1
|
Wellawa DH, Lam PKS, White AP, Gomis S, Allan B, Köster W. High Affinity Iron Acquisition Systems Facilitate but Are Not Essential for Colonization of Chickens by Salmonella Enteritidis. Front Microbiol 2022; 13:824052. [PMID: 35308377 PMCID: PMC8928163 DOI: 10.3389/fmicb.2022.824052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/24/2022] [Indexed: 01/02/2023] Open
Abstract
The roles of TonB mediated Fe3+ (ferric iron) uptake via enterobactin (involving biosynthesis genes entABCDEF) and Fe2+ (ferrous iron) uptake through the FeoABC transporter are poorly defined in the context of chicken-Salmonella interactions. Both uptake systems are believed to be the major contributors of iron supply in the Salmonella life cycle. Current evidence suggests that these iron uptake systems play a major role in pathogenesis in mammals and as such, they represent promising antibacterial targets with therapeutic potential. We investigated the role of these iron uptake mechanisms regarding the ability of Salmonella Enteritidis (SEn) strains to colonize in a chicken infection model. Further we constructed a bioluminescent reporter to sense iron limitation during gastrointestinal colonization of Salmonella in chicken via ex vivo imaging. Our data indicated that there is some redundancy between the ferric and ferrous iron uptake mechanisms regarding iron acquisition during SEn pathogenesis in chicken. We believe that this redundancy of iron acquisition in the host reservoir may be the consequence of adaptation to unique avian environments, and thus warrants further investigation. To our knowledge, this the first report providing direct evidence that both enterobactin synthesis and FeoABC mediated iron uptake contribute to the virulence of SEn in chickens.
Collapse
Affiliation(s)
- Dinesh H Wellawa
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Po-King S Lam
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron P White
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brenda Allan
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Liu J, Liu B, Yuan P, Cheng L, Sun H, Gui J, Pan Y, Huang D, Chen H, Jiang L. Role of PKA/CREB/BDNF signaling in PM2.5-induced neurodevelopmental damage to the hippocampal neurons of rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112005. [PMID: 33640725 DOI: 10.1016/j.ecoenv.2021.112005] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 05/20/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is implicated in neurodevelopmental disorders including cognitive decline, attention-deficit/hyperactivity disorder, and autism spectrum disorder. However, the specific molecular mechanisms by which PM2.5 impacts neurodevelopment are poorly understood. Accordingly, in the present study, the role of protein kinase A (PKA)/cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling in PM2.5-induced neurodevelopmental damage was investigated using primary cultured hippocampal neurons. When hippocampal neurons cultured for 3 days in vitro (DIV3) were exposed to PM2.5 for 24 h and 96 h, neuronal viability decreased by 18.8% and 32.7% respectively, percentage of TUNEL-positive neurons increased by 78.5% and 64.0% separately, caspase-9 expression increased, lower postsynaptic density and shorter active zones were observed by transmission electron microscopy, expression of synapse-related proteins including postsynaptic density-95 (PSD95), growth associated protein-43 (GAP43), and synaptophysin (SYP) were decreased, and the phosphorylation levels of PKA, CREB, and BDNF expression also decreased. However, the PM2.5-induced neuronal damage could be ameliorated or aggravated to varying degrees by up- or down-regulation of the PKA/CREB/BDNF signaling pathway, respectively. Our results indicate that PM2.5 exposure exerts neurodevelopmental toxicity as indicated by lower viability, apoptosis, and synaptic damage in primary cultured hippocampal neurons, and that the PKA/CREB/BDNF pathways could play a vital role in PM2.5-mediated neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Benke Liu
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Ping Yuan
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Li Cheng
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Hong Sun
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Jianxiong Gui
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Yanan Pan
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Dishu Huang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Hengsheng Chen
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Li Jiang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China.
| |
Collapse
|
3
|
Acevedo-Villanueva KY, Lester B, Renu S, Han Y, Shanmugasundaram R, Gourapura R, Selvaraj R. Efficacy of chitosan-based nanoparticle vaccine administered to broiler birds challenged with Salmonella. PLoS One 2020; 15:e0231998. [PMID: 32330169 PMCID: PMC7182187 DOI: 10.1371/journal.pone.0231998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/04/2020] [Indexed: 01/14/2023] Open
Abstract
Two experiments were conducted to evaluate the immune response of broilers vaccinated with Salmonella chitosan-nanoparticle (CNP) vaccine and challenged with Salmonella. The Salmonella CNP vaccine was synthesized with Salmonella enterica outer membrane proteins (OMPs) and flagellin proteins. In Experiment I, birds were orally gavaged with PBS or 500, 1000, or 2000μg of CNP vaccine 1 and 7d-of-age. At 14d-of-age, birds were orally challenged with 1 X 105 CFU/bird of live S. Enteritidis (SE). Macrophage-nitrite production 11d-post-challenge was higher (P<0.05) in the 500μg group when compared to the control. At d14 (8h-post-challenge), broilers vaccinated with 1000μg CNP had higher (P<0.05) serum anti-OMPs IgG and IgA and cloacal anti-OMP IgA amounts. At 11d-post-challenge, birds vaccinated with 1000μg CNP vaccine had greater (P<0.05) bile anti-OMP and anti-flagellin IgA amounts. At 11d-post-challenge, birds administered 1000μg CNP vaccine has increased (P<0.05) IL-1β and IL-10 mRNA in cecal tonsils. In Experiment II, birds were orally gavaged with PBS or 1000μg CNP or a live commercial vaccine at 1 and 7d-of-age. At 14d-of-age, birds were orally challenged with 1 X 105 CFU/bird of live SE or S. Heidelberg (SH). Birds vaccinated with CNP showed higher (P<0.05) serum anti-OMPs IgG amounts at 8h-post-challenge. At 4d-post-SH challenge, birds vaccinated with CNP had higher (P<0.05) bile anti-flagellin IgA amounts. CNP decreased (P<0.05) anti-OMPs IgG levels in serum at 2d-post-SE challenge and 4d-post-SH or SE challenge. Salmonella Enteritidis loads in cecal content at 2d-post-challenge was decreased (P<0.05) by 65.9% in birds vaccinated with CNP, when compared to the control. Chitosan-nanovaccine had no adverse effects on bird’s production performance. In conclusion, 1000μg CNP vaccine can induce a specific immune response against Salmonella and has the potential to mitigate SE cecal colonization in broiler birds.
Collapse
Affiliation(s)
| | - Bailey Lester
- Department of Poultry Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Sankar Renu
- Food Animal Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- Department Of Veterinary Preventive Medicine, College Of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Yi Han
- Food Animal Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Revathi Shanmugasundaram
- Department of Poultry Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Renukaradhya Gourapura
- Food Animal Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Ramesh Selvaraj
- Department of Poultry Sciences, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
4
|
He H, Arsenault RJ, Genovese KJ, Johnson C, Kogut MH. Chicken macrophages infected with Salmonella (S.) Enteritidis or S. Heidelberg produce differential responses in immune and metabolic signaling pathways. Vet Immunol Immunopathol 2018; 195:46-55. [DOI: 10.1016/j.vetimm.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 01/07/2023]
|
5
|
Lee CC, Wu CC, Lin TL. Role of chicken melanoma differentiation-associated gene 5 in induction and activation of innate and adaptive immune responses to infectious bursal disease virus in cultured macrophages. Arch Virol 2015; 160:3021-35. [PMID: 26392283 DOI: 10.1007/s00705-015-2612-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/13/2015] [Indexed: 01/12/2023]
Abstract
The objective of the present study was to determine if chicken melanoma-differentiation-associated gene 5 (MDA5) senses infectious bursal disease virus infection to induce innate immunity that bridges to adaptive immunity. During IBDV infection in HD11 cells, IBDV titers and RNA loads increased up to 3.4 × 10(7) plaque-forming units (PFU)/mL and 1114 ng/µL, respectively, at 24 hours postinfection (hpi). IBDV infection in HD11 cells induced significantly upregulated (p < 0.05) expression levels of chicken MDA5 (59-fold), interferon-β (IFN-β) (693-fold), dsRNA-dependent protein kinase (PKR) (4-fold), 2', 5'-oligoadenylate synthetase (OAS) (286-fold), myxovirus resistance gene (Mx) (22-fold), interleukin-1β (IL-1β) (5-fold), IL-6 (146-fold), IL-8 (4-fold), IL-10 (4-fold), inducible nitric oxide synthase (iNOS) (15-fold), and major histocompatibility complex class I (MHC class I) (4-fold). Nitric oxide production in the culture supernatants increased significantly (p < 0.05) up to 6.5 μM at 24 hpi. The expressed chMDA5 and IBDV-derived dsRNA were localized in the cytoplasm of HD11 cells during IBDV infection. ChMDA5-knockdown HD11 cells had significantly higher (p < 0.05) IBDV RNA loads at 24 hpi and significantly lower (p < 0.05) nitric oxide production and expression levels of chicken MDA5, IFN-β, PKR, OAS, Mx, IL-1β, IL-6, IL-8, IL-12(p40), IL-18, IL-10, iNOS, MHC class I and CD86 at 24 hpi. In addition, chMDA5 overexpression in HD11 cells resulted in significantly reduced (p < 0.05) IBDV titers and RNA loads and significantly increased (p < 0.05) nitric oxide production at 16 and 24 hpi. It also resulted in significantly higher (p < 0.05) expression levels of chicken MDA5, IFN-β, PKR, OAS, Mx, IL-1β, IL-6, IL-8, IL-12(p40), IL-10 and iNOS at 2 hpi. In conclusion, the results indicate that chMDA5 senses IBDV infection in chicken macrophages, and this is associated with IBDV-induced expression of IFN-β and initiation of an innate immune response that in turn activates the adaptive immune response and limits IBDV replication.
Collapse
Affiliation(s)
- Chih-Chun Lee
- Department of Comparative Pathobiology, Purdue University, 406, S. University St, West Lafayette, IN, 47907, USA
| | - Ching Ching Wu
- Department of Comparative Pathobiology, Purdue University, 406, S. University St, West Lafayette, IN, 47907, USA
| | - Tsang Long Lin
- Department of Comparative Pathobiology, Purdue University, 406, S. University St, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Braukmann M, Methner U, Berndt A. Immune reaction and survivability of salmonella typhimurium and salmonella infantis after infection of primary avian macrophages. PLoS One 2015; 10:e0122540. [PMID: 25811871 PMCID: PMC4374797 DOI: 10.1371/journal.pone.0122540] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/15/2015] [Indexed: 01/23/2023] Open
Abstract
Salmonella serovars are differentially able to infect chickens. The underlying causes are not yet fully understood. Aim of the present study was to elucidate the importance of Salmonella Pathogenicity Island 1 and 2 (SPI-1 and -2) for the virulence of two non-host-specific, but in-vivo differently invasive, Salmonella serovars in conjunction with the immune reaction of the host. Primary avian splenic macrophages were inoculated with Salmonella enterica sub-species enterica serovar (S.) Typhimurium and S. Infantis. The number and viability of intracellular bacteria and transcription of SPI-1 and -2 genes by the pathogens, as well as transcription of immune-related proteins, surface antigen expression and nitric oxide production by the macrophages, were compared at different times post inoculation. After infection, both of the Salmonella serovars were found inside the primary macrophages. Invasion-associated SPI-1 genes were significantly higher transcribed in S. Infantis- than S. Typhimurium-infected macrophages. The macrophages counteracted the S. Infantis and S. Typhimurium infection with elevated mRNA expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-12, IL-18 and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF) as well as with an increased synthesis of nitric oxide. Despite these host cell attacks, S. Typhimurium was better able than S. Infantis to survive within the macrophages and transcribed higher rates of the SPI-2 genes spiC, ssaV, sifA, and sseA. The results showed similar immune reactions of primary macrophages after infection with both of the Salmonella strains. The more rapid and stronger transcription of SPI-2-related genes by intracellular S. Typhimurium compared to S. Infantis might be responsible for its better survival in avian primary macrophages.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/immunology
- Apoptosis/genetics
- Cells, Cultured
- Chickens/genetics
- Chickens/immunology
- Chickens/microbiology
- Colony Count, Microbial
- Flow Cytometry
- Genes, Bacterial
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Immunity/genetics
- Macrophages/immunology
- Macrophages/microbiology
- Microbial Viability
- Microscopy, Phase-Contrast
- Nitric Oxide/biosynthesis
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Salmonella/genetics
- Salmonella/immunology
- Salmonella/pathogenicity
- Salmonella Infections, Animal/genetics
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/microbiology
- Salmonella typhimurium/genetics
- Salmonella typhimurium/immunology
- Salmonella typhimurium/pathogenicity
- Spleen/pathology
- Transcription, Genetic
- Virulence/genetics
Collapse
Affiliation(s)
- Maria Braukmann
- Institute of Molecular Pathogenesis, ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Jena, Germany
| | - Angela Berndt
- Institute of Molecular Pathogenesis, ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Jena, Germany
- * E-mail:
| |
Collapse
|
7
|
Regulation of 5-oxo-ETE synthesis by nitric oxide in human polymorphonuclear leucocytes upon their interaction with zymosan and Salmonella typhimurium. Biosci Rep 2014; 34:BSR20130136. [PMID: 24712762 PMCID: PMC4031671 DOI: 10.1042/bsr20130136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the present study we have presented data on the regulation of LT (leukotriene) and 5-oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid) syntheses in human neutrophils upon interaction with OZ (opsonized zymosan) or Salmonella typhimurium. Priming of neutrophils with PMA (phorbol 12-myristate 13-acetate) and LPS (lipopolysaccharide) elicits 5-oxo-ETE formation in neutrophils exposed to OZ, and the addition of AA (arachidonic acid) significantly increases 5-oxo-ETE synthesis. We found that NO (nitric oxide)-releasing compounds induce 5-oxo-ETE synthesis in neutrophils treated with OZ or S. typhimurium. Exposure of neutrophils to zymosan or bacteria in the presence of the NO donor DEA NONOate (1,1-diethyl-2-hydroxy-2-nitroso-hydrazine sodium) considerably increased the conversion of endogenously formed 5-HETE (5S-hydroxy-6,8,11,14-eicosatetraenoic acid) to 5-oxo-ETE. To our knowledge, this study is the first to demonstrate that NO is a potent regulator of 5-oxo-ETE synthesis in human polymorphonuclear leucocytes exposed to Salmonella typhimurium and zymosan. Nitric oxide significantly increased 5-oxo-ETE formation in neutrophils. 5-oxo-ETE is a key 5-lipoxygenase metabolite in human polymorphonuclear leucocytes exposed to NO upon interaction with opsonized zymosan or Salmonella typhimurium.
Collapse
|