1
|
Tabuena DR, Jang SS, Grone B, Yip O, Aery Jones EA, Blumenfeld J, Liang Z, Koutsodendris N, Rao A, Ding L, Zhang AR, Hao Y, Xu Q, Yoon SY, Leon SD, Huang Y, Zilberter M. Neuronal APOE4-induced Early Hippocampal Network Hyperexcitability in Alzheimer's Disease Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.28.555153. [PMID: 37693533 PMCID: PMC10491126 DOI: 10.1101/2023.08.28.555153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The full impact of apolipoprotein E4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on neuronal and network function remains unclear. We found hippocampal region-specific network hyperexcitability in young APOE4 knock-in (E4-KI) mice which predicted cognitive deficits at old age. Network hyperexcitability in young E4-KI mice was mediated by hippocampal region-specific subpopulations of smaller and hyperexcitable neurons that were eliminated by selective removal of neuronal APOE4. Aged E4-KI mice exhibited hyperexcitable granule cells, a progressive inhibitory deficit, and E/I imbalance in the dentate gyrus, exacerbating hippocampal hyperexcitability. Single-nucleus RNA-sequencing revealed neuronal cell type-specific and age-dependent transcriptomic changes, including Nell2 overexpression in E4-KI mice. Reducing Nell2 expression in specific neuronal types of E4-KI mice with CRISPRi rescued their abnormal excitability phenotypes, implicating Nell2 overexpression as a cause of APOE4-induced hyperexcitability. These findings highlight the early transcriptomic and electrophysiological alterations underlying APOE4-induced hippocampal network dysfunction and its contribution to AD pathogenesis with aging.
Collapse
|
2
|
Ganesan K, Rentsch P, Langdon A, Milham LT, Vissel B. Modeling sporadic Alzheimer's disease in mice by combining Apolipoprotein E4 risk gene with environmental risk factors. Front Aging Neurosci 2024; 16:1357405. [PMID: 38476659 PMCID: PMC10927790 DOI: 10.3389/fnagi.2024.1357405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Developing effective treatment for Alzheimer's disease (AD) remains a challenge. This can be partially attributed to the fact that the mouse models used in preclinical research largely replicate familial form of AD, while majority of human cases are sporadic; both forms differ widely in the onset and origin of pathology, therefore requiring specific/targeted treatments. Methods In this study, we aimed to model sporadic AD in mice by combining two of the many risk factors that are strongly implicated in AD: ApoE4, a major genetic risk factor, together with an inflammatory stimuli. Accordingly, we subjected ApoE4 knock in (KI) mice, expressing humanized ApoE4, to low doses of Lipopolysaccharide (LPS) injections (i.p, weekly, for 4 months). Results We assessed these animals for behavioral impairments at 6 months of age using Open Field, Y-maze, and Barnes Maze Test. LPS induced hypoactivity was observed in the Open Field and Y-maze test, whereas spatial learning and memory was intact. We then quantified differences in dendritic spine density, which is a strong correlate of AD. ApoE4KI mice showed a significant reduction in the number of spines after treatment with LPS, whereas there were no obvious differences in the total number of microglia and astrocytes. Discussion To conclude, in the current study the APoEe4 risk gene increases the vulnerability of hippocampal neurons to inflammation induced spine loss, laying a foundation for an early sporadic AD mouse model.
Collapse
Affiliation(s)
- Kiruthika Ganesan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Alexander Langdon
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Luke T. Milham
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Watanabe H, Murakami R, Tsumagari K, Morimoto S, Hashimoto T, Imaizumi K, Sonn I, Yamada K, Saito Y, Murayama S, Iwatsubo T, Okano H. Astrocytic APOE4 genotype-mediated negative impacts on synaptic architecture in human pluripotent stem cell model. Stem Cell Reports 2023; 18:1854-1869. [PMID: 37657448 PMCID: PMC10545487 DOI: 10.1016/j.stemcr.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023] Open
Abstract
The APOE4 genotype is the strongest risk factor for the pathogenesis of sporadic Alzheimer's disease (AD), but the detailed molecular mechanism of APOE4-mediated synaptic impairment remains to be determined. In this study, we generated a human astrocyte model carrying the APOE3 or APOE4 genotype using human induced pluripotent stem cells (iPSCs) in which isogenic APOE4 iPSCs were genome edited from healthy control APOE3 iPSCs. Next, we demonstrated that the astrocytic APOE4 genotype negatively affects dendritic spine dynamics in a co-culture system with primary neurons. Transcriptome analysis revealed an increase of EDIL3, an extracellular matrix glycoprotein, in human APOE4 astrocytes, which could underlie dendritic spine reduction in neuronal cultures. Accordingly, postmortem AD brains carrying the APOE4 allele have elevated levels of EDIL3 protein deposits within amyloid plaques. Together, these results demonstrate the novel deleterious effect of human APOE4 astrocytes on synaptic architecture and may help to elucidate the mechanism of APOE4-linked AD pathogenesis.
Collapse
Affiliation(s)
- Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Rei Murakami
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | - Kazuya Tsumagari
- Center for Integrated Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Iki Sonn
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | - Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
4
|
Serrano E, Barrantes FJ, Valdivieso ÁG. Apolipoprotein E4 heterologous expression, purification under non-denaturing conditions, and effects on neuronal clonal cell lines. Protein Expr Purif 2023:106312. [PMID: 37236517 DOI: 10.1016/j.pep.2023.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
The ε4 allele of the apolipoprotein E gene (APOE4) constitutes the main genetic risk factor for late-onset Alzheimer disease (AD). High amounts of pure apolipoprotein E4 (ApoE4), in a rapid and reproducible fashion, could be of value for studying its pathophysiological roles in AD. The aim of the present work was to optimize a preparative method to obtain highly purified recombinant ApoE4 (rApoE4) with full biological activity. rApoE4 was expressed in the E. Coli BL21(D3) strain and a soluble form of the protein was purified by a combination of affinity and size-exclusion chromatography that precluded a denaturation step. The structural integrity and the biochemical activity of the purified rApoE4 were confirmed by circular dichroism and a lipid-binding assay. Several biological parameters affected by rApoE4, such as mitochondrial morphology, mitochondrial membrane potential and reactive oxygen species production were studied in CNh cells, a neuronal cell line, and neurodifferentiation and dendritogenesis were analyzed in the SH-SY5Y neuroblastoma cell line. The improved rApoE4 purification technique reported here enables the production of highly purified protein that retain the structural properties and functional activity of the native protein, as confirmed by tests in two different neuronal cell lines in culture.
Collapse
Affiliation(s)
| | | | - Ángel G Valdivieso
- Laboratory of Cellular and Molecular Biology, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Research and Technological Council of Argentina (CONICET), Av. Alicia Moreau de Justo 1600, 1107, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Steele OG, Stuart AC, Minkley L, Shaw K, Bonnar O, Anderle S, Penn AC, Rusted J, Serpell L, Hall C, King S. A multi-hit hypothesis for an APOE4-dependent pathophysiological state. Eur J Neurosci 2022; 56:5476-5515. [PMID: 35510513 PMCID: PMC9796338 DOI: 10.1111/ejn.15685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
Abstract
The APOE gene encoding the Apolipoprotein E protein is the single most significant genetic risk factor for late-onset Alzheimer's disease. The APOE4 genotype confers a significantly increased risk relative to the other two common genotypes APOE3 and APOE2. Intriguingly, APOE4 has been associated with neuropathological and cognitive deficits in the absence of Alzheimer's disease-related amyloid or tau pathology. Here, we review the extensive literature surrounding the impact of APOE genotype on central nervous system dysfunction, focussing on preclinical model systems and comparison of APOE3 and APOE4, given the low global prevalence of APOE2. A multi-hit hypothesis is proposed to explain how APOE4 shifts cerebral physiology towards pathophysiology through interconnected hits. These hits include the following: neurodegeneration, neurovascular dysfunction, neuroinflammation, oxidative stress, endosomal trafficking impairments, lipid and cellular metabolism disruption, impaired calcium homeostasis and altered transcriptional regulation. The hits, individually and in combination, leave the APOE4 brain in a vulnerable state where further cumulative insults will exacerbate degeneration and lead to cognitive deficits in the absence of Alzheimer's disease pathology and also a state in which such pathology may more easily take hold. We conclude that current evidence supports an APOE4 multi-hit hypothesis, which contributes to an APOE4 pathophysiological state. We highlight key areas where further study is required to elucidate the complex interplay between these individual mechanisms and downstream consequences, helping to frame the current landscape of existing APOE-centric literature.
Collapse
Affiliation(s)
| | | | - Lucy Minkley
- School of Life SciencesUniversity of SussexBrightonUK
| | - Kira Shaw
- School of Life SciencesUniversity of SussexBrightonUK
| | - Orla Bonnar
- School of Life SciencesUniversity of SussexBrightonUK
| | | | | | | | | | | | - Sarah King
- School of PsychologyUniversity of SussexBrightonUK
| |
Collapse
|
6
|
The synapse as a treatment avenue for Alzheimer's Disease. Mol Psychiatry 2022; 27:2940-2949. [PMID: 35444256 DOI: 10.1038/s41380-022-01565-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with devastating symptoms, including memory impairments and cognitive deficits. Hallmarks of AD pathology are amyloid-beta (Aβ) deposition forming neuritic plaques and neurofibrillary tangles (NFTs). For many years, AD drug development has mainly focused on directly targeting the Aβ aggregation or the formation of tau tangles, but this disease has no cure so far. Other common characteristics of AD are synaptic abnormalities and dysfunctions such as synaptic damage, synaptic loss, and structural changes in the synapse. Those anomalies happen in the early stages of the disease before behavioural symptoms have occurred. Therefore, better understanding the mechanisms underlying the synaptic dysfunction found in AD and targeting the synapse, especially using early treatment windows, can lead to finding novel and more effective treatments that could improve the lives of AD patients. Researchers have recently started developing different disease-modifying treatments targeting the synapse to rescue and prevent synaptic dysfunction in AD. The main objectives of these new strategies are to halt synaptic loss, strengthen synaptic connections, and improve synaptic density, potentially leading to the rescue or prevention of cognitive impairments. This article aims to address the mechanisms of synaptic degeneration in AD and discuss current strategies that focus on the synapse for AD therapy. Alzheimer's disease (AD) is a neurodegenerative disorder that significantly impairs memory and causes cognitive and behavioural deficits. Scientists worldwide have tried to find a treatment that can reverse or rescue AD symptoms, but there is no cure so far. One prominent characteristic of AD is the brain atrophy caused by significant synaptic loss and overall neuronal damage, which starts at the early stages of the disease before other AD hallmarks such as neuritic plaques and NFTs. The present review addresses the underlying mechanisms behind synaptic loss and dysfunction in AD and discusses potential strategies that target the synapse.
Collapse
|
7
|
Hulshof LA, van Nuijs D, Hol EM, Middeldorp J. The Role of Astrocytes in Synapse Loss in Alzheimer's Disease: A Systematic Review. Front Cell Neurosci 2022; 16:899251. [PMID: 35783099 PMCID: PMC9244621 DOI: 10.3389/fncel.2022.899251] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting 35 million people worldwide. One pathological feature of progressing AD is the loss of synapses. This is the strongest correlate of cognitive decline. Astrocytes, as an essential part of the tripartite synapse, play a role in synapse formation, maintenance, and elimination. During AD, astrocytes get a reactive phenotype with an altered gene expression profile and changed function compared to healthy astrocytes. This process likely affects their interaction with synapses. This systematic review aims to provide an overview of the scientific literature including information on how astrocytes affect synapse formation and elimination in the brain of AD patients and in animal models of the disease. We review molecular and cellular changes in AD astrocytes and conclude that these predominantly result in lower synapse numbers, indicative of decreased synapse support or even synaptotoxicity, or increased elimination, resulting in synapse loss, and consequential cognitive decline, as associated with AD. Preventing AD induced changes in astrocytes might therefore be a potential therapeutic target for dementia. Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=148278, identifier [CRD148278].
Collapse
Affiliation(s)
- Lianne A. Hulshof
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Danny van Nuijs
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Elly M. Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
- Department Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, Netherlands
- *Correspondence: Jinte Middeldorp
| |
Collapse
|
8
|
Neuronal ApoE4 stimulates C/EBPβ activation, promoting Alzheimer’s disease pathology in a mouse model. Prog Neurobiol 2022; 209:102212. [DOI: 10.1016/j.pneurobio.2021.102212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
|
9
|
Astrocytic ApoE underlies maturation of hippocampal neurons and cognitive recovery after traumatic brain injury in mice. Commun Biol 2021; 4:1303. [PMID: 34795427 PMCID: PMC8602391 DOI: 10.1038/s42003-021-02841-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Polymorphisms in the apolipoprotein E (ApoE) gene confer a major genetic risk for the development of late-onset Alzheimer's disease (AD) and are predictive of outcome following traumatic brain injury (TBI). Alterations in adult hippocampal neurogenesis have long been associated with both the development of AD and recovery following TBI and ApoE is known to play a role in this process. In order to determine how ApoE might influence hippocampal injury-induced neurogenesis, we generated a conditional knockout system whereby functional ApoE from astrocytes was ablated prior to injury. While successfully ablating ApoE just prior to TBI in mice, we observed an attenuation in the development of the spines in the newborn neurons. Intriguingly, animals with a double-hit, i.e. injury and ApoE conditionally inactivated in astrocytes, demonstrated the most pronounced impairments in the hippocampal-dependent Morris water maze test, failing to exhibit spatial memory after both acquisition and reversal training trials. In comparison, conditional knockout mice without injury displayed impairments but only in the reversal phase of the test, suggesting accumulative effects of astrocytic ApoE deficiency and traumatic brain injury on AD-like phenotypes. Together, these findings demonstrate that astrocytic ApoE is required for functional injury-induced neurogenesis following traumatic brain injury.
Collapse
|
10
|
Jiménez-Balado J, Ycaza Herrera A, Igwe K, Klem L, Buyukturkoglu K, Irimia A, Chen L, Guo J, Brickman AM, Eich TS. Reduced Hippocampal GABA+ Is Associated With Poorer Episodic Memory in Healthy Older Women: A Pilot Study. Front Behav Neurosci 2021; 15:695416. [PMID: 34512283 PMCID: PMC8427754 DOI: 10.3389/fnbeh.2021.695416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/13/2021] [Indexed: 01/13/2023] Open
Abstract
Background: The current pilot study was designed to examine the association between hippocampal γ-aminobutyric acid (GABA) concentration and episodic memory in older individuals, as well as the impact of two major risk factors for Alzheimer’s disease (AD)—female sex and Apolipoprotein ε4 (ApoE ε4) genotype—on this relationship. Methods: Twenty healthy, community-dwelling individuals aged 50–71 (11 women) took part in the study. Episodic memory was evaluated using a Directed Forgetting task, and GABA+ was measured in the right hippocampus using a Mescher-Garwood point-resolved magnetic resonance spectroscopy (MRS) sequence. Multiple linear regression models were used to quantify the relationship between episodic memory, GABA+, ApoE ɛ4, and sex, controlling for age and education. Results: While GABA+ did not interact with ApoE ɛ4 carrier status to influence episodic memory (p = 0.757), the relationship between GABA+ and episodic memory was moderated by sex: lower GABA+ predicted worse memory in women such that, for each standard deviation decrease in GABA+ concentration, memory scores were reduced by 11% (p = 0.001). Conclusions: This pilot study suggests that sex, but not ApoE ɛ4 genotype, moderates the relationship between hippocampal GABA+ and episodic memory, such that women with lower GABA+ concentration show worse memory performance. These findings, which must be interpreted with caution given the small sample size, may serve as a starting point for larger studies using multimodal neuroimaging to understand the contributions of GABA metabolism to age-related memory decline.
Collapse
Affiliation(s)
- Joan Jiménez-Balado
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Ycaza Herrera
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Kay Igwe
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.,Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Lynda Klem
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | | | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States.,Corwin D. Denney Research Center, Department of Biomedical Engineering, Andrew Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Liu Chen
- Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Adam M Brickman
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.,Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States.,Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Teal S Eich
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States.,Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.,Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
11
|
Koutsodendris N, Nelson MR, Rao A, Huang Y. Apolipoprotein E and Alzheimer's Disease: Findings, Hypotheses, and Potential Mechanisms. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:73-99. [PMID: 34460318 DOI: 10.1146/annurev-pathmechdis-030421-112756] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that involves dysregulation of many cellular and molecular processes. It is notoriously difficult to develop therapeutics for AD due to its complex nature. Nevertheless, recent advancements in imaging technology and the development of innovative experimental techniques have allowed researchers to perform in-depth analyses to uncover the pathogenic mechanisms of AD. An important consideration when studying late-onset AD is its major genetic risk factor, apolipoprotein E4 (apoE4). Although the exact mechanisms underlying apoE4 effects on AD initiation and progression are not fully understood, recent studies have revealed critical insights into the apoE4-induced deficits that occur in AD. In this review, we highlight notable studies that detail apoE4 effects on prominent AD pathologies, including amyloid-β, tau pathology, neuroinflammation, and neural network dysfunction. We also discuss evidence that defines the physiological functions of apoE and outlines how these functions are disrupted in apoE4-related AD. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Nicole Koutsodendris
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94131, USA; , .,Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA
| | - Maxine R Nelson
- Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, California 94143, USA
| | - Antara Rao
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94131, USA; , .,Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA
| | - Yadong Huang
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94131, USA; , .,Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, California 94143, USA.,Department of Neurology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
12
|
Butt OH, Long JM, Henson RL, Herries E, Sutphen CL, Fagan AM, Cruchaga C, Ladenson JH, Holtzman DM, Morris JC, Ances BM, Schindler SE. Cognitively normal APOE ε4 carriers have specific elevation of CSF SNAP-25. Neurobiol Aging 2021; 102:64-72. [PMID: 33765432 PMCID: PMC8793109 DOI: 10.1016/j.neurobiolaging.2021.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 01/22/2023]
Abstract
Cerebrospinal fluid (CSF) synaptosomal-associated protein 25 (SNAP-25) and neurogranin (Ng) are recently described biomarkers for pre- and postsynaptic integrity known to be elevated in symptomatic Alzheimer disease (AD). Their relationship with Apolipoprotein E (APOE) ε4 carrier status, the major genetic risk factor for AD, remains unclear. In this study, CSF SNAP-25 and Ng were compared in cognitively normal APOE ε4 carriers and noncarriers (n = 274, mean age 65 ± 9.0 years, 39% APOE ε4 carriers, 58% female). CSF SNAP-25, not CSF Ng, was specifically elevated in APOE ε4 carriers versus noncarriers (5.95 ± 1.72 pg/mL, 4.44 ± 1.40 pg/mL, p < 0.0001), even after adjusting for age, sex, years of education, and amyloid status (p < 0.0001). CSF total tau (t-tau), phosphorylated-tau-181 (ptau181), and neurofilament light chain (NfL) also did not vary by APOE ε4 status. Our findings suggest APOE ε4 carriers have amyloid-related and amyloid-independent presynaptic disruption as reflected by elevated CSF SNAP-25 levels. In contrast, postsynaptic disruption as reflected by elevations in CSF neurogranin is related to amyloid status.
Collapse
Affiliation(s)
- Omar H Butt
- Department of Neurology, Washington University, Saint Louis, MO, USA
| | - Justin M Long
- Department of Neurology, Washington University, Saint Louis, MO, USA; Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University, St. Louis, MO, USA
| | - Rachel L Henson
- Department of Neurology, Washington University, Saint Louis, MO, USA; Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA
| | - Elizabeth Herries
- Department of Neurology, Washington University, Saint Louis, MO, USA; Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA
| | - Courtney L Sutphen
- Department of Neurology, Washington University, Saint Louis, MO, USA; Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA
| | - Anne M Fagan
- Department of Neurology, Washington University, Saint Louis, MO, USA; Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, Saint Louis, MO, USA; Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University, St. Louis, MO, USA
| | - Jack H Ladenson
- Department of Pathology and Immunology, Washington University, Saint Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Washington University, Saint Louis, MO, USA; Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University, Saint Louis, MO, USA; Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University, Saint Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University, Saint Louis, MO, USA; Department of Radiology, Washington University, Saint Louis, MO, USA; Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University, St. Louis, MO, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University, Saint Louis, MO, USA; Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA.
| |
Collapse
|
13
|
Henriquez-Henriquez M, Acosta MT, Martinez AF, Vélez JI, Lopera F, Pineda D, Palacio JD, Quiroga T, Worgall TS, Deckelbaum RJ, Mastronardi C, Molina BSG, Arcos-Burgos M, Muenke M. Mutations in sphingolipid metabolism genes are associated with ADHD. Transl Psychiatry 2020; 10:231. [PMID: 32661301 PMCID: PMC7359313 DOI: 10.1038/s41398-020-00881-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most prevalent neurodevelopmental disorder in children, with genetic factors accounting for 75-80% of the phenotypic variance. Recent studies have suggested that ADHD patients might present with atypical central myelination that can persist into adulthood. Given the essential role of sphingolipids in myelin formation and maintenance, we explored genetic variation in sphingolipid metabolism genes for association with ADHD risk. Whole-exome genotyping was performed in three independent cohorts from disparate regions of the world, for a total of 1520 genotyped subjects. Cohort 1 (MTA (Multimodal Treatment study of children with ADHD) sample, 371 subjects) was analyzed as the discovery cohort, while cohorts 2 (Paisa sample, 298 subjects) and 3 (US sample, 851 subjects) were used for replication. A set of 58 genes was manually curated based on their roles in sphingolipid metabolism. A targeted exploration for association between ADHD and 137 markers encoding for common and rare potentially functional allelic variants in this set of genes was performed in the screening cohort. Single- and multi-locus additive, dominant and recessive linear mixed-effect models were used. During discovery, we found statistically significant associations between ADHD and variants in eight genes (GALC, CERS6, SMPD1, SMPDL3B, CERS2, FADS3, ELOVL5, and CERK). Successful local replication for associations with variants in GALC, SMPD1, and CERS6 was demonstrated in both replication cohorts. Variants rs35785620, rs143078230, rs398607, and rs1805078, associated with ADHD in the discovery or replication cohorts, correspond to missense mutations with predicted deleterious effects. Expression quantitative trait loci analysis revealed an association between rs398607 and increased GALC expression in the cerebellum.
Collapse
Affiliation(s)
- Marcela Henriquez-Henriquez
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- ELSA Clinical Laboratories (IntegraMedica, part of Bupa), Santiago de Chile, Chile
| | - Maria T Acosta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Francisco Lopera
- Neuroscience Research Group, University of Antioquia, Medellin, Colombia
| | - David Pineda
- Neuroscience Research Group, University of Antioquia, Medellin, Colombia
| | - Juan D Palacio
- Neuroscience Research Group, University of Antioquia, Medellin, Colombia
| | - Teresa Quiroga
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tilla S Worgall
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Richard J Deckelbaum
- Department of Pediatrics, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Claudio Mastronardi
- Neuroscience Group (NeurUROS), Institute of Translational Medicine, School of Medicine and Health Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Brooke S G Molina
- Departments of Psychiatry, Psychology, and Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Me´dicas, Facultad de Medicina, Universidad de Antioquia, Medelli´n, Colombia.
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Iacono D, Feltis GC. Impact of Apolipoprotein E gene polymorphism during normal and pathological conditions of the brain across the lifespan. Aging (Albany NY) 2020; 11:787-816. [PMID: 30677746 PMCID: PMC6366964 DOI: 10.18632/aging.101757] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is the cellular substrate for the integration of complex, dynamic, constant, and simultaneous interactions among endogenous and exogenous stimuli across the entire human lifespan. Numerous studies on aging-related brain diseases show that some genes identified as risk factors for some of the most common neurodegenerative diseases - such as the allele 4 of APOE gene (APOE4) for Alzheimer's disease (AD) - have a much earlier neuro-anatomical and neuro-physiological impact. The impact of APOE polymorphism appears in fact to start as early as youth and early-adult life. Intriguingly, though, those same genes associated with aging-related brain diseases seem to influence different aspects of the brain functioning much earlier actually, that is, even from the neonatal periods and earlier. The APOE4, an allele classically associated with later-life neurodegenerative disorders as AD, seems in fact to exert a series of very early effects on phenomena of neuroplasticity and synaptogenesis that begin from the earliest periods of life such as the fetal ones.We reviewed some of the findings supporting the hypothesis that APOE polymorphism is an early modifier of various neurobiological aspects across the entire human lifespan - from the in-utero to the centenarian life - during both normal and pathological conditions of the brain.
Collapse
Affiliation(s)
- Diego Iacono
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ 07927, USA.,MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA.,Atlantic Neuroscience Institute, Atlantic Health System (AHS), Overlook Medical Center, Summit, NJ 07901, USA
| | - Gloria C Feltis
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ 07927, USA
| |
Collapse
|
15
|
Tensaouti Y, Yu TS, Kernie SG. Apolipoprotein E regulates the maturation of injury-induced adult-born hippocampal neurons following traumatic brain injury. PLoS One 2020; 15:e0229240. [PMID: 32119690 PMCID: PMC7051085 DOI: 10.1371/journal.pone.0229240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/01/2020] [Indexed: 12/18/2022] Open
Abstract
Various brain injuries lead to the activation of adult neural stem/progenitor cells in the mammalian hippocampus. Subsequent injury-induced neurogenesis appears to be essential for at least some aspects of the innate recovery in cognitive function observed following traumatic brain injury (TBI). It has previously been established that Apolipoprotein E (ApoE) plays a regulatory role in adult hippocampal neurogenesis, which is of particular interest as the presence of the human ApoE isoform ApoE4 leads to significant risk for the development of late-onset Alzheimer's disease, where impaired neurogenesis has been linked with disease progression. Moreover, genetically modified mice lacking ApoE or expressing the ApoE4 human isoform have been shown to impair adult hippocampal neurogenesis under normal conditions. Here, we investigate how controlled cortical impact (CCI) injury affects dentate gyrus development using hippocampal stereotactic injections of GFP-expressing retroviruses in wild-type (WT), ApoE-deficient and humanized (ApoE3 and ApoE4) mice. Infected adult-born hippocampal neurons were morphologically analyzed once fully mature, revealing significant attenuation of dendritic complexity and spine density in mice lacking ApoE or expressing the human ApoE4 allele, which may help inform how ApoE influences neurological diseases where neurogenesis is defective.
Collapse
Affiliation(s)
- Yacine Tensaouti
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States of America
| | - Tzong-Shiue Yu
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States of America
| | - Steven G. Kernie
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States of America
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States of America
| |
Collapse
|
16
|
Najm R, Jones EA, Huang Y. Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer's disease. Mol Neurodegener 2019; 14:24. [PMID: 31186040 PMCID: PMC6558779 DOI: 10.1186/s13024-019-0324-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/23/2019] [Indexed: 02/08/2023] Open
Abstract
Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease (AD), increasing risk and decreasing age of disease onset. Many studies have demonstrated the detrimental effects of apoE4 in varying cellular contexts. However, the underlying mechanisms explaining how apoE4 leads to cognitive decline are not fully understood. Recently, the combination of human induced pluripotent stem cell (hiPSC) modeling of neurological diseases in vitro and electrophysiological studies in vivo have begun to unravel the intersection between apoE4, neuronal subtype dysfunction or loss, subsequent network deficits, and eventual cognitive decline. In this review, we provide an overview of the literature describing apoE4's detrimental effects in the central nervous system (CNS), specifically focusing on its contribution to neuronal subtype dysfunction or loss. We focus on γ-aminobutyric acid (GABA)-expressing interneurons in the hippocampus, which are selectively vulnerable to apoE4-mediated neurotoxicity. Additionally, we discuss the importance of the GABAergic inhibitory network to proper cognitive function and how dysfunction of this network manifests in AD. Finally, we examine how apoE4-mediated GABAergic interneuron loss can lead to inhibitory network deficits and how this deficit results in cognitive decline. We propose the following working model: Aging and/or stress induces neuronal expression of apoE. GABAergic interneurons are selectively vulnerable to intracellularly produced apoE4, through a tau dependent mechanism, which leads to their dysfunction and eventual death. In turn, GABAergic interneuron loss causes hyperexcitability and dysregulation of neural networks in the hippocampus and cortex. This dysfunction results in learning, memory, and other cognitive deficits that are the central features of AD.
Collapse
Affiliation(s)
- Ramsey Najm
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, 94143, USA
| | - Emily A Jones
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, 94143, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, 94143, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, 94143, USA.
- Department of Neurology, University of California, San Francisco, CA, 94143, USA.
- Department of Pathology, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
17
|
Tzioras M, Davies C, Newman A, Jackson R, Spires‐Jones T. Invited Review: APOE at the interface of inflammation, neurodegeneration and pathological protein spread in Alzheimer's disease. Neuropathol Appl Neurobiol 2019; 45:327-346. [PMID: 30394574 PMCID: PMC6563457 DOI: 10.1111/nan.12529] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022]
Abstract
Despite more than a century of research, the aetiology of sporadic Alzheimer's disease (AD) remains unclear and finding disease modifying treatments for AD presents one of the biggest medical challenges of our time. AD pathology is characterized by deposits of aggregated amyloid beta (Aβ) in amyloid plaques and aggregated tau in neurofibrillary tangles. These aggregates begin in distinct brain regions and spread throughout the brain in stereotypical patterns. Neurodegeneration, comprising loss of synapses and neurons, occurs in brain regions with high tangle pathology, and an inflammatory response of glial cells appears in brain regions with pathological aggregates. Inheriting an apolipoprotein E ε4 (APOE4) allele strongly increases the risk of developing AD for reasons that are not yet entirely clear. Substantial amounts of evidence support a role for APOE in modulating the aggregation and clearance of Aβ, and data have been accumulating recently implicating APOE4 in exacerbating neurodegeneration, tau pathology and inflammation. We hypothesize that APOE4 influences all the pathological hallmarks of AD and may sit at the interface between neurodegeneration, inflammation and the spread of pathologies through the brain. Here, we conducted a systematic search of the literature and review evidence supporting a role for APOE4 in neurodegeneration and inflammation. While there is no direct evidence yet for APOE4 influencing the spread of pathology, we postulate that this may be found in future based on the literature reviewed here. In conclusion, this review highlights the importance of understanding the role of APOE in multiple important pathological mechanisms in AD.
Collapse
Affiliation(s)
- M. Tzioras
- UK Dementia Research Institute and Centre for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - C. Davies
- UK Dementia Research Institute and Centre for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - A. Newman
- UK Dementia Research Institute and Centre for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - R. Jackson
- UK Dementia Research Institute and Centre for Discovery Brain SciencesThe University of EdinburghEdinburghUK
- Massachusetts General Hospital and Harvard Medical SchoolCharlestownMAUSA
| | - T. Spires‐Jones
- UK Dementia Research Institute and Centre for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| |
Collapse
|
18
|
Wadhwani AR, Affaneh A, Van Gulden S, Kessler JA. Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in alzheimer disease. Ann Neurol 2019; 85:726-739. [PMID: 30840313 PMCID: PMC8123085 DOI: 10.1002/ana.25455] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The apolipoprotein E (APOE) E4 isoform is the strongest genetic risk factor for sporadic Alzheimer disease (AD). Although APOE is predominantly expressed by astrocytes in the central nervous system, neuronal expression of APOE is of increasing interest in age-related cognitive impairment, neurological injury, and neurodegeneration. Here, we show that endogenous expression of E4 in stem-cell-derived neurons predisposes them to injury and promotes the release of phosphorylated tau. METHODS Induced pluripotent stem cells from 2 unrelated AD patients carrying the E4 allele were corrected to the E3/E3 genotype with the CRISPR/Cas9 system and differentiated into pure cultures of forebrain excitatory neurons without contamination from other cells types. RESULTS Compared to unedited E4 neurons, E3 neurons were less susceptible to ionomycin-induced cytotoxicity. Biochemically, E4 cells exhibited increased tau phosphorylation and ERK1/2 phosphoactivation. Moreover, E4 neurons released increased amounts of phosphorylated tau extracellularly in an isoform-dependent manner by a heparin sulfate proteoglycan-dependent mechanism. INTERPRETATION Our results demonstrate that endogenous expression of E4 by stem-cell-derived forebrain excitatory neurons predisposes neurons to calcium dysregulation and ultimately cell death. This change is associated with increased cellular tau phosphorylation and markedly enhanced release of phosphorylated tau. Importantly, these effects are independent of glial APOE. These findings suggest that E4 accelerates spreading of tau pathology and neuron death in part by neuron-specific, glia-independent mechanisms. Ann Neurol 2019;85:726-739.
Collapse
Affiliation(s)
- Anil R Wadhwani
- Department of Neurology, Northwestern University, Chicago, IL
| | - Amira Affaneh
- Department of Neurology, Northwestern University, Chicago, IL
| | | | - John A Kessler
- Department of Neurology, Northwestern University, Chicago, IL
| |
Collapse
|
19
|
Tensaouti Y, Stephanz EP, Yu TS, Kernie SG. ApoE Regulates the Development of Adult Newborn Hippocampal Neurons. eNeuro 2018; 5:ENEURO.0155-18.2018. [PMID: 30079373 PMCID: PMC6072333 DOI: 10.1523/eneuro.0155-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 01/11/2023] Open
Abstract
Adult hippocampal neurogenesis occurs throughout life and is believed to participate in cognitive functions such as learning and memory. A number of genes that regulate adult hippocampal neurogenesis have been identified, although most of these have been implicated in progenitor proliferation and survival, but not in the development into fully differentiated neurons. Among these genes, apolipoprotein E (ApoE) is particularly compelling because the human ApoE isoform E4 is a risk factor for the development of Alzheimer's disease, where hippocampal neurogenesis is reported to be dysfunctional. To investigate the effects of ApoE and its human isoforms on adult hippocampal neurogenesis and neuronal development, retroviruses carrying a GFP-expressing vector were injected into wild-type (WT), ApoE-deficient, and human targeted replacement (ApoE3 and ApoE4) mice to infect progenitors in the dentate gyrus and analyze the morphology of fully developed GFP-expressing neurons. Analysis of these adult-born neurons revealed significant decreases in the complexity of dendritic arborizations and spine density in ApoE-deficient mice compared with WT mice, as well as in ApoE4 mice compared with ApoE3. These findings demonstrate that ApoE deficiency and the ApoE4 human isoform both impair hippocampal neurogenesis and give insight into how ApoE may influence hippocampal-related neurological diseases.
Collapse
Affiliation(s)
- Yacine Tensaouti
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Elizabeth P. Stephanz
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Tzong-Shiue Yu
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Steven G. Kernie
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
20
|
Yin Y, Wang Z. ApoE and Neurodegenerative Diseases in Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:77-92. [PMID: 30232753 DOI: 10.1007/978-981-13-1117-8_5] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Age and apolipoprotein E (ApoE) are the mightiest risk factors for dementia and cardiovascular diseases, but the underlying mechanisms remain unclear. In human, ApoE has three isoforms, ApoE2, ApoE3, and ApoE4, which are expressed by the polymorphic alleles: ɛ2, ɛ3, and ɛ4. Among the three polymorphic alleles, apoE ε4 is the most risk gene. ApoE is the main ligand for the low-density lipoprotein (LDL) receptor and the LDL receptor-related protein (LRP), functioning as the component of plasma lipoproteins in the transportation of lipids. Physiologically, ApoE is a multifunctional protein with central roles in lipid metabolism; it transports lipids, including cholesterol, through the cerebrospinal fluid (CSF) and plasma. ApoE expression regulation and apoE gene polymorphism have an important connection with neurological or neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), ischemic stroke, and other diseases.
Collapse
Affiliation(s)
- Yuemiao Yin
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zhao Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
21
|
Astrogliosis: An integral player in the pathogenesis of Alzheimer's disease. Prog Neurobiol 2016; 144:121-41. [PMID: 26797041 DOI: 10.1016/j.pneurobio.2016.01.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/10/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease is the main cause of dementia in the elderly and begins with a subtle decline in episodic memory followed by a more general decline in overall cognitive abilities. Though the exact trigger for this cascade of events remains unknown the presence of the misfolded amyloid-beta protein triggers reactive gliosis, a prominent neuropathological feature in the brains of Alzheimer's patients. The cytoskeletal and morphological changes of astrogliosis are its evident features, while changes in oxidative stress defense, cholesterol metabolism, and gene transcription programs are less manifest. However, these latter molecular changes may underlie a disruption in homeostatic regulation that keeps the brain environment balanced. Astrocytes in Alzheimer's disease show changes in glutamate and GABA signaling and recycling, potassium buffering, and in cholinergic, purinergic, and calcium signaling. Ultimately the dysregulation of homeostasis maintained by astrocytes can have grave consequences for the stability of microcircuits within key brain regions. Specifically, altered inhibition influenced by astrocytes can lead to local circuit imbalance with farther reaching consequences for the functioning of larger neuronal networks. Healthy astrocytes have a role in maintaining and modulating normal neuronal communication, synaptic physiology and energy metabolism, astrogliosis interferes with these functions. This review considers the molecular and functional changes occurring during astrogliosis in Alzheimer's disease, and proposes that astrocytes are key players in the development of dementia.
Collapse
|
22
|
Saigal R, Berger MS. The long-term effects of repetitive mild head injuries in sports. Neurosurgery 2015; 75 Suppl 4:S149-55. [PMID: 25232880 DOI: 10.1227/neu.0000000000000497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
At least 300 000 sports-related concussions occur in the United States annually. With millions of American athletes, the long-term effects of repeated concussion or mild traumatic brain injury are an important topic. Unfortunately, there is a lack of strong data on the causality or prevalence of long-term effects among athletes. Chronic traumatic encephalopathy (CTE), a progressive neurodegenerative tauopathy, with associated clinical, behavioral, and neuropathological findings, is an important clinical entity in need of further study. Diffusion tensor imaging can elucidate trauma-induced white matter damage, but the diagnosis of CTE cannot be proven until postmortem neuropathology shows characteristic neurofibrillary and astrocytic tangles. Concern exists that athletes subject to repeated concussive and even subconcussive blows may be at risk of CTE, but no definitive data exist due to the difficulty in diagnosis. Animal models suggest that mild traumatic brain injuries lead to primarily a metabolic derangement with increased excitotoxic neurotransmitter release, extracellular potassium, and intracellular calcium. Further understanding of the underlying pathophysiology may eventually lead to better therapeutic and diagnostic options for the treating clinician.
Collapse
Affiliation(s)
- Rajiv Saigal
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | | |
Collapse
|
23
|
Apolipoprotein E4 produced in GABAergic interneurons causes learning and memory deficits in mice. J Neurosci 2015; 34:14069-78. [PMID: 25319703 DOI: 10.1523/jneurosci.2281-14.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Apolipoprotein (apo) E4 is expressed in many types of brain cells, is associated with age-dependent decline of learning and memory in humans, and is the major genetic risk factor for AD. To determine whether the detrimental effects of apoE4 depend on its cellular sources, we generated human apoE knock-in mouse models in which the human APOE gene is conditionally deleted in astrocytes, neurons, or GABAergic interneurons. Here we report that deletion of apoE4 in astrocytes does not protect aged mice from apoE4-induced GABAergic interneuron loss and learning and memory deficits. In contrast, deletion of apoE4 in neurons does protect aged mice from both deficits. Furthermore, deletion of apoE4 in GABAergic interneurons is sufficient to gain similar protection. This study demonstrates a detrimental effect of endogenously produced apoE4 on GABAergic interneurons that leads to learning and memory deficits in mice and provides a novel target for drug development for AD related to apoE4.
Collapse
|
24
|
Huang Y, Mahley RW. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases. Neurobiol Dis 2014; 72 Pt A:3-12. [PMID: 25173806 PMCID: PMC4253862 DOI: 10.1016/j.nbd.2014.08.025] [Citation(s) in RCA: 477] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/06/2014] [Accepted: 08/20/2014] [Indexed: 12/01/2022] Open
Abstract
Apolipoprotein (apo) E is a multifunctional protein with central roles in lipid metabolism, neurobiology, and neurodegenerative diseases. It has three major isoforms (apoE2, apoE3, and apoE4) with different effects on lipid and neuronal homeostasis. A major function of apoE is to mediate the binding of lipoproteins or lipid complexes in the plasma or interstitial fluids to specific cell-surface receptors. These receptors internalize apoE-containing lipoprotein particles; thus, apoE participates in the distribution/redistribution of lipids among various tissues and cells of the body. In addition, intracellular apoE may modulate various cellular processes physiologically or pathophysiologically, including cytoskeletal assembly and stability, mitochondrial integrity and function, and dendritic morphology and function. Elucidation of the functional domains within this protein and of the three-dimensional structure of the major isoforms of apoE has contributed significantly to our understanding of its physiological and pathophysiological roles at a molecular level. It is likely that apoE, with its multiple cellular origins and multiple structural and biophysical properties, is involved widely in processes of lipid metabolism and neurobiology, possibly encompassing a variety of disorders of neuronal repair, remodeling, and degeneration by interacting with different factors through various pathways.
Collapse
Affiliation(s)
- Yadong Huang
- Gladstone Institute of Neurological Disease, University of California, San Francisco 94158, USA; Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94158, USA; Department of Neurology, University of California, San Francisco 94158, USA; Department of Pathology, University of California, San Francisco 94158, USA.
| | - Robert W Mahley
- Gladstone Institute of Neurological Disease, University of California, San Francisco 94158, USA; Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94158, USA; Department of Pathology, University of California, San Francisco 94158, USA; Department of Medicine, University of California, San Francisco 94158, USA
| |
Collapse
|
25
|
Engel PA. Does metabolic failure at the synapse cause Alzheimer's disease? Med Hypotheses 2014; 83:802-8. [PMID: 25456790 DOI: 10.1016/j.mehy.2014.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/15/2014] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) a neurodegenerative disorder of widely distributed cortical networks evolves over years while A beta (Aβ) oligomer neurotoxicity occurs within seconds to minutes. This disparity combined with disappointing outcomes of anti-amyloid clinical trials challenges the centrality of Aβ as principal mediator of neurodegeneration. Reconsideration of late life AD as the end-product of intermittent regional failure of the neuronal support system to meet the needs of vulnerable brain areas offers an alternative point of view. This model introduces four ideas: (1) That Aβ is a synaptic signaling peptide that becomes toxic in circumstances of metabolic stress. (2) That intense synaptic energy and maintenance requirements of cortical hubs may exceed resources during peak demand initiating a neurotoxic cascade in these selectively vulnerable regions. (3) That axonal transport to and from neuron soma cannot account fully for high mitochondrial densities and other requirements of distant terminal axons. (4) That neurons as specialists in information management, delegate generic support functions to astrocytes and other cell types. Astrocytes use intercellular transport by exosomes and tunneling nanotubes (TNTs) to deliver mitochondria, substrates and protein reprocessing services to axonal sites distant from neuronal soma. This viewpoint implicates the brain's support system and its disruption by various age and disease-related insults as significant mediators of neurodegenerative disease. A better understanding of this system should broaden concepts of neurodegeneration and facilitate development of effective treatments.
Collapse
Affiliation(s)
- Peter A Engel
- Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Harvard Medical School, United States.
| |
Collapse
|
26
|
Simultaneous changes of spatial memory and spine density after intrahippocampal administration of fibrillar aβ1-42 to the rat brain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:345305. [PMID: 25050342 PMCID: PMC4094878 DOI: 10.1155/2014/345305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/25/2014] [Accepted: 06/02/2014] [Indexed: 01/29/2023]
Abstract
Several animal models of Alzheimer's disease have been used in laboratory experiments. Intrahippocampal injection of fibrillar amyloid-beta (fAβ) peptide represents one of the most frequently used models, mimicking Aβ deposits in the brain. In our experiment synthetic fAβ1–42 peptide was administered to rat hippocampus. The effect of the Aβ peptide on spatial memory and dendritic spine density was studied. The fAβ1–42-treated rats showed decreased spatial learning ability measured in Morris water maze (MWM). Simultaneously, fAβ1–42 caused a significant reduction of the dendritic spine density in the rat hippocampus CA1 region. The decrease of learning ability and the loss of spine density were in good correlation. Our results prove that both methods (MWM and dendritic spine density measurement) are suitable for studying Aβ-triggered neurodegeneration processes.
Collapse
|
27
|
Klein RC, Saini S, Risher ML, Acheson SK, Fleming RL, Sexton HG, Swartzwelder HS, Moore SD. Regional-specific effects of ovarian hormone loss on synaptic plasticity in adult human APOE targeted replacement mice. PLoS One 2014; 9:e94071. [PMID: 24732142 PMCID: PMC3986067 DOI: 10.1371/journal.pone.0094071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/11/2014] [Indexed: 12/27/2022] Open
Abstract
The human apolipoprotein ε4 allele (APOE4) has been implicated as one of the strongest genetic risk factors associated with Alzheimer’s disease (AD) and in influencing normal cognitive functioning. Previous studies have demonstrated that mice expressing human apoE4 display deficits in behavioral and neurophysiological outcomes compared to those with apoE3. Ovarian hormones have also been shown to be important in modulating synaptic processes underlying cognitive function, yet little is known about how their effects are influenced by apoE. In the current study, female adult human APOE targeted replacement (TR) mice were utilized to examine the effects of human APOE genotype and long-term ovarian hormone loss on synaptic plasticity in limbic regions by measuring dendritic spine density and electrophysiological function. No significant genotype differences were observed on any outcomes within intact mice. However, there was a significant main effect of genotype on total spine density in apical dendrites in the hippocampus, with post-hoc t-tests revealing a significant reduction in spine density in apoE3 ovariectomized (OVX) mice compared to sham operated mice. There was also a significant main effect of OVX on the magnitude of LTP, with post-hoc t-tests revealing a decrease in apoE3 OVX mice relative to sham. In contrast, apoE4 OVX mice showed increased synaptic activity relative to sham. In the lateral amygdala, there was a significant increase in total spine density in apoE4 OVX mice relative to sham. This increase in spine density was consistent with a significant increase in spontaneous excitatory activity in apoE4 OVX mice. These findings suggest that ovarian hormones differentially modulate synaptic integrity in an apoE-dependent manner within brain regions that are susceptible to neurophysiological dysfunction associated with AD.
Collapse
Affiliation(s)
- Rebecca C. Klein
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- MIRECC, Durham Veterans Affairs Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| | - Shyla Saini
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - M-Louise Risher
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Shawn K. Acheson
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Neurobiology Research Lab, Durham Veterans Affairs Medical Center, Durham, North Carolina, United States of America
| | - Rebekah L. Fleming
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Neurobiology Research Lab, Durham Veterans Affairs Medical Center, Durham, North Carolina, United States of America
| | - Hannah G. Sexton
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Neurobiology Research Lab, Durham Veterans Affairs Medical Center, Durham, North Carolina, United States of America
| | - H. Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Neurobiology Research Lab, Durham Veterans Affairs Medical Center, Durham, North Carolina, United States of America
| | - Scott D. Moore
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- MIRECC, Durham Veterans Affairs Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
28
|
Cochran JN, Hall AM, Roberson ED. The dendritic hypothesis for Alzheimer's disease pathophysiology. Brain Res Bull 2014; 103:18-28. [PMID: 24333192 PMCID: PMC3989444 DOI: 10.1016/j.brainresbull.2013.12.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 01/02/2023]
Abstract
Converging evidence indicates that processes occurring in and around neuronal dendrites are central to the pathogenesis of Alzheimer's disease. These data support the concept of a "dendritic hypothesis" of AD, closely related to the existing synaptic hypothesis. Here we detail dendritic neuropathology in the disease and examine how Aβ, tau, and AD genetic risk factors affect dendritic structure and function. Finally, we consider potential mechanisms by which these key drivers could affect dendritic integrity and disease progression. These dendritic mechanisms serve as a framework for therapeutic target identification and for efforts to develop disease-modifying therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- J Nicholas Cochran
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Alicia M Hall
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
29
|
Wang H, Eckel RH. What are lipoproteins doing in the brain? Trends Endocrinol Metab 2014; 25:8-14. [PMID: 24189266 PMCID: PMC4062975 DOI: 10.1016/j.tem.2013.10.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 12/25/2022]
Abstract
Lipoproteins in plasma transport lipids between tissues, however, only high-density lipoproteins (HDL) appear to traverse the blood-brain barrier (BBB); thus, lipoproteins found in the brain must be produced within the central nervous system. Apolipoproteins E (ApoE) and ApoJ are the most abundant apolipoproteins in the brain, are mostly synthesized by astrocytes, and are found on HDL. In the hippocampus and other brain regions, lipoproteins help to regulate neurobehavioral functions by processes that are lipoprotein receptor-mediated. Moreover, lipoproteins and their receptors also have roles in the regulation of body weight and energy balance, acting through lipoprotein lipase (LPL) and the low-density lipoprotein (LDL) receptor-related protein (LRP). Thus, understanding lipoproteins and their metabolism in the brain provides a new opportunity with potential therapeutic relevance.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Robert H Eckel
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|