1
|
Zhang M, Zhang W, Yao Y, Lin J, Mo L. Neural correlates of basketball proficiency: An MRI study across skill levels. J Exerc Sci Fit 2025; 23:14-20. [PMID: 39737438 PMCID: PMC11683229 DOI: 10.1016/j.jesf.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Background Basketball is an attractive sport required both cooperative and antagonistic motor skills. However, the neural mechanism of basketball proficiency remains unclear. This study aimed to examine the brain functional and structural substrates underlying varying levels of basketball capacity. Methods Twenty advanced basketball athletes (AB), 20 intermediate basketball athletes (IB) and 20 age-matched non-athlete individuals without basketball experience (NI) participated in this study and underwent T1-weighted MRI and resting-state fMRI scanning. Voxel-mirrored homotopic connectivity (VMHC), amplitude of low frequency fluctuations (ALFF), and gray matter (GM) density were calculated and compared among the three groups. Results The VMHC in the bilateral postcentral gyrus, middle temporal gyrus, and superior temporal gyrus, as well as the GM density in the right precentral gyrus, exhibited a hierarchical structure of AB > IB > NI. Compared with NI group, AB and IB groups showed strengthened VMHC in supplementary motor area, paracentral lobule and superior frontal gyrus. Additionally, the ALFF of left middle occipital gyrus and right hippocampal and the GM density of left medial superior frontal gyrus exhibited differences in AB-IB and AB-NI comparisons. Conclusions By conducting the cross-sectional comparison, this study firstly identifies the varying levels of basketball proficiency related brain resting-state functional and structural plasticity. Especially, the regions associated with motor perception and control, including bilateral postcentral gyrus, middle and superior temporal gyrus and right precentral gyrus, are involved in the key neural mechanisms of basketball proficiency. Future longitudinal studies are necessary to further validate these findings.
Collapse
Affiliation(s)
- Manqi Zhang
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Wenbiao Zhang
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yujie Yao
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jiabao Lin
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Lei Mo
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
| |
Collapse
|
2
|
Kupjetz M, Wences Chirino TY, Joisten N, Zimmer P. Kynurenine pathway dysregulation as a mechanistic link between cognitive impairment and brain damage: Implications for multiple sclerosis. Brain Res 2024; 1853:149415. [PMID: 39710050 DOI: 10.1016/j.brainres.2024.149415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Cognitive impairment is a core symptom of multiple sclerosis (MS), resulting from inflammation-related brain damage and brain network dysfunction. Inflammation also causes dysregulation of the kynurenine pathway, which is the primary route of tryptophan metabolism. Kynurenine pathway dysregulation is characterised by a shift in concentrations of tryptophan catabolites, also referred to as kynurenines. Some kynurenines have neurotoxic effects that partly resemble the molecular mechanisms of MS pathophysiology underpinning brain damage and brain network dysfunction. The kynurenine pathway may therefore qualify as a mechanistic link between systemic inflammation, brain damage, and cognitive impairment in MS. This perspective article (1) provides an overview of inflammation-related kynurenine pathway dysregulation and MS-relevant neuroimmune properties of kynurenines and (2) summarises the current evidence on associations between systemic kynurenines, imaging metrics of brain structure or related markers, and cognitive performance in populations that present with kynurenine pathway dysregulation and are prone to cognitive impairment. These findings are used to (3) set a research agenda for future studies aimed at clarifying the role of the kynurenine pathway in brain damage and cognitive impairment in MS.
Collapse
Affiliation(s)
- Marie Kupjetz
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany.
| | - Tiffany Y Wences Chirino
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany.
| | - Niklas Joisten
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany; Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, Sprangerweg 2, Göttingen, 37075, Germany.
| | - Philipp Zimmer
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany.
| |
Collapse
|
3
|
Albuz Ö, Acir I, Haşimoğlu O, Suskun M, Hocaoğlu E, Yayla V. Cranial volume measurement with artificial intelligence and cognitive scales in patients with clinically isolated syndrome. Front Neurol 2024; 15:1500140. [PMID: 39722699 PMCID: PMC11668644 DOI: 10.3389/fneur.2024.1500140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Objective We aimed to investigate the relationship between volumetric measurements of specific brain regions which were measured with artificial intelligence (AI) and various neuropsychological tests in patients with clinically isolated syndrome. Materials and methods A total of 28 patients diagnosed with CIS were included in the study. The patients were administered Öktem Verbal Memory Processes Test, Symbol Digit Modalities Test (SDMT), Backward-Forward Digit Span Test, Stroop Test, Trail Making Test, Controlled Oral Word Association Test (COWAT), Brief Visuospatial Memory Test, Judgement of Line Orientation Test, Beck Depression Scale, Beck Anxiety Scale and Fatigue Severity Scale. Artificial intelligence assisted BrainLab Elements™ Atlas-Based Automatic Segmentation program was used for calculating volumes. The measured volumes were compared with the reference database. In addition, neuropsychological test performances and volumetric measurements of the patients were compared. Results Of the patients included in the study, 78.6% were female and 21.4% were male, with an average age of 33 years. Verbal Memory Processes Test, SDMT, Backward-Forward Digit Span, JLOT, and Stroop Test showed significant correlations with multiple anatomical regions, particularly the anterior thalamic nucleus, which was associated with the highest number of cognitive tests. The JLOT exhibited the strongest correlation with six different brain regions (p < 0.001). Conclusion The Judgement of Line Orientation and Stroop Tests, correlated with multiple brain regions, especially the anterior thalamic nucleus, underscoring the importance of these tests in assessing cognitive function in CIS.
Collapse
Affiliation(s)
- Özlem Albuz
- Bakırköy Dr. Sadi Konuk Eğitim ve Araştırma Hastanesi, Istanbul, Türkiye
| | - Ibrahim Acir
- Bakırköy Dr. Sadi Konuk Eğitim ve Araştırma Hastanesi, Istanbul, Türkiye
| | - Ozan Haşimoğlu
- Basaksehir Cam and Sakura City Hospital, Istanbul, Türkiye
| | - Melis Suskun
- Bakırköy Dr. Sadi Konuk Eğitim ve Araştırma Hastanesi, Istanbul, Türkiye
| | - Elif Hocaoğlu
- Bakırköy Dr. Sadi Konuk Eğitim ve Araştırma Hastanesi, Istanbul, Türkiye
| | - Vildan Yayla
- Bakırköy Dr. Sadi Konuk Eğitim ve Araştırma Hastanesi, Istanbul, Türkiye
| |
Collapse
|
4
|
Yang J, Tang C. Causal relationship between imaging-derived phenotypes and neurodegenerative diseases: a Mendelian randomization study. Mamm Genome 2024; 35:711-723. [PMID: 39180568 DOI: 10.1007/s00335-024-10065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Neurodegenerative diseases are incurable conditions that lead to gradual and progressive deterioration of brain function in patients. With the aging population, the prevalence of these diseases is expected to increase, posing a significant economic burden on society. Imaging techniques play a crucial role in the diagnosis and monitoring of neurodegenerative diseases. This study utilized a two-sample Mendelian randomization (MR) analysis to assess the causal relationship between different imaging-derived phenotypes (IDP) in the brain and neurodegenerative diseases. Multiple MR methods were employed to minimize bias and obtain reliable estimates of the potential causal relationship between the variable exposures of interest and the outcomes. The study found potential causal relationships between different IDPs and Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and frontotemporal dementia (FTD). Specifically, the study identified potential causal relationships between 2 different types of IDPs and AD, 8 different types of IDPs and PD, 11 different types of imaging-derived phenotypes and ALS, 1 type of IDP and MS, and 1 type of IDP and FTD. This study provides new insights for the prevention, diagnosis, and treatment of neurodegenerative diseases, offering important clues for understanding the pathogenesis of these diseases and developing relevant intervention strategies.
Collapse
Affiliation(s)
- Jiaxin Yang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Chao Tang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China.
- School of Clinical Medicine, Guizhou Medical University, No.28, Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
5
|
Liang X, Yan Z, Li Y. Exploring subtypes of multiple sclerosis through unsupervised machine learning of automated fiber quantification. Jpn J Radiol 2024; 42:581-589. [PMID: 38409299 DOI: 10.1007/s11604-024-01535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/14/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE This study aimed to subtype multiple sclerosis (MS) patients using unsupervised machine learning on white matter (WM) fiber tracts and investigate the implications for cognitive function and disability outcomes. MATERIALS AND METHODS We utilized the automated fiber quantification (AFQ) method to extract 18 WM fiber tracts from the imaging data of 103 MS patients in total. Unsupervised machine learning techniques were applied to conduct cluster analysis and identify distinct subtypes. Clinical and diffusion tensor imaging (DTI) metrics were compared among the subtypes, and survival analysis was conducted to examine disability progression and cognitive impairment. RESULTS The clustering analysis revealed three distinct subtypes with variations in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Significant differences were observed in clinical and DTI metrics among the subtypes. Subtype 3 showed the fastest disability progression and cognitive decline, while Subtype 2 exhibited a slower rate, and Subtype 1 fell in between. CONCLUSIONS Subtyping MS based on WM fiber tracts using unsupervised machine learning identified distinct subtypes with significant cognitive and disability differences. WM abnormalities may serve as biomarkers for predicting disease outcomes, enabling personalized treatment strategies and prognostic predictions for MS patients.
Collapse
Affiliation(s)
- Xueheng Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No 1 Youyi Road, Yuzhong District, Chongqing, 40016, China
- Department of Radiology, Banan Hospital of Chongqing Medical University, Chongqing, China
| | - Zichun Yan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No 1 Youyi Road, Yuzhong District, Chongqing, 40016, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No 1 Youyi Road, Yuzhong District, Chongqing, 40016, China.
| |
Collapse
|
6
|
Correia R, Corrêa D, Doring T, Theodoro C, Correia A, Coelho V, Dib JG, Marchiori E, Alves Leon SV, Rueda Lopes FC. Severity of white matter microstructural damage in a Brazilian relapsing-remitting multiple sclerosis cohort: A possible window to optimize treatment. Neuroradiol J 2024; 37:60-67. [PMID: 37915211 PMCID: PMC10863572 DOI: 10.1177/19714009231212372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an important cause of acquired neurological disability in young adults, characterized by multicentric inflammation, demyelination, and axonal damage. OBJECTIVE The objective is to investigate white matter (WM) damage progression in a Brazilian MS patient cohort, using diffusion tensor imaging (DTI) post-processed by tract-based spatial statistics (TBSS). METHODS DTI scans were acquired from 76 MS patients and 37 sex-and-age matched controls. Patients were divided into three groups based on disease duration. DTI was performed along 30 non-collinear directions by using a 1.5T imager. For TBSS analysis, the WM skeleton was created, and a 5000 permutation-based inference with a threshold of p < .05 was used, to enable the identification of abnormalities in fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). RESULTS Decreased FA and increased RD, MD, and AD were seen in patients compared to controls and a decreased FA and increased MD and RD were seen, predominantly after the first 5 years of disease, when compared between groups. CONCLUSION Progressive WM deterioration is seen over time with a more prominent pattern after 5 years of disease onset, providing evidence that the early years might be a window to optimize treatment and prevent disability.
Collapse
Affiliation(s)
- Rafael Correia
- Department of Radiology, Federal Fluminense University (UFF), Niterói – RJ, Brazil
| | - Diogo Corrêa
- Department of Radiology, Federal Fluminense University (UFF), Niterói – RJ, Brazil
| | - Thomas Doring
- Department of Radiology, Clinicas de Diagnóstico por Imagem (CDPI), Rio de Janeiro – RJ, Brazil
| | - Carmem Theodoro
- Department of Gastroenterology, Federal Fluminense University, Niterói – RJ, Brazil
| | - Aline Correia
- Department of Internal Medicine, University of Fortaleza, Fortaleza – CE, Brazil
| | - Valeria Coelho
- Department of Neurology, Federal University of Rio de Janeiro(UFRJ), Rio de Janeiro – RJ, Brazil
| | - João Gabriel Dib
- Department of Neurology, Federal University of Rio de Janeiro(UFRJ), Rio de Janeiro – RJ, Brazil
| | - Edson Marchiori
- Department of Radiology, Federal University of Rio de Janeiro (UFRJ), Rio de janeiro – RJ, Brazil
| | - Soniza V Alves Leon
- Department of Neurology, Federal University of Rio de Janeiro(UFRJ), Rio de Janeiro – RJ, Brazil
| | - Fernanda C Rueda Lopes
- Department of Radiology, Federal Fluminense University (UFF), Niterói – RJ, Brazil
- Department of Radiology, Federal University of Rio de Janeiro (UFRJ), Rio de janeiro – RJ, Brazil
| |
Collapse
|
7
|
Jensen MA, Dafoe ML, Wilhelmy J, Cervantes L, Okumu AN, Kipp L, Nemat-Gorgani M, Davis RW. Catalytic Antibodies May Contribute to Demyelination in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Biochemistry 2024; 63:9-18. [PMID: 38011893 PMCID: PMC10765373 DOI: 10.1021/acs.biochem.3c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Here we report preliminary data demonstrating that some patients with myalgic encephalomyelitis/chronic fatiguesyndrome (ME/CFS) may have catalytic autoantibodies that cause the breakdown of myelin basic protein (MBP). We propose that these MBP-degradative antibodies are important to the pathophysiology of ME/CFS, particularly in the occurrence of white matter disease/demyelination. This is supported by magnetic resonance imagining studies that show these findings in patients with ME/CFS and could explain symptoms of nerve pain and muscle weakness. In this work, we performed a series of experiments on patient plasma samples where we isolated and characterized substrate-specific antibodies that digest MBP. We also tested glatiramer acetate (copaxone), an FDA approved immunomodulator to treat multiple sclerosis, and found that it inhibits ME/CFS antibody digestion of MBP. Furthermore, we found that aprotinin, which is a specific serine protease inhibitor, specifically prevents breakdown of MBP while the other classes of protease inhibitors had no effect. This coincides with the published literature describing catalytic antibodies as having serine protease-like activity. Postpandemic research has also provided several reports of demyelination in COVID-19. Because COVID-19 has been described as a trigger for ME/CFS, demyelination could play a bigger role in patient symptoms for those recently diagnosed with ME/CFS. Therefore, by studying proteolytic antibodies in ME/CFS, their target substrates, and inhibitors, a new mechanism of action could lead to better treatment and a possible cure for the disease.
Collapse
Affiliation(s)
- Michael Anthony Jensen
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Miranda Lee Dafoe
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Julie Wilhelmy
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Layla Cervantes
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Anna N Okumu
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Lucas Kipp
- Department
of Neurology and Neurological Sciences, Stanford University, Palo Alto, California 94304, United States
| | - Mohsen Nemat-Gorgani
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Ronald Wayne Davis
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
- Department
of Genetics, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|
8
|
Nabizadeh F, Pirahesh K, Azami M, Moradkhani A, Sardaripour A, Ramezannezhad E. T1 and T2 weighted lesions and cognition in multiple Sclerosis: A systematic review and meta-analysis. J Clin Neurosci 2024; 119:1-7. [PMID: 37952373 DOI: 10.1016/j.jocn.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Considering the different results regarding the correlation between Magnetic Resonance Imaging (MRI) structural measures and cognitive dysfunction in patients with MS, we aimed to perform a systematic review and meta-analysis study to investigate the correlation between T1 and T2 weighted lesions and cognitive scores to find the most robust MRI markers for cognitive function in MS population. METHODS The literature of this paper was identified through a comprehensive search of electronic datasets including PubMed, Scopus, Web of Science, and Embase in February 2022. Studies that reported the correlation between cognitive status and T1 and T2 weighted lesions in MS patients were selected. RESULTS 21 studies with a total of 3771 MS patients with mean ages ranging from 30 to 57 years were entered into our study. Our analysis revealed that the volume of T1 lesions was significantly correlated with Symbol Digit Modality test (SDMT) (r: -0.30, 95 %CI: -0.59, -0.01) and Paced Auditory Serial-Addition Task (PASAT) scores (r: -0.23, 95 %CI: -0.36, -0.10). We investigated the correlation between T2 lesions and cognitive scores. The pooled estimates of z scores were significant for SDMT (r: -0.27, 95 %CI: -0.51, -0.03) and PASAT (r: -0.27, 95 %CI: -0.41, -0.13). CONCLUSION In conclusion, our systematic review and meta-analysis study provides strong evidence of the correlation between T1 and T2 lesions and cognitive function in MS patients. Further research is needed to explore the potential mechanisms underlying this relationship and to develop targeted interventions to improve cognitive outcomes in MS patients.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Science, Tehran, Iran.
| | - Kasra Pirahesh
- Student Research Committee, School of Medicine, Kurdistan University of Medical Science, Sanandaj, Iran
| | - Mobin Azami
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Asra Moradkhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | | |
Collapse
|
9
|
Elkhooly M, Bao F, Raghib M, Millis S, Bernitsas E. Role of white matter in cognitive impairment among relapsing remitting multiple sclerosis patients. Mult Scler Relat Disord 2023; 79:105030. [PMID: 37837669 DOI: 10.1016/j.msard.2023.105030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/14/2023] [Accepted: 09/23/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Multiple Sclerosis (MS) associated cognitive impairment is believed to be mostly connected with damage to gray matter. The contribution of white matter is still poorly understood. We aim to examine the relationship between cognition and white matter tracts among relapsing remitting MS (RRMS) patients. METHODS Thirty RRMS patients were selected undergo the (3-seconds-interstimulus-interval paced auditory serial addition test) PASAT-3, the (symbol digit modalities test (SDMT) and full-brain MRI scans on a SIEMENS 3 Tesla Verio scanner. Diffusion Tensor Imaging (DTI) parameters, such as fractional anisotropy (FA) and mean diffusivity (MD) were examined in 37 white matter (WM) tracts. WM tracts were selected from the association pathways, projection pathways, commissural pathways by applying Human Connectome project (HCP)842 tractography atlas after DTI data reconstruction and registration to HCP1065 diffusion template in DSI Studio (version March 2021) In SPSS v26, Spearman's rank correlation analysis was used to examine the connection between DTI WM tracts and cognitive scores. The power of the study was increased by using false discovery rate (FDR) software. RESULTS The mean scores on the PASAT-3 and SDMT were 31.5 ± 12.8 and 46.9 ± 16.7 respectively. Better cognitive performance was correlated to higher FA values, while lower cognitive function was correlated to higher MD values. There was a positive correlation between FA values in the right medial lemniscus and superior cerebellar peduncle and SDMT scores (p 0.05). Additionally, there was a trend for significance between the FA values in the left corticothalamic tract and SDMT scores. MD values in the superior cerebellar peduncle, left arcuate Fasciculus and left extreme capsule were negatively correlated with SDMT scores (p<0.05). PASAT-3 scores were negatively correlated with MD values in the right cerebellum, however, there was no significant correlation between PASAT-3 and FA values. CONCLUSIONS White matter tracts, particularly the superior cerebellar peduncle, contribute to the cognitive impairment in RRMS. Larger sample sizes for longitudinal research are necessary.
Collapse
Affiliation(s)
- Mahmoud Elkhooly
- Neurology Department, Wayne State University, Detroit, MI 48201, USA; Department of Neurology and Psychiatry, Minia University, Minia, Egypt
| | - Fen Bao
- Neurology Department, Wayne State University, Detroit, MI 48201, USA
| | - Muhammad Raghib
- Neurology Department, Wayne State University, Detroit, MI 48201, USA
| | - Scott Millis
- Neurology Department, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
10
|
Lagatta DC, Fassini A, Terzian AL, Corrêa FMA, Resstel LBM. The medial prefrontal cortex and the cardiac baroreflex activity: physiological and pathological implications. Pflugers Arch 2023; 475:291-307. [PMID: 36695881 DOI: 10.1007/s00424-022-02786-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 01/26/2023]
Abstract
The cardiac baroreflex is an autonomic neural mechanism involved in the modulation of the cardiovascular system. It influences the heart rate and peripheral vascular resistance to preserve arterial blood pressure within a narrow variation range. This mechanism is mainly controlled by medullary nuclei located in the brain stem. However, supramedullary areas, such as the ventral portion of medial prefrontal cortex (vMPFC), are also involved. Particularly, the glutamatergic NMDA/NO pathway in the vMPFC can facilitate baroreflex bradycardic and tachycardic responses. In addition, cannabinoid receptors in this same area can reduce or increase those cardiac responses, possibly through alteration in glutamate release. This vMPFC network has been associated to cardiovascular responses during stressful situations. Recent results showed an involvement of glutamatergic, nitrergic, and endocannabinoid systems in the blood pressure and heart rate increases in animals after aversive conditioning. Consequently, baroreflex could be modified by the vMPFC neurotransmission during stressful situations, allowing necessary cardiovascular adjustments. Remarkably, some mental, neurological and neurodegenerative disorders can involve damage in the vMPFC, such as posttraumatic stress disorder, major depressive disorder, Alzheimer's disease, and neuropathic pain. These pathologies are also associated with alterations in glutamate/NO release and endocannabinoid functions along with baroreflex impairment. Thus, the vMPFC seems to play a crucial role on the baroreflex control, either during pathological or physiological stress-related responses. The study of baroreflex mechanism under such pathological view may be helpful to establish causality mechanisms for the autonomic and cardiovascular imbalance found in those conditions. It can explain in the future the reasons of the high cardiovascular risk some neurological and neurodegenerative disease patients undergo. Additionally, the present work offers insights on the possible contributions of vMPFC dysfunction on baroreflex alterations, which, in turn, may raise questions in what extent other brain areas may play a role in autonomic deregulation under such pathological situations.
Collapse
Affiliation(s)
- Davi C Lagatta
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, MS, 79070-900, Campo Grande, Brazil
| | - Aline Fassini
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14090-900, Brazil
| | - Ana L Terzian
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14090-900, Brazil
| | - Fernando M A Corrêa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14090-900, Brazil
| | - Leonardo B M Resstel
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14090-900, Brazil.
- Center for Interdisciplinary Research On Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
11
|
Graves JS, Ganzetti M, Dondelinger F, Lipsmeier F, Belachew S, Bernasconi C, Montalban X, van Beek J, Baker M, Gossens C, Lindemann M. Preliminary validity of the Draw a Shape Test for upper extremity assessment in multiple sclerosis. Ann Clin Transl Neurol 2022; 10:166-180. [PMID: 36563127 PMCID: PMC9930424 DOI: 10.1002/acn3.51705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/15/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To validate the smartphone sensor-based Draw a Shape Test - a part of the Floodlight Proof-of-Concept app for remotely assessing multiple sclerosis-related upper extremity impairment by tracing six different shapes. METHODS People with multiple sclerosis, classified functionally normal/abnormal via their Nine-Hole Peg Test time, and healthy controls participated in a 24-week, nonrandomized study. Spatial (trace accuracy), temporal (mean and variability in linear, angular, and radial drawing velocities, and dwell time ratio), and spatiotemporal features (trace celerity) were cross-sectionally analyzed for correlation with standard clinical and brain magnetic resonance imaging (normalized brain volume and total lesion volume) disease burden measures, and for capacity to differentiate people with multiple sclerosis from healthy controls. RESULTS Data from 69 people with multiple sclerosis and 18 healthy controls were analyzed. Trace accuracy (all shapes), linear velocity variability (circle, figure-of-8, spiral shapes), and radial velocity variability (spiral shape) had a mostly fair/moderate-to-good correlation (|r| = 0.14-0.66) with all disease burden measures. Trace celerity also had mostly fair/moderate-to-good correlation (|r| = 0.18-0.41) with Nine-Hole Peg Test performance, cerebellar functional system score, and brain magnetic resonance imaging. Furthermore, partial correlation analysis related these results to motor impairment. People with multiple sclerosis showed greater drawing velocity variability, though slower mean velocity, than healthy controls. Linear velocity (spiral shape) and angular velocity (circle shape) potentially differentiate functionally normal people with multiple sclerosis from healthy controls. INTERPRETATION The Draw a Shape Test objectively assesses upper extremity impairment and correlates with all disease burden measures, thus aiding multiple sclerosis-related upper extremity impairment characterization.
Collapse
Affiliation(s)
- Jennifer S. Graves
- Department of NeurosciencesUniversity of California San DiegoSan DiegoCaliforniaUSA
| | | | | | | | | | | | - Xavier Montalban
- Department of Neurology‐Neuroimmunology, Centre d'Esclerosi Múltiple de Catalunya (Cemcat)Hospital Universitari Vall d'HebronBarcelonaSpain
| | | | | | | | | |
Collapse
|
12
|
Grothe M, Jochem K, Strauss S, Langner S, Kirsch M, Hoffeld K, Penner IK, Nagels G, Klepzig K, Domin M, Lotze M. Performance in information processing speed is associated with parietal white matter tract integrity in multiple sclerosis. Front Neurol 2022; 13:982964. [DOI: 10.3389/fneur.2022.982964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
BackgroundThe Symbol Digit Modalities Test (SDMT) is most frequently used to test processing speed in patients with multiple sclerosis (MS). Functional imaging studies emphasize the importance of frontal and parietal areas for task performance, but the influence of frontoparietal tracts has not been thoroughly studied. We were interested in tract-specific characteristics and their association with processing speed in MS patients.MethodsDiffusion tensor imaging was obtained in 100 MS patients and 24 healthy matched controls to compare seed-based tract characteristics descending from the superior parietal lobule [Brodman area 7A (BA7A)], atlas-based tract characteristics from the superior longitudinal fasciculus (SLF), and control tract characteristics from the corticospinal tract (CST) and their respective association with ability on the SDMT.ResultsPatients had decreased performance on the SDMT and decreased white matter volume (each p < 0.05). The mean fractional anisotropy (FA) for the BA7A tract and CST (p < 0.05), but not the SLF, differed between MS patients and controls. Furthermore, only the FA of the SLF was positively associated with SDMT performance even after exclusion of the lesions within the tract (r = 0.25, p < 0.05). However, only disease disability and total white matter volume were associated with information processing speed in a linear regression model.ConclusionsProcessing speed in MS is associated with the structural integrity of frontoparietal white matter tracts.
Collapse
|
13
|
Stulík J, Keřkovský M, Kuhn M, Svobodová M, Benešová Y, Bednařík J, Šprláková-Puková A, Mechl M, Dostál M. Evaluating Magnetic Resonance Diffusion Properties Together with Brain Volumetry May Predict Progression to Multiple Sclerosis. Acad Radiol 2022; 29:1493-1501. [PMID: 35067451 DOI: 10.1016/j.acra.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022]
Abstract
RATIONALE AND OBJECTIVES Although the gold standard in predicting future progression from clinically isolated syndrome (CIS) to clinically definite multiple sclerosis (CDMS) consists in the McDonald criteria, efforts are being made to employ various advanced MRI techniques for predicting clinical progression. This study's main aim was to evaluate the predictive power of diffusion tensor imaging (DTI) of the brain and brain volumetry to distinguish between patients having CIS with future progression to CDMS from those without progression during the following 2 years and to compare those parameters with conventional MRI evaluation. MATERIALS AND METHODS All participants underwent an MRI scan of the brain. DTI and volumetric data were processed and various parameters were compared between the study groups. RESULTS We found significant differences between the subgroups of patients differing by future progression to CDMS in most of those DTI and volumetric parameters measured. Fractional anisotropy of water diffusion proved to be the strongest predictor of clinical conversion among all parameters evaluated, demonstrating also higher specificity compared to evaluation of conventional MRI images according to McDonald criteria. CONCLUSION Conclusion: Our results provide evidence that the evaluation of DTI parameters together with brain volumetry in patients with early-stage CIS may be useful in predicting conversion to CDMS within the following 2 years of the disease course.
Collapse
Affiliation(s)
- Jakub Stulík
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20 Brno, 62500, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Miloš Keřkovský
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20 Brno, 62500, Czech Republic; Institute of Biostatistics and Analyses, Masaryk University, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Matyáš Kuhn
- Department of Psychiatry, University Hospital Brno, Brno, Czech Republic; Behavioural and Social Neuroscience, CEITEC Masaryk University, Brno, Czech Republic
| | - Monika Svobodová
- Department of Neurology, University Hospital Brno, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yvonne Benešová
- Department of Neurology, University Hospital Brno, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Josef Bednařík
- Department of Neurology, University Hospital Brno, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Andrea Šprláková-Puková
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20 Brno, 62500, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mechl
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20 Brno, 62500, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Dostál
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20 Brno, 62500, Czech Republic; Department of Biophysics, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Hamann J, Ettrich B, Hoffman KT, Then Bergh F, Lobsien D. Somatosensory evoked potentials and their relation to microstructural damage in patients with multiple sclerosis—A whole brain DTI study. Front Neurol 2022; 13:890841. [PMID: 36105776 PMCID: PMC9465089 DOI: 10.3389/fneur.2022.890841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Somatosensory evoked potentials (SSEP) play a pivotal role in the diagnosis and disease monitoring of multiple sclerosis (MS). Delayed latencies are a surrogate for demyelination along the sensory afference. This study aimed to evaluate if SSEP latencies are representative of demyelination of the brain overall, by correlating with cerebral microstructural integrity as measured by Magnetic resonance (MR) diffusion tensor imaging (DTI). Analysis was performed in a hypothesis-free whole brain approach using tract-based spatial statistics (TBSS). Material and methods A total of 46 patients with MS or clinically isolated syndrome were included in the study. Bilateral SSEPs of the median nerve measuring mean N20 latencies (mN20) and Central Conduction Time (CCT), were acquired. MRI scans were performed at 3T. DTI acquisition was done with a single-shot echoplanar imaging technique with 80 diffusion directions. The FSL software package was used to process the DTI datasets and to calculate maps of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD). These maps were then further analyzed using the TBSS module. The mean N20 and CCT and the right- and left-sided N20 and CCT were separately correlated to FA, AD, and RD, controlled for age, gender, and EDSS as variables of non-interest. Results Widespread negative correlations of SSEP latencies with FA (p = 0.0005) and positive correlations with RD (p = 0.0003) were measured in distinct white matter tracts, especially the optic tracts, corpus callosum, and posterior corona radiata. No correlation with AD was found in any white matter tract. Conclusion Highly significant correlations of FA and RD to SSEPs suggest that their latency is representative of widespread microstructural change, and especially demyelination in patients suffering from MS, reaching beyond the classic somatosensory regions. This points to the usefulness of SSEPs as a non-invasive tool in the evaluation of microstructural damage to the brain.
Collapse
Affiliation(s)
- Jan Hamann
- Institute of Neuroradiology, University of Leipzig, Leipzig, Germany
- *Correspondence: Jan Hamann
| | - Barbara Ettrich
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | | | | | - Donald Lobsien
- Institute of Neuroradiology, University of Leipzig, Leipzig, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Helios Klinikum Erfurt, Erfurt, Germany
| |
Collapse
|
15
|
Jandric D, Parker GJM, Haroon H, Tomassini V, Muhlert N, Lipp I. A tractometry principal component analysis of white matter tract network structure and relationships with cognitive function in relapsing-remitting multiple sclerosis. Neuroimage Clin 2022; 34:102995. [PMID: 35349892 PMCID: PMC8958271 DOI: 10.1016/j.nicl.2022.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 10/25/2022]
Abstract
Understanding the brain changes underlying cognitive dysfunction is a key priority in multiple sclerosis (MS) to improve monitoring and treatment of this debilitating symptom. Functional connectivity network changes are associated with cognitive dysfunction, but it is less well understood how changes in normal appearing white matter relate to cognitive symptoms. If white matter tracts have network structure it would be expected that tracts within a network share susceptibility to MS pathology. In the present study, we used a tractometry approach to explore patterns of variance in white matter metrics across white matter (WM) tracts, and assessed how such patterns relate to neuropsychological test performance across cognitive domains. A sample of 102 relapsing-remitting MS patients and 27 healthy controls underwent MRI and neuropsychological testing. Tractography was performed on diffusion MRI data to extract 40 WM tracts and microstructural measures were extracted from each tract. Principal component analysis (PCA) was used to decompose metrics from all tracts to assess the presence of any co-variance structure among the tracts. Similarly, PCA was applied to cognitive test scores to identify the main cognitive domains. Finally, we assessed the ability of tract co-variance patterns to predict test performance across cognitive domains. We found that a single co-variance pattern which captured microstructure across all tracts explained the most variance (65% variance explained) and that there was little evidence for separate, smaller network patterns of pathology. Variance in this pattern was explained by effects related to lesions, but one main co-variance pattern persisted after this effect was regressed out. This main WM tract co-variance pattern contributed to explaining a modest degree of variance in one of our four cognitive domains in MS. These findings highlight the need to investigate the relationship between the normal appearing white matter and cognitive impairment further and on a more granular level, to improve the understanding of the network structure of the brain in MS.
Collapse
Affiliation(s)
- Danka Jandric
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Geoff J M Parker
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK; Bioxydyn Limited, Manchester, UK
| | - Hamied Haroon
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Valentina Tomassini
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK; Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; Multiple Sclerosis Centre, Department of Neurology, SS. Annunziata University Hospital, Chieti, Italy
| | - Nils Muhlert
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ilona Lipp
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK; Department of Neurophysics, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany.
| |
Collapse
|
16
|
Predictive MRI Biomarkers in MS—A Critical Review. Medicina (B Aires) 2022; 58:medicina58030377. [PMID: 35334554 PMCID: PMC8949449 DOI: 10.3390/medicina58030377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: In this critical review, we explore the potential use of MRI measurements as prognostic biomarkers in multiple sclerosis (MS) patients, for both conventional measurements and more novel techniques such as magnetization transfer, diffusion tensor, and proton spectroscopy MRI. Materials and Methods: All authors individually and comprehensively reviewed each of the aspects listed below in PubMed, Medline, and Google Scholar. Results: There are numerous MRI metrics that have been proven by clinical studies to hold important prognostic value for MS patients, most of which can be readily obtained from standard 1.5T MRI scans. Conclusions: While some of these parameters have passed the test of time and seem to be associated with a reliable predictive power, some are still better interpreted with caution. We hope this will serve as a reminder of how vast a resource we have on our hands in this versatile tool—it is up to us to make use of it.
Collapse
|
17
|
Kim H, Fraser S. Neural correlates of dual-task walking in people with central neurological disorders: a systematic review. J Neurol 2022; 269:2378-2402. [PMID: 34989867 DOI: 10.1007/s00415-021-10944-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND People with central neurological disorders experience difficulties with dual-task walking due to disease-related impairments. The objective of this review was to provide a comprehensive examination of the neural correlates (structural/functional brain changes) of dual-task walking in people with Parkinson's disease (PD), multiple sclerosis (MS), stroke, and Alzheimer's disease (AD). METHODS A systematic review of the literature was conducted, following PRISMA guidelines, on Medline, Embase, and Scopus. Included studies examined the relationship between structural and functional brain imaging and dual-task walking performance in people with PD, MS, stroke, and AD. Articles that met the inclusion criteria had baseline characteristics, study design, and behavioral and brain outcomes extracted. Twenty-three studies were included in this review. RESULTS Most structural imaging studies (75%) found an association between decreased brain integrity and poor dual-task performance. Specific brain regions that showed this association include the striatum regions and hippocampus in PD and supplementary motor area in MS. Functional imaging studies reported an association between increased prefrontal activity and maintained (compensatory recruitment) or decreased dual-task walking performance in PD and stroke. A subset (n = 2) of the stroke papers found no significant correlations. Increased supplementary motor area activity was associated with decreased performance in MS and stroke. No studies on AD were identified. CONCLUSION In people with PD, MS, and stroke, several neural correlates of dual-task walking have been identified, however, the direction of the association between neural and performance outcomes varied across the studies. The type of cognitive task used and presentation modality (e.g., visual) may have contributed to these mixed findings.
Collapse
Affiliation(s)
- Hyejun Kim
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, 125 University Private, Ottawa, ON, K1N 6N5, Canada
| | - Sarah Fraser
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private, Ottawa, ON, K1N 7K4, Canada.
| |
Collapse
|
18
|
Bateman GA, Lechner-Scott J, Carey MF, Bateman AR, Lea RA. Possible Markers of Venous Sinus Pressure Elevation in Multiple Sclerosis: Correlations with Gender and Disease Progression. Mult Scler Relat Disord 2021; 55:103207. [PMID: 34392058 DOI: 10.1016/j.msard.2021.103207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND In a previous study, multiple sclerosis (MS) was found to be associated with an increase in intracranial arterial pulsation volume and a reduction in venous sinus compliance, affecting pulsation dampening. There was a suggestion that the reduction in compliance of the sagittal sinus in MS was caused by an increase in venous pressure, secondary to transverse sinus stenosis. Some differences were noted depending on the gender of the patients, however, the original study was relatively underpowered for further sub-classification. The purpose of the current study is to enroll a larger number of patients to allow sub-classification on gender and disease type to further evaluate the markers of possible venous pressure alteration. METHODS 103 patients with MS were prospectively recruited from an MS clinic and compared to 50 matched non-MS patients. Using 3DT1 post contrast images, the sagittal sinus cross-sectional area was measured. The narrowest portion of the transverse sinuses was located and the cross sectional areas and wetted circumferences were measured to calculate the minimum hydraulic and effective diameters. The jugular bulb heights were measured. Voxel wise brain morphometry was performed to evaluate atrophy. Statistical analysis was performed using non-parametric methods and was assessed using α≤0.05. RESULTS Compared to controls, the MS patients' sagittal sinuses were 23% larger in cross-section (p<0.0001), the transverse sinuses had an average effective stenosis of 39% by area (p<0.0001) and there was a 62% increase in jugular bulb height (p=0.0001). The MS patients showed a reduction in normalized grey matter volume of 2.8% (p= 0.0001). Males with MS showed worse outcomes compared to females, with an increased EDSS and grey matter loss and had a 23% larger sagittal sinus area (p=0.02), 22% higher jugular bulb height (p=0.03) but a lower transverse sinus stenosis percentage (19% vs 48%, p<0.0001). Progressive forms of MS also had worse outcomes and had a 19% larger sagittal sinus area (p=0.04) compared to relapsing remitting MS. CONCLUSION In this larger cohort, worse outcomes in both males and progressive forms of MS were associated with larger sagittal sinuses. The possible cause of the altered sinus pressure in females was narrower transverse sinuses. In males, higher jugular bulbs may be associated with increased venous sinus pressure.
Collapse
Affiliation(s)
- Grant Alexander Bateman
- Department of Medical Imaging, John Hunter Hospital, Newcastle, NSW, Australia; Newcastle University Faculty of Health, Callaghan Campus, Newcastle, NSW, Australia.
| | - Jeannette Lechner-Scott
- Newcastle University Faculty of Health, Callaghan Campus, Newcastle, NSW, Australia; Department of Neurology, John Hunter Hospital, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Michael Fionn Carey
- Department of Medical Imaging, John Hunter Hospital, Newcastle, NSW, Australia
| | | | - Rodney Arthur Lea
- Newcastle University Faculty of Health, Callaghan Campus, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
19
|
Pardo G, Coates S, Okuda DT. Outcome measures assisting treatment optimization in multiple sclerosis. J Neurol 2021; 269:1282-1297. [PMID: 34338857 PMCID: PMC8857110 DOI: 10.1007/s00415-021-10674-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
Objective To review instruments used to assess disease stability or progression in persons with multiple sclerosis (pwMS) that can guide clinicians in optimizing therapy. Methods A non-systematic review of scientific literature was undertaken to explore modalities of monitoring symptoms and the disease evolution of MS. Results Multiple outcome measures, or tools, have been developed for use in MS research as well as for the clinical management of pwMS. Beginning with the Expanded Disability Status Scale, introduced in 1983, clinicians and researchers have developed monitoring modalities to assess all aspects of MS and the neurological impairment it causes. Conclusions Much progress has been made in recent decades for the management of MS and for the evaluation of disease progression. New technology, such as wearable sensors, will provide new opportunities to better understand changes in function, dexterity, and cognition. Essential work over the decades since EDSS was introduced continues to improve our ability to treat this debilitating disease.
Collapse
Affiliation(s)
- Gabriel Pardo
- OMRF Multiple Sclerosis Center of Excellence, Oklahoma Medical Research Foundation, 820 NE 15th Street, Oklahoma City, OK, 73104, USA.
| | | | - Darin T Okuda
- Department of Neurology, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
20
|
Panou Τ, Kavroulakis E, Mastorodemos V, Pouli S, Kalaitzakis G, Spyridaki E, Maris TG, Simos P, Papadaki E. Myelin content changes in Clinically Isolated Syndrome and Relapsing- Remitting Multiple Sclerosis: Associations with lesion type and severity of visuomotor impairment. Mult Scler Relat Disord 2021; 54:103108. [PMID: 34198031 DOI: 10.1016/j.msard.2021.103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/26/2021] [Accepted: 06/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cognitive disturbances occur in patients with Relapsing Remitting Multiple Sclerosis (RR-MS) and Clinically Isolated Syndrome (CIS). The Multi-Echo-Spin-Echo (MESE) T2-weighted sequence quantifies demyelination, the pathological hallmark of MS, but has not been used for the documentation of the potential relationship between anatomically specific demyelinating changes and cognitive impairment in MS. PURPOSE To identify markers of regional demyelination in patients with RR-MS and CIS in relation to clinical variables and severity of cognitive impairment. METHODS AND MATERIALS 37 RR-MS patients, 39 CIS patients and 52 healthy controls (HC) were examined using the MESE sequence. Long T2 and myelin water fraction (MWF) values were measured, serving as indices of intra/extracellular water content and myelin content, respectively, in focal white matter lesions and 12 normal appearing white matter (NAWM) areas of the patients and HC. A comprehensive neuropsychological assessment was administered to all patients. RESULTS RR-MS patients showed widespread long T2 increases and MWF reductions in NAWM, compared to the respective values of HC (p < 0.001), which correlated with total lesion volume. Among RR-MS patients illness duration correlated negatively with MWF in right hemisphere frontal and periventricular NAWM areas (and positively with corresponding long T2 values). MWF values were lower in the CIS, as compared to the HC group, in the temporal, frontal and periventricular NAWM areas. Focal demyelinating lesions displayed variable higher T2 and lower MWF values, compared to NAWM, closely corresponding to their intensity on T1 sequences. Reduced MWF values and increased long T2 values in right periventricular NAWM were significantly associated with poor visuomotor performance. CONCLUSION The MESE sequence affords accurate estimation of myelin and water content in NAWM and focal lesions in RR-MS and CIS patients, by means of the MWF and long T2 values, respectively, providing a sensitive index of demyelination associated with visuomotor deficits.
Collapse
Affiliation(s)
- Τheodora Panou
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Eleftherios Kavroulakis
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Vasileios Mastorodemos
- Department of Neurology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Styliani Pouli
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Georgios Kalaitzakis
- Department of Medical Physics, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Eirini Spyridaki
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Thomas G Maris
- Department of Medical Physics, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece; Institute of Computer Science, Foundation of Research and Technology-Hellas, Voutes, Heraklion, Greece
| | - Panagiotis Simos
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece; Institute of Computer Science, Foundation of Research and Technology-Hellas, Voutes, Heraklion, Greece
| | - Efrosini Papadaki
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece; Institute of Computer Science, Foundation of Research and Technology-Hellas, Voutes, Heraklion, Greece.
| |
Collapse
|
21
|
Zawadka-Kunikowska M, Rzepiński Ł, Newton JL, Zalewski P, Słomko J. Cardiac Autonomic Modulation Is Different in Terms of Clinical Variant of Multiple Sclerosis. J Clin Med 2020; 9:E3176. [PMID: 33008032 PMCID: PMC7601922 DOI: 10.3390/jcm9103176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023] Open
Abstract
This study evaluates whether the cardiac autonomic response to head-up tilt test (HUTT) differs between patients with relapsing-remitting multiple sclerosis (RRMS) and those with progressive MS (PMS) as compared to healthy controls (HC). Baroreflex sensitivity, cardiac parameters, heart rate (HRV) and blood pressure variability (BPV) were compared between 28 RRMS, 21PMS and 25 HC during HUTT. At rest, PMS patients had higher values of the sympathovagal ratio, a low-frequency band HRV (LFnu-RRI) and lower values of parasympathetic parameters (HFnu-RRI, HF-RRI) compared to RRMS and HC. Resting values of cardiac parameters were significantly lower in RRMS compared to PMS patients. No intergroup differences were observed for post-tilt cardiac and autonomic parameters, except for delta HF-RRI with lower values in the PMS group. The MS variant corrected for age, sex and Expanded Disability Status Scale (EDSS) score was an independent predictor of changes in the sympathovagal ratio as measured by HRV. Furthermore, a higher overall EDDS score was related to a higher sympathovagal ratio, lower parasympathetic parameters at rest, and decrease post-tilt changes of the sympathovagal ratio of sBP BPV. Autonomic imbalance is markedly altered in the MS patient group compared to control changes were most pronounced in the progressive variant of MS disease. The MS variant appeared to have a potential influence on cardiac autonomic imbalance at rest.
Collapse
Affiliation(s)
- Monika Zawadka-Kunikowska
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland; (P.Z.); (J.S.)
| | - Łukasz Rzepiński
- Department of Neurology, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland;
| | - Julia L. Newton
- Population Health Science Institute, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK;
| | - Paweł Zalewski
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland; (P.Z.); (J.S.)
| | - Joanna Słomko
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland; (P.Z.); (J.S.)
| |
Collapse
|
22
|
Tai Chi Training Evokes Significant Changes in Brain White Matter Network in Older Women. Healthcare (Basel) 2020; 8:healthcare8010057. [PMID: 32182844 PMCID: PMC7151065 DOI: 10.3390/healthcare8010057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Cognitive decline is age relevant and it can start as early as middle age. The decline becomes more obvious among older adults, which is highly associated with increased risk of developing dementia (e.g., Alzheimer’s disease). White matter damage was found to be related to cognitive decline through aging. The purpose of the current study was to compare the effects of Tai Chi (TC) versus walking on the brain white matter network among Chinese elderly women. Methods: A cross-sectional study was conducted where 42 healthy elderly women were included. Tai Chi practitioners (20 females, average age: 62.9 ± 2.38 years, education level 9.05 ± 1.8 years) and the matched walking participants (22 females, average age: 63.27 ± 3.58 years, educational level: 8.86 ± 2.74 years) underwent resting-state functional magnetic resonance imaging (rsfMRI) scans. Diffusion tensor imaging (DTI) and graph theory were employed to study the data, construct the white matter matrix, and compare the brain network attributes between the two groups. Results: Results from graph-based analyses showed that the small-world attributes were higher for the TC group than for the walking group (p < 0.05, Cohen’s d = 1.534). Some effects were significant (p < 0.001) with very large effect sizes. Meanwhile, the aggregation coefficient and local efficiency attributes were also higher for the TC group than for the walking group (p > 0.05). However, no significant difference was found between the two groups in node attributes and edge analysis. Conclusion: Regular TC training is more conducive to optimize the brain functioning and networking of the elderly. The results of the current study help to identify the mechanisms underlying the cognitive protective effects of TC.
Collapse
|
23
|
Hawkins R, Shatil AS, Lee L, Sengupta A, Zhang L, Morrow S, Aviv RI. Reduced Global Efficiency and Random Network Features in Patients with Relapsing-Remitting Multiple Sclerosis with Cognitive Impairment. AJNR Am J Neuroradiol 2020; 41:449-455. [PMID: 32079601 DOI: 10.3174/ajnr.a6435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 01/11/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Graph theory uses structural similarity to analyze cortical structural connectivity. We used a voxel-based definition of cortical covariance networks to quantify and assess the relationship of network characteristics to cognition in a cohort of patients with relapsing-remitting MS with and without cognitive impairment. MATERIALS AND METHODS We compared subject-specific structural gray matter network properties of 18 healthy controls, 25 patients with MS with cognitive impairment, and 55 patients with MS without cognitive impairment. Network parameters were compared, and predictive value for cognition was assessed, adjusting for confounders (sex, education, gray matter volume, network size and degree, and T1 and T2 lesion load). Backward stepwise multivariable regression quantified predictive factors for 5 neurocognitive domain test scores. RESULTS Greater path length (r = -0.28, P < .0057) and lower normalized path length (r = 0.36, P < .0004) demonstrated a correlation with average cognition when comparing healthy controls with patients with MS. Similarly, MS with cognitive impairment demonstrated a correlation between lower normalized path length (r = 0.40, P < .001) and reduced average cognition. Increased normalized path length was associated with better performance for processing (P < .001), learning (P < .001), and executive domain function (P = .0235), while reduced path length was associated with better executive (P = .0031) and visual domains. Normalized path length improved prediction for processing (R 2 = 43.6%, G2 = 20.9; P < .0001) and learning (R 2 = 40.4%, G2 = 26.1; P < .0001) over a null model comprising confounders. Similarly, higher normalized path length improved prediction of average z scores (G2 = 21.3; P < .0001) and, combined with WM volume, explained 52% of average cognition variance. CONCLUSIONS Patients with MS and cognitive impairment demonstrate more random network features and reduced global efficiency, impacting multiple cognitive domains. A model of normalized path length with normal-appearing white matter volume improved average cognitive z score prediction, explaining 52% of variance.
Collapse
Affiliation(s)
- R Hawkins
- From the Department of Medical Imaging (R.H., A.S.S., A.S., L.Z.)
| | - A S Shatil
- From the Department of Medical Imaging (R.H., A.S.S., A.S., L.Z.)
| | - L Lee
- Division of Neurology (L.L.), Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - A Sengupta
- From the Department of Medical Imaging (R.H., A.S.S., A.S., L.Z.)
| | - L Zhang
- From the Department of Medical Imaging (R.H., A.S.S., A.S., L.Z.)
| | - S Morrow
- Division of Neurology (S.M.), Lawson Health Research Institute, London Health Sciences Centre, University Hospital, London, Ontario, Canada
| | - R I Aviv
- Institute of Biomaterials and Biomedical Engineering (R.I.A.), University of Toronto, Toronto, Ontario, Canada .,Department of Radiology (R.I.A.), University of Ottawa, and Division of Neuroradiology, The Ottawa Hospital, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Cassiano MT, Lanzillo R, Alfano B, Costabile T, Comerci M, Prinster A, Moccia M, Megna R, Morra VB, Quarantelli M, Brunetti A. Voxel-based analysis of gray matter relaxation rates shows different correlation patterns for cognitive impairment and physical disability in relapsing-remitting multiple sclerosis. NEUROIMAGE-CLINICAL 2020; 26:102201. [PMID: 32062567 PMCID: PMC7025083 DOI: 10.1016/j.nicl.2020.102201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Regional analyses of markers of microstructural gray matter (GM) changes, including relaxation rates, have shown inconsistent correlations with physical and cognitive impairment in MS. OBJECTIVE To assess voxelwise the correlation of the R1 and R2 relaxation rates with the physical and cognitive impairment in MS. METHODS GM R1 and R2 relaxation rate maps were obtained in 241 relapsing-remitting MS patients by relaxometric segmentation of MRI studies. Correlations with the Expanded Disability Status Scale (EDSS) and the percentage of impaired cognitive test (Brief Repeatable Battery and Stroop Test, available in 186 patients) were assessed voxelwise, including voxel GM content as nuisance covariate to remove the effect of atrophy on the correlations. RESULTS Extensive clusters of inverse correlation between EDSS and R2 were detected throughout the brain, while inverse correlations with R1 were mostly limited to perirolandic and supramarginal cortices. Cognitive impairment correlated negatively with R1, and to a lesser extent with R2, in the middle frontal, mesial temporal, midcingulate and medial parieto-occipital cortices. CONCLUSION In relapsing-remitting MS patients, GM microstructural changes correlate diffusely with physical disability, independent of atrophy, with a preferential role of the sensorimotor cortices. Neuronal damage in the limbic system and dorsolateral prefrontal cortices correlates with cognitive dysfunction.
Collapse
Affiliation(s)
- Maria Teresa Cassiano
- Department of Advanced Biomedical Sciences, University "Federico II", Via Pansini, 5, 80131 Naples, Italy
| | - Roberta Lanzillo
- Department of Neurosciences, Reproductive Science and Odontostomatology, University "Federico II", Naples, Italy
| | - Bruno Alfano
- Biostructure and Bioimaging Institute, National Research Council, Via De Amicis, 95, 80145 Naples, Italy
| | - Teresa Costabile
- Department of Neurosciences, Reproductive Science and Odontostomatology, University "Federico II", Naples, Italy
| | - Marco Comerci
- Biostructure and Bioimaging Institute, National Research Council, Via De Amicis, 95, 80145 Naples, Italy
| | - Anna Prinster
- Biostructure and Bioimaging Institute, National Research Council, Via De Amicis, 95, 80145 Naples, Italy
| | - Marcello Moccia
- Department of Neurosciences, Reproductive Science and Odontostomatology, University "Federico II", Naples, Italy
| | - Rosario Megna
- Biostructure and Bioimaging Institute, National Research Council, Via De Amicis, 95, 80145 Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Reproductive Science and Odontostomatology, University "Federico II", Naples, Italy
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Via De Amicis, 95, 80145 Naples, Italy.
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University "Federico II", Via Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
25
|
Hernandez ME, O'Donnell E, Chaparro G, Holtzer R, Izzetoglu M, Sandroff BM, Motl RW. Brain Activation Changes During Balance- and Attention-Demanding Tasks in Middle- and Older-Aged Adults With Multiple Sclerosis. Motor Control 2019; 23:498-517. [PMID: 30987505 DOI: 10.1123/mc.2018-0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2023]
Abstract
Functional near-infrared spectroscopy was used to evaluate prefrontal cortex activation differences between older adults with multiple sclerosis (MS) and healthy older adults (HOA) during the performance of a balance- and attention-demanding motor task. Ten older adults with MS and 12 HOA underwent functional near-infrared spectroscopy recording while talking, virtual beam walking, or virtual beam walking while talking on a self-paced treadmill. The MS group demonstrated smaller increases in prefrontal cortex oxygenation levels than HOA during virtual beam walking while talking than talking tasks. These findings indicate a decreased ability to allocate additional attentional resources in challenging walking conditions among MS compared with HOA. This study is the first to investigate brain activation dynamics during the performance of balance- and attention-demanding motor tasks in persons with MS.
Collapse
|
26
|
Beard CL, Schmitz JM, Soder HE, Suchting R, Yoon JH, Hasan KM, Narayana PA, Moeller FG, Lane SD. Regional differences in white matter integrity in stimulant use disorders: A meta-analysis of diffusion tensor imaging studies. Drug Alcohol Depend 2019; 201:29-37. [PMID: 31176066 PMCID: PMC6660908 DOI: 10.1016/j.drugalcdep.2019.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Converging lines of evidence from diffusion tensor imaging (DTI) studies reveal significant alterations in white matter (WM) microstructure in the prefrontal cortex of chronic stimulant users compared to controls, suggesting compromised axonal microstructure and/or myelin. METHODS A meta-analysis of DTI-based WM integrity was conducted for white matter regions across the corpus callosum and association fibers. Articles were sourced and selected using PRISMA guidelines for systematic review and meta-analysis. Inclusion and exclusion criteria were determined by the authors in order to best capture WM integrity among individuals with primary stimulant use in comparison to healthy control subjects. RESULTS Eleven studies that focused on region-of-interest (ROI)-based analysis of WM integrity were extracted from an initial pool of 113 independent studies. Analysis across ROIs indicated significantly lower fractional anisotropy (FA) values in stimulant use groups compared to controls with a small to moderate overall effect (Hedges' g = -0.37, 95% CI [-0.54, -0.20]). Eigenvalues were also analyzed, revealing a significant effect for radial diffusivity (RD; Hedges' g = 0.24, 95% CI [0.01, 0.47]) but not axial diffusivity (AD; Hedges' g = 0.05, 95% CI [-0.20, 0.29]) or mean diffusivity (MD; Hedges' g = 0.20, 95% CI [-0.01, 0.41]). Subgroup analyses based on specific ROIs, primary substance use, poly-substance use, and imaging technology were also explored. CONCLUSION Results of the present study suggest a consistent effect of compromised WM integrity for individuals with stimulant use disorders. Furthermore, no significant differences were found between cocaine and methamphetamine-based groups.
Collapse
Affiliation(s)
- Charlotte L Beard
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA; Department of Psychology, Palo Alto University, Palo Alto, CA, 94304, USA
| | - Joy M Schmitz
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA.
| | - Heather E Soder
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| | - Robert Suchting
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| | - Jin H Yoon
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| | - Khader M Hasan
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Ponnada A Narayana
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | | | - Scott D Lane
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| |
Collapse
|
27
|
Motor, Cognitive, and Behavioral Performance in Middle-Aged and Older Adults With Multiple Sclerosis. TOPICS IN GERIATRIC REHABILITATION 2019. [DOI: 10.1097/tgr.0000000000000235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Racial differences in retinal neurodegeneration as a surrogate marker for cortical atrophy in multiple sclerosis. Mult Scler Relat Disord 2019; 31:141-147. [DOI: 10.1016/j.msard.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/25/2022]
|
29
|
Tóth E, Faragó P, Király A, Szabó N, Veréb D, Kocsis K, Kincses B, Sandi D, Bencsik K, Vécsei L, Kincses ZT. The Contribution of Various MRI Parameters to Clinical and Cognitive Disability in Multiple Sclerosis. Front Neurol 2019; 9:1172. [PMID: 30728801 PMCID: PMC6351478 DOI: 10.3389/fneur.2018.01172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
Next to the disseminated clinical symptoms, cognitive dysfunctions are common features of multiple sclerosis (MS). Over the recent years several different MRI measures became available representing the various features of the pathology, but the contribution to various clinical and cognitive functions is not yet fully understood. In this multiparametric MRI study we set out to identify the set of parameters that best predict the clinical and cognitive disability in MS. High resolution T1 weighted structural and high angular resolution diffusion MRI images were measured in 53 patients with relapsing remitting MS and 53 healthy controls. Clinical disability was inflicted by EDSS and cognitive functions were evaluated with the BICAMS tests. The contribution of lesion load, partial brain, white matter, gray matter and subcortical volumes as well as the diffusion parameters in the area of the lesions and the normal appearing white matter were examined by model free, partial least square (PLS) approach. Significance of the predictors was tested with Variable Importance in the Projection (VIP) score and 1 was used for threshold of significance. The PLS analysis indicated that the axial diffusivity of the NAWM contributed the most to the clinical disability (VIP score: 1.979). For the visuo-spatial working memory the most critical contributor was the size of the bilateral hippocampi (VIP scores: 1.183 and 1.2 left and right respectively). For the verbal memory the best predictors were the size of the right hippocampus (VIP score: 1.972), lesion load (VIP score: 1.274) and the partial brain volume (VIP score: 1.119). In case of the information processing speed the most significant contribution was from the diffusion parameters (fractional anisotropy, mean and radial diffusivity, VIP scores: 1.615, 1.321 respectively) of the normal appearing white matter. Our results indicate that various MRI measurable factors of MS pathology contribute differently to clinical and cognitive disability. These results point out the importance of the volumetry of the subcortical structures and the diffusion measures of the white matter in understanding the disability progression.
Collapse
Affiliation(s)
- Eszter Tóth
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Péter Faragó
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - András Király
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Nikoletta Szabó
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Dániel Veréb
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Krisztián Kocsis
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Bálint Kincses
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Dániel Sandi
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Krisztina Bencsik
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
| | - Zsigmond Tamás Kincses
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary.,Department of Radiology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
30
|
Cordani C, Meani A, Esposito F, Valsasina P, Colombo B, Pagani E, Preziosa P, Comi G, Filippi M, Rocca MA. Imaging correlates of hand motor performance in multiple sclerosis: A multiparametric structural and functional MRI study. Mult Scler 2019; 26:233-244. [PMID: 30657011 DOI: 10.1177/1352458518822145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Hand motor impairment has considerable effects on daily-life activities of patients with multiple sclerosis (pwMS). Understanding its anatomo-functional substrates is relevant to provide more specific therapeutic interventions. OBJECTIVES To investigate the association between hand motor performance and anatomo-functional magnetic resonance imaging (MRI) abnormalities in pwMS. METHODS A total of 134 healthy controls (HC) and 366 pwMS underwent the Nine-Hole-Peg-Test (9HPT), structural and resting state (RS) functional MRI. Multivariate analyses identified the independent predictors of hand motor performance. RESULTS PwMS versus HC showed widespread gray matter atrophy, microstructural white matter abnormalities, and decreased RS functional connectivity in motor and cognitive networks. Predictors of worse right-9HPT (R2 = 0.52) were decreased right superior cerebellar peduncle and right lemniscus fractional anisotropy (FA) (p ⩽ 0.02), left angular gyrus atrophy (p < 0.003), decreased RS connectivity in left superior frontal gyrus, and left posterior cerebellum (p < 0.001). Worse left 9HPT (R2 = 0.56) was predicted by decreased right corticospinal FA (p = 0.003), atrophy of left anterior cingulum and left cerebellum (p ⩽ 0.02), decreased RS connectivity of left lingual gyrus and right posterior cerebellum in cerebellar and executive networks (p ⩽ 0.02). CONCLUSION Structural and functional abnormalities of regions involved in motor functions contribute to explain motor disability in pwMS. The integration of clinical and advanced MRI measures contributes to improve our understanding of multiple sclerosis clinical manifestations.
Collapse
Affiliation(s)
- Claudio Cordani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Esposito
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Bruno Colombo
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/ Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/ Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
31
|
Kotov SV, Kudlay DA, Lizhdvoy VY, Stashuk GA, Magomedova SB. A study of the efficacy of infibeta in patients with multiple sclerosis based on NEDA-3. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:107-115. [DOI: 10.17116/jnevro201911922107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Matias-Guiu JA, Cortés-Martínez A, Montero P, Pytel V, Moreno-Ramos T, Jorquera M, Yus M, Arrazola J, Matías-Guiu J. Structural MRI correlates of PASAT performance in multiple sclerosis. BMC Neurol 2018; 18:214. [PMID: 30572821 PMCID: PMC6300910 DOI: 10.1186/s12883-018-1223-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/10/2018] [Indexed: 12/05/2022] Open
Abstract
Background The Paced Auditory Serial Addition Test (PASAT) is a useful cognitive test in patients with multiple sclerosis (MS), assessing sustained attention and information processing speed. However, the neural underpinnings of performance in the test are controversial. We aimed to study the neural basis of PASAT performance by using structural magnetic resonance imaging (MRI) in a series of 242 patients with MS. Methods PASAT (3-s) was administered together with a comprehensive neuropsychological battery. Global brain volumes and total T2-weighted lesion volumes were estimated. Voxel-based morphometry and lesion symptom mapping analyses were performed. Results Mean PASAT score was 42.98 ± 10.44; results indicated impairment in 75 cases (31.0%). PASAT score was correlated with several clusters involving the following regions: bilateral precuneus and posterior cingulate, bilateral caudate and putamen, and bilateral cerebellum. Voxel-based lesion symptom mapping showed no significant clusters. Region of interest–based analysis restricted to white matter regions revealed a correlation with the left cingulum, corpus callosum, bilateral corticospinal tracts, and right arcuate fasciculus. Correlations between PASAT scores and global volumes were weak. Conclusion PASAT score was associated with regional volumes of the posterior cingulate/precuneus and several subcortical structures, specifically the caudate, putamen, and cerebellum. This emphasises the role of both cortical and subcortical structures in cognitive functioning and information processing speed in patients with MS. Electronic supplementary material The online version of this article (10.1186/s12883-018-1223-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jordi A Matias-Guiu
- Department of Neurology, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, C/ Profesor Martín Lagos s/n, 28040, Madrid, Spain.
| | - Ana Cortés-Martínez
- Department of Neurology, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, C/ Profesor Martín Lagos s/n, 28040, Madrid, Spain
| | - Paloma Montero
- Department of Neurology, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, C/ Profesor Martín Lagos s/n, 28040, Madrid, Spain
| | - Vanesa Pytel
- Department of Neurology, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, C/ Profesor Martín Lagos s/n, 28040, Madrid, Spain
| | - Teresa Moreno-Ramos
- Department of Neurology, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, C/ Profesor Martín Lagos s/n, 28040, Madrid, Spain
| | - Manuela Jorquera
- Department of Radiology, IdISSC, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Yus
- Department of Radiology, IdISSC, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Arrazola
- Department of Radiology, IdISSC, Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matías-Guiu
- Department of Neurology, San Carlos Health Research Institute (IdISSC), Universidad Complutense de Madrid, C/ Profesor Martín Lagos s/n, 28040, Madrid, Spain
| |
Collapse
|
33
|
Allali G, Blumen HM, Devanne H, Pirondini E, Delval A, Van De Ville D. Brain imaging of locomotion in neurological conditions. Neurophysiol Clin 2018; 48:337-359. [PMID: 30487063 PMCID: PMC6563601 DOI: 10.1016/j.neucli.2018.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023] Open
Abstract
Impaired locomotion is a frequent and major source of disability in patients with neurological conditions. Different neuroimaging methods have been used to understand the brain substrates of locomotion in various neurological diseases (mainly in Parkinson's disease) during actual walking, and while resting (using mental imagery of gait, or brain-behavior correlation analyses). These studies, using structural (i.e., MRI) or functional (i.e., functional MRI or functional near infra-red spectroscopy) brain imaging, electrophysiology (i.e., EEG), non-invasive brain stimulation (i.e., transcranial magnetic stimulation, or transcranial direct current stimulation) or molecular imaging methods (i.e., PET, or SPECT) reveal extended brain networks involving both grey and white matters in key cortical (i.e., prefrontal cortex) and subcortical (basal ganglia and cerebellum) regions associated with locomotion. However, the specific roles of the various pathophysiological mechanisms encountered in each neurological condition on the phenotype of gait disorders still remains unclear. After reviewing the results of individual brain imaging techniques across the common neurological conditions, such as Parkinson's disease, dementia, stroke, or multiple sclerosis, we will discuss how the development of new imaging techniques and computational analyses that integrate multivariate correlations in "large enough datasets" might help to understand how individual pathophysiological mechanisms express clinically as an abnormal gait. Finally, we will explore how these new analytic methods could drive our rehabilitative strategies.
Collapse
Affiliation(s)
- Gilles Allali
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.
| | - Helena M Blumen
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA; Department of Medicine, Division of Geriatrics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France; EA 7369, URePSSS, Unité de Recherche Pluridisciplinaire Sport Santé Société, Université du Littoral Côte d'Opale, Calais, France
| | - Elvira Pirondini
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arnaud Delval
- Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France; Unité Inserm 1171, Faculté de Médecine, Université de Lille, Lille, France
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
34
|
Tobyne SM, Ochoa WB, Bireley JD, Smith VM, Geurts JJ, Schmahmann JD, Klawiter EC. Cognitive impairment and the regional distribution of cerebellar lesions in multiple sclerosis. Mult Scler 2018; 24:1687-1695. [PMID: 28933672 PMCID: PMC8673326 DOI: 10.1177/1352458517730132] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cerebellar lesions are often reported in relapsing-remitting multiple sclerosis (RRMS) and have been associated with impaired motor function and cognitive status. However, prior research has primarily focused on summary measures of cerebellar involvement (e.g. total lesion load, gray/white matter volume) and not on the effect of lesion load within specific regions of cerebellar white matter. OBJECTIVE Spatially map the probability of cerebellar white matter lesion (CWML) occurrence in RRMS and explore the relationship between cognitive impairment and lesion (CWML) location within the cerebellum. METHODS High-resolution structural magnetic resonance imaging (MRI) was acquired on 16 cognitively impaired (CI) and 15 cognitively preserved (CP) RRMS subjects at 3T and used for lesion identification and voxel-based lesion-symptom mapping (VLSM). RESULTS CI RRMS demonstrated a predilection for the middle cerebellar peduncle (MCP). VLSM results indicate that lesions of the MCP are significantly associated with CI in RRMS. Measures of cerebellar lesion load were correlated with age at disease onset but not disease duration. CONCLUSION A specific pattern of cerebellar lesions involving the MCP, rather than the total CWML load, contributes to cognitive dysfunction in RRMS. Cerebellar lesion profiles may provide a biomarker of current or evolving risk for cognitive status change in RRMS.
Collapse
Affiliation(s)
- Sean M Tobyne
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Wilson B Ochoa
- Department of Anatomy & Neurosciences, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - J Daniel Bireley
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Victoria Mj Smith
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeroen Jg Geurts
- Department of Anatomy & Neurosciences, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | | | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
35
|
Christogianni A, Bibb R, Davis SL, Jay O, Barnett M, Evangelou N, Filingeri D. Temperature sensitivity in multiple sclerosis: An overview of its impact on sensory and cognitive symptoms. Temperature (Austin) 2018; 5:208-223. [PMID: 30377640 DOI: 10.1080/23328940.2018.1475831] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 10/28/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disease characterized by demyelination of the central nervous system (CNS). The exact cause of MS is still unknown; yet its incidence and prevalence rates are growing worldwide, making MS a significant public health challenge. The heterogeneous distribution of demyelination within and between MS patients translates in a complex and varied array of autonomic, motor, sensory and cognitive symptoms. Yet a unique aspect of MS is the highly prevalent (60-80%) temperature sensitivity of its sufferers, where neurological symptoms are temporarily exacerbated by environmental- or exercise-induced increases (or decreases) in body temperature. MS temperature sensitivity is primarily driven by temperature-dependent slowing or blocking of neural conduction within the CNS due to changes in internal (core) temperature; yet changes in skin temperature could also contribute to symptom exacerbation (e.g. during sunlight and warm ambient exposure). The impact of temperature sensitivity, and particularly of increases in core temperature, on autonomic (e.g. thermoregulatory/cardiovascular function) and motor symptoms (e.g. fatigue) is well described. However, less attention has been given to how increases (and decreases) in core and skin temperature affect sensory and cognitive symptoms. Furthermore, it remains uncertain whether changes in skin temperature alone could also trigger worsening of symptoms. Here we review the impact of temperature sensitivity on MS sensory and cognitive function and discuss additional factors (e.g. changes in skin temperature) that potentially contribute to temperature-induced worsening of symptoms in the absence of alteration in core temperature.
Collapse
Affiliation(s)
- Aikaterini Christogianni
- THERMOSENSELAB, Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, UK
| | - Richard Bibb
- Loughborough Design School, Loughborough University, Loughborough, UK
| | - Scott L Davis
- Department of Applied Physiology & Wellness, Southern Methodist University, Dallas, TX, USA
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Michael Barnett
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Nikos Evangelou
- Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Davide Filingeri
- THERMOSENSELAB, Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, UK
| |
Collapse
|
36
|
Manca R, Sharrack B, Paling D, Wilkinson ID, Venneri A. Brain connectivity and cognitive processing speed in multiple sclerosis: A systematic review. J Neurol Sci 2018; 388:115-127. [PMID: 29627004 DOI: 10.1016/j.jns.2018.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/06/2018] [Accepted: 03/01/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Processing speed (PS) decline is the most commonly observed cognitive deficit in people with multiple sclerosis (MS) resulting in a significant impact on quality of life. Despite its importance, knowledge of the underlying neural substrates is lacking. OBJECTIVE As MS is increasingly recognised as a disconnection syndrome, our aim was to carry out a systematic literature review to clarify the relationship between PS performance and MRI measures of structural and functional brain connectivity in people with MS. SEARCH METHODS A literature search was carried out on PubMed and Web of Science that included publications predating September 2017. Additional articles were added after inspection of the reference lists of all selected papers. DATA EXTRACTION All selected papers were categorised in three sections according to the MRI measures investigated, independently or both. Quality assessment was carried out using a customised set of criteria. RESULTS Thirty-two articles met the inclusion criteria and were included in the review. Microstructural integrity of the anterior corpus callosum and functional connectivity of frontal areas were more consistently found to correlate with PS performance, though high variability of findings was observed across studies. Several methodological flaws emerged from the reviewed literature. CONCLUSIONS Despite the observed trends, no definite conclusions can be drawn on the relationship between brain connectivity and PS decline in MS given the limitations of the current literature. Future investigations may benefit from theoretical and methodological advances to clarify how MS-related brain damage affects patients' cognition.
Collapse
Affiliation(s)
- Riccardo Manca
- Department of Neurosciences, University of Sheffield, Sheffield, UK
| | - Basil Sharrack
- Department of Neurosciences, University of Sheffield, Sheffield, UK; Department of Neurology, Sheffield Teaching Hospital NHS Trust, Sheffield, UK
| | - David Paling
- Department of Neurosciences, University of Sheffield, Sheffield, UK; Department of Neurology, Sheffield Teaching Hospital NHS Trust, Sheffield, UK
| | - Iain D Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Annalena Venneri
- Department of Neurosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
37
|
Artemiadis A, Anagnostouli M, Zalonis I, Chairopoulos K, Triantafyllou N. Structural MRI correlates of cognitive function in multiple sclerosis. Mult Scler Relat Disord 2018; 21:1-8. [PMID: 29438835 DOI: 10.1016/j.msard.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/03/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Cognitive impairment (CI) has been associated with numerous magnetic resonance imaging (MRI) indices in multiple sclerosis (MS) patients. In this study we investigated the association of a large set of 2D and 3D MRI markers with cognitive function in MS. METHODS A sample of 61 RRMS patients (mean age 41.8 ± 10.6 years old, 44 women, mean disease duration 137.9 ± 83.9 months) along with 51 age and gender matched healthy controls was used in this cross-sectional study. Neuropsychological and other tests, along with a large set of 2D/3D MRI evaluations were made. RESULTS 44.3% of patients had CI. CI patients had more disability, physical fatigue than non-CI patients and more psychological distress than non-CI patients and HCs. Also, CI patients had significantly larger third ventricle width and volume, smaller coprus callosum index and larger lesion volume than non-CI patients. These MRI markers also significantly predicted cognitive scores after adjusting for age and education, explaining about 30.6% of the variance of the total cognitive score. CONCLUSIONS Selected linear and volumetric MRI indices predict cognitive function in MS. Future studies should expand these results by exploring longitudinal changes and producing normative data.
Collapse
Affiliation(s)
- Artemios Artemiadis
- 1st Department of Neurology, Aeginition Hospital, Faculty of Medicine, National Kapodistrian University of Athens, Vas. Sofias Ave. 72-74, GR-11528 Athens, Greece; Department of Neurology, Army Share Fund Hospital (NIMTS), Monis Petraki 10-12, GR-11521 Athens, Greece.
| | - Maria Anagnostouli
- 1st Department of Neurology, Aeginition Hospital, Faculty of Medicine, National Kapodistrian University of Athens, Vas. Sofias Ave. 72-74, GR-11528 Athens, Greece
| | - Ioannis Zalonis
- 1st Department of Neurology, Aeginition Hospital, Faculty of Medicine, National Kapodistrian University of Athens, Vas. Sofias Ave. 72-74, GR-11528 Athens, Greece
| | - Konstantinos Chairopoulos
- Department of Neurology, Army Share Fund Hospital (NIMTS), Monis Petraki 10-12, GR-11521 Athens, Greece
| | - Nikos Triantafyllou
- 1st Department of Neurology, Aeginition Hospital, Faculty of Medicine, National Kapodistrian University of Athens, Vas. Sofias Ave. 72-74, GR-11528 Athens, Greece
| |
Collapse
|
38
|
Yousuf F, Dupuy SL, Tauhid S, Chu R, Kim G, Tummala S, Khalid F, Weiner HL, Chitnis T, Healy BC, Bakshi R. A two-year study using cerebral gray matter volume to assess the response to fingolimod therapy in multiple sclerosis. J Neurol Sci 2017; 383:221-229. [DOI: 10.1016/j.jns.2017.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/14/2017] [Accepted: 10/09/2017] [Indexed: 02/04/2023]
|
39
|
Riccitelli GC, Pagani E, Rodegher M, Colombo B, Preziosa P, Falini A, Comi G, Filippi M, Rocca MA. Imaging patterns of gray and white matter abnormalities associated with PASAT and SDMT performance in relapsing-remitting multiple sclerosis. Mult Scler 2017; 25:204-216. [DOI: 10.1177/1352458517743091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objectives: To map the regional patterns of white matter (WM) microstructural abnormalities and gray matter (GM) atrophy exclusively associated with reduced performance in the Symbol Digit Modalities Test (SDMT) and Paced Auditory Serial Addition Test (PASAT) in relapsing-remitting (RR) multiple sclerosis (MS) patients. Methods: In all, 177 RRMS patients and 80 healthy controls (HC) were studied. WM microstructural abnormalities were investigated on diffusion tensor images using tract-based spatial statistics analysis, and regional GM atrophy was estimated on three-dimensional (3D) T1-weighted images using voxel-based morphometry. Results: Compared to HC, RRMS patients showed the expected pattern of cortical–subcortical GM atrophy and WM microstructural abnormalities. In patients, diffusivity abnormalities of supratentorial WM tracts correlated with both SDMT and PASAT scores. Lower SDMT performance was also associated with WM damage in several infratentorial WM tracts. Lower SDMT scores correlated with atrophy of the right anterior cingulate cortex, left postcentral gyrus, and right middle temporal gyrus, whereas lower PASAT scores correlated with atrophy of the deep GM nuclei, bilaterally, and several fronto-temporo-occipital regions. Conclusion: In RRMS patients, regional damage of different neural systems helps explaining reduced performance in SDMT and PASAT. WM microstructural damage typified reduced SDMT performance, whereas atrophy of several GM regions distinguished reduced PASAT performance.
Collapse
Affiliation(s)
- Gianna C Riccitelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Mariaemma Rodegher
- Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Bruno Colombo
- Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Falini
- Department of Neuroradiology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
40
|
Tejeda EJC, Bello AM, Wasilewski E, Koebel A, Dunn S, Kotra LP. Noncovalent Protein Arginine Deiminase (PAD) Inhibitors Are Efficacious in Animal Models of Multiple Sclerosis. J Med Chem 2017; 60:8876-8887. [DOI: 10.1021/acs.jmedchem.7b01102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Elizabeth J. Curiel Tejeda
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Angelica M. Bello
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Centre
for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ewa Wasilewski
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Centre
for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Adam Koebel
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Centre
for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Shannon Dunn
- Centre
for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department
of Immunology, University of Toronto, Medical Sciences Building, 1 King’s
College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Lakshmi P. Kotra
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Centre
for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Multi-Organ
Transplant Program, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
41
|
Pichler A, Khalil M, Langkammer C, Pinter D, Ropele S, Fuchs S, Bachmaier G, Enzinger C, Fazekas F. The impact of vascular risk factors on brain volume and lesion load in patients with early multiple sclerosis. Mult Scler 2017; 25:48-54. [PMID: 29027843 DOI: 10.1177/1352458517736149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Vascular risk factors (VRF) in multiple sclerosis (MS) patients have been associated with lower brain volumes. It is currently unknown if this association already exists in early MS and how it develops over time. METHODS We identified 82 patients with clinically isolated syndrome (CIS) ( n = 61) or with early relapsing-remitting MS ( n = 21) and assessed their VRF including arterial hypertension, hyperlipidaemia, diabetes mellitus and smoking. We analysed T2-lesion load, normalized brain volume (NBV), cortical grey (cGMV) and white matter volumes (WMV), thalamic and basal ganglia volumes at baseline and follow-up magnetic resonance imaging (MRI) and assessed the percentage of brain volume change (PBVC) using SIENA. RESULTS Patient mean age was 32.4 (±8.7) years and 54 (65%) were women. Median follow-up period was 42 (29-54) months. In total, 26 patients (31.7%) had one or more VRF (VRF+). At baseline, VRF+ patients had a lower NBV (1530.9 cm3 vs 1591.2 cm3, p = 0.001), a lower cGMV (628.5 cm3 vs 668.6 cm3, p = 0.002) and WMV (752.2 cm3 vs 783.9 cm3, p = 0.009) than VRF-negative patients. Similar results were obtained at follow-up. PBVC was comparable between patients with and without VRF. CONCLUSION VRF are associated with lower brain volume already in early MS but do not lead to increased brain volume loss during 3.5 years of follow-up.
Collapse
Affiliation(s)
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Daniela Pinter
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Siegrid Fuchs
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Gerhard Bachmaier
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Graz, Austria/Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Graz, Austria
| |
Collapse
|
42
|
Rocca MA, Comi G, Filippi M. The Role of T1-Weighted Derived Measures of Neurodegeneration for Assessing Disability Progression in Multiple Sclerosis. Front Neurol 2017; 8:433. [PMID: 28928705 PMCID: PMC5591328 DOI: 10.3389/fneur.2017.00433] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/08/2017] [Indexed: 12/26/2022] Open
Abstract
Introduction Multiple sclerosis (MS) is characterised by the accumulation of permanent neurological disability secondary to irreversible tissue loss (neurodegeneration) in the brain and spinal cord. MRI measures derived from T1-weighted image analysis (i.e., black holes and atrophy) are correlated with pathological measures of irreversible tissue loss. Quantifying the degree of neurodegeneration in vivo using MRI may offer a surrogate marker with which to predict disability progression and the effect of treatment. This review evaluates the literature examining the association between MRI measures of neurodegeneration derived from T1-weighted images and disability in MS patients. Methods A systematic PubMed search was conducted in January 2017 to identify MRI studies in MS patients investigating the relationship between “black holes” and/or atrophy in the brain and spinal cord, and disability. Results were limited to human studies published in English in the previous 10 years. Results A large number of studies have evaluated the association between the previous MRI measures and disability. These vary considerably in terms of study design, duration of follow-up, size, and phenotype of the patient population. Most, although not all, have shown that there is a significant correlation between disability and black holes in the brain, as well as atrophy of the whole brain and grey matter. The results for brain white matter atrophy are less consistently positive, whereas studies evaluating spinal cord atrophy consistently showed a significant correlation with disability. Newer ways of measuring atrophy, thanks to the development of segmentation and voxel-wise methods, have allowed us to assess the involvement of strategic regions of the CNS (e.g., thalamus) and to map the regional distribution of damage. This has resulted in better correlations between MRI measures and disability and in the identification of the critical role played by some CNS structures for MS clinical manifestations. Conclusion The evaluation of MRI measures of atrophy as predictive markers of disability in MS is a highly active area of research. At present, measurement of atrophy remains within the realm of clinical studies, but its utility in clinical practice has been recognized and barriers to its implementation are starting to be addressed.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
43
|
Moroso A, Ruet A, Lamargue-Hamel D, Munsch F, Deloire M, Coupé P, Charré-Morin J, Saubusse A, Ouallet JC, Planche V, Tourdias T, Dousset V, Brochet B. Microstructural analyses of the posterior cerebellar lobules in relapsing-onset multiple sclerosis and their implication in cognitive impairment. PLoS One 2017; 12:e0182479. [PMID: 28792528 PMCID: PMC5549727 DOI: 10.1371/journal.pone.0182479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 07/19/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The posterior cerebellar lobules seem to be the anatomical substrate of cognitive cerebellar processes, but their microstructural alterations in multiple sclerosis (MS) remain unclear. OBJECTIVES To correlate diffusion metrics in lobules VI to VIIIb in persons with clinically isolated syndrome (PwCIS) and in cognitively impaired persons with MS (CIPwMS) with their cognitive performances. METHODS Sixty-nine patients (37 PwCIS, 32 CIPwMS) and 36 matched healthy subjects (HS) underwent 3T magnetic resonance imaging, including 3D T1-weighted and diffusion tensor imaging (DTI). Fractional anisotropy (FA) and mean diffusivity (MD) were calculated within each lobule and in the cerebellar peduncles. We investigated the correlations between cognitive outcomes and the diffusion parameters of cerebellar sub-structures and performed multiple linear regression analysis to predict cognitive disability. RESULTS FA was generally lower and MD was higher in the cerebellum and specifically in the vermis Crus II, lobules VIIb and VIIIb in CIPwMS compared with PwCIS and HS. In hierarchical regression analyses, 31% of the working memory z score variance was explained by FA in the left lobule VI and in the left superior peduncle. Working memory was also associated with MD in the vermis Crus II. FA in the left lobule VI and right VIIIa predicted part of the information processing speed (IPS) z scores. CONCLUSION DTI indicators of cerebellar microstructural damage were associated with cognitive deficits in MS. Our results suggested that cerebellar lobular alterations have an impact on attention, working memory and IPS.
Collapse
Affiliation(s)
- Amandine Moroso
- Univ. Bordeaux, Bordeaux, France
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, & Services de Neurologie et Neuroradiologie, Bordeaux, France
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
| | - Aurélie Ruet
- Univ. Bordeaux, Bordeaux, France
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, & Services de Neurologie et Neuroradiologie, Bordeaux, France
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
| | | | - Fanny Munsch
- Univ. Bordeaux, Bordeaux, France
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
| | - Mathilde Deloire
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, & Services de Neurologie et Neuroradiologie, Bordeaux, France
| | - Pierrick Coupé
- Univ. Bordeaux, Bordeaux, France
- LaBRI, UMR 5800, PICTURA, Talence, France
| | - Julie Charré-Morin
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, & Services de Neurologie et Neuroradiologie, Bordeaux, France
| | - Aurore Saubusse
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, & Services de Neurologie et Neuroradiologie, Bordeaux, France
| | - Jean-Christophe Ouallet
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, & Services de Neurologie et Neuroradiologie, Bordeaux, France
| | - Vincent Planche
- Univ. Bordeaux, Bordeaux, France
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
| | - Thomas Tourdias
- Univ. Bordeaux, Bordeaux, France
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, & Services de Neurologie et Neuroradiologie, Bordeaux, France
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
| | - Vincent Dousset
- Univ. Bordeaux, Bordeaux, France
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, & Services de Neurologie et Neuroradiologie, Bordeaux, France
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
| | - Bruno Brochet
- Univ. Bordeaux, Bordeaux, France
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, & Services de Neurologie et Neuroradiologie, Bordeaux, France
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
- * E-mail:
| |
Collapse
|
44
|
Hypothalamic Dysfunction and Multiple Sclerosis: Implications for Fatigue and Weight Dysregulation. Curr Neurol Neurosci Rep 2017; 16:98. [PMID: 27662896 DOI: 10.1007/s11910-016-0700-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signs and symptoms of multiple sclerosis are usually attributed to demyelinating lesions in the spinal cord or cerebral cortex. The hypothalamus is a region that is often overlooked yet controls many important homeostatic functions, including those that are perturbed in multiple sclerosis. In this review we discuss how hypothalamic dysfunction may contribute to signs and symptoms in people with multiple sclerosis. While dysfunction of the hypothalamic-pituitary-adrenal axis is common in multiple sclerosis, the effects and mechanisms of this dysfunction are not well understood. We discuss three hypothalamic mechanisms of fatigue in multiple sclerosis: (1) general hypothalamic-pituitary-adrenal axis hyperactivity, (2) disordered orexin neurotransmission, (3) abnormal cortisol secretion. We then review potential mechanisms of weight dysregulation caused by hypothalamic dysfunction. Lastly, we propose future studies and therapeutics to better understand and treat hypothalamic dysfunction in multiple sclerosis. Hypothalamic dysfunction appears to be common in multiple sclerosis, yet current studies are underpowered and contradictory. Future studies should contain larger sample sizes and standardize hormone and neuropeptide measurements.
Collapse
|
45
|
Grothe M, Lotze M, Langner S, Dressel A. Impairments in Walking Ability, Dexterity, and Cognitive Function in Multiple Sclerosis Are Associated with Different Regional Cerebellar Gray Matter Loss. THE CEREBELLUM 2017; 16:945-950. [DOI: 10.1007/s12311-017-0871-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Spampinato MV, Kocher MR, Jensen JH, Helpern JA, Collins HR, Hatch NU. Diffusional Kurtosis Imaging of the Corticospinal Tract in Multiple Sclerosis: Association with Neurologic Disability. AJNR Am J Neuroradiol 2017; 38:1494-1500. [PMID: 28572153 DOI: 10.3174/ajnr.a5225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/14/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Multiple sclerosis is an autoimmune disorder resulting in progressive neurologic disability. Our aim was to evaluate the associations between diffusional kurtosis imaging-derived metrics for the corticospinal tract and disability in multiple sclerosis. MATERIALS AND METHODS Forty patients with MS underwent brain MR imaging including diffusional kurtosis imaging. After we masked out T2 hyperintense lesions, the fractional anisotropy, mean diffusivity, radial diffusivity, axial diffusivity, mean kurtosis, radial kurtosis, and axial kurtosis were estimated for the corticospinal tract. Disability was quantified by using the Expanded Disability Status Scale at the time of MR imaging and 12 months post-MR imaging. The Pearson correlation coefficient and linear regression analyses were conducted to evaluate the associations between diffusion metrics and disability. RESULTS Significant correlations were found between the Expanded Disability Status Scale scores during the baseline visit and age (r = 0.47), T2 lesion volume (r = 0.38), corticospinal tract mean diffusivity (r = 0.41), radial diffusivity (r = 0.41), axial diffusivity (r = 0.34), fractional anisotropy (r = -0.36), and radial kurtosis (r = -0.42). Significant correlations were also found between the Expanded Disability Status Scale scores at 12-month follow-up and age (r = 0.38), mean diffusivity (r = 0.45), radial diffusivity (r = 0.41), axial diffusivity (r = 0.45), mean kurtosis (r = -0.42), radial kurtosis (r = -0.56), and axial kurtosis (r = -0.36). Linear regression analyses demonstrated significant associations among radial kurtosis, age, and Expanded Disability Status Scale score during the baseline visit, while radial kurtosis was the only variable associated with Expanded Disability Status Scale score for the 12-month follow-up. CONCLUSIONS Radial kurtosis of the corticospinal tract may have an association with neurologic disability in MS.
Collapse
Affiliation(s)
- M V Spampinato
- From the Department of Radiology and Radiological Science (M.V.S., M.R.K., J.H.J., J.A.H., H.R.C., N.U.H.) .,Center for Biomedical Imaging (M.V.S., J.H.J., J.A.H.), Medical University of South Carolina, Charleston, South Carolina
| | - M R Kocher
- From the Department of Radiology and Radiological Science (M.V.S., M.R.K., J.H.J., J.A.H., H.R.C., N.U.H.)
| | - J H Jensen
- From the Department of Radiology and Radiological Science (M.V.S., M.R.K., J.H.J., J.A.H., H.R.C., N.U.H.).,Center for Biomedical Imaging (M.V.S., J.H.J., J.A.H.), Medical University of South Carolina, Charleston, South Carolina
| | - J A Helpern
- From the Department of Radiology and Radiological Science (M.V.S., M.R.K., J.H.J., J.A.H., H.R.C., N.U.H.).,Center for Biomedical Imaging (M.V.S., J.H.J., J.A.H.), Medical University of South Carolina, Charleston, South Carolina
| | - H R Collins
- From the Department of Radiology and Radiological Science (M.V.S., M.R.K., J.H.J., J.A.H., H.R.C., N.U.H.)
| | - N U Hatch
- From the Department of Radiology and Radiological Science (M.V.S., M.R.K., J.H.J., J.A.H., H.R.C., N.U.H.)
| |
Collapse
|
47
|
MacKenzie-Graham A, Kurth F, Itoh Y, Wang HJ, Montag MJ, Elashoff R, Voskuhl RR. Disability-Specific Atlases of Gray Matter Loss in Relapsing-Remitting Multiple Sclerosis. JAMA Neurol 2017; 73:944-53. [PMID: 27294295 DOI: 10.1001/jamaneurol.2016.0966] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Multiple sclerosis (MS) is characterized by progressive gray matter (GM) atrophy that strongly correlates with clinical disability. However, whether localized GM atrophy correlates with specific disabilities in patients with MS remains unknown. OBJECTIVE To understand the association between localized GM atrophy and clinical disability in a biology-driven analysis of MS. DESIGN, SETTING, AND PARTICIPANTS In this cross-sectional study, magnetic resonance images were acquired from 133 women with relapsing-remitting MS and analyzed using voxel-based morphometry and volumetry. A regression analysis was used to determine whether voxelwise GM atrophy was associated with specific clinical deficits. Data were collected from June 28, 2007, to January 9, 2014. MAIN OUTCOMES AND MEASURES Voxelwise correlation of GM change with clinical outcome measures (Expanded Disability Status Scale and Multiple Sclerosis Functional Composite scores). RESULTS Among the 133 female patients (mean [SD] age, 37.4 [7.5] years), worse performance on the Multiple Sclerosis Functional Composite correlated with voxelwise GM volume loss in the middle cingulate cortex (P < .001) and a cluster in the precentral gyrus bilaterally (P = .004). In addition, worse performance on the Paced Auditory Serial Addition Test correlated with volume loss in the auditory and premotor cortices (P < .001), whereas worse performance on the 9-Hole Peg Test correlated with GM volume loss in Brodmann area 44 (Broca area; P = .02). Finally, voxelwise GM loss in the right paracentral lobulus correlated with bowel and bladder disability (P = .03). Thus, deficits in specific clinical test results were directly associated with localized GM loss in clinically eloquent locations. CONCLUSIONS AND RELEVANCE These biology-driven data indicate that specific disabilities in MS are associated with voxelwise GM loss in distinct locations. This approach may be used to develop disability-specific biomarkers for use in future clinical trials of neuroprotective treatments in MS.
Collapse
Affiliation(s)
- Allan MacKenzie-Graham
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles
| | - Florian Kurth
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles
| | - Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles
| | - He-Jing Wang
- Department of Biomathematics, David Geffen School of Medicine at University of California, Los Angeles
| | - Michael J Montag
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles
| | - Robert Elashoff
- Department of Biomathematics, David Geffen School of Medicine at University of California, Los Angeles
| | - Rhonda R Voskuhl
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles
| |
Collapse
|
48
|
Mollison D, Sellar R, Bastin M, Mollison D, Chandran S, Wardlaw J, Connick P. The clinico-radiological paradox of cognitive function and MRI burden of white matter lesions in people with multiple sclerosis: A systematic review and meta-analysis. PLoS One 2017; 12:e0177727. [PMID: 28505177 PMCID: PMC5432109 DOI: 10.1371/journal.pone.0177727] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/02/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Moderate correlation exists between the imaging quantification of brain white matter lesions and cognitive performance in people with multiple sclerosis (MS). This may reflect the greater importance of other features, including subvisible pathology, or methodological limitations of the primary literature. OBJECTIVES To summarise the cognitive clinico-radiological paradox and explore the potential methodological factors that could influence the assessment of this relationship. METHODS Systematic review and meta-analysis of primary research relating cognitive function to white matter lesion burden. RESULTS Fifty papers met eligibility criteria for review, and meta-analysis of overall results was possible in thirty-two (2050 participants). Aggregate correlation between cognition and T2 lesion burden was r = -0.30 (95% confidence interval: -0.34, -0.26). Wide methodological variability was seen, particularly related to key factors in the cognitive data capture and image analysis techniques. CONCLUSIONS Resolving the persistent clinico-radiological paradox will likely require simultaneous evaluation of multiple components of the complex pathology using optimum measurement techniques for both cognitive and MRI feature quantification. We recommend a consensus initiative to support common standards for image analysis in MS, enabling benchmarking while also supporting ongoing innovation.
Collapse
Affiliation(s)
- Daisy Mollison
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Robin Sellar
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Denis Mollison
- Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Connick
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
49
|
Abolhasani Foroughi A, Salahi R, Nikseresht A, Heidari H, Nazeri M, Khorsand A. Comparison of diffusion-weighted imaging and enhanced T1-weighted sequencing in patients with multiple sclerosis. Neuroradiol J 2017; 30:347-351. [PMID: 28452571 DOI: 10.1177/1971400916678224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction The purpose of this study was to assess whether demographic, brain anatomical regions and contrast enhancement show differences in multiple sclerosis (MS) patients with increased diffusion lesions (ID group) compared with diffusion restriction (DR group). Method MRI protocol comprised T1- and T2-weighted sequences with and without gadolinium (Gd), and sagittal three-dimensional FLAIR sequence, DWI and ADC maps were prospectively performed in 126 MS patients from January to December 2015. The investigation was conducted to evaluate differences in demographic, cord and brain regional, technical, and positive or negative Gd contrast imaging parameters in two groups of ID and DR. Statistical analysis was performed by using SPSS. Results A total of 9.6% of patients showed DR. In the DR group, 66.6% of the patients showed contrast enhancement of plaques, whereas 29.2% of the IR group showed enhancement of plaques. The most prevalent group was non-enhanced plaques in the ID group, followed by Gd-enhanced plaques in the ID group. Patients in the ID group (90.4%) were significantly more than in the DR group (9.6%). Out of the 40 patients with Gd-enhanced plaques, 80.5% was from the ID group and 19.5% from the DR group. Conclusion MRI of the brain, unlike of the cord, with Gd demonstrates significant difference in enhancement between the two groups ( p < 0.05). No significant difference was seen in demographic, cord and brain regional, and technical parameters, EDSS, disease duration, and attack rate as well as demographic and regional parameters between the ID and decrease diffusion groups ( p > 0.05).
Collapse
Affiliation(s)
- Amin Abolhasani Foroughi
- 1 Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz Iran
| | - Roohollah Salahi
- 1 Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz Iran
| | - Alireza Nikseresht
- 2 Clinical Neurology Research Center, Department of Neurology, Shiraz University of Medical Sciences, Shiraz Iran
| | - Hora Heidari
- 2 Clinical Neurology Research Center, Department of Neurology, Shiraz University of Medical Sciences, Shiraz Iran
| | - Masoume Nazeri
- 2 Clinical Neurology Research Center, Department of Neurology, Shiraz University of Medical Sciences, Shiraz Iran
| | - Ali Khorsand
- 1 Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz Iran
| |
Collapse
|
50
|
Fritz NE, Roy S, Keller J, Prince J, Calabresi PA, Zackowski KM. Pain, cognition and quality of life associate with structural measures of brain volume loss in multiple sclerosis. NeuroRehabilitation 2017; 39:535-544. [PMID: 27689612 DOI: 10.3233/nre-161384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by physical and mental impairments that often result in pain and reduced quality of life. OBJECTIVE To understand the relationship of pain, quality of life, and cognition to structural measures of brain volume. METHODS Behavioral measures were assessed in a single session using standardized questionnaires and rating scales. Brain volume measures were assessed with structural magnetic resonance imaging (MRI). RESULTS Twenty-nine individuals with relapsing-remitting MS and 29 age-matched controls participated in this study. Pain, quality of life, and cognition were significantly interrelated. Higher fluid attenuation inversion recovery weighted lesion volume was significantly associated with increased reports of pain (p = 0.01), lower physical quality of life (p < 0.0001), and lower cognitive performance (p = 0.001) in our cohort. CONCLUSIONS Assessment of pain and quality of life along with structural MRI highlights the importance of understanding structure-function relationships in MS and suggests that therapists should not only evaluate individuals for cognition and quality of life, but should consider rehabilitation goals that target these areas.
Collapse
Affiliation(s)
- Nora E Fritz
- Department of Physical Therapy, Wayne State University, Detroit, MI, USA.,Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, MD, USA.,Johns Hopkins School of Medicine, Department of Physical Medicine & Rehabilitation, Baltimore, MD, USA
| | - Snehashis Roy
- Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD, USA
| | - Jennifer Keller
- Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jerry Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kathleen M Zackowski
- Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, MD, USA.,Johns Hopkins School of Medicine, Department of Physical Medicine & Rehabilitation, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|