acylation stimulating protein (ASP/C3adesArg) or C5a treatment of adipocytes increased their colocalization. The present study evaluates the C5aR contribution in adipocytes to the metabolic and immune responses elicited by ligand stimulation. The effects of C5a, ASP, and insulin on cytokine production, triglyceride synthesis (TGS), and key signaling pathways were evaluated in isolated primary adipocytes and cultured 3T3-L1 differentiated adipocytes. In addition, mRNA expression of IRS1 and PGC1α was compared in adipose tissue samples from WT vs. C5aRKO mice. Both C5a and ASP directly increased MCP-1 (238±4%; P<0.001, and 377±2% vs. basal 100%; P<0.001, respectively) and KC (413±11%; P<0.001, and 529±16%; P<0.001 vs. basal 100%, respectively) secretion, TGS (131±1%; P<0.001, and 152±6%; P<0.001, vs. basal 100% respectively), and Akt/NFκB phosphorylation pathways in adipocytes. However, in C5aRKO adipocytes, C5a effects were disrupted, while stimulatory effects of ASP were mostly maintained. Addition of C5a completely blocked ASP signaling and activity in both C5aRKO and WT adipocytes as well as 3T3-L1 adipocytes. Furthermore, C5aRKO adipocytes revealed impaired insulin stimulation of cytokine production, with partial impairment of signaling and TGS stimulation, consistent with decreased IRS1 and PGC1α mRNA expression in adipose tissue. These observations indicate the importance of C5aR in adipose tissue metabolism and immunity, which may be regulated through heterodimerization with C5L2.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada; Department of Medicine, Laval University, Québec, QC, Canada
| | - Marc Lapointe
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada
| | - Alexandre Fisette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada; Department of Medicine, Laval University, Québec, QC, Canada
| | - Huiling Lu
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada
| | - Christian Roy
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada; Department of Medicine, Laval University, Québec, QC, Canada
| | - Mercedes Nancy Munkonda
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada; Department of Medicine, Laval University, Québec, QC, Canada
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Katherine Cianflone
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada; Department of Medicine, Laval University, Québec, QC, Canada.
| |
Collapse
|