1
|
Yang C, Wu Y, Qian J, Li JJ. A systematic, updated review of Xuezhikang, a domestically developed lipid-lowering drug, in the application of cardiovascular diseases. Acta Pharm Sin B 2024; 14:4228-4242. [PMID: 39525586 PMCID: PMC11544391 DOI: 10.1016/j.apsb.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 04/12/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a major threat to public health globally. A large proportion of people with dyslipidaemia have poorly controlled lipid levels, emphasizing the need for alternative lipid-lowering treatments that are both effective and safe. Xuezhikang, a red yeast rice (RYR) extract, containing 13 kinds of monacolins and other bioactive components, emerges as one such promising option. Its discovery was built on a long history of RYR use as a functional food supplement and traditional Chinese medicine. Several randomized, controlled clinical trials have substantiated its lipid-lowering effects and its potential to protect against CVDs. Safety concerns with statins did not arise during decades of experience with Xuezhikang treatment in clinical practice. The approval of Xuezhikang in multiple regions of Asia marked a conceptual shift in CVD management, moving from single agents to polypills and from synthetic medicines to natural extracts. This review comprehensively addresses important topics related to this medicinal natural extract, including the ancient utilization of RYR, the development of Xuezhikang, its mechanisms of action, pleiotropic effects, clinical studies, challenges, and future perspectives to enhance our understanding regarding the role of Xuezhikang, a representative, domestic lipid-lowering drug of RYR, in prevention and treatment of CVD.
Collapse
Affiliation(s)
- Cheng Yang
- Cardiometabolic Center, Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yongjian Wu
- Cardiometabolic Center, Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jie Qian
- Cardiometabolic Center, Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jian-Jun Li
- Cardiometabolic Center, Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
2
|
Ju D, Dong C. The combined application of stem cells and three-dimensional bioprinting scaffolds for the repair of spinal cord injury. Neural Regen Res 2024; 19:1751-1758. [PMID: 38103241 PMCID: PMC10960285 DOI: 10.4103/1673-5374.385842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 12/18/2023] Open
Abstract
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system. Following surgery, the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality. Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord. Consequently, there is a critical need to develop new treatments to promote functional repair after spinal cord injury. Over recent years, there have been several developments in the use of stem cell therapy for the treatment of spinal cord injury. Alongside significant developments in the field of tissue engineering, three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures. This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization. These three-dimensional bioprinting scaffolds could repair damaged neural circuits and had the potential to repair the damaged spinal cord. In this review, we discuss the mechanisms underlying simple stem cell therapy, the application of different types of stem cells for the treatment of spinal cord injury, and the different manufacturing methods for three-dimensional bioprinting scaffolds. In particular, we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Dingyue Ju
- Department of Anatomy, Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, Jiangsu Province, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
3
|
Tan JJ, Murugan DD, Ling WC, Lee SK, Kang WH. Chronic Administration of Red Yeast Rice Mitigates Endothelial Dysfunction in Spontaneously Hypertensive Rats by Inhibiting Oxidative Stress and Endothelial Nitric Oxide Synthase Uncoupling. Curr Vasc Pharmacol 2024; 22:355-364. [PMID: 38847159 DOI: 10.2174/0115701611295900240529104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Hypertension is associated with endothelial dysfunction. An imbalance in the production of Nitric Oxide (NO) and Reactive Oxygen Species (ROS), leading to impaired NO-cyclic Guanosine Monophosphate (cGMP) pathway, contributes to this disorder. Red Yeast Rice (RYR), produced from the fermentation of rice with Monascus purpureus, is a traditional functional food originating from China. Although recognized for its anti-dyslipidemia properties, there has been growing evidence regarding the anti-hypertensive effects of RYR. However, these studies only focused on its direct and short-term effects. AIM This study aims to investigate the vasoprotective effects of chronic oral RYR administration using Spontaneously Hypertensive Rats (SHR). MATERIALS AND METHODS SHR were randomly divided into 3 groups: SHR - Control; SHR - RYR extract (100 mg/kg/day); SHR - lovastatin (10 mg/kg/day). Wistar-Kyoto Rats (WKY) were used as normotensive controls. All animals were treated for 12 weeks by oral gavage. Systolic Blood Pressure (SBP) was measured weekly (tail-cuff method). Vascular reactivity was determined using isolated rat aortic rings in an organ bath. Aortic ROS, NO, tetrahydrobiopterin (BH4), and cGMP levels were evaluated. RESULTS Administration of RYR attenuated SBP elevation and enhanced endothelium-dependent vasodilation in aortic rings. In addition, RYR decreased ROS production and significantly improved the level of vascular NO, BH4, and cGMP. CONCLUSION In an SHR model, treatment with RYR for 12 weeks exerts an SBP lowering effect that can be attributed to improved vascular function via reduction of oxidative stress, decreased endothelial NO Synthase (eNOS) uncoupling and enhanced NO-cGMP pathway.
Collapse
Affiliation(s)
- Jiunn Jye Tan
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Wei Chih Ling
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Waye Hann Kang
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
- M. Kandiah, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman Sungai Long City Campus Jalan Sungai Long Bandar Sungai Long, Cheras, Kajang, Selangor 43000, Malaysia
| |
Collapse
|
4
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
5
|
Chen S, Wu X, Li T, Li Y, Wang B, Cheng W, Teng Y, Yang J, Meng H, Wang L, Lu Z, Jiang Y, Wang Y, Zhao M. Atheroprotective Effects and Mechanisms of Postmarketing Chinese Patent Formulas in Atherosclerosis Models: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4010607. [PMID: 34873408 PMCID: PMC8643251 DOI: 10.1155/2021/4010607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Some postmarketing Chinese patent formulas have been widely used to treat atherosclerosis (AS) and play critical roles in Chinese healthcare. However, the usage of these herbs is yet controversial due to unclear effects and lack of understanding of the mechanism of action. With the modernization of traditional Chinese formulas, we are to elucidate the atheroprotective properties of these remedies from successful postmarketing experiments in vivo. METHODS In this systematic review, we critically searched the databases, applied stringent criteria, assessed the methodological quality, and examined the current evidence in vivo. RESULTS Consequently, 60 studies were included in the present qualitative synthesis. Data on models, high-fat diet, intervention time, outcome measures, efficacy, and mechanisms were collected. Finally, 23 formulas that could alleviate AS were correlated to the amelioration of plaques, improvement of plaque stability, modification of lipid level and lipid metabolism, and the effects of anti-inflammation and antioxidant stress with multiple components and targets. However, the methodological quality was low and incomplete among the included literature. CONCLUSIONS Thus, taken together, the studies on postmarketing Chinese patent formulas would provide a novel approach to improve the treatment of AS, and rigorously designed studies would provide high-quality evidence.
Collapse
Affiliation(s)
- Shiqi Chen
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaoxiao Wu
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Tong Li
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yang Li
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Baofu Wang
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Weiting Cheng
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yu Teng
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jingjing Yang
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hui Meng
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Lei Wang
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Ziwen Lu
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yangyang Jiang
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yahong Wang
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Mingjing Zhao
- Key Laboratory of Chinese Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
6
|
Bagherniya M, Johnston TP, Sahebkar A. Regulation of Apolipoprotein B by Natural Products and Nutraceuticals: A Comprehensive Review. Curr Med Chem 2021; 28:1363-1406. [PMID: 32338202 DOI: 10.2174/0929867327666200427092114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular Disease (CVD) is the most important and the number one cause of mortality in both developing and industrialized nations. The co-morbidities associated with CVD are observed from infancy to old age. Apolipoprotein B100 (Apo B) is the primary apolipoprotein and structural protein of all major atherogenic particles derived from the liver including Very-Low- Density Lipoproteins (VLDL), Intermediate-density Lipoprotein (IDL), and Low-density Lipoprotein (LDL) particles. It has been suggested that measurement of the Apo B concentration is a superior and more reliable index for the prediction of CVD risk than is the measurement of LDL-C. Nutraceuticals and medicinal plants have attracted significant attention as it pertains to the treatment of non-communicable diseases, particularly CVD, diabetes mellitus, hypertension, and Nonalcoholic Fatty Liver Disease (NAFLD). The effect of nutraceuticals and herbal products on CVD, as well as some of its risk factors such as dyslipidemia, have been investigated previously. However, to the best of our knowledge, the effect of these natural products, including herbal supplements and functional foods (e.g. fruits and vegetables as either dry materials, or their extracts) on Apo B has not yet been investigated. Therefore, the primary objective of this paper was to review the effect of bioactive natural compounds on plasma Apo B concentrations. It is concluded that, in general, medicinal plants and nutraceuticals can be used as complementary medicine to reduce plasma Apo B levels in a safe, accessible, and inexpensive manner in an attempt to prevent and treat CVD.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | | |
Collapse
|
7
|
Fukami H, Higa Y, Hisano T, Asano K, Hirata T, Nishibe S. A Review of Red Yeast Rice, a Traditional Fermented Food in Japan and East Asia: Its Characteristic Ingredients and Application in the Maintenance and Improvement of Health in Lipid Metabolism and the Circulatory System. Molecules 2021; 26:1619. [PMID: 33803982 PMCID: PMC8001704 DOI: 10.3390/molecules26061619] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/25/2023] Open
Abstract
Red yeast rice has been used to produce alcoholic beverages and various fermented foods in China and Korea since ancient times; it has also been used to produce tofuyo (Okinawan-style fermented tofu) in Japan since the 18th century. Recently, monacolin K (lovastatin) which has cholesterol-lowering effects, was found in some strains of Monascus fungi. Since statins have been used world-wide as a cholesterol-lowering agent, processed foods containing natural statins are drawing attention as materials for primary prevention of life-style related diseases. In recent years, large-scale commercial production of red yeast rice using traditional solid-state fermentation has become possible, and various useful materials, including a variety of monascus pigments (polyketides) that spread as natural pigments, in addition to statins, are produced in the fermentation process. Red yeast rice has a lot of potential as a medicinal food. In this paper, we describe the history of red yeast rice as food, especially in Japan and East Asia, its production methods, use, and the ingredients with pharmacological activity. We then review evidence of the beneficial effects of red yeast rice in improving lipid metabolism and the circulatory system and its safety as a functional food.
Collapse
Affiliation(s)
- Hiroyuki Fukami
- Central R&D Laboratory, KOBYASHI Pharmaceutical Co., Ltd., Ibaraki 567-0057, Japan; (Y.H.); (T.H.); (K.A.); (T.H.)
| | - Yuki Higa
- Central R&D Laboratory, KOBYASHI Pharmaceutical Co., Ltd., Ibaraki 567-0057, Japan; (Y.H.); (T.H.); (K.A.); (T.H.)
| | - Tomohiro Hisano
- Central R&D Laboratory, KOBYASHI Pharmaceutical Co., Ltd., Ibaraki 567-0057, Japan; (Y.H.); (T.H.); (K.A.); (T.H.)
| | - Koichi Asano
- Central R&D Laboratory, KOBYASHI Pharmaceutical Co., Ltd., Ibaraki 567-0057, Japan; (Y.H.); (T.H.); (K.A.); (T.H.)
| | - Tetsuya Hirata
- Central R&D Laboratory, KOBYASHI Pharmaceutical Co., Ltd., Ibaraki 567-0057, Japan; (Y.H.); (T.H.); (K.A.); (T.H.)
| | - Sansei Nishibe
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari 061-0293, Japan;
| |
Collapse
|
8
|
Bsat S, Halaoui A, Kobeissy F, Moussalem C, El Houshiemy MN, Kawtharani S, Omeis I. Acute ischemic stroke biomarkers: a new era with diagnostic promise? Acute Med Surg 2021; 8:e696. [PMID: 34745637 PMCID: PMC8552525 DOI: 10.1002/ams2.696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 01/14/2023] Open
Abstract
Stroke is considered as the first cause of neurological dysfunction and second cause of death worldwide. Recombinant tissue plasminogen activator is the only chemical treatment for ischemic stroke approved by the US Food and Drug Administration. It was the only standard of care for a long time with a very narrow therapeutic window, which usually ranges from 3 to 4.5 h of stroke onset; until 2015, when multiple trials demonstrated the benefit of mechanical thrombectomy during the first 6 h. In addition, recent trials showed that mechanical thrombectomy can be beneficial up to 24 h if the patients meet certain criteria including the presence of magnetic resonance imaging/computed tomography perfusion mismatch, which allows better selectivity and higher recruitment of eligible stroke patients. However, magnetic resonance imaging/computed tomography perfusion is not available in all stroke centers. Hence, physicians need other easy and available diagnostic tools to select stroke patients eligible for mechanical thrombectomy. Moreover, stroke management is still challenging for physicians, particularly those dealing with patients with "wake-up" stroke. The resulting brain tissue damage of ischemic stroke and the subsequent pathological processes are mediated by multiple molecular pathways that are modulated by inflammatory markers and post-transcriptional activity. A considerable number of published works suggest the role of inflammatory and cardiac brain-derived biomarkers (serum matrix metalloproteinase, thioredoxin, neuronal and glial markers, and troponin proteins) as well as different biomarkers including the emerging roles of microRNAs. In this review, we assess the accumulating evidence regarding the current status of acute ischemic stroke diagnostic biomarkers that could guide physicians for better management of stroke patients. Our review could give an insight into the roles of the different emerging markers and microRNAs that can be of high diagnostic value in patients with stroke. In fact, the field of stroke research, similar to the field of traumatic brain injury, is in immense need for novel biomarkers that can stratify diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Shadi Bsat
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Adham Halaoui
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular GeneticsFaculty of MedicineAmerican University of BeirutBeirutLebanon
| | - Charbel Moussalem
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | | | - Sarah Kawtharani
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Ibrahim Omeis
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
- Department of NeurosurgeryBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
9
|
Can miRNAs Be Considered as Diagnostic and Therapeutic Molecules in Ischemic Stroke Pathogenesis?-Current Status. Int J Mol Sci 2020; 21:ijms21186728. [PMID: 32937836 PMCID: PMC7555634 DOI: 10.3390/ijms21186728] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death worldwide. Clinical manifestations of stroke are long-lasting and causing economic burden on the patients and society. Current therapeutic modalities to treat ischemic stroke (IS) are unsatisfactory due to the intricate pathophysiology and poor functional recovery of brain cellular compartment. MicroRNAs (miRNA) are endogenously expressed small non-coding RNA molecules, which can act as translation inhibitors and play a pivotal role in the pathophysiology associated with IS. Moreover, miRNAs may be used as potential diagnostic and therapeutic tools in clinical practice; yet, the complete role of miRNAs is enigmatic during IS. In this review, we explored the role of miRNAs in the regulation of stroke risk factors viz., arterial hypertension, metabolic disorders, and atherosclerosis. Furthermore, the role of miRNAs were reviewed during IS pathogenesis accompanied by excitotoxicity, oxidative stress, inflammation, apoptosis, angiogenesis, neurogenesis, and Alzheimer's disease. The functional role of miRNAs is a double-edged sword effect in cerebral ischemia as they could modulate pathological mechanisms associated with risk factors of IS. miRNAs pertaining to IS pathogenesis could be potential biomarkers for stroke; they could help researchers to identify a particular stroke type and enable medical professionals to evaluate the severity of brain injury. Thus, ascertaining the role of miRNAs may be useful in deciphering their diagnostic role consequently it is plausible to envisage a suitable therapeutic modality against IS.
Collapse
|
10
|
Sungthong B, Yoothaekool C, Promphamorn S, Phimarn W. Efficacy of red yeast rice extract on myocardial infarction patients with borderline hypercholesterolemia: A meta-analysis of randomized controlled trials. Sci Rep 2020; 10:2769. [PMID: 32066811 PMCID: PMC7026145 DOI: 10.1038/s41598-020-59796-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Red yeast rice (RYR) extract is widely used for improving cardiovascular outcomes and lipid profiles. However, RYR efficacy on cardiovascular outcomes in myocardial infarction (MI) patients remains unclear. This meta-analysis assessed efficacy of RYR extract in MI patients with borderline hypercholesterolemia. PubMed, CENTRAL, CINAHL, Scopus, Web of Science, and Clinicaltrials.gov were systematically searched from inception through May 2019 for relevant publications. Seven studies with 10,699 MI patients diagnosed with borderline hypercholesterolemia were included. Follow-up periods ranged from 4 weeks - 4.5 years and the studies were overall of high quality with low risk of bias. RYR extract (1,200 mg/day) reduced nonfatal MI (risk ratio (RR) = 0.42, 95% CI 0.34 to 0.52), revascularization (RR = 0.58, 95% CI 0.48 to 0.71), and sudden death (RR = 0.71, 95% CI 0.53 to 0.94). RYR extract also lowered LDL (weighted mean difference (WMD) = -20.70 mg/dL, 95% CI -24.51 to -16.90), TC (WMD = -26.61 mg/dL, 95% CI -31.65 to -21.58), TG (WMD = - 24.69 mg/dL, 95% CI -34.36 to -15.03), and increased HDL levels (WMD = 2.71 mg/dL, 95% CI 1.24 to 4.17). This meta-analysis indicated that RYR extract in MI patients with borderline hypercholesterolemia is associated with improved cardiovascular outcomes and lipid profiles.
Collapse
Affiliation(s)
- Bunleu Sungthong
- Pharmaceutical Chemistry and Natural Products Research Unit, Faculty of Pharmacy, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand
| | - Chenchira Yoothaekool
- Social Pharmacy Research Unit, Faculty of Pharmacy, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand
| | - Sornsalak Promphamorn
- Social Pharmacy Research Unit, Faculty of Pharmacy, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand
| | - Wiraphol Phimarn
- Social Pharmacy Research Unit, Faculty of Pharmacy, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand.
| |
Collapse
|
11
|
Klingelhöfer I, Morlock GE. Lovastatin in lactone and hydroxy acid forms and citrinin in red yeast rice powders analyzed by HPTLC-UV/FLD. Anal Bioanal Chem 2019; 411:6655-6665. [PMID: 31410535 DOI: 10.1007/s00216-019-02039-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023]
Abstract
For the analysis of pigment-rich red yeast rice products, a fast quantitative high-performance thin-layer chromatography (HPTLC) method was newly developed and validated. The active ingredient lovastatin, present in lactone (LL) and hydroxy acid forms (LH), as well as the mycotoxin citrinin were analyzed in 19 red yeast rice products, including powders, dietary supplements, and Chinese proprietary medicines (Xuezhikang and Zhibituo). The HPTLC method including sample preparation allows a high throughput of matrix-rich samples (10 min per analysis) and is highly cost-efficient (running costs of 0.5 Euro per analysis). For a fast protocol, application volumes up to 10 μL were selected although higher application volumes will lower still the LODs, which were 30 mg/kg for LL and LH as well as 4 mg/kg for citrinin. Thanks to the minimalistic sample preparation, the overall mean recovery rate was good (109.9% ± 5.9%; repeated measurements of the three analytes per fresh sample preparation at three spike levels). Repeated calibrations (five per analyte) in the red yeast rice matrix showed highly satisfying determination coefficients (≥ 0.9991; mean 0.9996). For three analytes at three concentration levels, the obtained mean intermediate precisions in red yeast rice matrix analyzed over the whole procedure including sample preparation were highly satisfying (≤ 2.6%). Citrinin was not detectable in the samples down to the given LOD of 4.0 mg/kg for the 10-μL sample volume applied. The mean content of lovastatin in 15 RYR powders was 8.7 g/kg, with a rang of 1.5-26.2 g/kg. The content of lovastatin in Zhibituo tablets and Xuezhikang capsules was determined to be 2.7 and 11.1 g/kg, respectively. The two commercially available RYR dietary supplement samples showed the highest lovastatin contents of 40.7 and 41.4 g/kg. By these figures of merit, the HPTLC method was proven to be suited for the control of such matrix-rich, fermented food. Graphical abstract.
Collapse
Affiliation(s)
- Ines Klingelhöfer
- Institute of Nutritional Science, Chair of Food Science, and Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Gertrud E Morlock
- Institute of Nutritional Science, Chair of Food Science, and Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
12
|
Liang L, Shao W, Shu T, Zhang Y, Xu S, Guo L, Zhou Y, Huang H, Sun P. Xuezhikang improves the outcomes of cardiopulmonary resuscitation in rats by suppressing the inflammation response through TLR4/NF-κB pathway. Biomed Pharmacother 2019; 114:108817. [PMID: 30953818 DOI: 10.1016/j.biopha.2019.108817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIMS Xuezhikang (XZK), a red yeast rice extract with lipid-lowering effect, contains a family of naturally statins, such as lovastatin. In recent years, its effect beyond the regulation of lipids has also been received increasing attention. Therefore, the purpose of this study was to explore the protective effects and possible molecular mechanisms of XZK on brain injury after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR), and to investigate whether it has a dose-dependent effect and the difference with lovastatin. METHODS Rats were treated with low-dose XZK (XZK-L, 20 mg/kg/d), high-dose XZK (XZK-H, 200 mg/kg/d) and lovastatin by gavage once daily for 2 weeks before CA. The levels of TNF-α, IL-6 and IL-1β were evaluated at 1, 4, and 72 h post-CA/CPR. The survival rate, neurological deficit score (NDS), and expression of TLR4, phosphorylated NF-κB and TNF-α in hippocampal tissues were evaluated at 72 h post-CA/CPR. RESULTS CA/CPR induced a significant increase in serum TNF-α, IL-6 and IL-1β, as well as increased expressions of TLR4, phosphorylated NF-κB and TNF-α in the hippocampus. Both low-dose and high-dose XZK treatment inhibited the expression of these inflammatory cytokines. In addition, it reduced the number of defibrillations and shortened the duration of CPR required for return of spontaneous circulation (ROSC). XZK treatment also improved neurological function and 72-hour survival rate in rats. However, high-dose XZK was superior to lovastatin in the suppression of IL-1β mRNA level and TNF-α protein level in hippocampal tissue after CPR. There were no significant differences observed among high-dose XZK, low-dose XZK and lovastatin groups in other respects. CONCLUSION These results indicated that XZK had a protective effect against brain injury post-CA/CPR. The mechanisms underlying the protective effects of XZK may be related to the suppressing of CA/CPR-induced inflammatory response through the inhibiting TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Licai Liang
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weijing Shao
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingting Shu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Intensive Care Unit, Wuhan Hospital of Traditional Chinese Medicine, Wuhan 430022, China
| | - Yuhan Zhang
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Intensive Care Unit, Xiangyang Central Hospital, Affiliated Hospital Of Hubei University of Arts and Science, XiangYang, Hubei 441021, China
| | - Shuang Xu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lang Guo
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuran Zhou
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - He Huang
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Deparment of Emergency Medicine, Hankou Branch of Central Theater General Hospital, Wuhan 430019, China
| | - Peng Sun
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
13
|
Feng SJ, Tang ZH, Wang Y, Tang XY, Li TH, Tang W, Kuang ZM. Potential protective effects of red yeast rice in endothelial function against atherosclerotic cardiovascular disease. Chin J Nat Med 2019; 17:50-58. [PMID: 30704624 DOI: 10.1016/s1875-5364(19)30009-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 10/27/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the deadliest disease in the world, with endothelial injury occurring throughout the course of the disease. Therefore, improvement in endothelial function is of essential importance in the prevention of ASCVD. Red yeast rice (RYR), a healthy traditional Chinese food, has a lipid modulation function and also plays a vital role in the improvement of endothelial reactivity and cardiovascular protection; thus, it is significant in the prevention and treatment of ASCVD. This article reviews the molecular mechanisms of RYR and its related products in the improvement of endothelial function in terms of endothelial reactivity, anti-apoptosis of endothelial progenitor cells, oxidative stress alleviation and anti-inflammation.
Collapse
Affiliation(s)
- Shu-Jun Feng
- Department of Cardiology, The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China; Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, 3330 Hospital Drive NW, Calgary T2N 4N1, Canada
| | - Ying Wang
- Department of Cardiology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, China
| | - Xin-Ying Tang
- Department of Cardiology, The First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Tao-Hua Li
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| | - Wei Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China; Class 2014, Medical College, University of South China, Hengyang 421001, China
| | - Ze-Min Kuang
- Department of Hypertension, Beijing Anzhen Hospital of Capital Medical University, Beijing 100029, China.
| |
Collapse
|
14
|
Van Dyken P, Lacoste B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier. Front Neurosci 2018; 12:930. [PMID: 30618559 PMCID: PMC6297847 DOI: 10.3389/fnins.2018.00930] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic syndrome, which includes diabetes and obesity, is one of the most widespread medical conditions. It induces systemic inflammation, causing far reaching effects on the body that are still being uncovered. Neuropathologies triggered by metabolic syndrome often result from increased permeability of the blood-brain-barrier (BBB). The BBB, a system designed to restrict entry of toxins, immune cells, and pathogens to the brain, is vital for proper neuronal function. Local and systemic inflammation induced by obesity or type 2 diabetes mellitus can cause BBB breakdown, decreased removal of waste, and increased infiltration of immune cells. This leads to disruption of glial and neuronal cells, causing hormonal dysregulation, increased immune sensitivity, or cognitive impairment depending on the affected brain region. Inflammatory effects of metabolic syndrome have been linked to neurodegenerative diseases. In this review, we discuss the effects of obesity and diabetes-induced inflammation on the BBB, the roles played by leptin and insulin resistance, as well as BBB changes occurring at the molecular level. We explore signaling pathways including VEGF, HIFs, PKC, Rho/ROCK, eNOS, and miRNAs. Finally, we discuss the broader implications of neural inflammation, including its connection to Alzheimer's disease, multiple sclerosis, and the gut microbiome.
Collapse
Affiliation(s)
- Peter Van Dyken
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Wang J, Bai Y, Zhao X, Ru J, Kang N, Tian T, Tang L, An Y, Li P. oxLDL-mediated cellular senescence is associated with increased NADPH oxidase p47phox recruitment to caveolae. Biosci Rep 2018; 38:BSR20180283. [PMID: 29695496 PMCID: PMC5997791 DOI: 10.1042/bsr20180283] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/05/2018] [Accepted: 04/24/2018] [Indexed: 01/26/2023] Open
Abstract
Atherosclerosis develops as a consequence of inflammation and cell senescence. In critical factors involved in the atherosclerotic changes, reactive oxygen species (ROS) generation is considered a leading cause. While NADPH oxidases, particularly NOX2, are the main sources of ROS, how they are regulated in the disease is incompletely understood. In addition, how caveolae, the membrane structure implicated in oxLDL deposition under vascular endothelia, is involved in the oxLDL-mediated ROS production remains mostly elusive. We report here that macrophages exposed to oxLDL up-regulate its caveolin-1 expression, and the latter in turn up-regulates NOX2 p47phox level. This combination effect results in increased cellular senescence. Interestingly, oxLDL treatment causes the p47phox residing in the cytosol to translocate to the caveolae. Immunoprecipitation assays confirms that cavelin-1 is in high degree association with p47phox. These results suggest caveolin-1 may serve as the membrane target for p47phox and as a switch for ROS production following oxLDL exposure. Our results reveal a previously unknown molecular event in oxLDL-mediated cellular ageing, and may provide a target for clinical intervention for atherosclerosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Yuzhi Bai
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Xia Zhao
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Jing Ru
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Ning Kang
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tian Tian
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Liying Tang
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Yun An
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Pei Li
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| |
Collapse
|
16
|
Bianconi V, Mannarino MR, Sahebkar A, Cosentino T, Pirro M. Cholesterol-Lowering Nutraceuticals Affecting Vascular Function and Cardiovascular Disease Risk. Curr Cardiol Rep 2018; 20:53. [PMID: 29802549 DOI: 10.1007/s11886-018-0994-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to provide an update on the effects of the dietary supplementation with cholesterol-lowering nutraceuticals and nutraceutical combinations affecting vascular function and CV risk in clinical interventional studies. RECENT FINDINGS Current evidence supports the mild-to-moderate cholesterol-lowering efficacy of red yeast rice, berberine, plant sterols, fibers, and some nutraceutical combinations whereas data on the individual cholesterol-lowering action of other nutraceuticals are either less striking or even inconclusive. There is also promising evidence on the vascular protective effects of some of the aforementioned nutraceuticals. However, except for red yeast rice, clinical interventional studies have not investigated their impact on CV outcomes. Evidence of both cholesterol-lowering and vascular protection is a prerogative of few single nutraceuticals and nutraceutical combinations, which may support their clinical use; however, caution on their uncontrolled adoption is necessary as they are freely available on the market and, therefore, subject to potential misuse.
Collapse
Affiliation(s)
- Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
- Hospital "Santa Maria della Misericordia", Piazzale Menghini, 1, 06129, Perugia, Italy
| | - Massimo Raffaele Mannarino
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
- Hospital "Santa Maria della Misericordia", Piazzale Menghini, 1, 06129, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Teresa Cosentino
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
- Hospital "Santa Maria della Misericordia", Piazzale Menghini, 1, 06129, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy.
- Hospital "Santa Maria della Misericordia", Piazzale Menghini, 1, 06129, Perugia, Italy.
| |
Collapse
|
17
|
Houston M. Dyslipidemia. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Bagherniya M, Nobili V, Blesso CN, Sahebkar A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review. Pharmacol Res 2017; 130:213-240. [PMID: 29287685 DOI: 10.1016/j.phrs.2017.12.020] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 01/14/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver diseases, and is closely related to metabolic syndrome and its related conditions, diabetes mellitus and dyslipidemia. On the other hand, NAFLD as a multisystem disease increases the risk of several chronic diseases include type 2 diabetes mellitus, cardiovascular disease (CVD), and chronic kidney disease. The main objective was to review the efficacy of bioactive natural compounds assessed by clinical trials. Search literature using four databases (PubMed, EBSCO, Web of Science, and Ovid Medline) to review publications that focused on the impact of bioactive natural compounds in NAFLD treatment. Due to the lack of effective pharmacological treatments available for NAFLD, lifestyle modifications such as following a healthy diet, vigorous physical activity, and weight reduction remain the first line of treatment for NAFLD. However, due to the poor adherence to this type of treatment, especially for long-term weight loss diets some of which may have harmful effects on the liver, finding novel therapeutic agents for NAFLD treatment and/or preventing NAFLD progression has garnered significant interest. Although the therapeutic agents of NAFLD treatment have been reviewed previously, to date, no summary has been conducted of clinical trials examining the effects of herbal compounds on NAFLD-related biomarkers. This review highlights the beneficial role of herbal bioactives and medicinal plants in NAFLD treatment, particularly as complementary to a healthy lifestyle. All natural products described in this review seem to have some benefits to improve oxidative stress, cellular inflammation and insulin-resistance, which always remain as the "primum movens" of NAFLD pathogenesis.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Valerio Nobili
- Hepato-Metabolic Disease Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Abstract
Metabolic Syndrome (MetS), affecting at least 30% of adults in the Western World, is characterized by three out of five variables, from high triglycerides, to elevated waist circumference and blood pressure. MetS is not characterized by elevated cholesterolemia, but is rather the consequence of a complex interaction of factors generally leading to increased insulin resistance. Drug treatments are of difficult handling, whereas well-characterized nutraceuticals may offer an effective alternative. Among these, functional foods, e.g. plant proteins, have been shown to improve insulin resistance and reduce triglyceride secretion. Pro- and pre-biotics, that are able to modify intestinal microbiome, reduce absorption of specific nutrients and improve the metabolic handling of energy-rich foods. Finally, specific nutraceuticals have proven to be of benefit, in particular, red-yeast rice, berberine, curcumin as well as vitamin D. All these can improve lipid handling by the liver as well as ameliorate insulin resistance. While lifestyle approaches, such as with the Mediterranean diet, may prove to be too complex for the single patient, better knowledge of selected nutraceuticals and more appropriate formulations leading to improved bioavailability will certainly widen the use of these agents, already in large use for the management of these very frequent patient groups. Key messages Functional foods, e.g. plant proteins, improve insulin resistance. Pro- and pre-biotics improve the metabolic handling of energy-rich foods. Nutraceutical can offer a significant help in handling MetS patients being part of lifestyle recommendations.
Collapse
Affiliation(s)
- Cesare R Sirtori
- a Centro Dislipidemie , A.S.S.T. Grande Ospedale Metropolitano Niguarda , Milan , Italy
| | - Chiara Pavanello
- b Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro E. Grossi Paoletti , Università degli Studi di Milano , Milan , Italy
| | - Laura Calabresi
- b Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro E. Grossi Paoletti , Università degli Studi di Milano , Milan , Italy
| | - Massimiliano Ruscica
- c Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
20
|
Xuezhikang, an extract from red yeast rice, attenuates vulnerable plaque progression by suppressing endoplasmic reticulum stress-mediated apoptosis and inflammation. PLoS One 2017; 12:e0188841. [PMID: 29190732 PMCID: PMC5708751 DOI: 10.1371/journal.pone.0188841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022] Open
Abstract
Xuezhikang (XZK), an extract of red yeast rice, is a traditional Chinese medicine widely used for the treatment of cardiovascular diseases in China and other countries. However, whether XZK treatment can improve atherosclerotic plaque stability is not fully understood. Based on our previously developed mouse model of spontaneous vulnerable plaque formation and rupture in carotid arteries in ApoE-/- mice. We showed that low-dose (600 mg/kg/d) XZK improved plaque stability without decreasing plaque area, whereas high-dose (1200 mg/kg/d) XZK dramatically inhibited vulnerable plaque progression accompanied by decreased plaque area. Mechanistically, XZK significantly suppressed lesional endoplasmic reticulum (ER) stress in mouse carotid arteries. In vitro, XZK inhibited 7-KC-induced activation of ER stress in RAW264.7 macrophages, as assessed by the reduced levels of p-PERK, p-IRE1α, p-eIF2α, c-ATF6, s-XBP1, and CHOP. Compared to controls, the XZK-treated group displayed dramatically decreased apoptotic cell numbers (shown by decreased TUNEL- and cleaved caspase3-positive cells), lower necrotic core area and ratio, and reduced expression of NF-κB target gene. In RAW264.7 cells, XZK inhibited 7-KC-induced upregulation of apoptosis, protein expression of apoptotic markers (cleaved caspase-3 and cleaved PARP), and NF-κB activation (shown by target gene transcription and IκBα reduction). Collectively, our results suggest that XZK effectively suppresses vulnerable plaque progression and rupture by mitigating macrophage ER stress and consequently inhibiting apoptosis and the NF-κB pro-inflammatory pathway, thereby providing an alternative therapeutic strategy for stabilizing atherosclerotic plaques.
Collapse
|
21
|
Chu S, Hu L, Wang X, Sun S, Zhang T, Sun Z, Shen L, Jin S, He B. Xuezhikang ameliorates contrast media-induced nephropathy in rats via suppression of oxidative stress, inflammatory responses and apoptosis. Ren Fail 2016; 38:1717-1725. [PMID: 27800691 DOI: 10.1080/0886022x.2016.1207052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The aim of this study was to assess the preventive effect of xuezhikang (XZK) to replace atorvastatin on the contrast media-induced acute kidney injury (CI-AKI). METHODS The male Sprague-Dawley rats were divided into five groups: group 1 (sham), injected with normal saline; group 2 (XZK), treated with XZK; group 3 contrast media (CM), injected with CM; group 4 (CM + ATO), injected with CM + pretreatment with atorvastatin; group 5 (CM + XZK), injected with CM + pretreatment with XZK. Twenty-four hours after injection with normal saline or CM, the blood sample and the kidneys were collected for the measurement of biochemical parameters, oxidative stress markers, nitric oxide production, inflammatory parameters, as well as renal histopathology and apoptosis detection. RESULTS Our results indicated that XZK restored the renal function by reducing serum blood urea nitrogen (BUN) and serum creatinine (Scr), depressing renal malondialdehyde (MDA), increasing renal NO production, decreasing TNF-ɑ and IL-6 expression, attenuating renal pathological changes and inhibiting the apoptosis of renal tubular cells. CONCLUSION XZK's therapeutic effect is similar, or even better than atorvastatin at the same effectual dose in some parts.
Collapse
Affiliation(s)
- Shichun Chu
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Liuhua Hu
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Xiaolei Wang
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Shiqun Sun
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Tuo Zhang
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Zhe Sun
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Linghong Shen
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Shuxuan Jin
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Ben He
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| |
Collapse
|
22
|
Neoatherosclerosis after Drug-Eluting Stent Implantation: Roles and Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5924234. [PMID: 27446509 PMCID: PMC4944075 DOI: 10.1155/2016/5924234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/17/2023]
Abstract
In-stent neoatherosclerosis (NA), characterized by a relatively thin fibrous cap and large volume of yellow-lipid accumulation after drug-eluting stents (DES) implantation, has attracted much attention owing to its close relationship with late complications, such as revascularization and late stent thrombosis (ST). Accumulating evidence has demonstrated that more than one-third of patients with first-generation DES present with NA. Even in the advent of second-generation DES, NA still occurs. It is indicated that endothelial dysfunction induced by DES plays a critical role in neoatherosclerotic development. Upregulation of reactive oxygen species (ROS) induced by DES implantation significantly affects endothelial cells healing and functioning, therefore rendering NA formation. In light of the role of ROS in suppression of endothelial healing, combining antioxidant therapies with stenting technology may facilitate reestablishing a functioning endothelium to improve clinical outcome for patients with stenting.
Collapse
|
23
|
Zhang XX, He FF, Yan GL, Li HN, Li D, Ma YL, Wang F, Xu N, Cao F. Neuroprotective effect of Cerebralcare Granule after cerebral ischemia/reperfusion injury. Neural Regen Res 2016; 11:623-9. [PMID: 27212924 PMCID: PMC4870920 DOI: 10.4103/1673-5374.180748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cerebralcare Granule (CG) improves cerebral microcirculation and relieves vasospasm, but studies investigating its therapeutic effect on cerebral ischemia/reperfusion injury are lacking. In the present study, we administered CG (0.3, 0.1 and 0.03 g/mL intragastrically) to rats for 7 consecutive days. We then performed transient occlusion of the middle cerebral artery, followed by reperfusion, and administered CG daily for a further 3 or 7 days. Compared with no treatment, high-dose CG markedly improved neurological function assessed using the Bederson and Garcia scales. At 3 days, animals in the high-dose CG group had smaller infarct volumes, greater interleukin-10 expression, and fewer interleukin-1β-immunoreactive cells than those in the untreated model group. Furthermore, at 7 days, high-dose CG-treated rats had more vascular endothelial growth factor-immunoreactive cells, elevated angiopoietin-1 and vascular endothelial growth factor expression, and improved blood coagulation and flow indices compared with untreated model animals. These results suggest that CG exerts specific neuroprotective effects against cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Xiao-Xiao Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Department of Neurology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fen-Fen He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Department of Neurology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gui-Lin Yan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ha-Ni Li
- Department of Neurology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan-Ling Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fang Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Nan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fei Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
24
|
Patel S. Functional food red yeast rice (RYR) for metabolic syndrome amelioration: a review on pros and cons. World J Microbiol Biotechnol 2016; 32:87. [PMID: 27038957 DOI: 10.1007/s11274-016-2035-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/19/2016] [Indexed: 12/14/2022]
Abstract
Red yeast rice (RYR), the fermentation product of mold Monascus purpureus has been an integral part of Oriental food and traditional Chinese medicine, long before the discovery of their medicinal roles. With the identification of bioactive components as polyketide pigments (statins), and unsaturated fatty acids, RYR has gained a nutraceutical status. Hypercholesterolemic effect of this fermented compound has been validated and monacolin K has been recognized as the pivotal component in cholesterol alleviation. Functional similarity with commercial drug lovastatin sans the side effects has catapulted its popularity in other parts of the world as well. Apart from the hypotensive role, ameliorative benefits of RYR as anti-inflammatory, antidiabetic, anticancer and osteogenic agent have emerged, fueling intense research on it. Mechanistic studies have revealed their interaction with functional agents like coenzyme Q10, astaxanthin, vitamin D, folic acid, policosanol, and berberine. On the other hand, concurrence of mycotoxin citrinin and variable content of statin has marred its integration in mainstream medication. In this disputable scenario, evaluation of the scopes and lacunae to overcome seems to contribute to an eminent area of healthcare. Red yeast rice (RYR), the rice-based fermentation product of mold Monascus purpureus is a functional food. Its bioactive component monacolin K acts like synthetic drug lovastatin, without the severe side effects of the latter. RYR has been validated to lower cholesterol, control high blood pressure; confer anti-flammation, hypoglycaemic, anticancer and osteogenic properties. However, dose inconsistency and co-occurrence of toxin citrinin hampers its dietary supplementation prospect. Further research might facilitate development of RYR as a nutraceutical.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.
| |
Collapse
|
25
|
Hussain A, Bose S, Wang JH, Yadav MK, Mahajan GB, Kim H. Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.12.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Lin ZW, Wang Z, Zhu GP, Li BW, Xie WL, Xiang DC. Hypertensive vascular remodeling was inhibited by Xuezhikang through the regulation of Fibulin-3 and MMPs in spontaneously hypertensive rats. Int J Clin Exp Med 2015; 8:2118-27. [PMID: 25932142 PMCID: PMC4402789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/25/2015] [Indexed: 12/08/2022]
Abstract
Fibulin-3, an extracellular glycoprotein, has been suggested as having functions in vessels. In hypertension, extracellular matrix, matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) play important roles in cardiovascular remodeling. However, the role of Fibulin-3 as an extracellular glycoprotein in hypertensive vascular remodeling remains unclear. Our study was to determine whether Fibulin-3 and TIMPs/MMPs would affect vascular structure during hypertension and the treatment of Xuezhikang. Thirty spontaneously hypertensive rats (SHRs) aged 8 weeks were randomized to three groups: SHRs control group (SHRs group, n=10), group treated with low dose Xuezhikang (XZK-L, 20 mg/kg/d, n=10) and group treated with high dose Xuezhikang (XZK-H, 200 mg/kg/d, n=10), the normal group was comprised of ten Wistar-Kyoto (WKY) rats of the same age. We showed that serum nitric oxide (NO) in control group was significantly lower than WKY group (P<0.05). Concomitantly, serum oxidized low-density lipoprotein (ox-LDL) was higher than WKY group (P<0.05). The treatment of high dose Xuezhikang significantly dicreased ox-LDL, left ventricular mass index (LVMI) and Wall-to-lumen area ratio (W/L) of thoracic aorta (P<0.05), while serum NO was significantly increasing (P<0.05). Moreover, the expressions of Fibulin-3 and MMP-2, 9 at both protein and mRNA levels were significantly higher in thoracic aorta of SHRs group compared to WKY group by immunohistochemistry and western blotting (P<0.05). However, the levels of Fibulin-3 and MMP-2, 9 were significantly decreased in XZK-H group compared to control group (P<0.05). The level of TIMP-3 had no significance difference between SHRs and WKY groups (P>0.05). So the levels of Fibulin-3 and MMP-2, 9 in SHRs could be inhibited by Xuezhikang. Furthermore, a strong correlation in transcript expression was established between Fibulin-3, and MMP-2 (r=0.81, P<0.05) and MMP-9 (r=0.92, P<0.05) through immunohistochemistry. In summary, the overexpression of Fibulin-3 and MMP-2, 9 levels were associated with hypertension and vascular remodeling and inhibited by Xuezhikang. Fibulin-3 is a candidate in the pathogenesis of cardiovascular remodeling in hypertension.
Collapse
Affiliation(s)
- Zhong-Wei Lin
- Graduate School of Southern Medical UniversityGuangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou, China
| | - Zhuo Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou, China
| | - Gui-Ping Zhu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou, China
| | - Bo-Wei Li
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou, China
| | - Wen-Lin Xie
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou, China
| | - Ding-Cheng Xiang
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou, China
| |
Collapse
|
27
|
Xuezhikang attenuated the functional and morphological impairment of pancreatic islets in diabetic mice via the inhibition of oxidative stress. J Cardiovasc Pharmacol 2014; 63:282-9. [PMID: 24609055 DOI: 10.1097/fjc.0000000000000047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Xuezhikang, purified from red yeast rice, is a traditional Chinese medicine with pleiotropic effects on the cardiovascular system. Oxidative stress plays a crucial role in the dysfunction of pancreas islet in diabetic condition and represents a promising therapeutical target for diabetes mellitus. Therefore, the purpose of this study was to explore the effects and possible mechanisms of xuezhikang on the microenvironment and insulin secretion by pancreatic islets in db/db diabetic mice. Our results showed that xuezhikang decreased the blood glucose level by improving glucose tolerance and insulin secretion in db/db mice. Xuezhikang protected islets from hyperglycemic injury as illustrated by the conserved β-cell content and microenvironment. Furthermore, xuezhikang potently inhibited the expression of key factors in oxidative stress. In addition, administration of xuezhikang caused an upregulated expression of glucose-sensing apparatus. These observations provide evidence that the influence of xuezhikang on oxidative stress may at least partly account for its protective effects on the microenvironment and insulin secretion function of pancreatic islets in diabetes.
Collapse
|
28
|
Burlando B, Cornara L. Therapeutic properties of rice constituents and derivatives (Oryza sativa L.): A review update. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.08.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Fu R, Zhang Y, Guo Y, Zhang Y, Xu Y, Chen F. Digital gene expression analysis of the pathogenesis and therapeutic mechanisms of ligustrazine and puerarin in rat atherosclerosis. Gene 2014; 552:75-80. [DOI: 10.1016/j.gene.2014.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/18/2014] [Accepted: 09/08/2014] [Indexed: 01/30/2023]
|
30
|
Ding M, Si D, Zhang W, Feng Z, He M, Yang P. Red yeast rice repairs kidney damage and reduces inflammatory transcription factors in rat models of hyperlipidemia. Exp Ther Med 2014; 8:1737-1744. [PMID: 25371725 PMCID: PMC4217782 DOI: 10.3892/etm.2014.2035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/02/2014] [Indexed: 12/22/2022] Open
Abstract
Xuezhikang (XZK), an extract of red yeast rice, has been widely used for the management of hyperlipidemia and coronary heart disease (CHD); however, the effects of XZK treatment on kidney injury have not yet been fully identified. The aim of the current study was to evaluate the effects of XZK on the kidneys and investigate the related mechanisms in a rat model of hyperlipidemia. Thus, the effect on inflammatory transcription factors and kidney damage was investigated with in vitro and in vivo experiments on hyperlipidemic rats following XZK treatment. The results revealed that the plasma levels of total cholesterol (TC), triglycerides (TG) and low-density lipoprotein-cholesterol (LDL-C) were significantly decreased, while the levels of high-density lipoprotein-cholesterol (HDL-C) were significantly upregulated in the XZK treatment group, as compared with those in the hyperlipidemia group (P<0.05). In addition, the results demonstrated that XZK was able to repair the kidney damage caused by hyperlipidemia. Furthermore, the expression levels of the inflammatory transcription factors, tumor necrosis factor-α and interleukin-6, were shown to be reduced in the XZK group when compared with the hyperlipidemia group. In summary, XZK reduces kidney injury, downregulates the levels of TG, TC and LDL-C, as well as the expression levels of inflammatory transcription factors, and upregulates HDL-C. These results further the understanding of the molecular pathogenic mechanisms underlying hyperlipidemia and aid the development of XZK as an effective therapeutic agent for hyperlipidemia.
Collapse
Affiliation(s)
- Mei Ding
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Daoyuan Si
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Wenqi Zhang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhaohui Feng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Min He
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|