1
|
Simpson EL, Schlievert PM, Yoshida T, Lussier S, Boguniewicz M, Hata T, Fuxench Z, De Benedetto A, Ong PY, Ko J, Calatroni A, Rudman Spergel AK, Plaut M, Quataert SA, Kilgore SH, Peterson L, Gill AL, David G, Mosmann T, Gill SR, Leung DYM, Beck LA. Rapid reduction in Staphylococcus aureus in atopic dermatitis subjects following dupilumab treatment. J Allergy Clin Immunol 2023; 152:1179-1195. [PMID: 37315812 PMCID: PMC10716365 DOI: 10.1016/j.jaci.2023.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is an inflammatory disorder characterized by dominant type 2 inflammation leading to chronic pruritic skin lesions, allergic comorbidities, and Staphylococcus aureus skin colonization and infections. S aureus is thought to play a role in AD severity. OBJECTIVES This study characterized the changes in the host-microbial interface in subjects with AD following type 2 blockade with dupilumab. METHODS Participants (n = 71) with moderate-severe AD were enrolled in a randomized (dupilumab vs placebo; 2:1), double-blind study at Atopic Dermatitis Research Network centers. Bioassays were performed at multiple time points: S aureus and virulence factor quantification, 16s ribosomal RNA microbiome, serum biomarkers, skin transcriptomic analyses, and peripheral blood T-cell phenotyping. RESULTS At baseline, 100% of participants were S aureus colonized on the skin surface. Dupilumab treatment resulted in significant reductions in S aureus after only 3 days (compared to placebo), which was 11 days before clinical improvement. Participants with the greatest S aureus reductions had the best clinical outcomes, and these reductions correlated with reductions in serum CCL17 and disease severity. Reductions (10-fold) in S aureus cytotoxins (day 7), perturbations in TH17-cell subsets (day 14), and increased expression of genes relevant for IL-17, neutrophil, and complement pathways (day 7) were also observed. CONCLUSIONS Blockade of IL-4 and IL-13 signaling, very rapidly (day 3) reduces S aureus abundance in subjects with AD, and this reduction correlates with reductions in the type 2 biomarker, CCL17, and measures of AD severity (excluding itch). Immunoprofiling and/or transcriptomics suggest a role for TH17 cells, neutrophils, and complement activation as potential mechanisms to explain these findings.
Collapse
Affiliation(s)
- Eric L Simpson
- Department of Dermatology, Oregon Health and Science University, Portland, Ore
| | | | - Takeshi Yoshida
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | | | - Mark Boguniewicz
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | - Tissa Hata
- Department of Dermatology, University of California, San Diego, Calif
| | - Zelma Fuxench
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pa
| | - Anna De Benedetto
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Peck Y Ong
- Department of Pediatrics, University Southern California, Los Angeles, Calif
| | - Justin Ko
- Department of Dermatology, Stanford University, Stanford, Calif
| | | | - Amanda K Rudman Spergel
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Marshall Plaut
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sally A Quataert
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Samuel H Kilgore
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa
| | - Liam Peterson
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Ann L Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | | | - Tim Mosmann
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Donald Y M Leung
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo.
| | - Lisa A Beck
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
2
|
Kim J, Kim BE, Berdyshev E, Bronova I, Bin L, Bae J, Kim S, Kim HY, Lee UH, Kim MS, Kim H, Lee J, Hall CF, Hui-Beckman J, Chang Y, Bronoff AS, Hwang D, Lee HY, Goleva E, Ahn K, Leung DYM. Staphylococcus aureus causes aberrant epidermal lipid composition and skin barrier dysfunction. Allergy 2023; 78:1292-1306. [PMID: 36609802 DOI: 10.1111/all.15640] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Staphylococcus (S) aureus colonization is known to cause skin barrier disruption in atopic dermatitis (AD) patients. However, it has not been studied how S. aureus induces aberrant epidermal lipid composition and skin barrier dysfunction. METHODS Skin tape strips (STS) and swabs were obtained from 24 children with AD (6.0 ± 4.4 years) and 16 healthy children (7.0 ± 4.5 years). Lipidomic analysis of STS samples was performed by mass spectrometry. Skin levels of methicillin-sensitive and methicillin-resistant S. aureus (MSSA and MRSA) were evaluated. The effects of MSSA and MRSA were evaluated in primary human keratinocytes (HEKs) and organotypic skin cultures. RESULTS AD and organotypic skin colonized with MRSA significantly increased the proportion of lipid species with nonhydroxy fatty acid sphingosine ceramide with palmitic acid ([N-16:0 NS-CER], sphingomyelins [16:0-18:0 SM]), and lysophosphatidylcholines [16:0-18:0 LPC], but significantly reduced the proportion of corresponding very long-chain fatty acids (VLCFAs) species (C22-28) compared to the skin without S. aureus colonization. Significantly increased transepidermal water loss (TEWL) was found in MRSA-colonized AD skin. S. aureus indirectly through interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, and IL-33 inhibited expression of fatty acid elongase enzymes (ELOVL3 and ELOVL4) in HEKs. ELOVL inhibition was more pronounced by MRSA and resulted in TEWL increase in organotypic skin. CONCLUSION Aberrant skin lipid profiles and barrier dysfunction are associated with S. aureus colonization in AD patients. These effects are attributed to the inhibition of ELOVLs by S. aureus-induced IL-1β, TNF-α, IL-6, and IL-33 seen in keratinocyte models and are more prominent in MRSA than MSSA.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Irina Bronova
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Lianghua Bin
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Jaewoong Bae
- R&D Institute, BioEleven Co., Ltd., Seoul, Korea
| | - Seokjin Kim
- R&D Institute, BioEleven Co., Ltd., Seoul, Korea
| | - Hye-Young Kim
- Department of Pediatrics, Medical Research Institute of Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Un Ha Lee
- Department of Dermatology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Myoung Shin Kim
- Department of Dermatology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Hyunmi Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jinyoung Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Clifton F Hall
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | | | - Yunhee Chang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| | | | - Dasom Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| | - Hae-Young Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
3
|
Zhang H, Ma W, Liu H, Tang W, Shu J, Zhou J, Zheng H, Xiao H, Yang X, Liu D, Liang H, Yang X. Systematic analysis of lysine crotonylation in human macrophages responding to MRSA infection. Front Cell Infect Microbiol 2023; 13:1126350. [PMID: 36844408 PMCID: PMC9945341 DOI: 10.3389/fcimb.2023.1126350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most commonly encountered bacteria found in healthcare clinics and has been ranked a priority 2 pathogen. Research is urgently needed to develop new therapeutic approaches to combat the pathogen. Variations in the pattern of protein posttranslational modifications (PTMs) of host cells affect physiological and pathological events, as well as therapeutic effectiveness. However, the role of crotonylation in MRSA-infected THP1 cells remains unknown. In this study, we found that crotonylation profiles of THP1 cells were altered after MRSA infection. It was then confirmed that lysine crotonylation profiles of THP1 cells and bacteria were different; MRSA infection inhibited global lysine crotonylation (Kcro) modification but partially elevated Kcro of host proteins. We obtained a proteome-wide crotonylation profile of THP1 cells infected by MRSA further treated by vancomycin, leading to the identification of 899 proteins, 1384 sites of which were down-regulated, and 160 proteins with 193 sites up-regulated. The crotonylated down-regulated proteins were mainly located in cytoplasm and were enriched in spliceosome, RNA degradation, protein posttranslational modification, and metabolism. However, the crotonylated up-regulated proteins were mainly located in nucleus and significantly involved in nuclear body, chromosome, ribonucleoprotein complex, and RNA processing. The domains of these proteins were significantly enriched on RNA recognition motif, and linker histone H1 and H5 families. Some proteins related to protecting against bacterial infection were also found to be targets of crotonylation. The present findings point to a comprehensive understanding of the biological functions of lysine crotonylation in human macrophages, thereby providing a certain research basis for the mechanism and targeted therapy on the immune response of host cells against MRSA infection.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Deparment of Critical Care Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Ma
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haoru Liu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wanqi Tang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junjie Shu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jianping Zhou
- College of Basic Medical Sciences, Panzihua University, Panzihua, China
| | - Hongsheng Zheng
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongyan Xiao
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xue Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Daoyan Liu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaping Liang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Huaping Liang, ; Xia Yang,
| | - Xia Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Huaping Liang, ; Xia Yang,
| |
Collapse
|
4
|
Wang C, Lu H, Li X, Zhu Y, Ji Y, Lu W, Wang G, Dong W, Liu M, Wang X, Chen H, Tan C. Identification of an anti-virulence drug that reverses antibiotic resistance in multidrug resistant bacteria. Biomed Pharmacother 2022; 153:113334. [DOI: 10.1016/j.biopha.2022.113334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022] Open
|
5
|
Zeng X, Feng J, Yang Y, Zhao R, Yu Q, Qin H, Wei L, Ji P, Li H, Wu Z, Zhang J. Screening of Key Genes of Sepsis and Septic Shock Using Bioinformatics Analysis. J Inflamm Res 2021; 14:829-841. [PMID: 33737824 PMCID: PMC7962593 DOI: 10.2147/jir.s301663] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Sepsis is a disease associated with high mortality. We performed bioinformatic analysis to identify key biomarkers associated with sepsis and septic shock. Methods The top 20% of genes showing the greatest variance between sepsis and controls in the GSE13904 dataset (children) were screened by co-expression network analysis. The differentially expressed genes (DEGs) were identified through analyzing differential gene expression between sepsis patients and control in the GSE13904 (children) and GSE154918 (adult) data sets. Intersection analysis of module genes and DEGs was performed to identify common DEGs for enrichment analysis, protein-protein interaction network (PPI network) analysis, and Short Time-series Expression Miner (STEM) analysis. The PPI network genes were ranked by degree of connectivity, and the top 100 sepsis-associated genes were identified based on the area under the receiver operating characteristic curve (AUC). In addition, we evaluated differences in immune cell infiltration between sepsis patients and controls in children (GSE13904, GSE25504) and adults (GSE9960, GSE154918). Finally, we analyzed differences in DNA methylation levels between sepsis patients and controls in GSE138074 (adults). Results The common genes were associated mainly with up-regulated inflammatory and metabolic responses, as well as down-regulated immune responses. Sepsis patients showed lower infiltration by most types of immune cells. Genes in the PPI network with AUC values greater than 0.9 in both GSE13904 (children) and GSE154918 (adults) were screened as key genes for diagnosis. These key genes (MAPK14, FGR, RHOG, LAT, PRKACB, UBE2Q2, ITK, IL2RB, and CD247) were also identified in STEM analysis to be progressively dysregulated across controls, sepsis patients and patients with septic shock. In addition, the expression of MAPK14, FGR, and CD247 was modified by methylation. Conclusion This study identified several potential diagnostic genes and inflammatory and metabolic responses mechanisms associated with the development of sepsis.
Collapse
Affiliation(s)
- Xiaoliang Zeng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Yanli Yang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Ruzhi Zhao
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Qiao Yu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Han Qin
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Lile Wei
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Pan Ji
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Hongyuan Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Zimeng Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Jianfeng Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| |
Collapse
|
6
|
Dong C, Zhou J, Wang P, Li T, Zhao Y, Ren X, Lu J, Wang J, Holmgren A, Zou L. Topical Therapeutic Efficacy of Ebselen Against Multidrug-Resistant Staphylococcus aureus LT-1 Targeting Thioredoxin Reductase. Front Microbiol 2020; 10:3016. [PMID: 32010088 PMCID: PMC6974526 DOI: 10.3389/fmicb.2019.03016] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
As a thiol-dependent enzyme, thioredoxin reductase (TrxR) is a promising antibacterial drug target. Ebselen, an organo-selenium with well-characterized toxicology and pharmacology, was recently reported to have potent antibacterial activity against Staphylococcus aureus. In this paper, we demonstrated that ebselen has strong bactericidal activity against multidrug-resistant (MDR) S. aureus based on taking TrxR as a major target and disruption of the redox microenvironment. Further, the topical therapeutic efficacy of ebselen for staphylococcal skin infections was assessed in a rat model. Treatment with ebselen significantly reduced the bacterial load and the expression of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1 beta (IL-1β) in S. aureus skin lesions; further, wound healing and pathological changes were obvious improved in ebselen-treated rats compare to controls. Finally, ebselen was found to sensitize S. aureus to curcumin, which may be due to their synergistic effects in inhibiting bacterial TrxR. Altogether, ebselen is an effective topical antibacterial agent in animal model of MDR S. aureus LT-1 skin infection. This may lay the foundation for further analysis and development of ebselen as an antibacterial agent for topical treatment of MDR staphylococcal infections.
Collapse
Affiliation(s)
- Chuanjiang Dong
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Jingxuan Zhou
- The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, China
| | - Peng Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China.,The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, China
| | - Tao Li
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Ying Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jun Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jun Wang
- The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, China.,Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy, The People's Hospital of China Three Gorges University, Yichang, China
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lili Zou
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| |
Collapse
|
7
|
Dong C, Wang J, Chen H, Wang P, Zhou J, Zhao Y, Zou L. Synergistic therapeutic efficacy of ebselen and silver ions against multidrug-resistant Acinetobacter baumannii-induced urinary tract infections. Metallomics 2020; 12:860-867. [PMID: 32452501 DOI: 10.1039/d0mt00091d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ebselen (EbSe), an organo-selenium compound with well-characterized toxicology and pharmacology, exhibited potent antibacterial activity against glutathione (GSH)-positive bacteria when combined with silver ions (Ag+).
Collapse
Affiliation(s)
- Chuanjiang Dong
- The First College of Clinical Medical Science
- China Three Gorges University
- 443000 Yichang
- China
| | - Jun Wang
- The Institute of Cell Therapy
- The People's Hospital of China Three Gorges University
- 443000 Yichang
- China
| | - Huan Chen
- The First College of Clinical Medical Science
- China Three Gorges University
- 443000 Yichang
- China
| | - Peng Wang
- The First College of Clinical Medical Science
- China Three Gorges University
- 443000 Yichang
- China
- The Institute of Cell Therapy
| | - Jingxuan Zhou
- The Institute of Cell Therapy
- The People's Hospital of China Three Gorges University
- 443000 Yichang
- China
- The Institute of Infection and Inflammation
| | - Ying Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- 400715 Chongqing
| | - Lili Zou
- The First College of Clinical Medical Science
- China Three Gorges University
- 443000 Yichang
- China
- The Institute of Infection and Inflammation
| |
Collapse
|
8
|
Wang J, Xia L, Wang R, Cai Y. Linezolid and Its Immunomodulatory Effect: In Vitro and In Vivo Evidence. Front Pharmacol 2019; 10:1389. [PMID: 31849655 PMCID: PMC6894011 DOI: 10.3389/fphar.2019.01389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Recent studies have explored the effects of some antibacterial agents on various aspects of the immune response to infection in addition to their bactericidal effects. As a synthetic oxazolidinone class of antibacterial agent, linezolid (LZD) exhibits activity against a broad range of Gram-positive bacteria. In the present review, we summarized the effects of LZD on the immune response and new approaches that can exploit such interactions for the treatment of bacterial infections. In vitro and pre-clinical evidence demonstrate that LZD suppresses the phagocytic ability, cytokine synthesis, and secretion of immune cells as well as the expressions of immune-related genes at the mRNA level under the stimulation of endotoxin or pathogens. Immunomodulatory effects of LZD can not only reduce the inflammatory damage induced by exaggerated or prolonged release of pro-inflammatory cytokines during infections but can also be applied to alleviate the symptoms of non-infectious inflammatory conditions. Further research is necessary to explore the molecular mechanisms involved and confirm these findings in clinical practice.
Collapse
Affiliation(s)
- Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Lei Xia
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Rui Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Linezolid Attenuates Lethal Lung Damage during Postinfluenza Methicillin-Resistant Staphylococcus aureus Pneumonia. Infect Immun 2019; 87:IAI.00538-19. [PMID: 31383747 DOI: 10.1128/iai.00538-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/27/2019] [Indexed: 12/13/2022] Open
Abstract
Postinfluenza methicillin-resistant Staphylococcus aureus (MRSA) infection can quickly develop into severe, necrotizing pneumonia, causing over 50% mortality despite antibiotic treatments. In this study, we investigated the efficacy of antibiotic therapies and the impact of S. aureus alpha-toxin in a model of lethal influenza virus and MRSA coinfection. We demonstrate that antibiotics primarily attenuate alpha-toxin-induced acute lethality, even though both alpha-toxin-dependent and -independent mechanisms significantly contribute to animal mortality after coinfection. Furthermore, we found that the protein synthesis-suppressing antibiotic linezolid has an advantageous therapeutic effect on alpha-toxin-induced lung damage, as measured by protein leak and lactate dehydrogenase (LDH) activity. Importantly, using a Panton-Valentine leucocidin (PVL)-negative MRSA isolate from patient sputum, we show that linezolid therapy significantly improves animal survival from postinfluenza MRSA pneumonia compared with vancomycin treatment. Rather than improved viral or bacterial control, this advantageous therapeutic effect is associated with a significantly attenuated proinflammatory cytokine response and acute lung damage in linezolid-treated mice. Together, our findings not only establish a critical role of alpha-toxin in the extreme mortality of secondary MRSA pneumonia after influenza but also provide support for the possibility that linezolid could be a more effective treatment than vancomycin to improve disease outcomes.
Collapse
|
10
|
Katahira EJ, Davidson SM, Stevens DL, Bolz DD. Subinhibitory concentrations of tedizolid potently inhibit extracellular toxin production by methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J Med Microbiol 2018; 68:255-262. [PMID: 30556803 DOI: 10.1099/jmm.0.000905] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Potent extracellular toxins including alpha-haemolysin, Panton-Valentine leukocidin (PVL) and toxic-shock syndrome toxin 1 (TSST-1) significantly contribute to Staphylococcus aureus pathogenesis, thus, toxin suppression is a primary focus in treatment of staphylococcal disease. S. aureus maintains complex strategies to regulate toxin expression and previous data have demonstrated that subinhibitory concentrations of beta-lactam antibiotics can adversely increase S. aureus exotoxin production. The current study evaluates the effects of subinhibitory concentrations of tedizolid, a second-generation oxazolidinone derivative, on expression of staphylococcal exotoxins in both methicillin-resistant and methicillin-sensitive S. aureus. METHODOLOGY S. aureus exotoxin expression levels were compared at 12 and 24 h following treatment with tedizolid, linezolid, nafcillin or vehicle control. RESULTS Our findings show that the level of antibiotic required to alter toxin production was strain-dependent and corresponds with the quantity of toxin produced, but both tedizolid and linezolid could effectively reduce expression of alpha-haemolysin, PVL and TSST-1 toxin at subinhibitory concentrations. In contrast, nafcillin showed less attenuation and, in some S. aureus strains, led to an increase in toxin expression. Tedizolid consistently inhibited toxin production at a lower overall drug concentration than comparator agents. CONCLUSION Together, our data support that tedizolid has the potential to improve outcomes of infection due to its superior ability to inhibit S. aureus growth and attenuate exotoxin production.
Collapse
Affiliation(s)
- Eva J Katahira
- 1Infectious Diseases Section, Department of Veterans Affairs Medical Center, Boise, ID, USA.,2Idaho Veterans Research and Education Foundation, Boise, ID, USA
| | - Stephen M Davidson
- 2Idaho Veterans Research and Education Foundation, Boise, ID, USA.,†Present address: University of Arizona, Tucson, AZ
| | - Dennis L Stevens
- 3University of Washington School of Medicine, Seattle, WA, USA.,1Infectious Diseases Section, Department of Veterans Affairs Medical Center, Boise, ID, USA.,2Idaho Veterans Research and Education Foundation, Boise, ID, USA
| | - Devin D Bolz
- 1Infectious Diseases Section, Department of Veterans Affairs Medical Center, Boise, ID, USA.,2Idaho Veterans Research and Education Foundation, Boise, ID, USA
| |
Collapse
|
11
|
Fleischer LM, Somaiya RD, Miller GM. Review and Meta-Analyses of TAAR1 Expression in the Immune System and Cancers. Front Pharmacol 2018; 9:683. [PMID: 29997511 PMCID: PMC6029583 DOI: 10.3389/fphar.2018.00683] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/06/2018] [Indexed: 12/29/2022] Open
Abstract
Since its discovery in 2001, the major focus of TAAR1 research has been on its role in monoaminergic regulation, drug-induced reward and psychiatric conditions. More recently, TAAR1 expression and functionality in immune system regulation and immune cell activation has become a topic of emerging interest. Here, we review the immunologically-relevant TAAR1 literature and incorporate open-source expression and cancer survival data meta-analyses. We provide strong evidence for TAAR1 expression in the immune system and cancers revealed through NCBI GEO datamining and discuss its regulation in a spectrum of immune cell types as well as in numerous cancers. We discuss connections and logical directions for further study of TAAR1 in immunological function, and its potential role as a mediator or modulator of immune dysregulation, immunological effects of psychostimulant drugs of abuse, and cancer progression.
Collapse
Affiliation(s)
- Lisa M Fleischer
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Rachana D Somaiya
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Gregory M Miller
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States.,Department of Chemical Engineering, Northeastern University, Boston, MA, United States.,Center for Drug Discovery, Northeastern University, Boston, MA, United States
| |
Collapse
|
12
|
Transcriptome profiling analysis of senescent gingival fibroblasts in response to Fusobacterium nucleatum infection. PLoS One 2017; 12:e0188755. [PMID: 29190775 PMCID: PMC5708803 DOI: 10.1371/journal.pone.0188755] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/18/2017] [Indexed: 11/19/2022] Open
Abstract
Periodontal disease is caused by dental plaque biofilms. Fusobacterium nucleatum is an important periodontal pathogen involved in the development of bacterial complexity in dental plaque biofilms. Human gingival fibroblasts (GFs) act as the first line of defense against oral microorganisms and locally orchestrate immune responses by triggering the production of reactive oxygen species and pro-inflammatory cytokines (IL-6 and IL-8). The frequency and severity of periodontal diseases is known to increase in elderly subjects. However, despite several studies exploring the effects of aging in periodontal disease, the underlying mechanisms through which aging affects the interaction between F. nucleatum and human GFs remain unclear. To identify genes affected by infection, aging, or both, we performed an RNA-Seq analysis using GFs isolated from a single healthy donor that were passaged for a short period of time (P4) 'young GFs' or for longer period of time (P22) 'old GFs', and infected or not with F. nucleatum. Comparing F. nucleatum-infected and uninfected GF(P4) cells the differentially expressed genes (DEGs) were involved in host defense mechanisms (i.e., immune responses and defense responses), whereas comparing F. nucleatum-infected and uninfected GF(P22) cells the DEGs were involved in cell maintenance (i.e., TGF-β signaling, skeletal development). Most DEGs in F. nucleatum-infected GF(P22) cells were downregulated (85%) and were significantly associated with host defense responses such as inflammatory responses, when compared to the DEGs in F. nucleatum-infected GF(P4) cells. Five genes (GADD45b, KLF10, CSRNP1, ID1, and TM4SF1) were upregulated in response to F. nucleatum infection; however, this effect was only seen in GF(P22) cells. The genes identified here appear to interact with each other in a network associated with free radical scavenging, cell cycle, and cancer; therefore, they could be potential candidates involved in the aged GF's response to F. nucleatum infection. Further studies are needed to confirm these observations.
Collapse
|
13
|
Takeda K, Kaku N, Morinaga Y, Kosai K, Uno N, Imamura Y, Hasegawa H, Miyazaki T, Izumikawa K, Mukae H, Yanagihara K. Tedizolid inhibits MUC5AC production induced by methicillin-resistant Staphylococcus aureus in human airway epithelial cells. J Infect Chemother 2017; 23:598-603. [PMID: 28729052 DOI: 10.1016/j.jiac.2017.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/14/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
The innate immune system plays an important role in early immunity against respiratory tract infection. Although airway epithelial cells produce mucus to eliminate pathogens and irritants, hypersecretion of mucus is harmful for the host as it may cause airway obstruction and inhibit influx of antimicrobial agents. It has been reported that several antimicrobial agents have an immunomodulatory effect in vitro and in vivo, but little is known about whether tedizolid, a novel oxazolidinone, can modulate immune responses. In this study, we evaluated whether tedizolid can suppress MUC5AC production in human airway epithelial cells stimulated by methicillin-resistant Staphylococcus aureus (MRSA). Compared with the control, tedizolid significantly inhibited MUC5AC protein production and mRNA overexpression at concentrations of both 2 and 10 μg/mL (representative of trough and peak concentrations in human epithelial lining fluid). Among the mitogen-activated protein kinase inhibitors tested, only extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation was inhibited by tedizolid as indicated by western blot analysis. These results indicate that tedizolid inhibits the overproduction of MUC5AC protein by inhibiting phosphorylation of ERK1/2. This study revealed that tedizolid suppresses excessive mucin production in human airway epithelial cells. The immunomodulatory effect of tedizolid may improve outcomes in patients with severe respiratory infectious diseases caused by MRSA.
Collapse
Affiliation(s)
- Kazuaki Takeda
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Norihito Kaku
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Naoki Uno
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Yoshifumi Imamura
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Taiga Miyazaki
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| |
Collapse
|
14
|
Piñeros Alvarez AR, Glosson-Byers N, Brandt S, Wang S, Wong H, Sturgeon S, McCarthy BP, Territo PR, Alves-Filho JC, Serezani CH. SOCS1 is a negative regulator of metabolic reprogramming during sepsis. JCI Insight 2017; 2:92530. [PMID: 28679957 DOI: 10.1172/jci.insight.92530] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/25/2017] [Indexed: 01/01/2023] Open
Abstract
Sepsis can induce an overwhelming systemic inflammatory response, resulting in organ damage and death. Suppressor of cytokine signaling 1 (SOCS1) negatively regulates signaling by cytokine receptors and Toll-like receptors (TLRs). However, the cellular targets and molecular mechanisms for SOCS1 activity during polymicrobial sepsis are unknown. To address this, we utilized a cecal ligation and puncture (CLP) model for sepsis; C57BL/6 mice subjected to CLP were then treated with a peptide (iKIR) that binds the SOCS1 kinase inhibitory region (KIR) and blocks its activity. Treatment with iKIR increased CLP-induced mortality, bacterial burden, and inflammatory cytokine production. Myeloid cell-specific SOCS1 deletion (Socs1Δmyel) mice were also more susceptible to sepsis, demonstrating increased mortality, higher bacterial loads, and elevated inflammatory cytokines, compared with Socs1fl littermate controls. These effects were accompanied by macrophage metabolic reprograming, as evidenced by increased lactic acid production and elevated expression of the glycolytic enzymes hexokinase, lactate dehydrogenase A, and glucose transporter 1 in septic Socs1Δmyel mice. Upregulation was dependent on the STAT3/HIF-1α/glycolysis axis, and blocking glycolysis ameliorated increased susceptibility to sepsis in iKIR-treated CLP mice. These results reveal a role of SOCS1 as a regulator of metabolic reprograming that prevents overwhelming inflammatory response and organ damage during sepsis.
Collapse
Affiliation(s)
- Annie Rocio Piñeros Alvarez
- Department Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Nicole Glosson-Byers
- Department Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephanie Brandt
- Department Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Soujuan Wang
- Department Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hector Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Sarah Sturgeon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brian Paul McCarthy
- Center for In Vivo Imaging, Department Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paul R Territo
- Center for In Vivo Imaging, Department Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jose Carlos Alves-Filho
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - C Henrique Serezani
- Department Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Salaheen S, Peng M, Joo J, Teramoto H, Biswas D. Eradication and Sensitization of Methicillin Resistant Staphylococcus aureus to Methicillin with Bioactive Extracts of Berry Pomace. Front Microbiol 2017; 8:253. [PMID: 28270804 PMCID: PMC5319404 DOI: 10.3389/fmicb.2017.00253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/07/2017] [Indexed: 11/16/2022] Open
Abstract
The therapeutic roles of phenolic blueberry (Vaccinium corymbosum) and blackberry (Rubus fruticosus) pomace (commercial byproduct) extracts (BPE) and their mechanism of actions were evaluated against methicillin resistant Staphylococcus aureus (MRSA). Five major phenolic acids of BPE, e.g., protocatechuic, p. coumaric, vanillic, caffeic, and gallic acids, as well as crude BPE completely inhibited the growth of vegetative MRSA in vitro while BPE+methicillin significantly reduced MRSA biofilm formation on plastic surface. In addition, BPE restored the effectiveness of methicillin against MRSA by down-regulating the expression of methicillin resistance (mecA) and efflux pump (norA, norB, norC, mdeA, sdrM, and sepA) genes. Antibiogram with broth microdilution method showed that MIC of methicillin reduced from 512 μg/mL to 4 μg/mL when combined with only 200 μg Gallic Acid Equivalent (GAE)/mL of BPE. Significant reduction in MRSA adherence to and invasion into human skin keratinocyte Hek001 cells were also noticed in the presence of BPE. BPE induced anti-apoptosis and anti-autophagy pathways through overexpression of Bcl-2 gene and down-regulation of TRADD and Bax genes (inducers of apoptosis pathway) in Hek001 cells. In summary, novel and sustainable prophylactic therapy can be developed with BPE in combination with currently available antibiotics, especially methicillin, against skin and soft tissue infections with MRSA.
Collapse
Affiliation(s)
- Serajus Salaheen
- Department of Animal and Avian Sciences, University of Maryland College Park, MD, USA
| | - Mengfei Peng
- Department of Animal and Avian Sciences, University of MarylandCollege Park, MD, USA; Biological Sciences Program - Molecular and Cellular Biology, University of MarylandCollege Park, MD, USA
| | - Jungsoo Joo
- Department of Animal and Avian Sciences, University of Maryland College Park, MD, USA
| | - Hironori Teramoto
- Department of Animal and Avian Sciences, University of Maryland College Park, MD, USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of MarylandCollege Park, MD, USA; Biological Sciences Program - Molecular and Cellular Biology, University of MarylandCollege Park, MD, USA; Center for Food Safety and Security Systems, University of MarylandCollege Park, MD, USA
| |
Collapse
|
16
|
Critical Role of Alpha-Toxin and Protective Effects of Its Neutralization by a Human Antibody in Acute Bacterial Skin and Skin Structure Infections. Antimicrob Agents Chemother 2016; 60:5640-8. [PMID: 27401576 DOI: 10.1128/aac.00710-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/01/2016] [Indexed: 12/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes large-scale epidemics of acute bacterial skin and skin structure infections (ABSSSI) within communities across the United States. Animal models that reproduce ABSSSI as they occur in humans are urgently needed to test new therapeutic strategies. Alpha-toxin plays a critical role in a variety of staphylococcal infection models in mice, but its role in the pathogenesis of ABSSSI remains to be elucidated in rabbits, which are similar to humans in their susceptibility to S. aureus superantigens and certain bicomponent pore-forming leukocidins. We report here a new rabbit model of ABSSSI and show that those infected with a mutant deficient in expression of alpha-toxin (Δhla) developed a small dermonecrotic lesion, whereas those infected with isogenic USA300 MRSA wild-type or complemented Δhla strains developed ABSSSI that mimic the severe infections that occur in humans, including the large central dermonecrotic core surrounded by erythema, induration, and marked subcutaneous hemorrhage. More importantly, immunoprophylaxis with MEDI4893*, an anti-alpha-toxin human monoclonal antibody, significantly reduced the severity of disease caused by a USA300 wild-type strain to that caused by the Δhla mutant, indicating that this toxin could be completely neutralized during infection. Thus, this study illustrates a potential high standard for the development of new immunotherapeutic agents in which a toxin-neutralizing antibody provides protection to the same degree achieved with a toxin gene knockout. When MEDI4893* was administered as adjunctive therapy with a subtherapeutic dose of linezolid, the combination was significantly more efficacious than either agent alone in reducing the severity of ABSSSI.
Collapse
|
17
|
Kaku N, Morinaga Y, Takeda K, Kosai K, Uno N, Hasegawa H, Miyazaki T, Izumikawa K, Mukae H, Yanagihara K. Antimicrobial and immunomodulatory effects of tedizolid against methicillin-resistant Staphylococcus aureus in a murine model of hematogenous pulmonary infection. Int J Med Microbiol 2016; 306:421-8. [PMID: 27259840 DOI: 10.1016/j.ijmm.2016.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 02/07/2023] Open
Abstract
Tedizolid (TZD) is a second-generation oxazolidinone and demonstrates potent in-vitro activity against multidrug-resistant Gram-positive bacteria. Phase III studies in patients with acute bacterial skin and skin structure infections (ABSSSI) have demonstrated the non-inferiority of TZD to linezolid (LZD). However, there are only a few studies that show the effect of TZD in pulmonary infections. In this study, we investigated the effect of TZD in a murine model of hematogenous pulmonary infection caused by methicillin-resistant Staphylococcus aureus (MRSA). The mice were treated either twice daily with saline (control), 25mg/kg of vancomycin (low-VAN), 110mg/kg of vancomycin (high-VAN), 120mg/kg of LZD or once daily with 20mg/kg of TZD. As compared to the control, the low- and high-VAN treatment groups, LZD and TZD significantly improved the survival rate, reduced the bacterial count in the lungs. Furthermore, TZD decreased the area of central bacterial colony zone (CBCZ) at 36h post-inoculation, compared with the control. In addition, we investigated the immunomodulatory effect of TZD by evaluating the plasma concentrations of the inflammatory cytokines. Although there were no significant differences in the bacterial count in the lungs amongst the drugs at 26h post-inoculation, TZD and LZD significantly improved the plasma concentrations of TNF-alpha, IL-6 and MIP-2, in comparison with the control. In this study, both TZD and LZD demonstrated antimicrobial and immunomodulatory efficacy in a murine model of hematogenous pulmonary infection caused by MRSA.
Collapse
Affiliation(s)
- Norihito Kaku
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan.
| | - Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Kazuaki Takeda
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan; Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Naoki Uno
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Taiga Miyazaki
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan; Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Hiroshi Mukae
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| |
Collapse
|
18
|
Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent. Sci Rep 2015; 5:16407. [PMID: 26553420 PMCID: PMC4639749 DOI: 10.1038/srep16407] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/13/2015] [Indexed: 12/17/2022] Open
Abstract
The rapid rise of bacterial resistance to traditional antibiotics combined with the decline in discovery of novel antibacterial agents has created a global public health crisis. Repurposing existing drugs presents an alternative strategy to potentially expedite the discovery of new antimicrobial drugs. The present study demonstrates that simvastatin, an antihyperlipidemic drug exhibited broad-spectrum antibacterial activity against important Gram-positive (including methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative pathogens (once the barrier imposed by the outer membrane was permeabilized). Proteomics and macromolecular synthesis analyses revealed that simvastatin inhibits multiple biosynthetic pathways and cellular processes in bacteria, including selective interference of bacterial protein synthesis. This property appears to assist in simvastatin's ability to suppress production of key MRSA toxins (α-hemolysin and Panton-Valentine leucocidin) that impair healing of infected skin wounds. A murine MRSA skin infection experiment confirmed that simvastatin significantly reduces the bacterial burden and inflammatory cytokines in the infected wounds. Additionally, simvastatin exhibits excellent anti-biofilm activity against established staphylococcal biofilms and demonstrates the ability to be combined with topical antimicrobials currently used to treat MRSA skin infections. Collectively the present study lays the foundation for further investigation of repurposing simvastatin as a topical antibacterial agent to treat skin infections.
Collapse
|
19
|
Thangamani S, Younis W, Seleem MN. Repurposing celecoxib as a topical antimicrobial agent. Front Microbiol 2015; 6:750. [PMID: 26284040 PMCID: PMC4517059 DOI: 10.3389/fmicb.2015.00750] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/08/2015] [Indexed: 01/03/2023] Open
Abstract
There is an urgent need for new antibiotics and alternative strategies to combat multidrug-resistant bacterial pathogens, which are a growing clinical issue. Repurposing existing approved drugs with known pharmacology and toxicology is an alternative strategy to accelerate antimicrobial research and development. In this study, we show that celecoxib, a marketed inhibitor of cyclooxygenase-2, exhibits broad-spectrum antimicrobial activity against Gram-positive pathogens from a variety of genera, including Staphylococcus, Streptococcus, Listeria, Bacillus, and Mycobacterium, but not against Gram-negative pathogens. However, celecoxib is active against all of the Gram-negative bacteria tested, including strains of, Acinetobacter, and Pseudomonas, when their intrinsic resistance is artificially compromised by outer membrane permeabilizing agents such as colistin. The effect of celecoxib on incorporation of radioactive precursors into macromolecules in Staphylococcus aureus was examined. The primary antimicrobial mechanism of action of celecoxib was the dose-dependent inhibition of RNA, DNA, and protein synthesis. Further, we demonstrate the in vivo efficacy of celecoxib in a methicillin-resistant S. aureus (MRSA) infected Caenorhabditis elegans whole animal model. Topical application of celecoxib (1 and 2%) significantly reduced the mean bacterial count in a mouse model of MRSA skin infection. Further, celecoxib decreased the levels of all inflammatory cytokines tested, including tumor necrosis factor-α, interleukin-6, interleukin-1 beta, and monocyte chemo attractant protein-1 in wounds caused by MRSA infection. Celecoxib also exhibited synergy with many conventional antimicrobials when tested against four clinical isolates of S. aureus. Collectively, these results demonstrate that celecoxib alone, or in combination with traditional antimicrobials, has a potential to use as a topical drug for the treatment of bacterial skin infections.
Collapse
Affiliation(s)
| | | | - Mohamed N. Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, INUSA
| |
Collapse
|
20
|
Thangamani S, Younis W, Seleem MN. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections. Sci Rep 2015; 5:11596. [PMID: 26111644 PMCID: PMC4481386 DOI: 10.1038/srep11596] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/21/2015] [Indexed: 12/11/2022] Open
Abstract
Novel antimicrobials and new approaches to developing them are urgently needed. Repurposing already-approved drugs with well-characterized toxicology and pharmacology is a novel way to reduce the time, cost, and risk associated with antibiotic innovation. Ebselen, an organoselenium compound, is known to be clinically safe and has a well-known pharmacology profile. It has shown potent bactericidal activity against multidrug-resistant clinical isolates of staphylococcus aureus, including methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA). We demonstrated that ebselen acts through inhibition of protein synthesis and subsequently inhibited toxin production in MRSA. Additionally, ebselen was remarkably active and significantly reduced established staphylococcal biofilms. The therapeutic efficacy of ebselen was evaluated in a mouse model of staphylococcal skin infections. Ebselen 1% and 2% significantly reduced the bacterial load and the levels of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and monocyte chemo attractant protein-1 (MCP-1) in MRSA USA300 skin lesions. Furthermore, it acts synergistically with traditional antimicrobials. This study provides evidence that ebselen has great potential for topical treatment of MRSA skin infections and lays the foundation for further analysis and development of ebselen as a potential treatment for multidrug-resistant staphylococcal infections.
Collapse
Affiliation(s)
- Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Waleed Younis
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
21
|
Fidaxomicin inhibits Clostridium difficile toxin A-mediated enteritis in the mouse ileum. Antimicrob Agents Chemother 2014; 58:4642-50. [PMID: 24890583 DOI: 10.1128/aac.02783-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clostridium difficile infection (CDI) is a common, debilitating infection with high morbidity and mortality. C. difficile causes diarrhea and intestinal inflammation by releasing two toxins, toxin A and toxin B. The macrolide antibiotic fidaxomicin was recently shown to be effective in treating CDI, and its beneficial effect was associated with fewer recurrent infections in CDI patients. Since other macrolides possess anti-inflammatory properties, we examined the possibility that fidaxomicin alters C. difficile toxin A-induced ileal inflammation in mice. The ileal loops of anesthetized mice were injected with fidaxomicin (5, 10, or 20 μM), and after 30 min, the loops were injected with purified C. difficile toxin A or phosphate-buffered saline alone. Four hours after toxin A administration, ileal tissues were processed for histological evaluation (epithelial cell damage, neutrophil infiltration, congestion, and edema) and cytokine measurements. C. difficile toxin A caused histologic damage, evidenced by increased mean histologic score and ileal interleukin-1β (IL-1β) protein and mRNA expression. Treatment with fidaxomicin (20 μM) or its primary metabolite, OP-1118 (120 μM), significantly inhibited toxin A-mediated histologic damage and reduced the mean histology score and ileal IL-1β protein and mRNA expression. Both fidaxomicin and OP-1118 reduced toxin A-induced cell rounding in human colonic CCD-18Co fibroblasts. Treatment of ileal loops with vancomycin (20 μM) and metronidazole (20 μM) did not alter toxin A-induced histologic damage and IL-1β protein expression. In addition to its well known antibacterial effects against C. difficile, fidaxomicin may possess anti-inflammatory activity directed against the intestinal effects of C. difficile toxins.
Collapse
|
22
|
Immunomodulatory effect of linezolid on methicillin-resistant Staphylococcus aureus supernatant-induced MUC5AC overexpression in human airway epithelial cells. Antimicrob Agents Chemother 2014; 58:4131-7. [PMID: 24820080 DOI: 10.1128/aac.02811-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Linezolid is the first member of the oxazolidinones and is active against drug-resistant Gram-positive pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA). Additionally, linezolid shows an immunomodulatory effect, such as inhibition of inflammatory cytokine production. In this study, we examined the effect of linezolid on MRSA-induced MUC5AC overexpression in airway epithelial cells. In this study, an MRSA supernatant was used to avoid the direct effect of linezolid on MRSA. MUC5AC protein production was significantly increased with a 40-fold dilution of MRSA supernatant. At the mRNA level, MUC5AC gene expression was significantly increased 6 and 9 h after stimulation. In an inhibition study, linezolid significantly reduced MRSA-induced MUC5AC protein and mRNA overexpression at concentrations of 5 and 20 μg/ml, which were the same as the trough and peak concentrations in human epithelial lining fluid. In an analysis of cell signaling, among the mitogen-activated protein kinase inhibitors, only the extracellular signal-regulated protein kinase 1/2 (ERK1/2) inhibitor reduced the MUC5AC protein production to the same level as that of the control; on Western blot analysis, only ERK1/2 was phosphorylated by the MRSA supernatant. In addition, the ERK1/2 phosphorylation was inhibited by linezolid. MUC5AC and MUC5B are the major barrier that traps inhaled microbial organisms, particulates, and foreign irritants. However, in patients with chronic respiratory diseases, pathogen-induced MUC5AC overexpression causes many problems, and control of the overexpression is important. Thus, this study revealed that linezolid showed a direct immunomodulatory effect in airway epithelial cells.
Collapse
|