1
|
De Preter CC, Leimer EM, Sonneborn A, Heinricher MM. Comparative analysis of spike-sorters in large-scale brainstem recordings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623089. [PMID: 39605601 PMCID: PMC11601346 DOI: 10.1101/2024.11.11.623089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Recent technological advancements in high-density multi-channel electrodes have made it possible to record large numbers of neurons from previously inaccessible regions. While the performance of automated spike-sorters has been assessed in recordings from cortex, dentate gyrus, and thalamus, the most effective and efficient approach for spike-sorting can depend on the target region due to differing morphological and physiological characteristics. We therefore assessed the performance of five commonly used sorting packages, Kilosort3, MountainSort5, Tridesclous, SpyKING CIRCUS, and IronClust, in recordings from the rostral ventromedial medulla, a region that has been characterized using single-electrode recordings but that is essentially unexplored at the high-density network level. As demonstrated in other brain regions, each sorter produced unique results. Manual curation preferentially eliminated units detected by only one sorter. Kilosort3 and IronClust required the least curation while maintaining the largest number of units, whereas SpyKING CIRCUS and MountainSort5 required substantial curation. Tridesclous consistently identified the smallest number of units. Nonetheless, all sorters successfully identified classically defined RVM physiological cell types. These findings suggest that while the level of manual curation needed may vary across sorters, each can extract meaningful data from this deep brainstem site.
Collapse
Affiliation(s)
- Caitlynn C De Preter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Elizabeth M Leimer
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Alex Sonneborn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- VA Portland Health Care System, Portland, OR, 97239, USA
| | - Mary M Heinricher
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
2
|
Mohammadi Z, Denman DJ, Klug A, Lei TC. A fully automatic multichannel neural spike sorting algorithm with spike reduction and positional feature. J Neural Eng 2024; 21:046039. [PMID: 39019065 PMCID: PMC11298775 DOI: 10.1088/1741-2552/ad647d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Objective: The sorting of neural spike data recorded by multichannel and high channel neural probes such as Neuropixels, especially in real-time, remains a significant technical challenge. Most neural spike sorting algorithms focus on sorting neural spikes post-hoc for high sorting accuracy-but reducing the processing delay for fast sorting, potentially even live sorting, is generally not possible with these algorithms.Approach: Here we report our Graph nEtwork Multichannel sorting (GEMsort) algorithm, which is largely based on graph network, to allow rapid neural spike sorting for multiple neural recording channels. This was accomplished by two innovations: In GEMsort, duplicated neural spikes recorded from multiple channels were eliminated from duplicate channels by only selecting the highest amplitude neural spike in any channel for subsequent processing. In addition, the channel from which the representative neural spike was recorded was used as an additional feature to differentiate between neural spikes recorded from different neurons having similar temporal features.Main results: Synthetic and experimentally recorded multichannel neural recordings were used to evaluate the sorting performance of GEMsort. The sorting results of GEMsort were also compared with two other state-of-the-art sorting algorithms (Kilosort and Mountainsort) in sorting time and sorting agreements.Significance: GEMsort allows rapidly sort neural spikes and is highly suitable to be implemented with digital circuitry for high processing speed and channel scalability.
Collapse
Affiliation(s)
- Zeinab Mohammadi
- Department of Electrical Engineering, University of Colorado Denver, Denver, CO, United States of America
| | - Daniel J Denman
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Tim C Lei
- Department of Electrical Engineering, University of Colorado Denver, Denver, CO, United States of America
| |
Collapse
|
3
|
Kobayashi R, Shinomoto S. Inference of monosynaptic connections from parallel spike trains: A review. Neurosci Res 2024:S0168-0102(24)00097-X. [PMID: 39098768 DOI: 10.1016/j.neures.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024]
Abstract
This article presents a mini-review about the progress in inferring monosynaptic connections from spike trains of multiple neurons over the past twenty years. First, we explain a variety of meanings of "neuronal connectivity" in different research areas of neuroscience, such as structural connectivity, monosynaptic connectivity, and functional connectivity. Among these, we focus on the methods used to infer the monosynaptic connectivity from spike data. We then summarize the inference methods based on two main approaches, i.e., correlation-based and model-based approaches. Finally, we describe available source codes for connectivity inference and future challenges. Although inference will never be perfect, the accuracy of identifying the monosynaptic connections has improved dramatically in recent years due to continuous efforts.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan; Mathematics and Informatics Center, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Shigeru Shinomoto
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Research Organization of Open Innovation and Collaboration, Ritsumeikan University, Osaka 567-8570, Japan
| |
Collapse
|
4
|
Schyck S, Marchese P, Amani M, Ablonczy M, Spoelstra L, Jones M, Bathaei Y, Bismarck A, Masania K. Harnessing Fungi Signaling in Living Composites. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400104. [PMID: 39469481 PMCID: PMC11514302 DOI: 10.1002/gch2.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/07/2024] [Indexed: 10/30/2024]
Abstract
Signaling pathways in fungi offer a profound avenue for harnessing cellular communication and have garnered considerable interest in biomaterial engineering. Fungi respond to environmental stimuli through intricate signaling networks involving biochemical and electrical pathways, yet deciphering these mechanisms remains a challenge. In this review, an overview of fungal biology and their signaling pathways is provided, which can be activated in response to external stimuli and direct fungal growth and orientation. By examining the hyphal structure and the pathways involved in fungal signaling, the current state of recording fungal electrophysiological signals as well as the landscape of fungal biomaterials is explored. Innovative applications are highlighted, from sustainable materials to biomonitoring systems, and an outlook on the future of harnessing fungi signaling in living composites is provided.
Collapse
Affiliation(s)
- Sarah Schyck
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Pietro Marchese
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Muhamad Amani
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Mark Ablonczy
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Linde Spoelstra
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Mitchell Jones
- Polymer and Composite Engineering GroupInstitute of Materials ChemistryUniversity of ViennaWaehringer Straße 42Vienna1090Austria
| | - Yaren Bathaei
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Alexander Bismarck
- Polymer and Composite Engineering GroupInstitute of Materials ChemistryUniversity of ViennaWaehringer Straße 42Vienna1090Austria
| | - Kunal Masania
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| |
Collapse
|
5
|
Wu W, Jiang L, Yang B. Decomposition strategy for surface EMG with few channels: a simulation study. J Neural Eng 2024; 21:036026. [PMID: 38722313 DOI: 10.1088/1741-2552/ad4913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Objective.In the specific use of electromyogram (EMG) driven prosthetics, the user's disability reduces the space available for the electrode array. We propose a framework for EMG decomposition adapted to the condition of a few channels (less than 30 observations), which can elevate the potential of prosthetics in terms of cost and applicability.Approach.The new framework contains a peel-off approach, a refining strategy for motor unit (MU) spike train and MU action potential and a re-subtracting strategy to adapt the framework to few channels environments. Simulated EMG signals were generated to test the framework. In addition, we quantify and analyze the effect of strategies used in the framework.Main results.The results show that the new algorithm has an average improvement of 19.97% in the number of MUs identified compared to the control algorithm. Quantitative analysis of the usage strategies shows that the re-subtracting and refining strategies can effectively improve the performance of the framework under the condition of few channels.Significance.These prove that the new framework can be applied to few channel conditions, providing a optimization space for neural interface design in cost and user adaptation.
Collapse
Affiliation(s)
- Wenhao Wu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Li Jiang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Bangchu Yang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
6
|
Huang L, Gan L, Zeng Y, Ling BWK. Automatical Spike Sorting With Low-Rank and Sparse Representation. IEEE Trans Biomed Eng 2024; 71:1677-1686. [PMID: 38147418 DOI: 10.1109/tbme.2023.3347137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Spikesorting is crucial in studying neural individually and synergistically encoding and decoding behaviors. However, existent spike sorting algorithms perform unsatisfactorily in real scenarios where heavy noises and overlapping samples are commonly in the spikes, and the spikes from different neurons are similar. To address such challenging scenarios, we propose an automatic spike sporting method in this paper, which integrally combines low-rank and sparse representation (LRSR) into a unified model. In particular, LRSR models spikes through low-rank optimization, uncovering global data structure for handling similar and overlapped samples. To eliminate the influence of the embedded noises, LRSR uses a sparse constraint, effectively separating spikes from noise. The optimization is solved using alternate augmented Lagrange multipliers methods. Moreover, we conclude with an automatic spike-sorting framework that employs the spectral clustering theorem to estimate the number of neurons. Extensive experiments over various simulated and real-world datasets demonstrate that our proposed method, LRSR, can handle spike sorting effectively and efficiently.
Collapse
|
7
|
Pachitariu M, Sridhar S, Pennington J, Stringer C. Spike sorting with Kilosort4. Nat Methods 2024; 21:914-921. [PMID: 38589517 PMCID: PMC11093732 DOI: 10.1038/s41592-024-02232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/01/2024] [Indexed: 04/10/2024]
Abstract
Spike sorting is the computational process of extracting the firing times of single neurons from recordings of local electrical fields. This is an important but hard problem in neuroscience, made complicated by the nonstationarity of the recordings and the dense overlap in electrical fields between nearby neurons. To address the spike-sorting problem, we have been openly developing the Kilosort framework. Here we describe the various algorithmic steps introduced in different versions of Kilosort. We also report the development of Kilosort4, a version with substantially improved performance due to clustering algorithms inspired by graph-based approaches. To test the performance of Kilosort, we developed a realistic simulation framework that uses densely sampled electrical fields from real experiments to generate nonstationary spike waveforms and realistic noise. We found that nearly all versions of Kilosort outperformed other algorithms on a variety of simulated conditions and that Kilosort4 performed best in all cases, correctly identifying even neurons with low amplitudes and small spatial extents in high drift conditions.
Collapse
Affiliation(s)
| | - Shashwat Sridhar
- HHMI, Ashburn, VA, USA
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
| | - Jacob Pennington
- HHMI, Ashburn, VA, USA
- Department of Mathematics, Washington State University, Vancouver, WA, USA
| | | |
Collapse
|
8
|
Shokri M, Gogliettino AR, Hottowy P, Sher A, Litke AM, Chichilnisky EJ, Pequito S, Muratore D. Spike sorting in the presence of stimulation artifacts: a dynamical control systems approach. J Neural Eng 2024; 21:016022. [PMID: 38271715 PMCID: PMC10853761 DOI: 10.1088/1741-2552/ad228f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
Objective. Bi-directional electronic neural interfaces, capable of both electrical recording and stimulation, communicate with the nervous system to permit precise calibration of electrical inputs by capturing the evoked neural responses. However, one significant challenge is that stimulation artifacts often mask the actual neural signals. To address this issue, we introduce a novel approach that employs dynamical control systems to detect and decipher electrically evoked neural activity despite the presence of electrical artifacts.Approach. Our proposed method leverages the unique spatiotemporal patterns of neural activity and electrical artifacts to distinguish and identify individual neural spikes. We designed distinctive dynamical models for both the stimulation artifact and each neuron observed during spontaneous neural activity. We can estimate which neurons were active by analyzing the recorded voltage responses across multiple electrodes post-stimulation. This technique also allows us to exclude signals from electrodes heavily affected by stimulation artifacts, such as the stimulating electrode itself, yet still accurately differentiate between evoked spikes and electrical artifacts.Main results. We applied our method to high-density multi-electrode recordings from the primate retina in anex vivosetup, using a grid of 512 electrodes. Through repeated electrical stimulations at varying amplitudes, we were able to construct activation curves for each neuron. The curves obtained with our method closely resembled those derived from manual spike sorting. Additionally, the stimulation thresholds we estimated strongly agreed with those determined through manual analysis, demonstrating high reliability (R2=0.951for human 1 andR2=0.944for human 2).Significance. Our method can effectively separate evoked neural spikes from stimulation artifacts by exploiting the distinct spatiotemporal propagation patterns captured by a dense, large-scale multi-electrode array. This technique holds promise for future applications in real-time closed-loop stimulation systems and for managing multi-channel stimulation strategies.
Collapse
Affiliation(s)
- Mohammad Shokri
- Delft Center for Systems and Control, Delft University of Technology, Delft 2628 CN, The Netherlands
| | - Alex R Gogliettino
- Neurosciences PhD Program, Stanford University, Stanford, CA 94305, United States of America
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, United States of America
| | - Paweł Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, United States of America
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, United States of America
| | - E J Chichilnisky
- Departments of Neurosurgery and Ophthalmology, Stanford University, Stanford, CA 94305, United States of America
| | - Sérgio Pequito
- Division of Systems and Control, Department of Information Technology, Uppsala University, 751 05 Uppsala, Sweden
| | - Dante Muratore
- Microelectronics Department, Delft University of Technology, Delft 2628 CN, The Netherlands
| |
Collapse
|
9
|
He J, Liu Y, Li S, Zhou P, Zhang Y. Enhanced Dynamic Surface EMG Decomposition Using the Non-Negative Matrix Factorization and Three-Dimensional Motor Unit Localization. IEEE Trans Biomed Eng 2024; 71:596-606. [PMID: 37656646 DOI: 10.1109/tbme.2023.3309969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
OBJECTIVE Surface electromyography (sEMG) signal decomposition is of great importance in examining neuromuscular diseases and neuromuscular research, especially dynamic sEMG decomposition is even more technically challenging. METHODS A novel two-step sEMG decomposition approach was developed. The linear minimum mean square error estimation was first employed to extract estimated firing trains (EFTs) from the eigenvector matrices constructed using the non-negative matrix factorization (NMF). The firing instants of each EFT were then classified into motor units (MUs) according to their specific three-dimensional (3D) space position. The performance of the proposed approach was evaluated using simulated and experimentally recorded sEMG. RESULTS The simulation results demonstrated that the proposed approach can reconstruct MUAPTs with true positive rates of 89.12 ± 2.71%, 94.34 ± 1.85% and 95.45 ± 2.11% at signal-to-noise ratios of 10, 20, and 30 dB, respectively. The experimental results also demonstrated a high decomposition accuracy of 90.13 ± 1.31% in the two-source evaluation, and a high accuracy of 91.86 ± 1.14% in decompose-synthesize-decompose- compare evaluation. CONCLUSIONS The adoption of NMF reduces the dimension of random pattern under the restriction of non-negativity, as well as keeps the information unchanged as much as possible. The 3D space information of MUs enhances the classification accuracy by tackling the issue of relative movements between MUs and electrodes during dynamic contractions. The accuracy achieved in this study demonstrates the good performance and reliability of the proposed decomposition algorithm in dynamic surface EMG decomposition. SIGNIFICANCE The spatiotemporal information is applied to the dynamic surface EMG decomposition.
Collapse
|
10
|
Zhao H, Zhang X, Chen M, Zhou P. Online Decomposition of Surface Electromyogram Into Individual Motor Unit Activities Using Progressive FastICA Peel-Off. IEEE Trans Biomed Eng 2024; 71:160-170. [PMID: 37432836 DOI: 10.1109/tbme.2023.3294016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Surface electromyogram (SEMG) decomposition provides a promising tool for decoding and understanding neural drive information non-invasively. In contrast to previous SEMG decomposition methods mainly developed in offline conditions, there are few studies on online SEMG decomposition. A novel method for online decomposition of SEMG data is presented using the progressive FastICA peel-off (PFP) method. The proposed online method utilized a two-stage approach, consisting of an offline prework stage for initializing high-quality separation vectors through the offline PFP algorithm, and an online decomposition stage for estimating source signals of different motor units by applying these vectors to the input SEMG data stream. Specifically, a new successive multi-threshold Otsu algorithm was developed in the online stage for determining each motor unit spike train (MUST) precisely with fast and simple computations (to replace a time-consuming iterative threshold setting in the original PFP method). The performance of the proposed online SEMG decomposition method was evaluated by both simulation and experimental approaches. When processing simulated SEMG data, the online PFP method achieved a decomposition accuracy of 97.37%, superior to that (95.1%) of an online method with a traditional k-means clustering algorithm for MUST extraction. Our method was also found to achieve superior performance at higher noise levels. For decomposing experimental SEMG data, the online PFP method was able to extract an average of 12.00 ± 3.46 MUs per trial, with a matching rate of 90.38%, with respect to the expert-guided offline decomposition results. Our study provides a valuable way of online decomposition of SEMG data with advanced applications in movement control and health.
Collapse
|
11
|
Herzfeld DJ, Joshua M, Lisberger SG. Rate versus synchrony codes for cerebellar control of motor behavior. Neuron 2023; 111:2448-2460.e6. [PMID: 37536289 PMCID: PMC10424531 DOI: 10.1016/j.neuron.2023.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Information transmission between neural populations could occur through either coordinated changes in firing rates or the precise transmission of spike timing. We investigate the code for information transmission from a part of the cerebellar cortex that is crucial for the accurate execution of a quantifiable motor behavior. Simultaneous recordings from Purkinje cell pairs in the cerebellum of rhesus macaques reveal how these cells coordinate their activity to drive smooth pursuit eye movements. Purkinje cells show millisecond-scale coordination of spikes (synchrony), but the level of synchrony is small and insufficient to impact the firing of downstream vestibular nucleus neurons. Analysis of previous metrics that purported to reveal Purkinje cell synchrony demonstrates that these metrics conflate changes in firing rate and neuron-neuron covariance. We conclude that the output of the cerebellar cortex uses primarily a rate rather than a synchrony code to drive the activity of downstream neurons and thus control motor behavior.
Collapse
Affiliation(s)
- David J Herzfeld
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Mati Joshua
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stephen G Lisberger
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
12
|
Chen C, Ma S, Sheng X, Zhu X. A peel-off convolution kernel compensation method for surface electromyography decomposition. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
13
|
Herzfeld DJ, Joshua M, Lisberger SG. Rate versus synchrony codes for cerebellar control of motor behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.529019. [PMID: 36824885 PMCID: PMC9949136 DOI: 10.1101/2023.02.17.529019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
UNLABELLED Control of movement requires the coordination of multiple brain areas, each containing populations of neurons that receive inputs, process these inputs via recurrent dynamics, and then relay the processed information to downstream populations. Information transmission between neural populations could occur through either coordinated changes in firing rates or the precise transmission of spike timing. We investigate the nature of the code for transmission of signals to downstream areas from a part of the cerebellar cortex that is crucial for the accurate execution of a quantifiable motor behavior. Simultaneous recordings from Purkinje cell pairs in the cerebellar flocculus of rhesus macaques revealed how these cells coordinate their activity to drive smooth pursuit eye movements. Purkinje cells show millisecond-scale coordination of spikes (synchrony), but the level of synchrony is small and likely insufficient to impact the firing of downstream neurons in the vestibular nucleus. Further, analysis of previous metrics for assaying Purkinje cell synchrony demonstrates that these metrics conflate changes in firing rate and neuron-neuron covariance. We conclude that the output of the cerebellar cortex uses primarily a rate code rather than synchrony code to drive activity of downstream neurons and thus control motor behavior. IMPACT STATEMENT Information transmission in the brain can occur via changes in firing rate or via the precise timing of spikes. Simultaneous recordings from pairs of Purkinje cells in the floccular complex reveals that information transmission out of the cerebellar cortex relies almost exclusively on changes in firing rates rather than millisecond-scale coordination of spike timing across the Purkinje cell population.
Collapse
Affiliation(s)
- David J. Herzfeld
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Mati Joshua
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
14
|
How Do Spike Collisions Affect Spike Sorting Performance? eNeuro 2022; 9:ENEURO.0105-22.2022. [PMID: 36171060 PMCID: PMC9532018 DOI: 10.1523/eneuro.0105-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, a new generation of devices have been developed to record neural activity simultaneously from hundreds of electrodes with a very high spatial density, both for in vitro and in vivo applications. While these advances enable to record from many more cells, they also challenge the already complicated process of spike sorting (i.e., extracting isolated single-neuron activity from extracellular signals). In this work, we used synthetic ground-truth recordings with controlled levels of correlations among neurons to quantitatively benchmark the performance of state-of-the-art spike sorters focusing specifically on spike collisions. Our results show that while modern template-matching-based algorithms are more accurate than density-based approaches, all methods, to some extent, failed to detect synchronous spike events of neurons with similar extracellular signals. Interestingly, the performance of the sorters is not largely affected by the spiking activity in the recordings, with respect to average firing rates and spike-train correlation levels. Since the performances of all modern spike sorting algorithms can be affected as function of the activity of the recorded neurons, scientific claims on correlations and synchrony should be carefully assessed based on the analysis provided in this paper.
Collapse
|
15
|
A robust spike sorting method based on the joint optimization of linear discrimination analysis and density peaks. Sci Rep 2022; 12:15504. [PMID: 36109581 PMCID: PMC9477889 DOI: 10.1038/s41598-022-19771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022] Open
Abstract
Spike sorting is a fundamental step in extracting single-unit activity from neural ensemble recordings, which play an important role in basic neuroscience and neurotechnologies. A few algorithms have been applied in spike sorting. However, when noise level or waveform similarity becomes relatively high, their robustness still faces a big challenge. In this study, we propose a spike sorting method combining Linear Discriminant Analysis (LDA) and Density Peaks (DP) for feature extraction and clustering. Relying on the joint optimization of LDA and DP: DP provides more accurate classification labels for LDA, LDA extracts more discriminative features to cluster for DP, and the algorithm achieves high performance after iteration. We first compared the proposed LDA-DP algorithm with several algorithms on one publicly available simulated dataset and one real rodent neural dataset with different noise levels. We further demonstrated the performance of the LDA-DP method on a real neural dataset from non-human primates with more complex distribution characteristics. The results show that our LDA-DP algorithm extracts a more discriminative feature subspace and achieves better cluster quality than previously established methods in both simulated and real data. Especially in the neural recordings with high noise levels or waveform similarity, the LDA-DP still yields a robust performance with automatic detection of the number of clusters. The proposed LDA-DP algorithm achieved high sorting accuracy and robustness to noise, which offers a promising tool for spike sorting and facilitates the following analysis of neural population activity.
Collapse
|
16
|
Radmanesh M, Rezaei AA, Jalili M, Hashemi A, Goudarzi MM. Online spike sorting via deep contractive autoencoder. Neural Netw 2022; 155:39-49. [DOI: 10.1016/j.neunet.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
|
17
|
Gauthier JL, Koay SA, Nieh EH, Tank DW, Pillow JW, Charles AS. Detecting and correcting false transients in calcium imaging. Nat Methods 2022; 19:470-478. [PMID: 35347320 PMCID: PMC10715860 DOI: 10.1038/s41592-022-01422-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Abstract
Population recordings of calcium activity are a major source of insight into neural function. Large datasets require automated processing, but this can introduce errors that are difficult to detect. Here we show that popular time course-estimation algorithms often contain substantial misattribution errors affecting 10-20% of transients. Misattribution, in which fluorescence is ascribed to the wrong cell, arises when overlapping cells and processes are imperfectly defined or not identified. To diagnose misattribution, we develop metrics and visualization tools for evaluating large datasets. To correct time courses, we introduce a robust estimator that explicitly accounts for contaminating signals. In one hippocampal dataset, removing contamination reduced the number of place cells by 15%, and 19% of place fields shifted by over 10 cm. Our methods are compatible with other cell-finding techniques, empowering users to diagnose and correct a potentially widespread problem that could alter scientific conclusions.
Collapse
Affiliation(s)
| | - Sue Ann Koay
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Edward H Nieh
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - David W Tank
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Adam S Charles
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA.
- Mathematical Institute for Data Science, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
18
|
Hall NJ, Herzfeld DJ, Lisberger SG. Evaluation and resolution of many challenges of neural spike sorting: a new sorter. J Neurophysiol 2021; 126:2065-2090. [PMID: 34788137 PMCID: PMC8715051 DOI: 10.1152/jn.00047.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022] Open
Abstract
We evaluate existing spike sorters and present a new one that resolves many sorting challenges. The new sorter, called "full binary pursuit" or FBP, comprises multiple steps. First, it thresholds and clusters to identify the waveforms of all unique neurons in the recording. Second, it uses greedy binary pursuit to optimally assign all the spike events in the original voltages to separable neurons. Third, it resolves spike events that are described more accurately as the superposition of spikes from two other neurons. Fourth, it resolves situations where the recorded neurons drift in amplitude or across electrode contacts during a long recording session. Comparison with other sorters on ground-truth data sets reveals many of the failure modes of spike sorting. We examine overall spike sorter performance in ground-truth data sets and suggest postsorting analyses that can improve the veracity of neural analyses by minimizing the intrusion of failure modes into analysis and interpretation of neural data. Our analysis reveals the tradeoff between the number of channels a sorter can process, speed of sorting, and some of the failure modes of spike sorting. FBP works best on data from 32 channels or fewer. It trades speed and number of channels for avoidance of specific failure modes that would be challenges for some use cases. We conclude that all spike sorting algorithms studied have advantages and shortcomings, and the appropriate use of a spike sorter requires a detailed assessment of the data being sorted and the experimental goals for analyses.NEW & NOTEWORTHY Electrophysiological recordings from multiple neurons across multiple channels pose great difficulty for spike sorting of single neurons. We propose methods that improve the ability to determine the number of individual neurons present in a recording and resolve near-simultaneous spike events from single neurons. We use ground-truth data sets to demonstrate the pros and cons of several current sorting algorithms and suggest strategies for determining the accuracy of spike sorting when ground-truth data are not available.
Collapse
Affiliation(s)
- Nathan J Hall
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - David J Herzfeld
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Stephen G Lisberger
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
19
|
Wouters J, Kloosterman F, Bertrand A. A data-driven spike sorting feature map for resolving spike overlap in the feature space. J Neural Eng 2021; 18. [PMID: 34181592 DOI: 10.1088/1741-2552/ac0f4a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/28/2021] [Indexed: 11/12/2022]
Abstract
Objective.Spike sorting is the process of extracting neuronal action potentials, or spikes, from an extracellular brain recording, and assigning each spike to its putative source neuron. Spike sorting is usually treated as a clustering problem. However, this clustering process is known to be affected by overlapping spikes. Existing methods for resolving spike overlap typically require an expensive post-processing of the clustering results. In this paper, we propose the design of a domain-specific feature map, which enables the resolution of spike overlap directly in the feature space.Approach.The proposed domain-specific feature map is based on a neural network architecture that is trained to simultaneously perform spike sorting and spike overlap resolution. Overlapping spikes clusters can be identified in the feature space through a linear relation with the single-neuron clusters for which the neurons contribute to the overlapping spikes. To aid the feature map training, a data augmentation procedure is presented that is based on biophysical simulations.Main results.We demonstrate the potential of our method on independent and realistic test data. We show that our novel approach for resolving spike overlap generalizes to unseen and realistic test data. Furthermore, the sorting performance of our method is shown to be similar to the state-of-the-art, but our method does not assume the availability of spike templates for resolving spike overlap.Significance.Resolving spike overlap directly in the feature space, results in an overall simplified spike sorting pipeline compared to the state-of-the-art. For the state-of-the-art, the overlapping spike snippets exhibit a large spread in the feature space and do not appear as concentrated clusters. This can lead to biased spike template estimates which affect the sorting performance of the state-of-the-art. In our proposed approach, overlapping spikes form concentrated clusters and spike overlap resolution does not depend on the availability of spike templates.
Collapse
Affiliation(s)
- J Wouters
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics and Leuven., Leuven, Belgium
| | - F Kloosterman
- Neuro-Electronics Research Flanders (NERF), Leuven, Belgium.,KU Leuven, Brain & Cognition Research Unit, Leuven, Belgium.,VIB, Leuven, Belgium
| | - A Bertrand
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics and Leuven., Leuven, Belgium
| |
Collapse
|
20
|
Chen K, Jiang Y, Wu Z, Zheng N, Wang H, Hong H. HTsort: Enabling Fast and Accurate Spike Sorting on Multi-Electrode Arrays. Front Comput Neurosci 2021; 15:657151. [PMID: 34234663 PMCID: PMC8255361 DOI: 10.3389/fncom.2021.657151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Spike sorting is used to classify the spikes (action potentials acquired by physiological electrodes), aiming to identify their respective firing units. Now it has been developed to classify the spikes recorded by multi-electrode arrays (MEAs), with the improvement of micro-electrode technology. However, how to improve classification accuracy and maintain low time complexity simultaneously becomes a difficulty. A fast and accurate spike sorting approach named HTsort is proposed for high-density multi-electrode arrays in this paper. Several improvements have been introduced to the traditional pipeline that is composed of threshold detection and clustering method. First, the divide-and-conquer method is employed to utilize electrode spatial information to achieve pre-clustering. Second, the clustering method HDBSCAN (hierarchical density-based spatial clustering of applications with noise) is used to classify spikes and detect overlapping events (multiple spikes firing simultaneously). Third, the template merging method is used to merge redundant exported templates according to the template similarity and the spatial distribution of electrodes. Finally, the template matching method is used to resolve overlapping events. Our approach is validated on simulation data constructed by ourselves and publicly available data and compared to other state-of-the-art spike sorters. We found that the proposed HTsort has a more favorable trade-off between accuracy and time consumption. Compared with MountainSort and SpykingCircus, the time consumption is reduced by at least 40% when the number of electrodes is 64 and below. Compared with HerdingSpikes, the classification accuracy can typically improve by more than 10%. Meanwhile, HTsort exhibits stronger robustness against background noise than other sorters. Our more sophisticated spike sorter would facilitate neurophysiologists to complete spike sorting more quickly and accurately.
Collapse
Affiliation(s)
- Keming Chen
- Key Laboratory of Radio Frequency Circuit and System, Hangzhou Dianzi University, Hangzhou, China
| | - Yangtao Jiang
- Key Laboratory of Radio Frequency Circuit and System, Hangzhou Dianzi University, Hangzhou, China
| | - Zhanxiong Wu
- Key Laboratory of Radio Frequency Circuit and System, Hangzhou Dianzi University, Hangzhou, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Haochuan Wang
- Key Laboratory of Radio Frequency Circuit and System, Hangzhou Dianzi University, Hangzhou, China
| | - Hui Hong
- Key Laboratory of Radio Frequency Circuit and System, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
21
|
Abstract
There are many cases in which the separation of different sources from single channel recordings is important, for example, in fluorescence spectral overlap compensation, electrical impedance signaling, intramuscular electromyogram decomposition or in the case of spike sorting of neuron potentials from microelectrode arrays (MEA). Focusing on the latter, the problem can be faced by identifying spikes emerging from the background and clustering into different groups, indicating the activity of different neurons. Problems are found when more spikes are superimposed in overlapped waveforms. We discuss the application of Biogeography-Based Optimization (BBO) to resolve this specific problem. Our algorithm is compared with three spike-sorting methods (SpyKING Circus, Common Basis Pursuit and Klusta), showing statistically better performance (in terms of F1 score, True Positive Rate—TPR and Positive Predictive Value—PPV) in resolving overlaps in realistic, simulated data. Specifically, BBO showed median F1, TPR and PPV of 100%, 100% and about 75%, respectively, considering a simulated noise with the same spectral density as the experimental one and a similar power with highly statistically significant improvements of at least two performance indexes over each of the other three tested algorithms.
Collapse
|
22
|
Endo D, Kobayashi R, Bartolo R, Averbeck BB, Sugase-Miyamoto Y, Hayashi K, Kawano K, Richmond BJ, Shinomoto S. A convolutional neural network for estimating synaptic connectivity from spike trains. Sci Rep 2021; 11:12087. [PMID: 34103546 PMCID: PMC8187444 DOI: 10.1038/s41598-021-91244-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
The recent increase in reliable, simultaneous high channel count extracellular recordings is exciting for physiologists and theoreticians because it offers the possibility of reconstructing the underlying neuronal circuits. We recently presented a method of inferring this circuit connectivity from neuronal spike trains by applying the generalized linear model to cross-correlograms. Although the algorithm can do a good job of circuit reconstruction, the parameters need to be carefully tuned for each individual dataset. Here we present another method using a Convolutional Neural Network for Estimating synaptic Connectivity from spike trains. After adaptation to huge amounts of simulated data, this method robustly captures the specific feature of monosynaptic impact in a noisy cross-correlogram. There are no user-adjustable parameters. With this new method, we have constructed diagrams of neuronal circuits recorded in several cortical areas of monkeys.
Collapse
Affiliation(s)
- Daisuke Endo
- Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Ryota Kobayashi
- Mathematics and Informatics Center, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Complexity Science and Engineering, The University of Tokyo, Chiba, 277-8561, Japan
- JST, PRESTO, Saitama, 332-0012, Japan
| | - Ramon Bartolo
- Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD, 20814, USA
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD, 20814, USA
| | - Yasuko Sugase-Miyamoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Kazuko Hayashi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
- Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Kenji Kawano
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Barry J Richmond
- Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD, 20814, USA
| | - Shigeru Shinomoto
- Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan.
- Brain Information Communication Research Laboratory Group, ATR Institute International, Kyoto, 619-0288, Japan.
| |
Collapse
|
23
|
Downer JD, Bigelow J, Runfeldt MJ, Malone BJ. Temporally precise population coding of dynamic sounds by auditory cortex. J Neurophysiol 2021; 126:148-169. [PMID: 34077273 DOI: 10.1152/jn.00709.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluctuations in the amplitude envelope of complex sounds provide critical cues for hearing, particularly for speech and animal vocalizations. Responses to amplitude modulation (AM) in the ascending auditory pathway have chiefly been described for single neurons. How neural populations might collectively encode and represent information about AM remains poorly characterized, even in primary auditory cortex (A1). We modeled population responses to AM based on data recorded from A1 neurons in awake squirrel monkeys and evaluated how accurately single trial responses to modulation frequencies from 4 to 512 Hz could be decoded as functions of population size, composition, and correlation structure. We found that a population-based decoding model that simulated convergent, equally weighted inputs was highly accurate and remarkably robust to the inclusion of neurons that were individually poor decoders. By contrast, average rate codes based on convergence performed poorly; effective decoding using average rates was only possible when the responses of individual neurons were segregated, as in classical population decoding models using labeled lines. The relative effectiveness of dynamic rate coding in auditory cortex was explained by shared modulation phase preferences among cortical neurons, despite heterogeneity in rate-based modulation frequency tuning. Our results indicate significant population-based synchrony in primary auditory cortex and suggest that robust population coding of the sound envelope information present in animal vocalizations and speech can be reliably achieved even with indiscriminate pooling of cortical responses. These findings highlight the importance of firing rate dynamics in population-based sensory coding.NEW & NOTEWORTHY Fundamental questions remain about population coding in primary auditory cortex (A1). In particular, issues of spike timing in models of neural populations have been largely ignored. We find that spike-timing in response to sound envelope fluctuations is highly similar across neuron populations in A1. This property of shared envelope phase preference allows for a simple population model involving unweighted convergence of neuronal responses to classify amplitude modulation frequencies with high accuracy.
Collapse
Affiliation(s)
- Joshua D Downer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California
| | - James Bigelow
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California
| | - Melissa J Runfeldt
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California
| | - Brian J Malone
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California
| |
Collapse
|
24
|
Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, Beau M, Bhagat J, Böhm C, Broux M, Chen S, Colonell J, Gardner RJ, Karsh B, Kloosterman F, Kostadinov D, Mora-Lopez C, O'Callaghan J, Park J, Putzeys J, Sauerbrei B, van Daal RJJ, Vollan AZ, Wang S, Welkenhuysen M, Ye Z, Dudman JT, Dutta B, Hantman AW, Harris KD, Lee AK, Moser EI, O'Keefe J, Renart A, Svoboda K, Häusser M, Haesler S, Carandini M, Harris TD. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science 2021. [PMID: 33859006 DOI: 10.1101/2020.10.27.358291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.
Collapse
Affiliation(s)
- Nicholas A Steinmetz
- UCL Institute of Ophthalmology, University College London, London, UK.
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | | - Anna Lebedeva
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Michael Okun
- Centre for Systems Neuroscience and Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marius Pachitariu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Marius Bauza
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Maxime Beau
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Jai Bhagat
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Claudia Böhm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Richard J Gardner
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bill Karsh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Fabian Kloosterman
- Neuroelectronics Research Flanders, Leuven, Belgium
- IMEC, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
- Brain and Cognition, KU Leuven, Leuven, Belgium
| | - Dimitar Kostadinov
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | | - Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Britton Sauerbrei
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Rik J J van Daal
- ATLAS Neuroengineering, Leuven, Belgium
- Neuroelectronics Research Flanders, Leuven, Belgium
- Micro- and Nanosystems, KU Leuven, Leuven, Belgium
| | - Abraham Z Vollan
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | - Zhiwen Ye
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Albert K Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - John O'Keefe
- Sainsbury Wellcome Centre, University College London, London, UK
| | | | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Sebastian Haesler
- Neuroelectronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK.
| | - Timothy D Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
25
|
Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, Beau M, Bhagat J, Böhm C, Broux M, Chen S, Colonell J, Gardner RJ, Karsh B, Kloosterman F, Kostadinov D, Mora-Lopez C, O'Callaghan J, Park J, Putzeys J, Sauerbrei B, van Daal RJJ, Vollan AZ, Wang S, Welkenhuysen M, Ye Z, Dudman JT, Dutta B, Hantman AW, Harris KD, Lee AK, Moser EI, O'Keefe J, Renart A, Svoboda K, Häusser M, Haesler S, Carandini M, Harris TD. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science 2021; 372:eabf4588. [PMID: 33859006 PMCID: PMC8244810 DOI: 10.1126/science.abf4588] [Citation(s) in RCA: 411] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/01/2021] [Indexed: 12/22/2022]
Abstract
Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.
Collapse
Affiliation(s)
- Nicholas A Steinmetz
- UCL Institute of Ophthalmology, University College London, London, UK.
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | | - Anna Lebedeva
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Michael Okun
- Centre for Systems Neuroscience and Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marius Pachitariu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Marius Bauza
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Maxime Beau
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Jai Bhagat
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Claudia Böhm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Richard J Gardner
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bill Karsh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Fabian Kloosterman
- Neuroelectronics Research Flanders, Leuven, Belgium
- IMEC, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
- Brain and Cognition, KU Leuven, Leuven, Belgium
| | - Dimitar Kostadinov
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | | - Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Britton Sauerbrei
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Rik J J van Daal
- ATLAS Neuroengineering, Leuven, Belgium
- Neuroelectronics Research Flanders, Leuven, Belgium
- Micro- and Nanosystems, KU Leuven, Leuven, Belgium
| | - Abraham Z Vollan
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | - Zhiwen Ye
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Albert K Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - John O'Keefe
- Sainsbury Wellcome Centre, University College London, London, UK
| | | | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Sebastian Haesler
- Neuroelectronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK.
| | - Timothy D Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
26
|
Qin Q, Liu Y, Shan B, Che Y, Han C, Qin Y, Wang R, Wang J. Spike-sorting analysis of neural electrical signals evoked by acupuncture based on model. Cogn Neurodyn 2021; 15:131-140. [PMID: 33786084 PMCID: PMC7947133 DOI: 10.1007/s11571-020-09650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 10/06/2020] [Accepted: 10/24/2020] [Indexed: 11/28/2022] Open
Abstract
Acupuncturing the Zusanli (ST 36) point with different types of manual acupuncture manipulations (MAs) and different frequencies can evoke a lot of neural response activities in spinal dorsal root neurons. The action potential is the basic unit of communication in the neural response process. With the rapid development of the electrode acquisition technology, we can simultaneously obtain neural electrical signals of multiple neurons in the target area. So it is crucial to extract spike trains of each neuron from raw recorded data. To solve the problem of variability of the spike waveform, this paper adopts a optimization algorithm based on model to improve the wave-cluster algorithm, which can provide higher accuracy and reliability. Further, through this optimization algorithm, we make a statistical analysis on spike events evoked by different MAs. Results suggest that numbers of response spikes under reinforcing manipulations are far more than reducing manipulations, which mainly embody in synchronous spike activities.
Collapse
Affiliation(s)
- Qing Qin
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, People’s Republic of China
| | - Yajiao Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, People’s Republic of China
| | - Bonan Shan
- China Academy of Electronics and Information Technology, Beijing, People’s Republic of China
| | - Yanqiu Che
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, People’s Republic of China
| | - Chunxiao Han
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, People’s Republic of China
| | - Yingmei Qin
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, People’s Republic of China
| | - Ruofan Wang
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, People’s Republic of China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
27
|
Qin Q, Liu YJ, Shan BN, Che YQ, Han CX, Qin YM, Wang J. Spiking Correlation Analysis of Synchronous Spikes Evoked by Acupuncture Mechanical Stimulus. Front Comput Neurosci 2020; 14:532193. [PMID: 33304259 PMCID: PMC7701278 DOI: 10.3389/fncom.2020.532193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/11/2020] [Indexed: 12/02/2022] Open
Abstract
Acupuncturing the ST36 acupoint can evoke the response of the sensory nervous system, which is translated into output electrical signals in the spinal dorsal root. Neural response activities, especially synchronous spike events, evoked by different acupuncture manipulations have remarkable differences. In order to identify these network collaborative activities, we analyze the underlying spike correlation in the synchronous spike event. In this paper, we adopt a log-linear model to describe network response activities evoked by different acupuncture manipulations. Then the state-space model and Bayesian theory are used to estimate network spike correlations. Two sets of simulation data are used to test the effectiveness of the estimation algorithm and the model goodness-of-fit. In addition, simulation data are also used to analyze the relationship between spike correlations and synchronous spike events. Finally, we use this method to identify network spike correlations evoked by four different acupuncture manipulations. Results show that reinforcing manipulations (twirling reinforcing and lifting-thrusting reinforcing) can evoke the third-order spike correlation but reducing manipulations (twirling reducing and lifting-thrusting reducing) does not. This is the main reason why synchronous spikes evoked by reinforcing manipulations are more abundant than reducing manipulations.
Collapse
Affiliation(s)
- Qing Qin
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Ya-Jiao Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Bo-Nan Shan
- China Academy of Electronics and Information Technology, Beijing, China
| | - Yan-Qiu Che
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Chun-Xiao Han
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Ying-Mei Qin
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
28
|
Ren N, Ito S, Hafizi H, Beggs JM, Stevenson IH. Model-based detection of putative synaptic connections from spike recordings with latency and type constraints. J Neurophysiol 2020; 124:1588-1604. [DOI: 10.1152/jn.00066.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Detecting synaptic connections using large-scale extracellular spike recordings is a difficult statistical problem. Here, we develop an extension of a generalized linear model that explicitly separates fast synaptic effects and slow background fluctuations in cross-correlograms between pairs of neurons while incorporating circuit properties learned from the whole network. This model outperforms two previously developed synapse detection methods in the simulated networks and recovers plausible connections from hundreds of neurons in in vitro multielectrode array data.
Collapse
Affiliation(s)
- Naixin Ren
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
| | - Shinya Ito
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, California
| | - Hadi Hafizi
- Department of Physics, Indiana University, Bloomington, Indiana
| | - John M. Beggs
- Department of Physics, Indiana University, Bloomington, Indiana
| | - Ian H. Stevenson
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
29
|
Veerabhadrappa R, Ul Hassan M, Zhang J, Bhatti A. Compatibility Evaluation of Clustering Algorithms for Contemporary Extracellular Neural Spike Sorting. Front Syst Neurosci 2020; 14:34. [PMID: 32714155 PMCID: PMC7340107 DOI: 10.3389/fnsys.2020.00034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/14/2020] [Indexed: 01/20/2023] Open
Abstract
Deciphering useful information from electrophysiological data recorded from the brain, in-vivo or in-vitro, is dependent on the capability to analyse spike patterns efficiently and accurately. The spike analysis mechanisms are heavily reliant on the clustering algorithms that enable separation of spike trends based on their spatio-temporal behaviors. Literature review report several clustering algorithms over decades focused on different applications. Although spike analysis algorithms employ only a small subset of clustering algorithms, however, not much work has been reported on the compliance and suitability of such clustering algorithms for spike analysis. In our study, we have attempted to comment on the suitability of available clustering algorithms and performance capacity when exposed to spike analysis. In this regard, the study reports a compatibility evaluation on algorithms previously employed in spike sorting as well as the algorithms yet to be investigated for application in sorting neural spikes. The performance of the algorithms is compared in terms of their accuracy, confusion matrix and accepted validation indices. Three data sets comprising of easy, difficult, and real spike similarity with known ground-truth are chosen for assessment, ensuring a uniform testbed. The procedure also employs two feature-sets, principal component analysis and wavelets. The report also presents a statistical score scheme to evaluate the performance individually and overall. The open nature of the data sets, the clustering algorithms and the evaluation criteria make the proposed evaluation framework widely accessible to the research community. We believe that the study presents a reference guide for emerging neuroscientists to select the most suitable algorithms for their spike analysis requirements.
Collapse
Affiliation(s)
- Rakesh Veerabhadrappa
- Institute for Intelligent Systems Research and Innovation, Deakin University, Melbourne, VIC, Australia
| | - Masood Ul Hassan
- Institute for Intelligent Systems Research and Innovation, Deakin University, Melbourne, VIC, Australia
| | - James Zhang
- Institute for Intelligent Systems Research and Innovation, Deakin University, Melbourne, VIC, Australia
| | - Asim Bhatti
- Institute for Intelligent Systems Research and Innovation, Deakin University, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Magland J, Jun JJ, Lovero E, Morley AJ, Hurwitz CL, Buccino AP, Garcia S, Barnett AH. SpikeForest, reproducible web-facing ground-truth validation of automated neural spike sorters. eLife 2020; 9:e55167. [PMID: 32427564 PMCID: PMC7237210 DOI: 10.7554/elife.55167] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023] Open
Abstract
Spike sorting is a crucial step in electrophysiological studies of neuronal activity. While many spike sorting packages are available, there is little consensus about which are most accurate under different experimental conditions. SpikeForest is an open-source and reproducible software suite that benchmarks the performance of automated spike sorting algorithms across an extensive, curated database of ground-truth electrophysiological recordings, displaying results interactively on a continuously-updating website. With contributions from eleven laboratories, our database currently comprises 650 recordings (1.3 TB total size) with around 35,000 ground-truth units. These data include paired intracellular/extracellular recordings and state-of-the-art simulated recordings. Ten of the most popular spike sorting codes are wrapped in a Python package and evaluated on a compute cluster using an automated pipeline. SpikeForest documents community progress in automated spike sorting, and guides neuroscientists to an optimal choice of sorter and parameters for a wide range of probes and brain regions.
Collapse
Affiliation(s)
- Jeremy Magland
- Center for Computational Mathematics, Flatiron InstituteNew YorkUnited States
| | - James J Jun
- Center for Computational Mathematics, Flatiron InstituteNew YorkUnited States
| | - Elizabeth Lovero
- Scientific Computing Core, Flatiron InstituteNew YorkUnited States
| | - Alexander J Morley
- Medical Research Council Brain Network Dynamics Unit, University of OxfordOxfordUnited Kingdom
| | - Cole Lincoln Hurwitz
- Institute for Adaptive and Neural Computation Informatics, University of EdinburghEdinburghUnited Kingdom
| | | | - Samuel Garcia
- Centre de Recherche en Neuroscience de Lyon, Université de LyonLyonFrance
| | - Alex H Barnett
- Center for Computational Mathematics, Flatiron InstituteNew YorkUnited States
| |
Collapse
|
31
|
Cheung SC, Shin JY, Lau Y, Chen Z, Sun J, Zhang Y, Müller MA, Eremin IM, Wright JN, Pasupathy AN. Dictionary learning in Fourier-transform scanning tunneling spectroscopy. Nat Commun 2020; 11:1081. [PMID: 32102995 PMCID: PMC7044214 DOI: 10.1038/s41467-020-14633-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/17/2020] [Indexed: 11/15/2022] Open
Abstract
Modern high-resolution microscopes are commonly used to study specimens that have dense and aperiodic spatial structure. Extracting meaningful information from images obtained from such microscopes remains a formidable challenge. Fourier analysis is commonly used to analyze the structure of such images. However, the Fourier transform fundamentally suffers from severe phase noise when applied to aperiodic images. Here, we report the development of an algorithm based on nonconvex optimization that directly uncovers the fundamental motifs present in a real-space image. Apart from being quantitatively superior to traditional Fourier analysis, we show that this algorithm also uncovers phase sensitive information about the underlying motif structure. We demonstrate its usefulness by studying scanning tunneling microscopy images of a Co-doped iron arsenide superconductor and prove that the application of the algorithm allows for the complete recovery of quasiparticle interference in this material. Aperiodic structure imaging suffers limitations when utilizing Fourier analysis. The authors report an algorithm that quantitatively overcomes these limitations based on nonconvex optimization, demonstrated by studying aperiodic structures via the phase sensitive interference in STM images.
Collapse
Affiliation(s)
- Sky C Cheung
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - John Y Shin
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Yenson Lau
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Zhengyu Chen
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Ju Sun
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Yuqian Zhang
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Marvin A Müller
- Institut für Theoretische Physik III, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Ilya M Eremin
- Institut für Theoretische Physik III, Ruhr-Universität Bochum, 44801, Bochum, Germany.,National University of Science and Technology MISiS, 119049, Moscow, Russian Federation
| | - John N Wright
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Abhay N Pasupathy
- Department of Physics, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
32
|
Yates JL, Katz LN, Levi AJ, Pillow JW, Huk AC. A simple linear readout of MT supports motion direction-discrimination performance. J Neurophysiol 2019; 123:682-694. [PMID: 31852399 DOI: 10.1152/jn.00117.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Motion discrimination is a well-established model system for investigating how sensory signals are used to form perceptual decisions. Classic studies relating single-neuron activity in the middle temporal area (MT) to perceptual decisions have suggested that a simple linear readout could underlie motion discrimination behavior. A theoretically optimal readout, in contrast, would take into account the correlations between neurons and the sensitivity of individual neurons at each time point. However, it remains unknown how sophisticated the readout needs to be to support actual motion-discrimination behavior or to approach optimal performance. In this study, we evaluated the performance of various neurally plausible decoders, trained to discriminate motion direction from small ensembles of simultaneously recorded MT neurons. We found that decoding the stimulus without knowledge of the interneuronal correlations was sufficient to match an optimal (correlation aware) decoder. Additionally, a decoder could match the psychophysical performance of the animals with flat integration of up to half the stimulus and inherited temporal dynamics from the time-varying MT responses. These results demonstrate that simple, linear decoders operating on small ensembles of neurons can match both psychophysical performance and optimal sensitivity without taking correlations into account and that such simple read-out mechanisms can exhibit complex temporal properties inherited from the sensory dynamics themselves.NEW & NOTEWORTHY Motion perception depends on the ability to decode the activity of neurons in the middle temporal area. Theoretically optimal decoding requires knowledge of the sensitivity of neurons and interneuronal correlations. We report that a simple correlation-blind decoder performs as well as the optimal decoder for coarse motion discrimination. Additionally, the decoder could match the psychophysical performance with moderate temporal integration and dynamics inherited from sensory responses.
Collapse
Affiliation(s)
- Jacob L Yates
- Brain and Cognitive Science, University of Rochester, Rochester, New York.,Center for Perceptual Systems, University of Texas at Austin, Austin, Texas.,Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Leor N Katz
- Center for Perceptual Systems, University of Texas at Austin, Austin, Texas.,Department of Neuroscience, University of Texas at Austin, Austin, Texas.,Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Aaron J Levi
- Center for Perceptual Systems, University of Texas at Austin, Austin, Texas.,Department of Neuroscience, University of Texas at Austin, Austin, Texas.,Department of Psychology, University of Texas at Austin, Austin, Texas
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey.,Department of Psychology, Princeton University, Princeton, New Jersey
| | - Alexander C Huk
- Center for Perceptual Systems, University of Texas at Austin, Austin, Texas.,Department of Neuroscience, University of Texas at Austin, Austin, Texas.,Department of Psychology, University of Texas at Austin, Austin, Texas
| |
Collapse
|
33
|
Wang PK, Pun SH, Chen CH, McCullagh EA, Klug A, Li A, Vai MI, Mak PU, Lei TC. Low-latency single channel real-time neural spike sorting system based on template matching. PLoS One 2019; 14:e0225138. [PMID: 31756211 PMCID: PMC6874356 DOI: 10.1371/journal.pone.0225138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/29/2019] [Indexed: 11/26/2022] Open
Abstract
Recent technical advancements in neural engineering allow for precise recording and control of neural circuits simultaneously, opening up new opportunities for closed-loop neural control. In this work, a rapid spike sorting system was developed based on template matching to rapidly calculate instantaneous firing rates for each neuron in a multi-unit extracellular recording setting. Cluster templates were first generated by a desktop computer using a non-parameter spike sorting algorithm (Super-paramagnetic clustering) and then transferred to a field-programmable gate array digital circuit for rapid sorting through template matching. Two different matching techniques–Euclidean distance (ED) and correlational matching (CM)–were compared for the accuracy of sorting and the performance of calculating firing rates. The performance of the system was first verified using publicly available artificial data and was further confirmed with pre-recorded neural spikes from an anesthetized Mongolian gerbil. Real-time recording and sorting from an awake mouse were also conducted to confirm the system performance in a typical behavioral neuroscience experimental setting. Experimental results indicated that high sorting accuracies were achieved for both template-matching methods, but CM can better handle spikes with non-Gaussian spike distributions, making it more robust for in vivo recording. The technique was also compared to several other off-line spike sorting algorithms and the results indicated that the sorting accuracy is comparable but sorting time is significantly shorter than these other techniques. A low sorting latency of under 2 ms and a maximum spike sorting rate of 941 spikes/second have been achieved with our hybrid hardware/software system. The low sorting latency and fast sorting rate allow future system developments of neural circuit modulation through analyzing neural activities in real-time.
Collapse
Affiliation(s)
- Pan Ke Wang
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Sio Hang Pun
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
- * E-mail:
| | - Chang Hao Chen
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
| | - Elizabeth A. McCullagh
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Mang I. Vai
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Peng Un Mak
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Tim C. Lei
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
- Department of Electrical Engineering, University of Colorado, Denver, CO, United States of America
| |
Collapse
|
34
|
Mahallati S, Bezdek JC, Popovic MR, Valiante TA. Cluster tendency assessment in neuronal spike data. PLoS One 2019; 14:e0224547. [PMID: 31714913 PMCID: PMC6850537 DOI: 10.1371/journal.pone.0224547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 10/16/2019] [Indexed: 02/05/2023] Open
Abstract
Sorting spikes from extracellular recording into clusters associated with distinct single units (putative neurons) is a fundamental step in analyzing neuronal populations. Such spike sorting is intrinsically unsupervised, as the number of neurons are not known a priori. Therefor, any spike sorting is an unsupervised learning problem that requires either of the two approaches: specification of a fixed value k for the number of clusters to seek, or generation of candidate partitions for several possible values of c, followed by selection of a best candidate based on various post-clustering validation criteria. In this paper, we investigate the first approach and evaluate the utility of several methods for providing lower dimensional visualization of the cluster structure and on subsequent spike clustering. We also introduce a visualization technique called improved visual assessment of cluster tendency (iVAT) to estimate possible cluster structures in data without the need for dimensionality reduction. Experimental results are conducted on two datasets with ground truth labels. In data with a relatively small number of clusters, iVAT is beneficial in estimating the number of clusters to inform the initialization of clustering algorithms. With larger numbers of clusters, iVAT gives a useful estimate of the coarse cluster structure but sometimes fails to indicate the presumptive number of clusters. We show that noise associated with recording extracellular neuronal potentials can disrupt computational clustering schemes, highlighting the benefit of probabilistic clustering models. Our results show that t-Distributed Stochastic Neighbor Embedding (t-SNE) provides representations of the data that yield more accurate visualization of potential cluster structure to inform the clustering stage. Moreover, The clusters obtained using t-SNE features were more reliable than the clusters obtained using the other methods, which indicates that t-SNE can potentially be used for both visualization and to extract features to be used by any clustering algorithm.
Collapse
Affiliation(s)
- Sara Mahallati
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- KITE Research Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Canada
| | - James C. Bezdek
- Computer Science and Information Systems Departments, University of Melbourne, Melbourne, Australia
| | - Milos R. Popovic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- KITE Research Institute, University Health Network, Toronto, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Canada
| | - Taufik A. Valiante
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Division of Neurosurgery, University of Toronto, Toronto, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Kobayashi R, Kurita S, Kurth A, Kitano K, Mizuseki K, Diesmann M, Richmond BJ, Shinomoto S. Reconstructing neuronal circuitry from parallel spike trains. Nat Commun 2019; 10:4468. [PMID: 31578320 PMCID: PMC6775109 DOI: 10.1038/s41467-019-12225-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/27/2019] [Indexed: 11/23/2022] Open
Abstract
State-of-the-art techniques allow researchers to record large numbers of spike trains in parallel for many hours. With enough such data, we should be able to infer the connectivity among neurons. Here we develop a method for reconstructing neuronal circuitry by applying a generalized linear model (GLM) to spike cross-correlations. Our method estimates connections between neurons in units of postsynaptic potentials and the amount of spike recordings needed to verify connections. The performance of inference is optimized by counting the estimation errors using synthetic data. This method is superior to other established methods in correctly estimating connectivity. By applying our method to rat hippocampal data, we show that the types of estimated connections match the results inferred from other physiological cues. Thus our method provides the means to build a circuit diagram from recorded spike trains, thereby providing a basis for elucidating the differences in information processing in different brain regions. Current techniques have enabled the simultaneous collection of spike train data from large numbers of neurons. Here, the authors report a method to infer the underlying neural circuit connectivity diagram based on a generalized linear model applied to spike cross-correlations between neurons.
Collapse
Affiliation(s)
- Ryota Kobayashi
- National Institute of Informatics, Tokyo, 101-8430, Japan.,Department of Informatics, SOKENDAI (The Graduate University for Advanced Studies), Tokyo, 101-8430, Japan
| | - Shuhei Kurita
- Center for Advanced Intelligence Project, RIKEN, Tokyo, 103-0027, Japan
| | - Anno Kurth
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, 52425, Jülich, Germany.,Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
| | - Katsunori Kitano
- Department of Information Science and Engineering, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Markus Diesmann
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, 52425, Jülich, Germany.,Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Barry J Richmond
- Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD, 20814, USA
| | - Shigeru Shinomoto
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan. .,Brain Information Communication Research Laboratory Group, ATR Institute International, Kyoto, 619-0288, Japan.
| |
Collapse
|
36
|
Laboy-Juárez KJ, Ahn S, Feldman DE. A normalized template matching method for improving spike detection in extracellular voltage recordings. Sci Rep 2019; 9:12087. [PMID: 31427615 PMCID: PMC6700190 DOI: 10.1038/s41598-019-48456-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 08/05/2019] [Indexed: 11/09/2022] Open
Abstract
Spike sorting is the process of detecting and clustering action potential waveforms of putative single neurons from extracellular voltage recordings. Typically, spike detection uses a fixed voltage threshold and shadow period, but this approach often misses spikes during high firing rate epochs or noisy conditions. We developed a simple, data-driven spike detection method using a scaled form of template matching, based on the sliding cosine similarity between the extracellular voltage signal and mean spike waveforms of candidate single units. Performance was tested in whisker somatosensory cortex (S1) of anesthetized mice in vivo. The method consistently detected whisker-evoked spikes that were missed by the standard fixed threshold. Detection was improved most for spikes evoked by strong stimuli (40–70% increase), improved less for weaker stimuli, and unchanged for spontaneous spiking. This represents improved detection during spatiotemporally dense spiking, and yielded sharper sensory tuning estimates. We also benchmarked performance using computationally generated voltage data. Template matching detected ~85–90% of spikes compared to ~70% for the standard fixed threshold method, and was more tolerant to high firing rates and simulated recording noise. Thus, a simple template matching approach substantially improves detection of single-unit spiking for cortical physiology.
Collapse
Affiliation(s)
- Keven J Laboy-Juárez
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA. .,Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA.
| | - Seoiyoung Ahn
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Daniel E Feldman
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
37
|
Continuing progress of spike sorting in the era of big data. Curr Opin Neurobiol 2019; 55:90-96. [PMID: 30856552 DOI: 10.1016/j.conb.2019.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/26/2019] [Accepted: 02/07/2019] [Indexed: 11/21/2022]
Abstract
Engineering efforts are currently attempting to build devices capable of collecting neural activity from one million neurons in the brain. Part of this effort focuses on developing dense multiple-electrode arrays, which require post-processing via 'spike sorting' to extract neural spike trains from the raw signal. Gathering information at this scale will facilitate fascinating science, but these dreams are only realizable if the spike sorting procedure and data pipeline are computationally scalable, at or superior to hand processing, and scientifically reproducible. These challenges are all being amplified as the data scale continues to increase. In this review, recent efforts to attack these challenges are discussed, which have primarily focused on increasing accuracy and reliability while being computationally scalable. These goals are addressed by adding additional stages to the data processing pipeline and using divide-and-conquer algorithmic approaches. These recent developments should prove useful to most research groups regardless of data scale, not just for cutting-edge devices.
Collapse
|
38
|
Diggelmann R, Fiscella M, Hierlemann A, Franke F. Automatic spike sorting for high-density microelectrode arrays. J Neurophysiol 2018; 120:3155-3171. [PMID: 30207864 PMCID: PMC6314465 DOI: 10.1152/jn.00803.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 11/22/2022] Open
Abstract
High-density microelectrode arrays can be used to record extracellular action potentials from hundreds to thousands of neurons simultaneously. Efficient spike sorters must be developed to cope with such large data volumes. Most existing spike sorting methods for single electrodes or small multielectrodes, however, suffer from the "curse of dimensionality" and cannot be directly applied to recordings with hundreds of electrodes. This holds particularly true for the standard reference spike sorting algorithm, principal component analysis-based feature extraction, followed by k-means or expectation maximization clustering, against which most spike sorters are evaluated. We present a spike sorting algorithm that circumvents the dimensionality problem by sorting local groups of electrodes independently with classical spike sorting approaches. It is scalable to any number of recording electrodes and well suited for parallel computing. The combination of data prewhitening before the principal component analysis-based extraction and a parameter-free clustering algorithm obviated the need for parameter adjustments. We evaluated its performance using surrogate data in which we systematically varied spike amplitudes and spike rates and that were generated by inserting template spikes into the voltage traces of real recordings. In a direct comparison, our algorithm could compete with existing state-of-the-art spike sorters in terms of sensitivity and precision, while parameter adjustment or manual cluster curation was not required. NEW & NOTEWORTHY We present an automatic spike sorting algorithm that combines three strategies to scale classical spike sorting techniques for high-density microelectrode arrays: 1) splitting the recording electrodes into small groups and sorting them independently; 2) clustering a subset of spikes and classifying the rest to limit computation time; and 3) prewhitening the spike waveforms to enable the use of parameter-free clustering. Finally, we combined these strategies into an automatic spike sorter that is competitive with state-of-the-art spike sorters.
Collapse
Affiliation(s)
- Roland Diggelmann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel , Switzerland
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research , Basel , Switzerland
| | - Michele Fiscella
- Department of Biosystems Science and Engineering, ETH Zurich, Basel , Switzerland
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research , Basel , Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel , Switzerland
| | - Felix Franke
- Department of Biosystems Science and Engineering, ETH Zurich, Basel , Switzerland
| |
Collapse
|
39
|
Ghahari A, Kumar SR, Badea TC. Identification of Retinal Ganglion Cell Firing Patterns Using Clustering Analysis Supplied with Failure Diagnosis. Int J Neural Syst 2018; 28:1850008. [PMID: 29631502 PMCID: PMC6160263 DOI: 10.1142/s0129065718500089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An important goal in visual neuroscience is to understand how neuronal population coding in vertebrate retina mediates the broad range of visual functions. Microelectrode arrays interface on isolated retina registers a collective measure of the spiking dynamics of retinal ganglion cells (RGCs) by probing them simultaneously and in large numbers. The recorded data stream is then processed to identify spike trains of individual RGCs by efficient and scalable spike detection and sorting routines. Most spike sorting software packages, available either commercially or as freeware, combine automated steps with judgment calls by the investigator to verify the quality of sorted spikes. This work focused on sorting spikes of RGCs into clusters using an integrated analytical platform for the data recorded during visual stimulation of wild-type mice retinas with whole field stimuli. After spike train detection, we projected each spike onto two feature spaces: a parametric space and a principal components space. We then applied clustering algorithms to sort spikes into separate clusters. To eliminate the need for human intervention, the initial clustering results were submitted to diagnostic tests that evaluated the results to detect the sources of failure in cluster assignment. This failure diagnosis formed a decision logic for diagnosable electrodes to enhance the clustering quality iteratively through rerunning the clustering algorithms. The new clustering results showed that the spike sorting accuracy was improved. Subsequently, the number of active RGCs during each whole field stimulation was found, and the light responsiveness of each RGC was identified. Our approach led to error-resilient spike sorting in both feature extraction methods; however, using parametric features led to less erroneous spike sorting compared to principal components, particularly for low signal-to-noise ratios. As our approach is reliable for retinal signal processing in response to simple visual stimuli, it could be applied to the evaluation of disrupted physiological signaling in retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Alireza Ghahari
- 1 Retinal Circuit Development and Genetics Unit, National Eye Institute, 6 Center Drive, Bethesda, MD 20892, USA
| | - Sumit R Kumar
- 1 Retinal Circuit Development and Genetics Unit, National Eye Institute, 6 Center Drive, Bethesda, MD 20892, USA
| | - Tudor C Badea
- 1 Retinal Circuit Development and Genetics Unit, National Eye Institute, 6 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
40
|
Wouters J, Kloosterman F, Bertrand A. Towards online spike sorting for high-density neural probes using discriminative template matching with suppression of interfering spikes. J Neural Eng 2018; 15:056005. [DOI: 10.1088/1741-2552/aace8a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Grossberger L, Battaglia FP, Vinck M. Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure. PLoS Comput Biol 2018; 14:e1006283. [PMID: 29979681 PMCID: PMC6051652 DOI: 10.1371/journal.pcbi.1006283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/18/2018] [Accepted: 06/08/2018] [Indexed: 11/18/2022] Open
Abstract
Temporally ordered multi-neuron patterns likely encode information in the brain. We introduce an unsupervised method, SPOTDisClust (Spike Pattern Optimal Transport Dissimilarity Clustering), for their detection from high-dimensional neural ensembles. SPOTDisClust measures similarity between two ensemble spike patterns by determining the minimum transport cost of transforming their corresponding normalized cross-correlation matrices into each other (SPOTDis). Then, it performs density-based clustering based on the resulting inter-pattern dissimilarity matrix. SPOTDisClust does not require binning and can detect complex patterns (beyond sequential activation) even when high levels of out-of-pattern "noise" spiking are present. Our method handles efficiently the additional information from increasingly large neuronal ensembles and can detect a number of patterns that far exceeds the number of recorded neurons. In an application to neural ensemble data from macaque monkey V1 cortex, SPOTDisClust can identify different moving stimulus directions on the sole basis of temporal spiking patterns.
Collapse
Affiliation(s)
- Lukas Grossberger
- Donders Institute for Brain, Cognition and Behaviour, Radboud Universiteit, Nijmegen, the Netherlands
- Ernst Strüngmann Institute for Neuroscience in cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Francesco P. Battaglia
- Donders Institute for Brain, Cognition and Behaviour, Radboud Universiteit, Nijmegen, the Netherlands
| | - Martin Vinck
- Ernst Strüngmann Institute for Neuroscience in cooperation with Max Planck Society, Frankfurt am Main, Germany
| |
Collapse
|
42
|
Wu H, Yang K, Zeng Y. Sparse Coding and Compressive Sensing for Overlapping Neural Spike Sorting. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1516-1525. [PMID: 29994120 DOI: 10.1109/tnsre.2018.2848463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spike sorting is one of the key techniques to understand brain activity. With the development of modern electrophysiology technology, some recent multi-electrode technologies have been able to record the activity of thousands of neuronal spikes simultaneously. In this scenario, however, the recorded activity may be the overlap of multi-neuron spikes, which will degrade the sorting performance of existing cluster-based algorithms. In this paper, we introduce methods for overlapping spike sorting. The introduced methods start from a convolution model, where a sparse vector could be obtained via sparse coding or compressive sensing. Then, we use a maximum a posteriori estimate to optimize the sparse vector, which makes the overlapped spike sorting completed successfully. The advantage of the introduced method is that it performs better than traditional methods when the waveforms of the spikes are similar. In experiments, some synthetic and real spike data are used to testify the methods. The experiment results show that the introduced methods' average sorting detection, defined as the ratio of successfully sorted spikes to the total spikes is nearly 4% higher than the traditional methods, under the condition of the experimental data with similar waveforms.
Collapse
|
43
|
Yger P, Spampinato GLB, Esposito E, Lefebvre B, Deny S, Gardella C, Stimberg M, Jetter F, Zeck G, Picaud S, Duebel J, Marre O. A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo. eLife 2018; 7:e34518. [PMID: 29557782 PMCID: PMC5897014 DOI: 10.7554/elife.34518] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 01/03/2023] Open
Abstract
In recent years, multielectrode arrays and large silicon probes have been developed to record simultaneously between hundreds and thousands of electrodes packed with a high density. However, they require novel methods to extract the spiking activity of large ensembles of neurons. Here, we developed a new toolbox to sort spikes from these large-scale extracellular data. To validate our method, we performed simultaneous extracellular and loose patch recordings in rodents to obtain 'ground truth' data, where the solution to this sorting problem is known for one cell. The performance of our algorithm was always close to the best expected performance, over a broad range of signal-to-noise ratios, in vitro and in vivo. The algorithm is entirely parallelized and has been successfully tested on recordings with up to 4225 electrodes. Our toolbox thus offers a generic solution to sort accurately spikes for up to thousands of electrodes.
Collapse
Affiliation(s)
- Pierre Yger
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80ParisFrance
| | | | - Elric Esposito
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80ParisFrance
| | | | - Stéphane Deny
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80ParisFrance
| | - Christophe Gardella
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80ParisFrance
- Laboratoire de Physique Statistique, CNRS, ENS, UPMC, 75005ParisFrance
| | - Marcel Stimberg
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80ParisFrance
| | | | | | - Serge Picaud
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80ParisFrance
| | - Jens Duebel
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80ParisFrance
| | - Olivier Marre
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80ParisFrance
| |
Collapse
|
44
|
Abstract
BACKGROUND Large-scale neural recordings provide detailed information on neuronal activities and can help elicit the underlying neural mechanisms of the brain. However, the computational burden is also formidable when we try to process the huge data stream generated by such recordings. NEW METHOD In this study, we report the development of Neural Parallel Engine (NPE), a toolbox for massively parallel neural signal processing on graphical processing units (GPUs). It offers a selection of the most commonly used routines in neural signal processing such as spike detection and spike sorting, including advanced algorithms such as exponential-component-power-component (EC-PC) spike detection and binary pursuit spike sorting. We also propose a new method for detecting peaks in parallel through a parallel compact operation. RESULTS Our toolbox is able to offer a 5× to 110× speedup compared with its CPU counterparts depending on the algorithms. A user-friendly MATLAB interface is provided to allow easy integration of the toolbox into existing workflows. COMPARISON WITH EXISTING METHODS Previous efforts on GPU neural signal processing only focus on a few rudimentary algorithms, are not well-optimized and often do not provide a user-friendly programming interface to fit into existing workflows. There is a strong need for a comprehensive toolbox for massively parallel neural signal processing. CONCLUSIONS A new toolbox for massively parallel neural signal processing has been created. It can offer significant speedup in processing signals from large-scale recordings up to thousands of channels.
Collapse
Affiliation(s)
- Wing-Kin Tam
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Biomedical Engineering, University of Minnesota Twin Cities, MN, USA.
| | - Zhi Yang
- Department of Biomedical Engineering, University of Minnesota Twin Cities, MN, USA
| |
Collapse
|
45
|
Hildebrandt KJ, Sahani M, Linden JF. The Impact of Anesthetic State on Spike-Sorting Success in the Cortex: A Comparison of Ketamine and Urethane Anesthesia. Front Neural Circuits 2017; 11:95. [PMID: 29238293 PMCID: PMC5712555 DOI: 10.3389/fncir.2017.00095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/14/2017] [Indexed: 11/13/2022] Open
Abstract
Spike sorting is an essential first step in most analyses of extracellular in vivo electrophysiological recordings. Here we show that spike-sorting success depends critically on characteristics of coordinated population activity that can differ between anesthetic states. In tetrode recordings from mouse auditory cortex, spike sorting was significantly less successful under ketamine/medetomidine (ket/med) than urethane anesthesia. Surprisingly, this difficulty with sorting under ket/med anesthesia did not appear to result from either greater millisecond-scale burstiness of neural activity or increased coordination of activity among neighboring neurons. Rather, the key factor affecting sorting success appeared to be the amount of coordinated population activity at long time intervals and across large cortical distances. We propose that spike-sorting success is directly dependent on overall coordination of activity, and is most disrupted by large-scale fluctuations in cortical population activity. Reliability of single-unit recording may therefore differ not only between urethane-anesthetized and ket/med-anesthetized states as demonstrated here, but also between synchronized and desynchronized states, asleep and awake states, or inattentive and attentive states in unanesthetized animals.
Collapse
Affiliation(s)
- K Jannis Hildebrandt
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany.,Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
| | - Jennifer F Linden
- Ear Institute, University College London, London, United Kingdom.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
46
|
Mena GE, Grosberg LE, Madugula S, Hottowy P, Litke A, Cunningham J, Chichilnisky EJ, Paninski L. Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays. PLoS Comput Biol 2017; 13:e1005842. [PMID: 29131818 PMCID: PMC5703587 DOI: 10.1371/journal.pcbi.1005842] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 11/27/2017] [Accepted: 10/20/2017] [Indexed: 11/18/2022] Open
Abstract
Simultaneous electrical stimulation and recording using multi-electrode arrays can provide a valuable technique for studying circuit connectivity and engineering neural interfaces. However, interpreting these measurements is challenging because the spike sorting process (identifying and segregating action potentials arising from different neurons) is greatly complicated by electrical stimulation artifacts across the array, which can exhibit complex and nonlinear waveforms, and overlap temporarily with evoked spikes. Here we develop a scalable algorithm based on a structured Gaussian Process model to estimate the artifact and identify evoked spikes. The effectiveness of our methods is demonstrated in both real and simulated 512-electrode recordings in the peripheral primate retina with single-electrode and several types of multi-electrode stimulation. We establish small error rates in the identification of evoked spikes, with a computational complexity that is compatible with real-time data analysis. This technology may be helpful in the design of future high-resolution sensory prostheses based on tailored stimulation (e.g., retinal prostheses), and for closed-loop neural stimulation at a much larger scale than currently possible.
Collapse
Affiliation(s)
- Gonzalo E. Mena
- Statistics Department, Columbia University, New York, New York, United States of America
| | - Lauren E. Grosberg
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, United States of America
| | - Sasidhar Madugula
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, United States of America
| | - Paweł Hottowy
- Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Alan Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - John Cunningham
- Statistics Department, Columbia University, New York, New York, United States of America
- Grossman Center for the Statistics of Mind and Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
| | - E. J. Chichilnisky
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, United States of America
| | - Liam Paninski
- Statistics Department, Columbia University, New York, New York, United States of America
- Grossman Center for the Statistics of Mind and Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
| |
Collapse
|
47
|
Comparison of combined spike detection and clustering using mutual information. J Neurosci Methods 2017; 291:166-175. [PMID: 28827163 DOI: 10.1016/j.jneumeth.2017.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Spike sorting techniques involve both detection of spike waveform events and classification of those events into clusters of similar waveform shape. The one existing method of evaluating the combined effects of both detection and classification depends on assignment of cluster correspondence. Other methods of evaluation have focused on either clustering or detection, but not both, although these two steps may interact. NEW METHOD This paper develops an information theoretic measure of agreement between the output of two spike sorting techniques, AMIall, which can be used even when the number of waveform events detected by the two techniques differs. RESULTS AMIall is shown to be a useful measure for studying variations of parameters of spike sorting techniques in two examples: comparing outputs for simulated noisy spike sorting and spike sorting of human single neuron recordings. Comparison with existing methods Computing AMIall does not require an explicit assignment of cluster correspondence, thereby eliminating a potential source of variation. By providing a single measure of performance, computing AMIall is very useful when comparing large numbers of algorithmic or parametric variations of spike sorting techniques; prior comparison techniques have often required multiple measures of performance which complicates large scale comparisons. CONCLUSIONS The use of AMIall to measure agreement between spike sorting techniques facilitates the comparison of the outputs of those techniques, including variations in both spike detection and waveform clustering. This measure should be useful for broad based and large scale comparisons between spike sorting techniques.
Collapse
|
48
|
|
49
|
Liu Y, Pereira JL, Constandinou TG. Event-driven processing for hardware-efficient neural spike sorting. J Neural Eng 2017; 15:016016. [PMID: 28978779 DOI: 10.1088/1741-2552/aa9124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The prospect of real-time and on-node spike sorting provides a genuine opportunity to push the envelope of large-scale integrated neural recording systems. In such systems the hardware resources, power requirements and data bandwidth increase linearly with channel count. Event-based (or data-driven) processing can provide here a new efficient means for hardware implementation that is completely activity dependant. In this work, we investigate using continuous-time level-crossing sampling for efficient data representation and subsequent spike processing. APPROACH (1) We first compare signals (synthetic neural datasets) encoded with this technique against conventional sampling. (2) We then show how such a representation can be directly exploited by extracting simple time domain features from the bitstream to perform neural spike sorting. (3) The proposed method is implemented in a low power FPGA platform to demonstrate its hardware viability. MAIN RESULTS It is observed that considerably lower data rates are achievable when using 7 bits or less to represent the signals, whilst maintaining the signal fidelity. Results obtained using both MATLAB and reconfigurable logic hardware (FPGA) indicate that feature extraction and spike sorting accuracies can be achieved with comparable or better accuracy than reference methods whilst also requiring relatively low hardware resources. SIGNIFICANCE By effectively exploiting continuous-time data representation, neural signal processing can be achieved in a completely event-driven manner, reducing both the required resources (memory, complexity) and computations (operations). This will see future large-scale neural systems integrating on-node processing in real-time hardware.
Collapse
Affiliation(s)
- Yan Liu
- Centre for Bio-Inspired Technology, Imperial College London, SW7 2AZ, United Kingdom. Dept. of Electrical & Electronic Eng., Imperial College London, SW7 2BT, United Kingdom
| | | | | |
Collapse
|
50
|
Chung JE, Magland JF, Barnett AH, Tolosa VM, Tooker AC, Lee KY, Shah KG, Felix SH, Frank LM, Greengard LF. A Fully Automated Approach to Spike Sorting. Neuron 2017; 95:1381-1394.e6. [PMID: 28910621 PMCID: PMC5743236 DOI: 10.1016/j.neuron.2017.08.030] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 07/06/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022]
Abstract
Understanding the detailed dynamics of neuronal networks will require the simultaneous measurement of spike trains from hundreds of neurons (or more). Currently, approaches to extracting spike times and labels from raw data are time consuming, lack standardization, and involve manual intervention, making it difficult to maintain data provenance and assess the quality of scientific results. Here, we describe an automated clustering approach and associated software package that addresses these problems and provides novel cluster quality metrics. We show that our approach has accuracy comparable to or exceeding that achieved using manual or semi-manual techniques with desktop central processing unit (CPU) runtimes faster than acquisition time for up to hundreds of electrodes. Moreover, a single choice of parameters in the algorithm is effective for a variety of electrode geometries and across multiple brain regions. This algorithm has the potential to enable reproducible and automated spike sorting of larger scale recordings than is currently possible.
Collapse
Affiliation(s)
- Jason E Chung
- Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California San Francisco, CA 94158, USA
| | - Jeremy F Magland
- Center for Computational Biology, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
| | - Alex H Barnett
- Center for Computational Biology, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA; Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA
| | - Vanessa M Tolosa
- Center for Micro- and Nano-Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Angela C Tooker
- Center for Micro- and Nano-Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Kye Y Lee
- Center for Micro- and Nano-Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Kedar G Shah
- Center for Micro- and Nano-Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Sarah H Felix
- Center for Micro- and Nano-Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Loren M Frank
- Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Leslie F Greengard
- Center for Computational Biology, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA; Courant Institute, NYU, New York, NY 10012, USA
| |
Collapse
|