1
|
Nagata E, Takao M, Toriumi H, Suzuki M, Fujii N, Kohara S, Tsuda A, Nakayama T, Kadokura A, Hadano M. Hypersensitivity of Intrinsically Photosensitive Retinal Ganglion Cells in Migraine Induces Cortical Spreading Depression. Int J Mol Sci 2024; 25:7980. [PMID: 39063222 PMCID: PMC11276861 DOI: 10.3390/ijms25147980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Migraine is a complex disorder characterized by episodes of moderate-to-severe, often unilateral headaches and generally accompanied by nausea, vomiting, and increased sensitivity to light (photophobia), sound (phonophobia), and smell (hyperosmia). Photophobia is considered the most bothersome symptom of migraine attacks. Although the underlying mechanism remains unclear, the intrinsically photosensitive retinal ganglion cells (ipRGCs) are considered to be involved in photophobia associated with migraine. In this study, we investigated the association between the sensitivity of ipRGCs and migraines and cortical spreading depression (CSD), which may trigger migraine attacks. The pupillary responses closely associated with the function of ipRGCs in patients with migraine who were irradiated with lights were evaluated. Blue (486 nm) light irradiation elicited a response from ipRGCs; however, red light (560 nm) had no such effect. Melanopsin, a photosensitive protein, phototransduces in ipRGCs following blue light stimulation. Hypersensitivity of ipRGCs was observed in patients with migraine. CSD was more easily induced with blue light than with incandescent light using a mouse CSD model. Moreover, CSD was suppressed, even in the presence of blue light, after injecting opsinamide, a melanopsin inhibitor. The hypersensitivity of ipRGCs in patients with migraine may induce CSD, resulting in migraine attacks.
Collapse
Affiliation(s)
- Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara 259-1193, Japan; (N.F.); (S.K.); (T.N.); (A.K.); (M.H.)
| | - Motoharu Takao
- Department of Human and Information Science, Tokai University, Hiratsuka 259-1292, Japan;
| | - Haruki Toriumi
- Department of Acupuncture and Moxibustion, Shonan Keiiku Hospital, Fujisawa 252-0816, Japan; (H.T.); (M.S.)
| | - Mari Suzuki
- Department of Acupuncture and Moxibustion, Shonan Keiiku Hospital, Fujisawa 252-0816, Japan; (H.T.); (M.S.)
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, Isehara 259-1193, Japan; (N.F.); (S.K.); (T.N.); (A.K.); (M.H.)
| | - Saori Kohara
- Department of Neurology, Tokai University School of Medicine, Isehara 259-1193, Japan; (N.F.); (S.K.); (T.N.); (A.K.); (M.H.)
| | - Akio Tsuda
- Bioresearch Center Co., Ltd., Tokyo 101-0032, Japan;
| | - Taira Nakayama
- Department of Neurology, Tokai University School of Medicine, Isehara 259-1193, Japan; (N.F.); (S.K.); (T.N.); (A.K.); (M.H.)
| | - Ayana Kadokura
- Department of Neurology, Tokai University School of Medicine, Isehara 259-1193, Japan; (N.F.); (S.K.); (T.N.); (A.K.); (M.H.)
| | - Manaka Hadano
- Department of Neurology, Tokai University School of Medicine, Isehara 259-1193, Japan; (N.F.); (S.K.); (T.N.); (A.K.); (M.H.)
| |
Collapse
|
2
|
Ayaki M, Kuze M, Negishi K. Association of eye strain with dry eye and retinal thickness. PLoS One 2023; 18:e0293320. [PMID: 37862343 PMCID: PMC10588844 DOI: 10.1371/journal.pone.0293320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
PURPOSE The purpose of this cohort study was to investigate the association between the prevalence of abnormal ocular examination results and the common visual symptoms of eye strain, blurred vision and photophobia. METHODS Consecutive first-visit outpatients with best-corrected visual acuity better than 20/30 in both eyes were enrolled and those with a history of intra-ocular lens implantation and glaucoma were excluded. Dry eye-related examinations and retinal thickness measurement were conducted. The odds ratio (OR) was calculated with logistic regression analyses of ocular data in relation to the presence of visual symptoms. RESULTS A total of 6078 patients (3920 women, mean age 49.0 ± 20.4 years) were analyzed. The prevalence of each symptom was 31.8% for eye strain, 22.5% for blurred vision and 16.0% for photophobia. A significant risk factor for eye strain was short tear break-up time (TBUT) (OR 1.88), superficial punctate keratitis (SPK) (OR 1.44), and thickness of ganglion cell complex (GCC) (OR 1.30). Risk factors for blurred vision were short TBUT (OR 1.85), SPK (OR 1.24) and GCC (OR 0.59). Risk factors for photophobia were short TBUT (OR 1.77) and SPK (OR 1.32). Schirmer test value, peripapillary nerve fiber layer thickness and full macular thickness were not associated with the tested symptoms. CONCLUSION The current study successfully identified female gender, short TBUT, and SPK as significant risk factors for eye strain, blurred vision, and photophobia with considerable ORs.
Collapse
Affiliation(s)
- Masahiko Ayaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Otake Eye Clinic, Kanagawa, Japan
| | | | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Spitschan M, Joyce DS. Human-Centric Lighting Research and Policy in the Melanopsin Age. POLICY INSIGHTS FROM THE BEHAVIORAL AND BRAIN SCIENCES 2023; 10:237-246. [PMID: 38919981 PMCID: PMC7615961 DOI: 10.1177/23727322231196896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Beyond visual function, specialized light-sensitive retinal circuits involving the photopigment melanopsin drive critical aspects of human physiology and behavior, including sleep-wake rhythms, hormone production, mood, and cognition. Fundamental discoveries of visual neurobiology dating back to the 1990s have given rise to strong interest from the lighting industry in optimizing lighting to benefit health. Consequently, evidence-based recommendations, regulations, and policies need to translate current knowledge of neurobiology into practice. Here, reviewing recent advances in understanding of NIF circuits in humans leads to proposed strategies to optimize electric lighting. Highlighted knowledge gaps must be addressed urgently, as well as the challenge of developing personalized, adaptive NIF lighting interventions accounting for complex individual differences in physiology, behavior, and environment. Finally, lighting equity issues appear in the context of marginalized groups, who have traditionally been underserved in research on both fundamental visual processes and applied lighting. Biologically optimal light is a fundamental environmental right.
Collapse
Affiliation(s)
- Manuel Spitschan
- TUM School of Medicine & Health, Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
- Max Planck Institute for Biological Cybernetics, Max Planck Research Group Translational Sensory & Circadian Neuroscience, Tübingen, Germany
| | - Daniel S. Joyce
- Centre for Health Research, University of Southern Queensland, Ipswich, Queensland, Australia
- School of Psychology and Wellbeing, University of Southern Queensland, Ipswich, Queensland, Australia
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|
4
|
Karthikeyan R, Davies WI, Gunhaga L. Non-image-forming functional roles of OPN3, OPN4 and OPN5 photopigments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
|
5
|
Yasukouchi A. The next stage of physiological anthropology. J Physiol Anthropol 2023; 42:3. [PMID: 36895022 PMCID: PMC9999635 DOI: 10.1186/s40101-023-00320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
6
|
Bacalini MG, Palombo F, Garagnani P, Giuliani C, Fiorini C, Caporali L, Stanzani Maserati M, Capellari S, Romagnoli M, De Fanti S, Benussi L, Binetti G, Ghidoni R, Galimberti D, Scarpini E, Arcaro M, Bonanni E, Siciliano G, Maestri M, Guarnieri B, Martucci M, Monti D, Carelli V, Franceschi C, La Morgia C, Santoro A. Association of rs3027178 polymorphism in the circadian clock gene PER1 with susceptibility to Alzheimer's disease and longevity in an Italian population. GeroScience 2021; 44:881-896. [PMID: 34921659 PMCID: PMC9135916 DOI: 10.1007/s11357-021-00477-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
Many physiological processes in the human body follow a 24-h circadian rhythm controlled by the circadian clock system. Light, sensed by retina, is the predominant “zeitgeber” able to synchronize the circadian rhythms to the light-dark cycles. Circadian rhythm dysfunction and sleep disorders have been associated with aging and neurodegenerative diseases including mild cognitive impairment (MCI) and Alzheimer’s disease (AD). In the present study, we aimed at investigating the genetic variability of clock genes in AD patients compared to healthy controls from Italy. We also included a group of Italian centenarians, considered as super-controls in association studies given their extreme phenotype of successful aging. We analyzed the exon sequences of eighty-four genes related to circadian rhythms, and the most significant variants identified in this first discovery phase were further assessed in a larger independent cohort of AD patients by matrix assisted laser desorption/ionization-time of flight mass spectrometry. The results identified a significant association between the rs3027178 polymorphism in the PER1 circadian gene with AD, the G allele being protective for AD. Interestingly, rs3027178 showed similar genotypic frequencies among AD patients and centenarians. These results collectively underline the relevance of circadian dysfunction in the predisposition to AD and contribute to the discussion on the role of the relationship between the genetics of age-related diseases and of longevity.
Collapse
Affiliation(s)
- Maria Giulia Bacalini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Laboratorio Brain Aging, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy.,CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy.,Department of Laboratory Medicine, Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Cristina Giuliani
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.,Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | | | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Sara De Fanti
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.,Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Luisa Benussi
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - Elio Scarpini
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - Marina Arcaro
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
| | - Enrica Bonanni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelangelo Maestri
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Biancamaria Guarnieri
- Center of Sleep Medicine, Villa Serena Hospital and Villaserena Foundation for the Research, Città S. Angelo, Pescara, Italy
| | | | - Morena Martucci
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Department of Applied Mathematics, Institute of Information Technology, Mathematics and Mechanics (ITMM), Lobachevsky State University of Nizhny Novgorod-National Research University (UNN), Nizhny Novgorod, Russia
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy. .,Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.
| |
Collapse
|
7
|
Higuchi S, Lin Y, Qiu J, Zhang Y, Ohashi M, Lee SI, Kitamura S, Yasukouchi A. Is the use of high correlated color temperature light at night related to delay of sleep timing in university students? A cross-country study in Japan and China. J Physiol Anthropol 2021; 40:7. [PMID: 34103077 PMCID: PMC8188719 DOI: 10.1186/s40101-021-00257-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/31/2021] [Indexed: 11/28/2022] Open
Abstract
Background Blue-enriched white light at night has the potential to delay the circadian rhythm in daily life. This study was conducted to determine whether the use of high correlated color temperature (CCT) light at home at night is associated with delay of sleep timing in university students. Methods The survey was conducted in 2014–2015 in 447 university students in Japan and 327 students in China. Habitual sleep timing and type of CCT light at home were investigated by using a self-administered questionnaire. The Japanese students were significantly later than the Chinese students in bedtime, wake time, and midpoint of sleep. They were asked whether the lighting in the room where they spend most of their time at night was closer to warm color (low CCT) or daylight color (high CCT). The amount of light exposure level during daily life was measured for at least 1 week by the use of a light sensor in 60 students in each country. Results The percentages of participants who used high CCT lighting at night were 61.6% for Japanese students and 80.8% for Chinese students. Bedtime and sleep onset time on school days and free days were significantly later in the high CCT group than in the low CCT group in Japan. The midpoint of sleep in the high CCT group was significantly later than that in the low CCT group on free days but not on school days. On the other hand, none of the sleep measurements on school days and free days were significantly different between the high CCT and low CCT groups in China. Illuminance level of light exposure during the night was significantly higher in Japanese than in Chinese, but that in the morning was significantly higher in China than in Japan. Conclusions The use of high CCT light at night is associated with delay of sleep timing in Japanese university students but not in Chinese university students. The effects of light at night on sleep timing and circadian rhythm may be complicated by other lifestyle factors depending on the country. Supplementary Information The online version contains supplementary material available at 10.1186/s40101-021-00257-x.
Collapse
Affiliation(s)
- Shigekazu Higuchi
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minamiku, Fukuoka, 815-8540, Japan.
| | - Yandan Lin
- Institute for Electric Light Sources, Fudan University, Shanghai, 200433, China.
| | - Jingjing Qiu
- Institute for Electric Light Sources, Fudan University, Shanghai, 200433, China
| | - Yichi Zhang
- Department of Kansei Science, Graduate School of Integrated Frontier Sciences, Kyushu University, 4-9-1 Shiobaru, Minamiku, Fukuoka, 815-8540, Japan
| | - Michihiro Ohashi
- Department of Kansei Science, Graduate School of Integrated Frontier Sciences, Kyushu University, 4-9-1 Shiobaru, Minamiku, Fukuoka, 815-8540, Japan
| | - Sang-Il Lee
- Laboratory of Environmental Ergonomics, Faculty of Engineering, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-0808, Japan
| | - Shingo Kitamura
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan
| | - Akira Yasukouchi
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minamiku, Fukuoka, 815-8540, Japan
| |
Collapse
|
8
|
Kuze M, Negishi K, Koyasu T, Kondo M, Tsubota K, Ayaki M. Cataract type and pupillary response to blue and white light stimuli. Sci Rep 2021; 11:1828. [PMID: 33469062 PMCID: PMC7815835 DOI: 10.1038/s41598-020-79751-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/06/2020] [Indexed: 11/29/2022] Open
Abstract
We evaluated the pupil reaction to blue and white light stimulation in 70 eyes with cataract and in 38 eyes with a selective blue-light filtering intra-ocular lens. The diameter of the pupil before stimulation was set as baseline (BPD) and, after a stimulus duration of 1 s, the post-illumination pupillary response (PIPR) was measured using an electronic pupillometer. The BPD showed no significant difference among three grades of nuclear sclerosis (NS). In contrast, the PIPRs differed significantly among the NS grades eyes including with and without subcapsular cataract (SC) and IOL eyes for white light (p < 0.05, Kruskal-Wallis test), but not for blue light. Subcapsular opacity did not affect the BPD or PIPR in all cataract grades for either light stimulus. The tendency of larger PIPR in the pseudophakic eyes than the cataract eyes for both lights, however significant difference was found only for white light (p < 0.05 for white light, p > 0.05 for blue light). Our study demonstrates retention of the PIPR for blue light, but not for white light in cataract eyes. We also confirmed that the pupillary response in pseudohakic eyes with a selective blue light-filtering intra ocular lens was greater than that in cataractous eyes for white light.
Collapse
Affiliation(s)
- Manami Kuze
- Division of Ophthalmology, Matsusaka Central General Hospital, Matsusaka, Japan.
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| | | | - Mineo Kondo
- Department of Ophthalmology, Mie University School of Medicine, Mie, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiko Ayaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
9
|
Ahmadi H, Lund‐Andersen H, Kolko M, Bach‐Holm D, Alberti M, Ba‐Ali S. Melanopsin-mediated pupillary light reflex and sleep quality in patients with normal tension glaucoma. Acta Ophthalmol 2020; 98:65-73. [PMID: 31062491 DOI: 10.1111/aos.14133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 04/10/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE The intrinsically photosensitive retinal ganglion cells (ipRGCs) and sleep quality are impaired in patients with primary open-angle glaucoma (POAG). In this study, we investigated whether ipRGCs and sleep quality were also impaired in patients with normal tension glaucoma (NTG). METHODS We performed pupillometry and sleep quality assessment in 15 patients with NTG and 17 healthy age-matched controls. Pupillometry protocol consisted of monocular stimulation with high illuminance (100 lux) red (633 nm, 300 cd/m2 or 15.23 log quanta/cm2 /s) and blue light (463 nm, 332 cd/m2 or 15.27 log quanta/cm2 /s) and binocular pupil measurements. Prior to light stimulation, patients were dark-adapted for 5 min. The late postillumination pupillary response (PIPRL ate ) to blue light was used as marker of ipRGC activity. Sleep quality was assessed by Pittsburgh Sleep Quality Index (PSQI) questionnaire. RESULTS The PIPRL ate to blue light was significantly reduced in patients with NTG compared to healthy subjects (p < 0.001), indicating impairment of the melanopsin-mediated pupillary pathway. There was no significant difference in the response elicited by red light (p = 0.6). Baseline pupil diameter and pupillary constriction amplitude to both red and blue light were reduced in patients with NTG (p < 0.05). The global score in PSQI was not significantly different between healthy controls and patients with NTG, indicating normal sleep quality (p = 0.6). Furthermore, we found no correlation between sleep parameters and pupillary light reflex parameters. CONCLUSION Patients with NTG exhibited reduced ipRGC activity compared to healthy subjects, while no differences were observed in sleep quality.
Collapse
Affiliation(s)
- Hamid Ahmadi
- Department of Ophthalmology Rigshospitalet Glostrup Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Henrik Lund‐Andersen
- Department of Ophthalmology Rigshospitalet Glostrup Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Miriam Kolko
- Department of Ophthalmology Rigshospitalet Glostrup Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Daniella Bach‐Holm
- Department of Ophthalmology Rigshospitalet Glostrup Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Mark Alberti
- Department of Ophthalmology Rigshospitalet Glostrup Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Shakoor Ba‐Ali
- Department of Ophthalmology Rigshospitalet Glostrup Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
10
|
Rukmini AV, Milea D, Gooley JJ. Chromatic Pupillometry Methods for Assessing Photoreceptor Health in Retinal and Optic Nerve Diseases. Front Neurol 2019; 10:76. [PMID: 30809186 PMCID: PMC6379484 DOI: 10.3389/fneur.2019.00076] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
The pupillary light reflex is mediated by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs), which also receive input from rods and cones. Melanopsin-dependent pupillary light responses are short-wavelength sensitive, have a higher threshold of activation, and are much slower to activate and de-activate compared with rod/cone-mediated responses. Given that rod/cone photoreceptors and melanopsin differ in their response properties, light stimuli can be designed to stimulate preferentially each of the different photoreceptor types, providing a read-out of their function. This has given rise to chromatic pupillometry methods that aim to assess the health of outer retinal photoreceptors and ipRGCs by measuring pupillary responses to blue or red light stimuli. Here, we review different types of chromatic pupillometry protocols that have been tested in patients with retinal or optic nerve disease, including approaches that use short-duration light exposures or continuous exposure to light. Across different protocols, patients with outer retinal disease (e.g., retinitis pigmentosa or Leber congenital amaurosis) show reduced or absent pupillary responses to dim blue-light stimuli used to assess rod function, and reduced responses to moderately-bright red-light stimuli used to assess cone function. By comparison, patients with optic nerve disease (e.g., glaucoma or ischemic optic neuropathy, but not mitochondrial disease) show impaired pupillary responses during continuous exposure to bright blue-light stimuli, and a reduced post-illumination pupillary response after light offset, used to assess melanopsin function. These proof-of-concept studies demonstrate that chromatic pupillometry methods can be used to assess damage to rod/cone photoreceptors and ipRGCs. In future studies, it will be important to determine whether chromatic pupillometry methods can be used for screening and early detection of retinal and optic nerve diseases. Such methods may also prove useful for objectively evaluating the degree of recovery to ipRGC function in blind patients who undergo gene therapy or other treatments to restore vision.
Collapse
Affiliation(s)
- A V Rukmini
- Programme in Neuroscience and Behavioural Disorders, Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore, Singapore
| | - Dan Milea
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore.,The Ophthalmology and Visual Sciences Academic Clinical Programme (EYE-ACP), SingHealth and Duke-NUS, Singapore, Singapore
| | - Joshua J Gooley
- Programme in Neuroscience and Behavioural Disorders, Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
11
|
Yim PD, Gallos G, Perez-Zoghbi JF, Zhang Y, Xu D, Wu A, Berkowitz DE, Emala CW. Airway smooth muscle photorelaxation via opsin receptor activation. Am J Physiol Lung Cell Mol Physiol 2019; 316:L82-L93. [PMID: 30284927 PMCID: PMC6383505 DOI: 10.1152/ajplung.00135.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 01/08/2023] Open
Abstract
Nonvisual opsin (OPN) receptors have recently been implicated in blue light-mediated photorelaxation of smooth muscle in various organs. Since photorelaxation has not yet been demonstrated in airway smooth muscle (ASM) or in human tissues, we questioned whether functional OPN receptors are expressed in mouse and human ASM. mRNA, encoding the OPN 3 receptor, was detected in both human and mouse ASM. To demonstrate the functionality of the OPN receptors, we performed wire myography of ex vivo ASM from mouse and human upper airways. Blue light-mediated relaxation of ACh-preconstricted airways was intensity and wavelength dependent (maximum relaxation at 430-nm blue light) and was inhibited by blockade of the large-conductance calcium-activated potassium channels with iberiotoxin. We further implicated OPN receptors as key mediators in functional photorelaxation by demonstrating increased relaxation in the presence of a G protein receptor kinase 2 inhibitor or an OPN chromophore (9- cis retinal). We corroborated these responses in peripheral airways of murine precision-cut lung slices. This is the first demonstration of photorelaxation in ASM via an OPN receptor-mediated pathway.
Collapse
Affiliation(s)
- Peter D Yim
- Department of Anesthesiology, Columbia University , New York, New York
| | - George Gallos
- Department of Anesthesiology, Columbia University , New York, New York
| | | | - Yi Zhang
- Department of Anesthesiology, Columbia University , New York, New York
| | - Dingbang Xu
- Department of Anesthesiology, Columbia University , New York, New York
| | - Amy Wu
- Department of Anesthesiology, Columbia University , New York, New York
| | - Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Charles W Emala
- Department of Anesthesiology, Columbia University , New York, New York
| |
Collapse
|
12
|
La Morgia C, Carelli V, Carbonelli M. Melanopsin Retinal Ganglion Cells and Pupil: Clinical Implications for Neuro-Ophthalmology. Front Neurol 2018; 9:1047. [PMID: 30581410 PMCID: PMC6292931 DOI: 10.3389/fneur.2018.01047] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/19/2018] [Indexed: 02/02/2023] Open
Abstract
Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive RGCs that mediate many relevant non-image forming functions of the eye, including the pupillary light reflex, through the projections to the olivary pretectal nucleus. In particular, the post-illumination pupil response (PIPR), as evaluated by chromatic pupillometry, can be used as a reliable marker of mRGC function in vivo. In the last years, pupillometry has become a promising tool to assess mRGC dysfunction in various neurological and neuro-ophthalmological conditions. In this review we will present the most relevant findings of pupillometric studies in glaucoma, hereditary optic neuropathies, ischemic optic neuropathies, idiopathic intracranial hypertension, multiple sclerosis, Parkinson's disease, and mood disorders. The use of PIPR as a marker for mRGC function is also proposed for other neurodegenerative disorders in which circadian dysfunction is documented.
Collapse
Affiliation(s)
- Chiara La Morgia
- Unità Operativa Complessa Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Valerio Carelli
- Unità Operativa Complessa Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Michele Carbonelli
- Unità Operativa Complessa Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| |
Collapse
|
13
|
Watson LA, Phillips AJK, Hosken IT, McGlashan EM, Anderson C, Lack LC, Lockley SW, Rajaratnam SMW, Cain SW. Increased sensitivity of the circadian system to light in delayed sleep-wake phase disorder. J Physiol 2018; 596:6249-6261. [PMID: 30281150 DOI: 10.1113/jp275917] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS This is the first study to demonstrate an altered circadian phase shifting response in a circadian rhythm sleep disorder. Patients with delayed sleep-wake phase disorder (DSWPD) demonstrate greater sensitivity of the circadian system to the phase-delaying effects of light. Increased circadian sensitivity to light is associated with later circadian timing within both control and DSWPD groups. DSWPD patients had a greater sustained pupil response after light exposure. Treatments for DSWPD should consider sensitivity of the circadian system to light as a potential underlying vulnerability, making patients susceptible to relapse. ABSTRACT Patients with delayed sleep-wake phase disorder (DSWPD) exhibit delayed sleep-wake behaviour relative to desired bedtime, often leading to chronic sleep restriction and daytime dysfunction. The majority of DSWPD patients also display delayed circadian timing in the melatonin rhythm. Hypersensitivity of the circadian system to phase-delaying light is a plausible physiological basis for DSWPD vulnerability. We compared the phase shifting response to a 6.5 h light exposure (∼150 lux) between male patients with diagnosed DSWPD (n = 10; aged 20.8 ± 2.3 years) and male healthy controls (n = 11; aged 22.4 ± 3.3 years). Salivary dim light melatonin onset (DLMO) was measured under controlled conditions in dim light (<3 lux) before and after light exposure. Correcting for the circadian time of the light exposure, DSWPD patients exhibited 31.5% greater phase delay shifts than healthy controls. In both groups, a later initial melatonin phase was associated with a greater magnitude phase shift, indicating that increased circadian sensitivity to light may be a factor that contributes to delayed phase, even in non-clinical groups. DSWPD patients also had reduced pupil size following the light exposure, and showed a trend towards increased melatonin suppression during light exposure. These findings indicate that, for patients with DSWPD, assessment of light sensitivity may be an important factor that can inform behavioural therapy, including minimization of exposure to phase-delaying night-time light.
Collapse
Affiliation(s)
- Lauren A Watson
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Andrew J K Phillips
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Ihaia T Hosken
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Elise M McGlashan
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Clare Anderson
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Leon C Lack
- Adelaide Institute for Sleep Health, School of Medicine, Flinders University, Adelaide, South Australia
| | - Steven W Lockley
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Shantha M W Rajaratnam
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sean W Cain
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Rodgers J, Peirson SN, Hughes S, Hankins MW. Functional characterisation of naturally occurring mutations in human melanopsin. Cell Mol Life Sci 2018; 75:3609-3624. [PMID: 29700553 PMCID: PMC6133154 DOI: 10.1007/s00018-018-2813-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
Melanopsin is a blue light-sensitive opsin photopigment involved in a range of non-image forming behaviours, including circadian photoentrainment and the pupil light response. Many naturally occurring genetic variants exist within the human melanopsin gene (OPN4), yet it remains unclear how these variants affect melanopsin protein function and downstream physiological responses to light. Here, we have used bioinformatic analysis and in vitro expression systems to determine the functional phenotypes of missense human OPN4 variants. From 1242 human OPN4 variants collated in the NCBI Short Genetic Variation database (dbSNP), we identified 96 that lead to non-synonymous amino acid substitutions. These 96 missense mutations were screened using sequence alignment and comparative approaches to select 16 potentially deleterious variants for functional characterisation using calcium imaging of melanopsin-driven light responses in HEK293T cells. We identify several previously uncharacterised OPN4 mutations with altered functional properties, including attenuated or abolished light responses, as well as variants demonstrating abnormal response kinetics. These data provide valuable insight into the structure-function relationships of human melanopsin, including several key functional residues of the melanopsin protein. The identification of melanopsin variants with significantly altered function may serve to detect individuals with disrupted melanopsin-based light perception, and potentially highlight those at increased risk of sleep disturbance, circadian dysfunction, and visual abnormalities.
Collapse
Affiliation(s)
- Jessica Rodgers
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
15
|
Rodgers J, Hughes S, Pothecary CA, Brown LA, Hickey DG, Peirson SN, Hankins MW. Defining the impact of melanopsin missense polymorphisms using in vivo functional rescue. Hum Mol Genet 2018; 27:2589-2603. [PMID: 29718372 PMCID: PMC6048994 DOI: 10.1093/hmg/ddy150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/02/2022] Open
Abstract
Melanopsin (OPN4) is an opsin photopigment expressed within intrinsically photosensitive retinal ganglion cells (ipRGCs) that mediate non-image forming (NIF) responses to light. Two single-nucleotide polymorphisms (SNPs) in human melanopsin (hOPN4), Pro10Leu and Thr394Ile, have recently been associated with abnormal NIF responses to light, including seasonal affective disorder. It has been suggested these behavioural changes are due to altered melanopsin signalling. However, there is currently no direct evidence to support this. Here we have used ipRGC-specific delivery of hOPN4 wild-type (WT), Pro10Leu or Thr394Ile adeno-associated viruses (AAV) to determine the functional consequences of hOPN4 SNPs on melanopsin-driven light responses and associated behaviours. Immunohistochemistry confirmed hOPN4 AAVs exclusively transduced mouse ipRGCs. Behavioural phenotyping performed before and after AAV injection demonstrated that both hOPN4 Pro10Leu and Thr394Ile could functionally rescue pupillary light responses and circadian photoentrainment in Opn4-/- mice, with no differences in NIF behaviours detected for animals expressing either SNP compared to hOPN4 WT. Multi-electrode array recordings revealed that ipRGCs expressing hOPN4 Thr394Ile exhibit melanopsin-driven light responses with significantly attenuated response amplitude, decreased sensitivity and faster offset kinetics compared to hOPN4 WT. IpRGCs expressing hOpn4 Pro10Leu also showed reduced response amplitude. Collectively these data suggest Thr394Ile and Pro10Leu may be functionally significant SNPs, which result in altered melanopsin signalling. To our knowledge, this study provides the first direct evidence for the effects of hOPN4 polymorphisms on melanopsin-driven light responses and NIF behaviours in vivo, providing further insight into the role of these SNPs in melanopsin function and human physiology.
Collapse
Affiliation(s)
- Jessica Rodgers
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Steven Hughes
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Carina A Pothecary
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Laurence A Brown
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Doron G Hickey
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Mark W Hankins
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Abstract
Diurnal preference, or chronotype, determined partly by genetics and modified by age, activity, and the environment, defines the time of day at which one feels at his/her best, when one feels sleepy, and when one would prefer to start his/her day. Chronotype affects the phase relationship of an individual's circadian clock with the environment such that morning types have earlier-phased circadian rhythms than evening types. The phases of circadian rhythms are synchronized to the environment on a daily basis, undergoing minor adjustments of phase each day. Light is the most potent time cue for phase-shifting circadian rhythms, but the timing and amount of solar irradiation vary dynamically with season, especially with increasing distance from the equator. There is evidence that chronotype is modified by seasonal change, most likely due to the changes in the light environment, but interindividual differences in photoperiod responsiveness mean that some people are more affected than others. Differences in circadian light sensitivity due to endogenous biological reasons and/or previous light history are responsible for the natural variation in photoperiod responsiveness. Modern lifestyles that include access to artificial light at night, temperature-controlled environments, and spending much less time outdoors offer a buffer to the environmental changes of the seasons and may contribute to humans becoming less responsive to seasons.
Collapse
Affiliation(s)
- Nyambura Shawa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa,
| | - Dale E Rae
- Health through Physical Activity, Lifestyle and Sport Research Centre, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Laura C Roden
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa,
| |
Collapse
|
17
|
Soler JE, Robison AJ, Núñez AA, Yan L. Light modulates hippocampal function and spatial learning in a diurnal rodent species: A study using male nile grass rat (Arvicanthis niloticus). Hippocampus 2017; 28:189-200. [PMID: 29251803 DOI: 10.1002/hipo.22822] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/09/2017] [Accepted: 12/14/2017] [Indexed: 01/05/2023]
Abstract
The effects of light on cognitive function have been well-documented in human studies, with brighter illumination improving cognitive performance in school children, healthy adults, and patients in early stages of dementia. However, the underlying neural mechanisms are not well understood. The present study examined how ambient light affects hippocampal function using the diurnal Nile grass rats (Arvicanthis niloticus) as the animal model. Grass rats were housed in either a 12:12 h bright light-dark (brLD, 1,000 lux) or dim light-dark (dimLD, 50 lux) cycle. After 4 weeks, the dimLD group showed impaired spatial memory in the Morris Water Maze (MWM) task. The impairment in their MWM performance were reversed when the dimLD group were transferred to the brLD condition for another 4 weeks. The results suggest that lighting conditions influence cognitive function of grass rats in a way similar to that observed in humans, such that bright light is beneficial over dim light for cognitive performance. In addition to the behavioral changes, grass rats in the dimLD condition exhibited reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus, most notably in the CA1 subregion. There was also a reduction in dendritic spine density in CA1 apical dendrites in dimLD as compared to the brLD group, and the reduction was mostly in the number of mushroom and stubby spines. When dimLD animals were transferred to the brLD condition for 4 weeks, the hippocampal BDNF and dendritic spine density significantly increased. The results illustrate that not only does light intensity affect cognitive performance, but that it also impacts hippocampal structural plasticity. These studies serve as a starting point to further understand how ambient light modulates neuronal and cognitive functions in diurnal species. A mechanistic understanding of the effects of light on cognition can help to identify risk factors for cognitive decline and contribute to the development of more effective prevention and treatment of cognitive impairment in clinical populations.
Collapse
Affiliation(s)
- Joel E Soler
- Department of Psychology, Michigan State University, East Lansing, Michigan
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Antonio A Núñez
- Department of Psychology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
18
|
Charng J, Jacobson SG, Heon E, Roman AJ, McGuigan DB, Sheplock R, Kosyk MS, Swider M, Cideciyan AV. Pupillary Light Reflexes in Severe Photoreceptor Blindness Isolate the Melanopic Component of Intrinsically Photosensitive Retinal Ganglion Cells. Invest Ophthalmol Vis Sci 2017; 58:3215-3224. [PMID: 28660274 PMCID: PMC5490362 DOI: 10.1167/iovs.17-21909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose Pupillary light reflex (PLR) is driven by outer retinal photoreceptors and by melanopsin-expressing intrinsically photosensitive retinal ganglion cells of the inner retina. To isolate the melanopic component, we studied patients with severe vision loss due to Leber congenital amaurosis (LCA) caused by gene mutations acting on the outer retina. Methods Direct PLR was recorded in LCA patients (n = 21) with known molecular causation and severe vision loss. Standard stimuli (2.5 log scot-cd.m−2; ∼13 log quanta.cm−2.s−1; achromatic full-field) with 0.1- or 5-second duration were used in all patients. Additional recordings were performed with higher luminance (3.9 log scot-cd.m−2) in a subset of patients. Results The LCA patients showed no detectable PLR to the standard stimulus with short duration. With longer-duration stimuli, a PLR was detectable in the majority (18/21) of patients. The latency of the PLR was 2.8 ± 1.3 seconds, whereas normal latency was 0.19 ± 0.02 seconds. Peak contraction amplitude in patients was 1.1 ± 0.9 mm at 6.2 ± 2.3 seconds, considerably different from normal amplitude of 4.2 ± 0.4 mm at 3.0 ± 0.4 seconds. Recordings with higher luminance demonstrated that PLRs in severe LCA could also be evoked with short-duration stimuli. Conclusions The PLR in severe LCA patients likely represents the activation of the melanopic circuit in isolation from rod and cone input. Knowledge of the properties of the human melanopic PLR allows not only comparison to those in animal models but also serves to define the fidelity of postretinal transmission in clinical trials targeting patients with no outer retinal function.
Collapse
Affiliation(s)
- Jason Charng
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Samuel G Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alejandro J Roman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - David B McGuigan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca Sheplock
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Mychajlo S Kosyk
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Malgorzata Swider
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
19
|
Adhikari P, Zele AJ, Thomas R, Feigl B. Quadrant Field Pupillometry Detects Melanopsin Dysfunction in Glaucoma Suspects and Early Glaucoma. Sci Rep 2016; 6:33373. [PMID: 27622679 PMCID: PMC5020729 DOI: 10.1038/srep33373] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022] Open
Abstract
It is difficult to detect visual function deficits in patients at risk for glaucoma (glaucoma suspects) and at early disease stages with conventional ophthalmic tests such as perimetry. To this end, we introduce a novel quadrant field measure of the melanopsin retinal ganglion cell mediated pupil light response corresponding with typical glaucomatous arcuate visual field defects. The melanopsin-mediated post-illumination pupil response (PIPR) was measured in 46 patients with different stages of glaucoma including glaucoma suspects and compared to a healthy group of 21 participants with no disease. We demonstrate that the superonasal quadrant PIPR differentiated glaucoma suspects and early glaucoma patients from controls with fair (AUC = 0.74) and excellent (AUC = 0.94) diagnostic accuracy, respectively. The superonasal PIPR provides a linear functional correlate of structural retinal nerve fibre thinning in glaucoma suspects and early glaucoma patients. This first report that quadrant PIPR stimulation detects melanopsin dysfunction in patients with early glaucoma and at pre-perimetric stages may have future implications in treatment decisions of glaucoma suspects.
Collapse
Affiliation(s)
- Prakash Adhikari
- Medical Retina and Visual Science Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew J. Zele
- Medical Retina and Visual Science Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ravi Thomas
- Queensland Eye Institute, South Brisbane, QLD, Australia
- University of Queensland, Brisbane, QLD, Australia
| | - Beatrix Feigl
- Medical Retina and Visual Science Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- Queensland Eye Institute, South Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Daneault V, Dumont M, Massé É, Vandewalle G, Carrier J. Light-sensitive brain pathways and aging. J Physiol Anthropol 2016; 35:9. [PMID: 26980095 PMCID: PMC4791759 DOI: 10.1186/s40101-016-0091-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/01/2016] [Indexed: 01/08/2023] Open
Abstract
Notwithstanding its effects on the classical visual system allowing image formation, light acts upon several non-image-forming (NIF) functions including body temperature, hormonal secretions, sleep-wake cycle, alertness, and cognitive performance. Studies have shown that NIF functions are maximally sensitive to blue wavelengths (460–480 nm), in comparison to longer light wavelengths. Higher blue light sensitivity has been reported for melatonin suppression, pupillary constriction, vigilance, and performance improvement but also for modulation of cognitive brain functions. Studies investigating acute stimulating effects of light on brain activity during the execution of cognitive tasks have suggested that brain activations progress from subcortical regions involved in alertness, such as the thalamus, the hypothalamus, and the brainstem, before reaching cortical regions associated with the ongoing task. In the course of aging, lower blue light sensitivity of some NIF functions has been reported. Here, we first describe neural pathways underlying effects of light on NIF functions and we discuss eye and cerebral mechanisms associated with aging which may affect NIF light sensitivity. Thereafter, we report results of investigations on pupillary constriction and cognitive brain sensitivity to light in the course of aging. Whereas the impact of light on cognitive brain responses appears to decrease substantially, pupillary constriction seems to remain more intact over the lifespan. Altogether, these results demonstrate that aging research should take into account the diversity of the pathways underlying the effects of light on specific NIF functions which may explain their differences in light sensitivity.
Collapse
Affiliation(s)
- V Daneault
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada. .,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada. .,Department of Psychology, University of Montreal, Montreal, QC, Canada.
| | - M Dumont
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - É Massé
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - G Vandewalle
- Department of Psychology, University of Montreal, Montreal, QC, Canada.,Cyclotron Research Centre, University of Liège, Liège, Belgium
| | - J Carrier
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
21
|
Lee SI, Hida A, Kitamura S, Mishima K, Higuchi S. Association between the melanopsin gene polymorphism OPN4*Ile394Thr and sleep/wake timing in Japanese university students. J Physiol Anthropol 2014; 33:9. [PMID: 24887407 PMCID: PMC4048048 DOI: 10.1186/1880-6805-33-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/25/2014] [Indexed: 12/01/2022] Open
Abstract
Background In our previous studies, we found that the Ile394Thr SNP in the melanopsin gene (OPN4) was functionally associated with the pupillary light reflex. This indicates the possibility that OPN4*Ile394Thr is associated with other non-image forming responses. The aim of this study was therefore to determine whether OPN4*Ile394Thr is associated with sleep/wake timing. Methods A total of 348 healthy Japanese university students participated in this study. Scalp hair was used to genotype the Ile394Thr SNP of OPN4. Sleep habits, including bedtime, wake time and sleep duration, were assessed separately for weekdays and weekends. A total of 328 samples, including 223 samples with TT genotype, 91 with TC genotype and 14 with CC genotype, were used for statistical analysis. No significant difference in age or male/female distribution was found among the three genotype groups. Results There was no significant difference in circadian preference among the genotype groups. During weekdays, bedtime, wake time and midpoint of sleep for CC subjects were significantly later than those for TT and TC subjects. However, there was no difference between TT and TC subjects in any of their sleep habits. During weekends, bedtime of CC subjects was significantly later than those of TT and TC subjects, and the midpoint of sleep of CC subjects was significantly later than that of TC subjects. Conclusions Our findings demonstrated that OPN4*Ile394Thr is associated with sleep/wake timing. We also found that the sleep/wake timing of subjects with the CC genotype was later than that of subjects with the TT or TC genotype.
Collapse
Affiliation(s)
| | | | | | | | - Shigekazu Higuchi
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka 815-8540, Japan.
| |
Collapse
|
22
|
Roecklein K, Wong P, Ernecoff N, Miller M, Donofry S, Kamarck M, Wood-Vasey WM, Franzen P. The post illumination pupil response is reduced in seasonal affective disorder. Psychiatry Res 2013; 210:150-8. [PMID: 23809464 PMCID: PMC3795919 DOI: 10.1016/j.psychres.2013.05.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 05/15/2013] [Accepted: 05/19/2013] [Indexed: 10/26/2022]
Abstract
Individuals with seasonal affective disorder (SAD) may have a decreased retinal sensitivity in the non-image forming light-input pathway. We examined the post illumination pupil response (PIPR) among individuals with SAD and healthy controls to identify possible differences in the melanopsin signaling pathway. We also investigated whether melanopsin gene (OPN4) variations would predict variability in the PIPR. Fifteen SAD and 15 control participants (80% women, mean age 36.7 years, S.D.=14.5) were assessed in the fall/winter. Participants were diagnosed based on DSM-IV-TR criteria. Infrared pupillometry was used to measure pupil diameter prior to, during, and after red and blue stimuli. In response to blue light, the SAD group had a reduced PIPR and a lower PIPR percent change relative to controls. The PIPR after the blue stimulus also varied on the basis of OPN4 I394T genotype, but not OPN4 P10L genotype. These findings may indicate that individuals with SAD have a less sensitive light input pathway as measured by the PIPR, leading to differences in neurobiological and behavioral responses such as alertness, circadian photoentrainment, and melatonin release. In addition, this sensitivity may vary based on sequence variations in OPN4, although a larger sample and replication is needed.
Collapse
Affiliation(s)
- Kathryn Roecklein
- Department of Psychology, University of Pittsburgh, 201S Bouquet St, Pittsburgh, PA 15260, USA.
| | - Patricia Wong
- Department of Psychology, University of Pittsburgh, 201 S Bouquet St, Pittsburgh, PA 15260, USA
| | - Natalie Ernecoff
- Department of Psychology, University of Pittsburgh, 201 S Bouquet St, Pittsburgh, PA 15260, USA
| | - Megan Miller
- Department of Psychology, University of Pittsburgh, 201 S Bouquet St, Pittsburgh, PA 15260, USA
| | - Shannon Donofry
- Department of Psychology, University of Pittsburgh, 201 S Bouquet St, Pittsburgh, PA 15260, USA
| | - Marissa Kamarck
- Department of Psychology, University of Pittsburgh, 201 S Bouquet St, Pittsburgh, PA 15260, USA
| | | | - Peter Franzen
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh PA, USA
| |
Collapse
|
23
|
Association between melanopsin gene polymorphism (I394T) and pupillary light reflex is dependent on light wavelength. J Physiol Anthropol 2013; 32:16. [PMID: 24119231 PMCID: PMC4015917 DOI: 10.1186/1880-6805-32-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/30/2013] [Indexed: 12/17/2022] Open
Abstract
Background Our aim was to determine the association between melanopsin gene polymorphism and pupillary light reflex under diverse photic conditions, including different intensities and wavelengths. Methods A total of 195 visually corrected subjects volunteered for investigation of the melanopsin gene of single nucleotide polymorphism (SNP) of rs1079610 (I394T). The genotype groups were TT (n = 126), TC (n = 55), and CC (n = 8), and 75 of the subjects, including subjects with TT (n = 34), TC (n = 33), and CC (n = 8) participated in our experiment. Three monochromatic lights with peak wavelengths of 465 nm (blue), 536 nm (green), and 632 nm (red) were prepared, and each light was projected to the subjects with five intensities, 12, 13, 14, 14.5 and 15 log photons/(cm2 s), for one minute. The pupil size of the left eye was measured under each light condition after a 1-minute adaptation. Results The pupils of the TC + CC genotypes (n = 38) were significantly smaller than those of the TT genotype (n = 31) under a blue (463 nm) light condition with 15 log photons/(cm2 s) (P < 0.05). In contrast, there were no significant differences under green (536 nm) and red (632 nm) light conditions. Conversely, relative pupil constrictions of the TC + CC genotypes were greater than those of the TT genotype under both blue and green conditions with high intensities (14.5 and 15 log photons/(cm2 s)). In contrast, there were no significant differences between genotype groups in pupil size and relative pupilloconstriction under the red light conditions. Conclusions Our findings suggest that the melanopsin gene polymorphism (I394T) functionally interacts with pupillary light reflex, depending on light intensity and, particularly, wavelength, and that under a light condition fulfilling both high intensity and short wavelength, the pupillary light response of subjects with the C allele (TC + CC) is more sensitive to light than that of subjects with the TT genotype.
Collapse
|