1
|
Oosthuizen D, Ganief TA, Bernstein KE, Sturrock ED. Proteomic Analysis of Human Macrophages Overexpressing Angiotensin-Converting Enzyme. Int J Mol Sci 2024; 25:7055. [PMID: 39000163 PMCID: PMC11240931 DOI: 10.3390/ijms25137055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Angiotensin converting enzyme (ACE) exerts strong modulation of myeloid cell function independently of its cardiovascular arm. The success of the ACE-overexpressing murine macrophage model, ACE 10/10, in treating microbial infections and cancer opens a new avenue into whether ACE overexpression in human macrophages shares these benefits. Additionally, as ACE inhibitors are a widely used antihypertensive medication, their impact on ACE expressing immune cells is of interest and currently understudied. In the present study, we utilized mass spectrometry to characterize and assess global proteomic changes in an ACE-overexpressing human THP-1 cell line. Additionally, proteomic changes and cellular uptake following treatment with an ACE C-domain selective inhibitor, lisinopril-tryptophan, were also assessed. ACE activity was significantly reduced following inhibitor treatment, despite limited uptake within the cell, and both RNA processing and immune pathways were significantly dysregulated with treatment. Also present were upregulated energy and TCA cycle proteins and dysregulated cytokine and interleukin signaling proteins with ACE overexpression. A novel, functionally enriched immune pathway that appeared both with ACE overexpression and inhibitor treatment was neutrophil degranulation. ACE overexpression within human macrophages showed similarities with ACE 10/10 murine macrophages, paving the way for mechanistic studies aimed at understanding the altered immune function.
Collapse
Affiliation(s)
- Delia Oosthuizen
- Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Tariq A. Ganief
- Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Edward D. Sturrock
- Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
2
|
Liu Z, Jin L, Zhou W, Zhang C. The spectrum of plasma renin activity and hypertension diseases: Utility, outlook, and suggestions. J Clin Lab Anal 2022; 36:e24738. [DOI: 10.1002/jcla.24738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/03/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
- Zhenni Liu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing Engineering Research Center of Laboratory Medicine, Chinese Academy of Medical Sciences, and Peking Union Medical College Beijing China
| | - Lizi Jin
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing Engineering Research Center of Laboratory Medicine, Chinese Academy of Medical Sciences, and Peking Union Medical College Beijing China
| | - Weiyan Zhou
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing Engineering Research Center of Laboratory Medicine Beijing China
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing Engineering Research Center of Laboratory Medicine, Chinese Academy of Medical Sciences, and Peking Union Medical College Beijing China
| |
Collapse
|
3
|
Lo CWS, Tsui TKC, Ma RCW, Chan MHM, Ho CS. Quantitation of plasma angiotensin II in healthy Chinese subjects by a validated liquid chromatography tandem mass spectrometry method. Biomed Chromatogr 2022; 36:e5318. [PMID: 34981551 DOI: 10.1002/bmc.5318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Quantitation of plasma angiotensin (Ang) II, the active mediator of the renin-angiotensin system (RAS), is challenging due to its low physiological concentration. We report a validated liquid chromatography-mass spectrometry (LCMS) method to overcome this challenge. METHOD Ang II was extracted from EDTA plasma by an offline solid-phase extraction procedure with Waters MAX μElution plate. LCMS quantitation was performed on the Waters TQS system, monitoring the 3+ ions of the peptide. The analytical performance of the LCMS method was validated. The stability of Ang II was studied with or without the presence of a protease inhibitor. Local reference intervals were established from 143 healthy normotensive subjects (57% female, 21-60 years old). RESULTS The Ang II LCMS method had a measurable range of 3.3 - 700 pmol/L. Between batch precision coefficient of variation was <7% over the Ang II concentrations of 8.6 - 110 pmol/L. No significant matrix interference and carryover was observed. There was no significant difference in Ang II concentration in EDTA blood and plasma for at least 2 hours and 1 hour at room temperature, respectively. Ang II was stable for at least one year when stored at -80 o C, with or without the protease inhibitor. Age-dependent Ang II reference intervals were established: 4.4-17.7 pmol/L (21-30 years) and 3.9-12.8 pmol/L (31-60 years). CONCLUSION The present LCMS method is suitable for quantitation of Ang II to study the RAS system. Ang II collected at room temperature into EDTA bottles was stable at -80 o C for at least 1 year. The first age-dependent reference intervals of plasma Ang II were established for a healthy normotensive Chinese population.
Collapse
Affiliation(s)
- Clara Wai-Shan Lo
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Statin, NT, Hong Kong
| | - Teresa Kam-Chi Tsui
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Statin, NT, Hong Kong
| | - Ronald Ching-Wan Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | - Michael Ho-Ming Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Statin, NT, Hong Kong
| | - Chung-Shun Ho
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Statin, NT, Hong Kong
| |
Collapse
|
4
|
Ahmad S, Punzi HA, Wright KN, Groban L, Ferrario CM. Newly developed radioimmunoassay for Human Angiotensin-(1-12) measurements in plasma and urine. Mol Cell Endocrinol 2021; 529:111256. [PMID: 33798634 PMCID: PMC8694336 DOI: 10.1016/j.mce.2021.111256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/10/2020] [Accepted: 03/20/2021] [Indexed: 12/17/2022]
Abstract
The dodecapeptide angiotensin-(1-12) [Ang-(1-12)] functions as an intracrine/paracrine substrate for local production of angiotensin II. We developed a reliable and specific radioimmunoassay (RIA) method for the measurement of Ang-(1-12) in human plasma and urine using an affinity purified antibody fraction directed towards the C-terminus of the human Ang-(1-12) sequence. The RIA method was applied to quantify the Ang-(1-12) in plasma and urine collected from thirty-four human subjects (29 treated with antihypertensive medicines and 5 untreated patients). Plasma Ang-(1-12) level was significantly higher (P < 0.05) in patients with systolic blood pressure ≥140 mm Hg (n = 10) compared to the group with systolic blood pressure <140 mm Hg (n = 24). No significant difference (P = 0.22) was found in spot urine between the groups. Our study also shows that the polyclonal antibody neutralizes the cleavage sites of the human Ang-(1-12) from recombinant human chymase (rhChymase) and serum angiotensin converting enzyme (ACE) mediated Ang II generating hydrolysis. Overall, this newly developed RIA method is reliable and applicable to accurately quantify the Ang-(1-12) level in clinical samples (plasma and urine). Further, our in vitro neutralization study suggests that the anti-Ang-(1-12)-antibody might be used as an in vivo therapeutic agent for preventing Ang-(1-12)/Ang II-mediated hypertension and organ damage.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| | - Henry A Punzi
- Trinity Hypertension & Metabolic Research Institute, UT Southwestern Medical Center, Carrollton, TX, 75006, USA
| | - Kendra N Wright
- Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Carlos M Ferrario
- Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA; Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
5
|
Abstract
Objective: Recent studies have shown the important influence of various micro factors on the general biological activity and function of endothelial cells (ECs). Vascular endothelial growth factor (VEGF) and angiogenin (ANG) are classic micro factors that promote proliferation, differentiation, and migration of ECs. The underlying pathophysiological mechanisms and related pathways of these micro factors remain the focus of current research. Data sources: An extensive search was undertaken in the PubMed database by using keywords including “micro factors” and “endothelial cell.” This search covered relevant research articles published between January 1, 2007 and December 31, 2018. Study selection: Original articles, reviews, and other articles were searched and reviewed for content on micro factors of ECs. Results: VEGF and ANG have critical functions in the occurrence, development, and status of the physiological pathology of ECs. Other EC-associated micro factors include interleukin 10, tumor protein P53, nuclear factor kappa B subunit, interleukin 6, and tumor necrosis factor. The results of Gene Ontology analysis revealed that variations were mainly enriched in positive regulation of transcription by the RNA polymerase II promoter, cellular response to lipopolysaccharides, negative regulation of apoptotic processes, external side of the plasma membrane, cytoplasm, extracellular regions, cytokine activity, growth factor activity, and identical protein binding. The results of the Kyoto Encyclopedia of Genes and Genomes analysis revealed that micro factors were predominantly enriched in inflammatory diseases. Conclusions: In summary, the main mediators, factors, or genes associated with ECs include VEGF and ANG. The effect of micro factors on ECs is complex and multifaceted. This review summarizes the correlation between ECs and several micro factors.
Collapse
|
6
|
Krutilin A, Maier S, Schuster R, Kruber S, Kwiatkowski M, Robertson WD, Hansen NO, Miller RJD, Schlüter H. Sampling of Tissues with Laser Ablation for Proteomics: Comparison of Picosecond Infrared Laser and Microsecond Infrared Laser. J Proteome Res 2019; 18:1451-1457. [PMID: 30669834 DOI: 10.1021/acs.jproteome.9b00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It was recently shown that sampling of tissues with a picosecond infrared laser (PIRL) for analysis with bottom-up proteomics is advantageous compared to mechanical homogenization. Because the cold ablation of tissues with PIRL irradiation is soft, proteins remain intact and even enzymatic activities are detectable in PIRL homogenates. In contrast, it was observed that irradiation of tissues with a microsecond infrared laser (MIRL) heats the tissue, thereby causing significant damage. In this study, we investigated the question if sampling of tissues with a MIRL for analysis of their proteomes via bottom-up proteomics is possible and how the results are different from sampling of tissues with a PIRL. Comparison of the proteomes of the MIRL and PIRL tissue homogenates showed that the yield of proteins identified by bottom-up proteomics was larger in PIRL homogenates of liver tissue, whereas the yield was higher in MIRL homogenates of muscle tissue, which has a significantly higher content of connective tissue than liver tissue. In the PIRL homogenate of renal tissue, enzymatic activities were detectable, whereas in the corresponding MIRL homogenate, enzymatic activities were absent. In conclusion, MIRL and PIRL pulses are suited for sampling tissues for bottom-up proteomics. If it is important for bottom-up proteomic investigations to inactivate enzymatic activities already in the tissue before its ablation, MIRL tissue sampling is an option, because the proteins in the tissues are denatured and inactivated by the heating of the tissue during irradiation with MIRL irradiation prior to the ablation of the tissue. This heating effect is absent during irradiation of tissue with a PIRL; therefore, sampling of tissues with a PIRL is a choice for purifying enzymes, because their activities are maintained.
Collapse
Affiliation(s)
- Andrey Krutilin
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Stephanie Maier
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Raphael Schuster
- University of Hamburg , Martin-Luther-King-Platz 6 , 20146 Hamburg , Germany
| | - Sebastian Kruber
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Marcel Kwiatkowski
- Groningen Research Institute of Pharmacy, Pharmacokinetics, Toxicology and Targeting , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , Netherlands
| | - Wesley D Robertson
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Nils-Owe Hansen
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - R J Dwayne Miller
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany.,Departments of Chemistry and Physics , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , Martinistraße 52 , 20246 Hamburg , Germany
| |
Collapse
|
7
|
Patel N, Mohd-Radzman NA, Corcilius L, Crossett B, Connolly A, Cordwell SJ, Ivanovici A, Taylor K, Williams J, Binos S, Mariani M, Payne RJ, Djordjevic MA. Diverse Peptide Hormones Affecting Root Growth Identified in the Medicago truncatula Secreted Peptidome. Mol Cell Proteomics 2017; 17:160-174. [PMID: 29079721 DOI: 10.1074/mcp.ra117.000168] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Multigene families encoding diverse secreted peptide hormones play important roles in plant development. A need exists to efficiently elucidate the structures and post-translational-modifications of these difficult-to-isolate peptide hormones in planta so that their biological functions can be determined. A mass spectrometry and bioinformatics approach was developed to comprehensively analyze the secreted peptidome of Medicago hairy root cultures and xylem sap. We identified 759 spectra corresponding to the secreted products of twelve peptide hormones including four CEP (C-TERMINALLY ENCODED PEPTIDE), two CLE (CLV3/ENDOSPERM SURROUNDING REGION RELATED) and six XAP (XYLEM SAP ASSOCIATED PEPTIDE) peptides. The MtCEP1, MtCEP2, MtCEP5 and MtCEP8 peptides identified differed in post-translational-modifications. Most were hydroxylated at conserved proline residues but some MtCEP1 derivatives were tri-arabinosylated. In addition, many CEP peptides possessed unexpected N- and C-terminal extensions. The pattern of these extensions suggested roles for endo- and exoproteases in CEP peptide maturation. Longer than expected, hydroxylated and homogeneously modified mono- and tri-arabinosylated CEP peptides corresponding to their in vivo structures were chemically synthesized to probe the effect of these post-translational-modifications on function. The ability of CEP peptides to elevate root nodule number was increased by hydroxylation at key positions. MtCEP1 peptides with N-terminal extensions or with tri-arabinosylation modification, however, were unable to impart increased nodulation. The MtCLE5 and MtCLE17 peptides identified were of precise size, and inhibited main root growth and increased lateral root number. Six XAP peptides, each beginning with a conserved DY sulfation motif, were identified including MtXAP1a, MtXAP1b, MtXAP1c, MtXAP3, MtXAP5 and MtXAP7. MtXAP1a and MtXAP5 inhibited lateral root emergence. Transcriptional analyses demonstrated peptide hormone gene expression in the root vasculature and tip. Since hairy roots can be induced on many plants, their corresponding root cultures may represent ideal source materials to efficiently identify diverse peptide hormones in vivo in a broad range of species.
Collapse
Affiliation(s)
- Neha Patel
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Nadiatul A Mohd-Radzman
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Leo Corcilius
- §School of Chemistry, The University of Sydney, Sydney, Australia
| | - Ben Crossett
- ¶Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia
| | - Angela Connolly
- ¶Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia
| | - Stuart J Cordwell
- ¶Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia.,‖Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Australia
| | - Ariel Ivanovici
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Katia Taylor
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - James Williams
- §School of Chemistry, The University of Sydney, Sydney, Australia
| | - Steve Binos
- **Thermo Fisher Scientific Pty. Ltd., 5 Caribbean Drive, Scoresby, VIC 3179, Australia
| | - Michael Mariani
- **Thermo Fisher Scientific Pty. Ltd., 5 Caribbean Drive, Scoresby, VIC 3179, Australia
| | - Richard J Payne
- §School of Chemistry, The University of Sydney, Sydney, Australia
| | - Michael A Djordjevic
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia;
| |
Collapse
|
8
|
Roles of Angiotensin Peptides and Recombinant Human ACE2 in Heart Failure. J Am Coll Cardiol 2017; 69:805-819. [PMID: 28209222 DOI: 10.1016/j.jacc.2016.11.064] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND The renin-angiotensin system (RAS) is activated in heart failure (HF) and inhibition of RAS is a mainstay therapy for HF. Angiotensin-converting enzyme 2 (ACE2) and its product, angiotensin 1-7 (Ang-[1-7]), are important negative regulators of the RAS. OBJECTIVES A comprehensive examination of angiotensin peptide levels and therapeutic effects of recombinant human ACE2 (rhACE2) on peptide metabolism was evaluated in human plasma and explanted heart tissue from patients with HF. METHODS Using prospective cohorts with chronic (n = 59) and acute (n = 42) HF, plasma angiotensin analysis was performed using a unique liquid chromatography-mass spectrometry/mass spectroscopy method quantifying circulating and equilibrium levels. Angiotensin II (Ang II) metabolism was examined in human explanted hearts with dilated cardiomyopathy (n = 25). RESULTS The dynamic range of the RAS was large, with equilibrium angiotensin levels being 8- to 10-fold higher compared with circulating angiotensin levels. In chronic HF patients receiving ACE inhibition, plasma Ang II was suppressed and plasma Ang-(1-7) was elevated, whereas acute HF and patients receiving angiotensin receptor blocker had higher plasma Ang II with lower Ang-(1-7) levels. Suppressed Ang-(1-7)/Ang II ratio was associated with worsening HF symptoms and longer hospitalization. Recombinant human ACE2 effectively metabolized Ang-(1-10) and Ang II into Ang-(1-9) and Ang-(1-7), respectively. Myocardial Ang II levels in explanted human hearts with dilated cardiomyopathy were elevated despite ACE inhibition with elevated chymase activity, and Ang II was effectively converted to Ang-(1-7) by rhACE2. CONCLUSIONS Plasma angiotensin peptides represent a dynamic network that is altered in HF and in response to rhACE2. An increased plasma Ang-(1-7) level is linked to ACE inhibitor use, whereas acute HF reduced Ang-(1-7) levels and suppressed the Ang-(1-7)/Ang II ratio. Increased chymase activity elevated Ang II levels in failing human hearts. Use of rhACE2 effectively normalized elevated Ang II while increasing Ang-(1-7) and Ang-(1-9) levels.
Collapse
|
9
|
Golubev P, Bakulina O, Dar'in D, Krasavin M. Indoline-Based Constrained Peptidomimetic Motifs Obtained via the Joullié-Ugi Reaction of Indolenines. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pavel Golubev
- Institute of Chemistry; Saint Petersburg State University; 26 Universitetskii Prospect 198504 Peterhof Russian Federation
| | - Olga Bakulina
- Institute of Chemistry; Saint Petersburg State University; 26 Universitetskii Prospect 198504 Peterhof Russian Federation
| | - Dmitry Dar'in
- Institute of Chemistry; Saint Petersburg State University; 26 Universitetskii Prospect 198504 Peterhof Russian Federation
| | - Mikhail Krasavin
- Institute of Chemistry; Saint Petersburg State University; 26 Universitetskii Prospect 198504 Peterhof Russian Federation
| |
Collapse
|
10
|
Wysocki J, Ye M, Batlle D. Plasma and Kidney Angiotensin Peptides: Importance of the Aminopeptidase A/Angiotensin III Axis. Am J Hypertens 2015; 28:1418-26. [PMID: 25968123 DOI: 10.1093/ajh/hpv054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/23/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The renin-angiotensin system is a complex regulatory hormonal network with a main biological peptide and therapeutic target, angiotensin (Ang) II (1-8). There are other potentially important Ang peptides that have not been well evaluated. METHODS Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for concurrent evaluation of multiple Angs downstream of Ang I (1-10) and Ang II (1-8) in kidney and plasma from wild-type (WT) mice. Angiotensin converting enzyme 2 knockout (ACE2KO) was also used as a way to examine the Angs profile in the absence of ACE2, an enzyme that cleaves both Ang I (1-10) and Ang II (1-8). RESULTS In plasma from both WT and ACE2KO, levels of Ang I (1-10), Ang III (2-8), and Ang (2-10) were the highest of all the renin-angiotensin system (RAS) peptides. The latter two peptides are products of aminopeptidase A cleavage of Ang II (1-8) and Ang I (1-10), respectively. In contrast, plasma levels of Ang II (1-8), and Ang (1-7), the product of Ang II (1-8) cleavage by ACE2, were low. In kidney from both WT and ACE2KO, Ang II (1-8) levels were high as compared to plasma levels. In the ACE2KO mice, a significant increase in either Ang II (1-8) or a decrease in Ang (1-7) was not observed in plasma or in the kidney. CONCLUSION RAS-focused peptidomic approach revealed major differences in Ang peptides between mouse plasma and kidney. These Ang peptide profiles show the dominance of the aminopeptidase A/Ang (2-10) and aminopeptidase A/Ang III (2-8) pathways in the metabolism of Ang I (1-10) and Ang II (1-8) over the ACE2/Ang (1-7) axis. Ang III (2-8) and other peptides formed from aminopeptidase A cleavage may be important therapeutic RAS targets.
Collapse
Affiliation(s)
- Jan Wysocki
- Division of Nephrology & Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Minghao Ye
- Division of Nephrology & Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Batlle
- Division of Nephrology & Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
11
|
Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol 2015; 310:H137-52. [PMID: 26475588 DOI: 10.1152/ajpheart.00618.2015] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/15/2015] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS) constitutes a key hormonal system in the physiological regulation of blood pressure through peripheral and central mechanisms. Indeed, dysregulation of the RAS is considered a major factor in the development of cardiovascular pathologies, and pharmacological blockade of this system by the inhibition of angiotensin-converting enzyme (ACE) or antagonism of the angiotensin type 1 receptor (AT1R) offers an effective therapeutic regimen. The RAS is now defined as a system composed of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS comprises the ACE-ANG II-AT1R axis that promotes vasoconstriction; water intake; sodium retention; and increased oxidative stress, fibrosis, cellular growth, and inflammation. In contrast, the nonclassical RAS composed primarily of the ANG II/ANG III-AT2R and the ACE2-ANG-(1-7)-AT7R pathways generally opposes the actions of a stimulated ANG II-AT1R axis. In lieu of the complex and multifunctional aspects of this system, as well as increased concerns on the reproducibility among laboratories, a critical assessment is provided on the current biochemical approaches to characterize and define the various components that ultimately reflect the status of the RAS.
Collapse
Affiliation(s)
- Mark C Chappell
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
12
|
Holappa M, Vapaatalo H, Vaajanen A. Ocular renin-angiotensin system with special reference in the anterior part of the eye. World J Ophthalmol 2015; 5:110-124. [DOI: 10.5318/wjo.v5.i3.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/21/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) regulates blood pressure (BP) homeostasis, systemic fluid volume and electrolyte balance. The RAS cascade includes over twenty peptidases, close to twenty angiotensin peptides and at least six receptors. Out of these, angiotensin II, angiotensin converting enzyme 1 and angiotensin II type 1 receptor (AngII-ACE1-AT1R) together with angiotensin (1-7), angiotensin converting enzyme 2 and Mas receptor (Ang(1-7)-ACE2-MasR) are regarded as the main components of RAS. In addition to circulating RAS, local RA-system exists in various organs. Local RA-systems are regarded as tissue-specific regulatory systems accounting for local effects and long term changes in different organs. Many of the central components such as the two main axes of RAS: AngII-ACE1-AT1R and Ang(1-7)-ACE2-MasR, have been identified in the human eye. Furthermore, it has been shown that systemic antihypertensive RAS- inhibiting medications lower intraocular pressure (IOP). These findings suggest the crucial role of RAS not only in the regulation of BP but also in the regulation of IOP, and RAS potentially plays a role in the development of glaucoma and antiglaucomatous drugs.
Collapse
|
13
|
Pagel O, Loroch S, Sickmann A, Zahedi RP. Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Rev Proteomics 2015; 12:235-53. [PMID: 25955281 PMCID: PMC4487610 DOI: 10.1586/14789450.2015.1042867] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry-based proteomics has considerably extended our knowledge about the occurrence and dynamics of protein post-translational modifications (PTMs). So far, quantitative proteomics has been mainly used to study PTM regulation in cell culture models, providing new insights into the role of aberrant PTM patterns in human disease. However, continuous technological and methodical developments have paved the way for an increasing number of PTM-specific proteomic studies using clinical samples, often limited in sample amount. Thus, quantitative proteomics holds a great potential to discover, validate and accurately quantify biomarkers in body fluids and primary tissues. A major effort will be to improve the complete integration of robust but sensitive proteomics technology to clinical environments. Here, we discuss PTMs that are relevant for clinical research, with a focus on phosphorylation, glycosylation and proteolytic cleavage; furthermore, we give an overview on the current developments and novel findings in mass spectrometry-based PTM research.
Collapse
Affiliation(s)
- Oliver Pagel
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| | - Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| | | | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| |
Collapse
|
14
|
Olkowicz M, Chlopicki S, Smolenski RT. Perspectives for angiotensin profiling with liquid chromatography/mass spectrometry to evaluate ACE/ACE2 balance in endothelial dysfunction and vascular pathologies. Pharmacol Rep 2015; 67:778-85. [PMID: 26321281 DOI: 10.1016/j.pharep.2015.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 02/07/2023]
Abstract
Vascular injury, characterized by endothelial dysfunction, inflammation, structural remodeling, thrombosis and calcification leads to cardiovascular diseases. Angiotensin (Ang) II (1-8) - synthesized mainly by angiotensin converting enzyme (ACE) is the best characterized mediator of the renin-angiotensin system (RAS). This peptide initially identified by its vasoactive properties was found to play a major role in vascular response to insult. However, recent discovery of angiotensin converting enzyme 2 (ACE2) that produces vasoprotective Ang-(1-7) peptide highlighted complexity of the system and suggested that balance between ACE/Ang II and ACE2/Ang-(1-7) is fundamental in maintaining vascular homeostasis and its disorders are associated with cardiovascular pathology. There is therefore a need to develop methods for comprehensive analysis of biologically active Ang peptides and their metabolites of ACE/Ang II and ACE2/Ang-(1-7) axes. Liquid chromatography/mass spectrometry (LC/MS) is an analytical technique that offers potential for specific, simultaneous analysis of Ang peptides. With sensitivity added by application of preconcentration nanochromatography reaching picomolar concentrations, practically all Ang peptides identified so far could be quantified in biological samples. Ang profiling is important not only for understanding their physiological or pathological role but could also serve as an early diagnostic biomarker of endothelial dysfunction and cardiovascular pathology. It could also be used for monitoring the efficacy of the RAS-targeted therapies. Although, the methodology requires further improvements to adopt it for routine application, Ang peptide profiling with targeted LC/MS analysis might assess functional balance between ACE/Ang II and ACE2/Ang-(1-7) axes, facilitate our understanding of the cardiovascular pathology and enhance biomarker portfolio in cardiovascular diseases.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland; Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland.
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland; Department of Experimental Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|
15
|
Development of a sensitive, accurate and robust liquid chromatography/mass spectrometric method for profiling of angiotensin peptides in plasma and its application for atherosclerotic mice. J Chromatogr A 2015; 1393:37-46. [PMID: 25817477 DOI: 10.1016/j.chroma.2015.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/28/2015] [Accepted: 03/06/2015] [Indexed: 02/05/2023]
Abstract
Quantification of angiotensin (Ang) peptides in biological matrices is a challenge due to their low picomolar (pM) concentration and poor analytical performance of current methods. This work aimed to select an optimal strategy for liquid chromatography/mass spectrometry (LC/MS) quantification of major angiotensins in plasma of wild type and atherosclerotic mice. Optimal LC/MS set-up for Ang quantification was chosen, based on analytical performance, from: nanoflow/orbitrap, nanoflow/triple quadrupole and preconcentration nanoflow/triple quadrupole. The best LC/MS configuration (preconcentration nanoflow/triple quadrupole) was validated and used for measurement of angiotensins (Ang I, II, III, IV and (1-7)) in plasma of 6-month-old atherosclerotic apolipoprotein E/LDL receptor double knock-outs (ApoE/LDLR (--/--)) and wild type C57BL/6J (WT) mice. The method established for Ang quantification was selective, accurate and highly sensitive with LLOQ of 5pgmL(-1). The peak area intra-day precisions for Ang II and Ang-(1-7) were in the range 3.0-5.1 and 3.5-5.8, respectively, with corresponding accuracy of 95.4-103.5% and 95.6-106.3%. Plasma angiotensin profile was substantially modified in ApoE/LDLR knock-out mice with increase in concentration of Ang II from 37.6±21.3pgmL(-1) in WT to 200.2±47.6pgmL(-1). Concentrations of Ang I, III and IV were also increased 3-10 fold in ApoE/LDLR (--/--) mice while that of Ang-(1-7) was unchanged. We conclude that the method developed could be effectively used for accurate, comprehensive profiling of angiotensin peptides in mouse plasma. We identified substantial changes in renin-angiotensin system in a genetic mouse model of atherosclerosis consistent with the overactivation of angiotensin converting enzyme (ACE) and the impairment of ACE2.
Collapse
|
16
|
Protein amino-terminal modifications and proteomic approaches for N-terminal profiling. Curr Opin Chem Biol 2015; 24:71-9. [DOI: 10.1016/j.cbpa.2014.10.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 01/24/2023]
|
17
|
Kwiatkowski M, Wurlitzer M, Omidi M, Ren L, Kruber S, Nimer R, Robertson WD, Horst A, Miller RJD, Schlüter H. Desorption durch impulsive Anregung intramolekularer Vibrationszustände – eine Methode zur schnellen Extraktion von Proteinen aus intakten Geweben. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201407669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marcel Kwiatkowski
- Universitätsklinikum Hamburg‐Eppendorf, Institut für Klinische Chemie, Martinistraße 52, Hamburg, 20246 (Deutschland)
| | - Marcus Wurlitzer
- Universitätsklinikum Hamburg‐Eppendorf, Institut für Klinische Chemie, Martinistraße 52, Hamburg, 20246 (Deutschland)
| | - Maryam Omidi
- Universitätsklinikum Hamburg‐Eppendorf, Institut für Klinische Chemie, Martinistraße 52, Hamburg, 20246 (Deutschland)
| | - Ling Ren
- Max‐Planck‐Institut für Struktur und Dynamik der Materie, CFEL (Gebäude 99), Luruper Chaussee 149, Hamburg, 22761 (Deutschland)
| | - Sebastian Kruber
- Max‐Planck‐Institut für Struktur und Dynamik der Materie, CFEL (Gebäude 99), Luruper Chaussee 149, Hamburg, 22761 (Deutschland)
| | - Refat Nimer
- Universitätsklinikum Hamburg‐Eppendorf, Institut für Klinische Chemie, Martinistraße 52, Hamburg, 20246 (Deutschland)
| | - Wesley D. Robertson
- Max‐Planck‐Institut für Struktur und Dynamik der Materie, CFEL (Gebäude 99), Luruper Chaussee 149, Hamburg, 22761 (Deutschland)
| | - Andrea Horst
- Universitätsklinikum Hamburg‐Eppendorf, Institut für Klinische Chemie, Martinistraße 52, Hamburg, 20246 (Deutschland)
| | - R. J. Dwayne Miller
- Max‐Planck‐Institut für Struktur und Dynamik der Materie, CFEL (Gebäude 99), Luruper Chaussee 149, Hamburg, 22761 (Deutschland)
| | - Hartmut Schlüter
- Universitätsklinikum Hamburg‐Eppendorf, Institut für Klinische Chemie, Martinistraße 52, Hamburg, 20246 (Deutschland)
| |
Collapse
|
18
|
Falter C, Ellinger D, von Hülsen B, Heim R, Voigt CA. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis. FRONTIERS IN PLANT SCIENCE 2015; 6:194. [PMID: 25870605 PMCID: PMC4375982 DOI: 10.3389/fpls.2015.00194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/11/2015] [Indexed: 05/08/2023]
Abstract
The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape - liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.
Collapse
Affiliation(s)
| | | | | | | | - Christian A. Voigt
- *Correspondence: Christian A. Voigt, Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| |
Collapse
|
19
|
Kwiatkowski M, Wurlitzer M, Omidi M, Ren L, Kruber S, Nimer R, Robertson WD, Horst A, Miller RJD, Schlüter H. Ultrafast Extraction of Proteins from Tissues Using Desorption by Impulsive Vibrational Excitation. Angew Chem Int Ed Engl 2014; 54:285-8. [DOI: 10.1002/anie.201407669] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Marcel Kwiatkowski
- University Medical Center Hamburg‐Eppendorf, Department of Clinical Chemistry, Martinistrasse 52, Hamburg, 20246 (Germany)
| | - Marcus Wurlitzer
- University Medical Center Hamburg‐Eppendorf, Department of Clinical Chemistry, Martinistrasse 52, Hamburg, 20246 (Germany)
| | - Maryam Omidi
- University Medical Center Hamburg‐Eppendorf, Department of Clinical Chemistry, Martinistrasse 52, Hamburg, 20246 (Germany)
| | - Ling Ren
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL (Building 99), Luruper Chaussee 149, 22761 Hamburg (Germany)
| | - Sebastian Kruber
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL (Building 99), Luruper Chaussee 149, 22761 Hamburg (Germany)
| | - Refat Nimer
- University Medical Center Hamburg‐Eppendorf, Department of Clinical Chemistry, Martinistrasse 52, Hamburg, 20246 (Germany)
| | - Wesley D. Robertson
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL (Building 99), Luruper Chaussee 149, 22761 Hamburg (Germany)
| | - Andrea Horst
- University Medical Center Hamburg‐Eppendorf, Department of Clinical Chemistry, Martinistrasse 52, Hamburg, 20246 (Germany)
| | - R. J. Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, CFEL (Building 99), Luruper Chaussee 149, 22761 Hamburg (Germany)
| | - Hartmut Schlüter
- University Medical Center Hamburg‐Eppendorf, Department of Clinical Chemistry, Martinistrasse 52, Hamburg, 20246 (Germany)
| |
Collapse
|