1
|
Anoma S, Bhattarakosol P, Kowitdamrong E. Characteristics and evolution of hemagglutinin and neuraminidase genes of Influenza A(H3N2) viruses in Thailand during 2015 to 2018. PeerJ 2024; 12:e17523. [PMID: 38846750 PMCID: PMC11155671 DOI: 10.7717/peerj.17523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Background Influenza A(H3N2) virus evolves continuously. Its hemagglutinin (HA) and neuraminidase (NA) genes have high genetic variation due to the antigenic drift. This study aimed to investigate the characteristics and evolution of HA and NA genes of the influenza A(H3N2) virus in Thailand. Methods Influenza A positive respiratory samples from 2015 to 2018 were subtyped by multiplex real-time RT-PCR. Full-length HA and NA genes from the positive samples of influenza A(H3N2) were amplified and sequenced. Phylogenetic analysis with the maximum likelihood method was used to investigate the evolution of the virus compared with the WHO-recommended influenza vaccine strain. Homology modeling and N-glycosylation site prediction were also performed. Results Out of 443 samples, 147 (33.18%) were A(H1N1)pdm09 and 296 (66.82%) were A(H3N2). The A(H3N2) viruses circulating in 2015 were clade 3C.2a whereas sub-clade 3C.2a1 and 3C.2a2 dominated in 2016-2017 and 2018, respectively. Amino acid substitutions were found in all antigenic sites A, B, C, D, and E of HA but the majority of the substitutions were located at antigenic sites A and B. The S245N and N329S substitutions in the NA gene affect the N-glycosylation. None of the mutations associated with resistance to NA inhibitors were observed. Mean evolutionary rates of the HA and NA genes were 3.47 × 10 -3 and 2.98 × 10-3 substitutions per site per year. Conclusion The influenza A(H3N2) virus is very genetically diverse and is always evolving to evade host defenses. The HA and NA gene features including the evolutionary rate of the influenza A(H3N2) viruses that were circulating in Thailand between 2015 and 2018 are described. This information is useful for monitoring the genetic characteristics and evolution in HA and NA genes of influenza A(H3N2) virus in Thailand which is crucial for predicting the influenza vaccine strains resulting in high vaccine effectiveness.
Collapse
Affiliation(s)
- Sasiprapa Anoma
- Interdisciplinary Program in Medical Microbiology, Graduated School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Parvapan Bhattarakosol
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ekasit Kowitdamrong
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Seekings AH, Liang Y, Warren CJ, Hjulsager CK, Thomas SS, Lean FZX, Nunez A, Skinner P, Selden D, Falchieri M, Simmons H, Brown IH, Larsen LE, Banyard AC, Slomka MJ. Transmission dynamics and pathogenesis differ between pheasants and partridges infected with clade 2.3.4.4b H5N8 and H5N1 high-pathogenicity avian influenza viruses. J Gen Virol 2024; 105. [PMID: 38289661 DOI: 10.1099/jgv.0.001946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
During the UK 2020-2021 epizootic of H5Nx clade 2.3.4.4b high-pathogenicity avian influenza viruses (HPAIVs), high mortality occurred during incursions in commercially farmed common pheasants (Phasianus colchicus). Two pheasant farms, affected separately by H5N8 and H5N1 subtypes, included adjacently housed red-legged partridges (Alectoris rufa), which appeared to be unaffected. Despite extensive ongoing epizootics, H5Nx HPAIV partridge outbreaks were not reported during 2020-2021 and 2021-2022 in the UK, so it is postulated that partridges are more resistant to HPAIV infection than other gamebirds. To assess this, pathogenesis and both intra- and inter-species transmission of UK pheasant-origin H5N8-2021 and H5N1-2021 HPAIVs were investigated. Onward transmission to chickens was also assessed to better understand the risk of spread from gamebirds to other commercial poultry sectors. A lower infectious dose was required to infect pheasants with H5N8-2021 compared to H5N1-2021. However, HPAIV systemic dissemination to multiple organs within pheasants was more rapid following infection with H5N1-2021 than H5N8-2021, with the former attaining generally higher viral RNA levels in tissues. Intraspecies transmission to contact pheasants was successful for both viruses and associated with viral environmental contamination, while interspecies transmission to a first chicken-contact group was also efficient. However, further onward transmission to additional chicken contacts was only achieved with H5N1-2021. Intra-partridge transmission was only successful when high-dose H5N1-2021 was administered, while partridges inoculated with H5N8-2021 failed to shed and transmit, although extensive tissue tropism was observed for both viruses. Mortalities among infected partridges featured a longer incubation period compared to that in pheasants, for both viruses. Therefore, the susceptibility of different gamebird species and pathogenicity outcomes to the ongoing H5Nx clade 2.3.4.4b HPAIVs varies, but pheasants represent a greater likelihood of H5Nx HPAIV introduction into galliforme poultry settings. Consequently, viral maintenance within gamebird populations and risks to poultry species warrant enhanced investigation.
Collapse
Affiliation(s)
- Amanda H Seekings
- Department of Virology, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Yuan Liang
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Caroline J Warren
- Department of Virology, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Charlotte K Hjulsager
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen S, Denmark
| | - Saumya S Thomas
- Department of Virology, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Fabian Z X Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, UK
| | - Alejandro Nunez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Paul Skinner
- Department of Virology, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - David Selden
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Marco Falchieri
- Department of Virology, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Hugh Simmons
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Ian H Brown
- Department of Virology, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Lars E Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Ashley C Banyard
- Department of Virology, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Marek J Slomka
- Department of Virology, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| |
Collapse
|
3
|
Ryt-Hansen P, Krog JS, Breum SØ, Hjulsager CK, Pedersen AG, Trebbien R, Larsen LE. Co-circulation of multiple influenza A reassortants in swine harboring genes from seasonal human and swine influenza viruses. eLife 2021; 10:60940. [PMID: 34313225 PMCID: PMC8397370 DOI: 10.7554/elife.60940] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Since the influenza pandemic in 2009, there has been an increased focus on swine influenza A virus (swIAV) surveillance. This paper describes the results of the surveillance of swIAV in Danish swine from 2011 to 2018. In total, 3800 submissions were received with a steady increase in swIAV-positive submissions, reaching 56% in 2018. Full-genome sequences were obtained from 129 swIAV-positive samples. Altogether, 17 different circulating genotypes were identified including six novel reassortants harboring human seasonal IAV gene segments. The phylogenetic analysis revealed substantial genetic drift and also evidence of positive selection occurring mainly in antigenic sites of the hemagglutinin protein and confirmed the presence of a swine divergent cluster among the H1pdm09Nx (clade 1A.3.3.2) viruses. The results provide essential data for the control of swIAV in pigs and emphasize the importance of contemporary surveillance for discovering novel swIAV strains posing a potential threat to the human population.
Collapse
Affiliation(s)
- Pia Ryt-Hansen
- Technical University of Denmark, National Veterinary Institute, Lyngby, Denmark.,University of Copenhagen, Department of Health Sciences, Institute for Animal and Veterinary Sciences, Frederiksberg, Denmark
| | | | | | | | - Anders Gorm Pedersen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Lars Erik Larsen
- Technical University of Denmark, National Veterinary Institute, Lyngby, Denmark.,University of Copenhagen, Department of Health Sciences, Institute for Animal and Veterinary Sciences, Frederiksberg, Denmark
| |
Collapse
|
4
|
Ramesh M, Anand K, Shahbaaz M, Abdellattif MH. Current Perspectives in the Discovery of Newer Medications Against the Outbreak of COVID-19. Front Mol Biosci 2021; 8:648232. [PMID: 34322517 PMCID: PMC8310954 DOI: 10.3389/fmolb.2021.648232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
A rapid and increasing spread of COVID-19 pandemic disease has been perceived worldwide in 2020. The current COVID-19 disease outbreak is due to the spread of SARS-CoV-2. SARS-CoV-2 is a new strain of coronavirus that has spike protein on the envelope. The spike protein of the virus binds with the ACE-2 receptor of the human lungs surface for entering into the host. Therefore, the blocking of viral entry into the host by targeting the spike protein has been suggested to be a valid strategy to treat COVID-19. The patients of COVID-19 were found to be asymptomatic, cold, mild to severe respiratory illness, and leading to death. The severe illness has been noted mainly in old age people, cardiovascular disease patients, and respiratory disease patients. However, the long-term health effects due to COVID-19 are not yet known. Recently, the vaccines were authorized to protect from COVID-19. However, the researchers have put an effort to discover suitable targets and newer medications in the form of small molecules or peptides, based on in-silico methods and synthetic approaches. This manuscript describes the current perspectives of the causative agent, diagnostic procedure, therapeutic targets, treatment, clinical trials, and development of potential clinical candidates of COVID-19. The study will be useful to identify the potential newer medications for the treatment of COVID-19.
Collapse
Affiliation(s)
- M. Ramesh
- Department of Pharmaceutical Analysis, Omega College of Pharmacy, Hyderabad, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| |
Collapse
|
5
|
Liang Y, Krog JS, Ryt-Hansen P, Pedersen AG, Kvisgaard LK, Holm E, Nielsen PD, Hammer AS, Madsen JJ, Thorup K, Larsen LE, Hjulsager CK. Molecular Characterization of Highly Pathogenic Avian Influenza Viruses H5N6 Detected in Denmark in 2018-2019. Viruses 2021; 13:1052. [PMID: 34199456 PMCID: PMC8226499 DOI: 10.3390/v13061052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Beginning in late 2017, highly pathogenic avian influenza (HPAI) H5N6 viruses caused outbreaks in wild birds and poultry in several European countries. H5N6 viruses were detected in 43 wild birds found dead throughout Denmark. Most of the Danish virus-positive dead birds were found in the period from February to April 2018. However, unlike the rest of Europe, sporadic HPAI H5N6-positive dead wild birds were detected in Denmark in July, August, September, and December 2018, with the last positive bird being found in January 2019. HPAI viruses were not detected in active surveillance of apparently healthy wild birds. In this study, we use full genome sequencing and phylogenetic analysis to investigate the wild bird HPAI H5N6 viruses found in Denmark. The Danish viruses were found to be closely related to those of contemporary HPAI H5N6 viruses detected in Europe. Their sequences formed two clusters indicating that at least two or more introductions of H5N6 into Denmark occurred. Notably, all viruses detected in the latter half of 2018 and in 2019 grouped into the same cluster. The H5N6 viruses appeared to have been maintained undetected in the autumn 2018.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (Y.L.); (P.R.-H.); (L.K.K.); (A.S.H.); (L.E.L.)
| | - Jesper Schak Krog
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen S, Denmark; (J.S.K.); (E.H.)
| | - Pia Ryt-Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (Y.L.); (P.R.-H.); (L.K.K.); (A.S.H.); (L.E.L.)
| | - Anders Gorm Pedersen
- DTU Health Tech, Bioinformatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark;
| | - Lise Kirstine Kvisgaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (Y.L.); (P.R.-H.); (L.K.K.); (A.S.H.); (L.E.L.)
| | - Elisabeth Holm
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen S, Denmark; (J.S.K.); (E.H.)
| | - Pernille Dahl Nielsen
- Animal Health Division, Danish Veterinary and Food Administration, 2600 Glostrup, Denmark;
| | - Anne Sofie Hammer
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (Y.L.); (P.R.-H.); (L.K.K.); (A.S.H.); (L.E.L.)
| | | | - Kasper Thorup
- GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark;
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (Y.L.); (P.R.-H.); (L.K.K.); (A.S.H.); (L.E.L.)
| | - Charlotte Kristiane Hjulsager
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen S, Denmark; (J.S.K.); (E.H.)
| |
Collapse
|
6
|
Liang Y, Nissen JN, Krog JS, Breum SØ, Trebbien R, Larsen LE, Hjulsager CK. Novel Clade 2.3.4.4b Highly Pathogenic Avian Influenza A H5N8 and H5N5 Viruses in Denmark, 2020. Viruses 2021; 13:886. [PMID: 34065033 PMCID: PMC8151437 DOI: 10.3390/v13050886] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
Since late 2020, outbreaks of H5 highly pathogenic avian influenza (HPAI) viruses belonging to clade 2.3.4.4b have emerged in Europe. To investigate the evolutionary history of these viruses, we performed genetic characterization on the first HPAI viruses found in Denmark during the autumn of 2020. H5N8 viruses from 14 wild birds and poultry, as well as one H5N5 virus from a wild bird, were characterized by whole genome sequencing and phylogenetic analysis. The Danish H5N8 viruses were found to be genetically similar to each other and to contemporary European clade 2.3.4.4b H5N8 viruses, while the Danish H5N5 virus was shown to be a unique genotype from the H5N5 viruses that circulated at the same time in Russia, Germany, and Belgium. Genetic analyses of one of the H5N8 viruses revealed the presence of a substitution (PB2-M64T) that is highly conserved in human seasonal influenza A viruses. Our analyses showed that the late 2020 clade 2.3.4.4b HPAI H5N8 viruses were most likely new incursions introduced by migrating birds to overwintering sites in Europe, rather than the result of continued circulation of H5N8 viruses from previous introductions to Europe in 2016/2017 and early 2020.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (Y.L.); (L.E.L.)
| | - Jakob N. Nissen
- Virus and Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen S, Denmark; (J.N.N.); (J.S.K.); (S.Ø.B.); (R.T.)
| | - Jesper S. Krog
- Virus and Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen S, Denmark; (J.N.N.); (J.S.K.); (S.Ø.B.); (R.T.)
| | - Solvej Ø. Breum
- Virus and Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen S, Denmark; (J.N.N.); (J.S.K.); (S.Ø.B.); (R.T.)
| | - Ramona Trebbien
- Virus and Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen S, Denmark; (J.N.N.); (J.S.K.); (S.Ø.B.); (R.T.)
| | - Lars E. Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (Y.L.); (L.E.L.)
| | - Charlotte K. Hjulsager
- Virus and Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen S, Denmark; (J.N.N.); (J.S.K.); (S.Ø.B.); (R.T.)
| |
Collapse
|
7
|
Ivan FX, Zhou X, Lau SH, Rashid S, Teo JSM, Lee HK, Koay ES, Chan KP, Leo YS, Chen MIC, Kwoh CK, Chow VT. Molecular insights into evolution, mutations and receptor-binding specificity of influenza A and B viruses from outpatients and hospitalized patients in Singapore. Int J Infect Dis 2020; 90:84-96. [PMID: 31669593 DOI: 10.1016/j.ijid.2019.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND This study compared the genomes of influenza viruses that caused mild infections among outpatients and severe infections among hospitalized patients in Singapore, and characterized their molecular evolution and receptor-binding specificity. METHODS The complete genomes of influenza A/H1N1, A/H3N2 and B viruses that caused mild infections among outpatients and severe infections among inpatients in Singapore during 2012-2015 were sequenced and characterized. Using various bioinformatics approaches, we elucidated their evolutionary, mutational and structural patterns against the background of global and vaccine strains. RESULTS The phylogenetic trees of the 8 gene segments revealed that the outpatient and inpatient strains overlapped with representative global and vaccine strains. We observed a cluster of inpatients with A/H3N2 strains that were closely related to vaccine strain A/Texas/50/2012(H3N2). Several protein sites could accurately discriminate between outpatient versus inpatient strains, with site 221 in neuraminidase (NA) achieving the highest accuracy for A/H3N2. Interestingly, amino acid residues of inpatient but not outpatient isolates at those sites generally matched the corresponding residues in vaccine strains, except at site 145 of hemagglutinin (HA). This would be especially relevant for future surveillance of A/H3N2 strains in relation to their antigenicity and virulence. Furthermore, we observed a trend in which the HA proteins of influenza A/H3N2 and A/H1N1 exhibited enhanced ability to bind both avian and human host cell receptors. In contrast, the binding ability to each receptor was relatively stable for the HA of influenza B. CONCLUSIONS Overall, our findings extend our understanding of the molecular and structural evolution of influenza virus strains in Singapore within the global context of these dynamic viruses.
Collapse
Affiliation(s)
- Fransiskus X Ivan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Xinrui Zhou
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Suk Hiang Lau
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shamima Rashid
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Jasmine S M Teo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hong Kai Lee
- Molecular Diagnosis Centre, National University Hospital, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Evelyn S Koay
- Molecular Diagnosis Centre, National University Hospital, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kwai Peng Chan
- Department of Pathology, Singapore General Hospital, Singapore
| | - Yee Sin Leo
- National Centre for Infectious Diseases, Singapore
| | - Mark I C Chen
- National Centre for Infectious Diseases, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore.
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Beidas M, Chehadeh W. Effect of Human Coronavirus OC43 Structural and Accessory Proteins on the Transcriptional Activation of Antiviral Response Elements. Intervirology 2018; 61:30-35. [PMID: 30041172 PMCID: PMC7179558 DOI: 10.1159/000490566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/03/2018] [Indexed: 12/25/2022] Open
Abstract
Objectives The molecular mechanisms underlying the pathogenesis of human coronavirus OC43 (HCoV-OC43) infection are poorly understood. In this study, we investigated the ability of HCoV-OC43 to antagonize the transcriptional activation of antiviral response elements. Methods HCoV-OC43 structural (membrane M and nucleocapsid N) and accessory proteins (ns2a and ns5a) were expressed individually in human embryonic kidney 293 (HEK-293) cells. The transcriptional activation of antiviral response elements was assessed by measuring the levels of firefly luciferase expressed under the control of interferon (IFN)-stimulated response element (ISRE), IFN-β promoter, or nuclear factor kappa B response element (NF-κB-RE). The antiviral gene expression profile in HEK-293 cells was determined by PCR array. Results The transcriptional activity of ISRE, IFN-β promoter, and NF-κB-RE was significantly reduced in the presence of HCoV-OC43 ns2a, ns5a, M, or N protein, following the challenge of cells with Sendai virus, IFN-α or tumor necrosis factor-α. The expression of antiviral genes involved in the type I IFN and NF-κB signaling pathways was also downregulated in the presence of HCoV-OC43 structural or accessory proteins. Conclusion Both structural and accessory HCoV-OC43 proteins are able to inhibit antiviral response elements in HEK-293 cells, and to block the activation of different antiviral signaling pathways.
Collapse
Affiliation(s)
| | - Wassim Chehadeh
- *Dr. Wassim Chehadeh, Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13310 (Kuwait), E-Mail
| |
Collapse
|
9
|
Joshi AP, Angel A, Angel B, Baharia RK, Rathore S, Sharma N, Yadav K, Thanvi S, Thanvi I, Joshi V. In-silico Designing and Testing of Primers for Sanger Genome Sequencing of Dengue Virus Types of Asian Origin. J Genomics 2018; 6:34-40. [PMID: 29707045 PMCID: PMC5916874 DOI: 10.7150/jgen.22460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/12/2017] [Indexed: 01/24/2023] Open
Abstract
Rarity in reporting whole genome sequence of Dengue virus from dengue endemic countries leaves lacunae in understanding regional pattern of virus mutation and ultimately leading to non-understanding of transmission pattern and clinical outcomes emerging at regional levels. Due to inter-serotype genomic similarity and intra-serotype genomic diversity, appropriate designing of primer pairs appears as an exhaustive exercise. Present paper reports new Dengue virus type-specific primer which may help in characterizing virus specific to Asian origin. Genomes of dengue virus serotypes of Asian region were searched and using advanced bioinformatics tools, serotype specific primers were designed and tested for their targeted amplification efficiency. 19 primers sets for DENV-1, 18 primer sets for DENV-2, 17 for DENV-3 and 18 for DENV-4 were designed. In-silico and experimental testing of the designed primers were performed on virus isolated from both clinical isolates and passaged cultures. While all 17 and 18 primer sets of DENV-3 and DENV-2 respectively yielded good quality sequencing results; in case of DENV-4, 16 out of 18 primer sets and in DENV-1, 16 out of 19 primer sets yielded good results. Average sequencing read length was 382 bases and around 82% nucleotide bases were Phred quality QV20 bases (representing an accuracy of circa one miscall every 100 bases) or higher. Results also highlighted importance of use of primer development algorithm and identified genomic regions which are conservative, yet specific for developing primers to achieve efficiency and specificity during experiments.
Collapse
Affiliation(s)
- Ajay Prakash Joshi
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005
| | - Annette Angel
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005
| | - Bennet Angel
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005.,Present Address: Amity Institute of Virology & Immunology (AIVI), Amity University, Noida, U.P., India- 201313
| | - Rajendra Kumar Baharia
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005.,Present Address: National Institute of Malaria Research, Secotr-8, Dwarika, New Delhi -110077
| | - Suman Rathore
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005.,All India Institute of Medical Sciences, Jodhpur, India
| | - Neha Sharma
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005
| | - Karuna Yadav
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005
| | - Sharad Thanvi
- Department of Neuroscience, Dr. SN Medical College, Jodhpur, India-342001
| | - Indu Thanvi
- Department of Medicine, Dr. SN Medical College, Jodhpur, India-342001
| | - Vinod Joshi
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005.,Present Address: Amity Institute of Virology & Immunology (AIVI), Amity University, Noida, U.P., India- 201313
| |
Collapse
|
10
|
Beidas M, Chehadeh W. PCR array profiling of antiviral genes in human embryonic kidney cells expressing human coronavirus OC43 structural and accessory proteins. Arch Virol 2018; 163:2065-2072. [PMID: 29619598 PMCID: PMC7086905 DOI: 10.1007/s00705-018-3832-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/22/2018] [Indexed: 10/26/2022]
Abstract
Human coronavirus OC43 (HCoV-OC43) is a respiratory virus that usually causes a common cold. However, it has the potential to cause severe infection in young children and immunocompromised adults. Both SARS-CoV and MERS-CoV were shown to express proteins with the potential to evade early innate immune responses. However, the ability of HCoV-OC43 to antagonise the intracellular antiviral defences has not yet been investigated. The potential role of the HCoV-OC43 structural (M and N) and accessory proteins (ns2a and ns5a) in the alteration of antiviral gene expression was investigated in this study. HCoV-OC43M, N, ns2a and ns5a proteins were expressed in human embryonic kidney 293 (HEK-293) cells before challenge with Sendai virus. The Human Antiviral Response PCR array was used to profile the antiviral gene expression in HEK-293 cells. Over 30 genes were downregulated in the presence of one of the HCoV-OC43 proteins, e.g. genes representing mitogen-activated protein kinases, toll-like receptors, interferons, interleukins, and signaling transduction proteins. Our findings suggest that similarly to SARS-CoV and MERS-CoV, HCoV-OC43 has the ability to downregulate the transcription of genes critical for the activation of different antiviral signaling pathways. Further studies are needed to confirm the role of HCoV-OC43 structural and accessory proteins in antagonising antiviral gene expression.
Collapse
Affiliation(s)
- Meshal Beidas
- Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, 13310, Safat, Kuwait
| | - Wassim Chehadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, 13310, Safat, Kuwait.
| |
Collapse
|
11
|
Ali R, Blackburn RM, Kozlakidis Z. Next-Generation Sequencing and Influenza Virus: A Short Review of the Published Implementation Attempts. HAYATI JOURNAL OF BIOSCIENCES 2016. [DOI: 10.1016/j.hjb.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
12
|
Lee HK, Lee CK, Tang JWT, Loh TP, Koay ESC. Contamination-controlled high-throughput whole genome sequencing for influenza A viruses using the MiSeq sequencer. Sci Rep 2016; 6:33318. [PMID: 27624998 PMCID: PMC5022032 DOI: 10.1038/srep33318] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/24/2016] [Indexed: 12/04/2022] Open
Abstract
Accurate full-length genomic sequences are important for viral phylogenetic studies. We developed a targeted high-throughput whole genome sequencing (HT-WGS) method for influenza A viruses, which utilized an enzymatic cleavage-based approach, the Nextera XT DNA library preparation kit, for library preparation. The entire library preparation workflow was adapted for the Sentosa SX101, a liquid handling platform, to automate this labor-intensive step. As the enzymatic cleavage-based approach generates low coverage reads at both ends of the cleaved products, we corrected this loss of sequencing coverage at the termini by introducing modified primers during the targeted amplification step to generate full-length influenza A sequences with even coverage across the whole genome. Another challenge of targeted HTS is the risk of specimen-to-specimen cross-contamination during the library preparation step that results in the calling of false-positive minority variants. We included an in-run, negative system control to capture contamination reads that may be generated during the liquid handling procedures. The upper limits of 99.99% prediction intervals of the contamination rate were adopted as cut-off values of contamination reads. Here, 148 influenza A/H3N2 samples were sequenced using the HTS protocol and were compared against a Sanger-based sequencing method. Our data showed that the rate of specimen-to-specimen cross-contamination was highly significant in HTS.
Collapse
Affiliation(s)
- Hong Kai Lee
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore
| | - Chun Kiat Lee
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore
| | - Julian Wei-Tze Tang
- Department of Infection, Immunity, Inflammation, University of Leicester, Leicester, UK.,Clinical Microbiology, Leicester Royal Infirmary, Leicester, UK
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore
| | - Evelyn Siew-Chuan Koay
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
13
|
McWhite CD, Meyer AG, Wilke CO. Sequence amplification via cell passaging creates spurious signals of positive adaptation in influenza virus H3N2 hemagglutinin. Virus Evol 2016; 2:vew026. [PMID: 27713835 PMCID: PMC5049878 DOI: 10.1093/ve/vew026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clinical influenza A virus isolates are frequently not sequenced directly. Instead, a majority of these isolates (~70% in 2015) are first subjected to passaging for amplification, most commonly in non-human cell culture. Here, we find that this passaging leaves distinct signals of adaptation, which can confound evolutionary analyses of the viral sequences. We find distinct patterns of adaptation to Madin-Darby (MDCK) and monkey cell culture absent from unpassaged hemagglutinin sequences. These patterns also dominate pooled datasets not separated by passaging type, and they increase in proportion to the number of passages performed. By contrast, MDCK-SIAT1 passaged sequences seem mostly (but not entirely) free of passaging adaptations. Contrary to previous studies, we find that using only internal branches of influenza virus phylogenetic trees is insufficient to correct for passaging artifacts. These artifacts can only be safely avoided by excluding passaged sequences entirely from subsequent analysis. We conclude that future influenza virus evolutionary analyses should appropriately control for potentially confounding effects of passaging adaptations.
Collapse
Affiliation(s)
- Claire D. McWhite
- Center for Systems and Synthetic Biology and Institute for Cellular and
Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin,
Austin, TX 78712, USA
| | - Austin G. Meyer
- Center for Systems and Synthetic Biology and Institute for Cellular and
Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Center for Computational Biology and Bioinformatics, The University of Texas
at Austin, Austin, TX 78712, USA
- Department of Integrative Biology, The University of Texas at Austin,
Austin, TX 78712, USA
| | - Claus O. Wilke
- Center for Systems and Synthetic Biology and Institute for Cellular and
Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Center for Computational Biology and Bioinformatics, The University of Texas
at Austin, Austin, TX 78712, USA
- Department of Integrative Biology, The University of Texas at Austin,
Austin, TX 78712, USA
| |
Collapse
|
14
|
Li N, Ding YU, Yu T, Li J, Shen Y, Wang X, Fu Q, Shen Y, Huang X, Wang J. Causal variants screened by whole exome sequencing in a patient with maternal uniparental isodisomy of chromosome 10 and a complicated phenotype. Exp Ther Med 2016; 11:2247-2253. [PMID: 27284308 PMCID: PMC4887894 DOI: 10.3892/etm.2016.3241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 02/11/2016] [Indexed: 11/18/2022] Open
Abstract
Uniparental disomy (UPD), which is the abnormal situation in which both copies of a chromosomal pair have been inherited from one parent, may cause clinical abnormalities by affecting genomic imprinting or causing autosomal recessive variation. Whole Exome Sequencing (WES) and chromosomal microarray analysis (CMA) are powerful technologies used to search for underlying causal variants. In the present study, WES was used to screen for candidate causal variants in the genome of a Chinese pediatric patient, who had been shown by CMA to have maternal uniparental isodisomy of chromosome 10. This was associated with numerous severe medical problems, including bilateral deafness, binocular blindness, stunted growth and leukoderma. A total of 13 rare homozygous variants of these genes were identified on chromosome 10. These included a classical splice variant in the HPS1 gene (c.398+5G>A), which causes Hermansky-Pudlak syndrome type 1 and may explain the patient's ocular and dermal disorders. In addition, six likely pathogenic genes on other chromosomes were found to be associated with the subject's ocular and aural disorders by phenotypic analysis. The results of the present study demonstrated that WES and CMA may be successfully combined in order to identify candidate causal genes. Furthermore, a connection between phenotype and genotype was established in this patient.
Collapse
Affiliation(s)
- Niu Li
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Y U Ding
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Tingting Yu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Juan Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Yongnian Shen
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Qihua Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China; Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Yiping Shen
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China; Boston Children's Hospital, Boston, MA 02115, USA
| | - Xiaodong Huang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Jian Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China; Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
15
|
Hu Y, Ren X, Li L, Xiao Y, Dong J, Sun L, Zhu Y, Yang F, Zhang X, Jin Q. Rapid genome sequencing and characterization of novel avian-origin influenza A H7N9 virus directly from clinical sample by semiconductor sequencing. J Clin Virol 2015; 73:84-88. [PMID: 26580409 DOI: 10.1016/j.jcv.2015.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Recent outbreaks of severe pneumonia or acute respiratory distress syndrome have attracted much public interest. Rapid and accurate diagnosis of the causative agent is key for an adequate response to suspected outbreaks. OBJECTIVES We report a case that highlights the potential of semiconductor sequencing to rapidly determine the novel virus genome sequences. STUDY DESIGN We have developed a method for rapid de novo assembly of the novel influenza A H7N9 virus genome directly from the tracheal aspirate of a patient using semiconductor sequencer without culture and prior sequence information. Further, characteristic amino acids were analyzed and phylogenetic analysis were done for key genes of the influenza A virus. RESULTS Deep sequencing yielded 435,239 reads assigned to H7N9 viruses, with an average length of 172 bp, accounting for 18.6% of total reads (2,339,680). Complete genome of the virus was obtained by de novo assembly method within 2 days. Genomic average depth of coverage of the Ion Torrent PGM was up to 5679 fold. Selected characteristic amino acids were observed, and phylogenetic analyses showed that the novel H7 virus was genetically close to 2011 duck H7N3 viruses in Zhejiang. The novel N9 sequences were most closely related to gene sequences of N9 derived from ducks H11N9 in 2011 in Jiangxi and H2N9 sequences from Hong Kong in 2010, in China, and therefore they may share a common ancestor. CONCLUSIONS The sequence-independent semiconductor sequencing is a powerful tool to investigate outbreak of a novel pathogen.
Collapse
Affiliation(s)
- Yongfeng Hu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China
| | - Xianwen Ren
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China
| | - Li Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China
| | - Jie Dong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China
| | - Lilian Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China
| | - Yafang Zhu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China
| | - Fan Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China.
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, PR China.
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China.
| |
Collapse
|
16
|
Interim estimates of divergence date and vaccine strain match of human influenza A(H3N2) virus from systematic influenza surveillance (2010-2015) in Hangzhou, southeast of China. Int J Infect Dis 2015; 40:17-24. [PMID: 26417878 DOI: 10.1016/j.ijid.2015.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/17/2015] [Accepted: 09/19/2015] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES In the post-pandemic period 2010-2015, seasonal influenza A(H3N2) virus predominated in Hangzhou, southeast of China, with an increased activity and semi-annual seasons. This study utilized HA virus gene segment sequences to analyze the divergence date and vaccine strain match of human influenza A(H3N2) virus from systematic influenza surveillance in Hangzhou. METHODS Virological and serological analyses of 124 representative A(H3N2) viruses from prospective studies of systematic surveillance samples were conducted to quantify the genetic and antigenic characteristics and their vaccine strain match. RESULTS Bayesian phylogenetic inference showed that two separate subgroups 3C.3 and 3C.2 probably diverged from group 3C in early 2012 and then evolved into groups 3C.3a and 3C.2a, respectively, in the 2014/15 influenza season. Furthermore, high amino acid substitution rates of the HA1 subunit were found in A(H3N2) group 3C.2a variants, indicating that increased antigenic drift of A(H3N2) group 3C.2a virus is associated with a vaccine mismatch to the 2015/16 vaccine reference strain Switzerland/9715293/2013 (group 3C.3a). CONCLUSIONS A portion of the group 3C.2a isolates are not covered by the current A(H3N2) vaccine strain. These findings offer insights into the emergence of group 3C.2a variants with epidemic potential in the imminent influenza seasons.
Collapse
|
17
|
Lee HK, Tang JWT, Loh TP, Oon LLE, Koay ESC. Predicting clinical severity based on substitutions near epitope A of influenza A/H3N2. INFECTION GENETICS AND EVOLUTION 2015; 34:292-7. [PMID: 26118307 DOI: 10.1016/j.meegid.2015.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/15/2015] [Accepted: 06/25/2015] [Indexed: 01/03/2023]
Abstract
Epitopes are the main targets for specific antibodies in the host defense systems. Recent studies have shown that amino acid (aa) substitutions located within the influenza A/H3N2 hemagglutinin 1 (HA1) epitopes A-E, particularly in A and B, result in antigenic drift. Viruses with such drift mutations may have resulted in more severe influenza-related illness during influenza epidemics between late 2012 and early 2015. We sought to quantify vaccine mismatches in epitopes A-E of the HA1 protein, and correlate these with the severity of the patient's illness. The influenza A/H3N2 clinical samples were collected between April 2009 and November 2013 (n=206). Patients were clinically stratified into groups with mild, moderate, and severe influenza-like illness (ILI). The impact of the number of aa mismatches in each of epitopes A-E, gender, age groups (⩽18, 19-64, ⩾65 years), and comorbidities on the likelihood that patients would suffer moderate and/or severe ILI due to influenza A/H3N2 infection were assessed. A higher number of aa mismatches in epitope A between the vaccine and locally circulating viruses correlated with more severe influenza infection, although this correlation was most significant with pre-existing comorbidities. A practical application of this finding would be to monitor patients (especially those in high-risk groups) infected with such viruses more closely, as they are at increased risk of developing more serious disease. Epidemiologically, it was of interest to note that viruses from subclade 3A of Victoria/208 strain were not detected in Singapore between 2009 and 2012. By contrast, these viruses were detected at a prevalence of up to 40% in the 2011-2012 influenza seasons in other regions of the Northern and Southern hemispheres. Such findings support the rationale for more regionally customized seasonal influenza vaccine compositions to optimize the protection of the population against locally circulating virus strains.
Collapse
Affiliation(s)
- Hong Kai Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore
| | - Julian Wei-Tze Tang
- Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore
| | | | - Evelyn Siew-Chuan Koay
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore.
| |
Collapse
|
18
|
Deng YM, Spirason N, Iannello P, Jelley L, Lau H, Barr IG. A simplified Sanger sequencing method for full genome sequencing of multiple subtypes of human influenza A viruses. J Clin Virol 2015; 68:43-8. [PMID: 26071334 DOI: 10.1016/j.jcv.2015.04.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/20/2015] [Accepted: 04/25/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND Full genome sequencing of influenza A viruses (IAV), including those that arise from annual influenza epidemics, is undertaken to determine if reassorting has occurred or if other pathogenic traits are present. Traditionally IAV sequencing has been biased toward the major surface glycoproteins haemagglutinin and neuraminidase, while the internal genes are often ignored. Despite the development of next generation sequencing (NGS), many laboratories are still reliant on conventional Sanger sequencing to sequence IAV. OBJECTIVES To develop a minimal and robust set of primers for Sanger sequencing of the full genome of IAV currently circulating in humans. STUDY DESIGN A set of 13 primer pairs was designed that enabled amplification of the six internal genes of multiple human IAV subtypes including the recent avian influenza A(H7N9) virus from China. Specific primers were designed to amplify the HA and NA genes of each IAV subtype of interest. Each of the primers also incorporated a binding site at its 5'-end for either a forward or reverse M13 primer, such that only two M13 primers were required for all subsequent sequencing reactions. RESULTS This minimal set of primers was suitable for sequencing the six internal genes of all currently circulating human seasonal influenza A subtypes as well as the avian A(H7N9) viruses that have infected humans in China. CONCLUSIONS This streamlined Sanger sequencing protocol could be used to generate full genome sequence data more rapidly and easily than existing influenza genome sequencing protocols.
Collapse
Affiliation(s)
- Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.
| | - Natalie Spirason
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Pina Iannello
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Lauren Jelley
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Hilda Lau
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; School of Applied and Biomedical Sciences, Federation University, Churchill, Victoria 3842, Australia
| |
Collapse
|
19
|
Lee HK, Tang JWT, Loh TP, Hurt AC, Oon LLE, Koay ESC. Molecular surveillance of antiviral drug resistance of influenza A/H3N2 virus in Singapore, 2009-2013. PLoS One 2015; 10:e0117822. [PMID: 25635767 PMCID: PMC4311985 DOI: 10.1371/journal.pone.0117822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/02/2015] [Indexed: 01/10/2023] Open
Abstract
Adamantanes and neuraminidase inhibitors (NAIs) are two classes of antiviral drugs available for the chemoprophylaxis and treatment of influenza infections. To determine the frequency of drug resistance in influenza A/H3N2 viruses in Singapore, large-scale sequencing of neuraminidase (NA) and matrix protein (MP) genes was performed directly without initial culture amplification. 241 laboratory-confirmed influenza A/H3N2 clinical samples, collected between May 2009 and November 2013 were included. In total, 229 NA (95%) and 241 MP (100%) complete sequences were obtained. Drug resistance mutations in the NA and MP genes were interpreted according to published studies. For the NAIs, a visual inspection of the aligned NA sequences revealed no known drug resistant genotypes (DRGs). For the adamantanes, the well-recognised S31N DRG was identified in all 241 MP genes. In addition, there was an increasing number of viruses carrying the combination of D93G+Y155F+D251V (since May 2013) or D93G (since March 2011) mutations in the NA gene. However, in-vitro NAI testing indicated that neither D93G+Y155F+D251V nor D93G alone conferred any changes in NAI susceptibility. Lastly, an I222T mutation in the NA gene that has previously been reported to cause oseltamivir-resistance in influenza A/H1N1/2009, B, and A/H5N1, was detected from a treatment-naïve patient. Further in-vitro NAI testing is required to confirm the effect of this mutation in A/H3N2 virus.
Collapse
Affiliation(s)
- Hong Kai Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - Julian Wei-Tze Tang
- Clinical Microbiology, Leicester Royal Infirmary, Leicester, United Kingdom
- * E-mail: (JWT); (ESK)
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, VIC, Australia
- Melbourne School of Population and Global Health, University of Melbourne, VIC, Australia
| | | | - Evelyn Siew-Chuan Koay
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore, Singapore
- * E-mail: (JWT); (ESK)
| |
Collapse
|
20
|
Shao TJ, Li J, Yu XF, Kou Y, Zhou YY, Qian X. Progressive antigenic drift and phylogeny of human influenza A(H3N2) virus over five consecutive seasons (2009-2013) in Hangzhou, China. Int J Infect Dis 2014; 29:190-3. [PMID: 25447724 DOI: 10.1016/j.ijid.2014.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/13/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022] Open
Abstract
Vaccine efficacy (VE) can be affected by progressive antigenic drift or any new reassortment of influenza viruses. To effectively track the evolution of human influenza A(H3N2) virus circulating in Hangzhou, China, a total of 65 clinical specimens were selected randomly from outpatients infected by A(H3N2) viruses during the study period from November 2009 to December 2013. The results of reduced VE and antigenic drift of the correspondent epitopes (C-D-E to A-B) suggest that the current vaccine provides suboptimal protection against the A(H3N2) strains circulating recently. Phylogenetic analysis of the entire HA and NA sequences demonstrated that these two genes underwent independent evolutionary pathways during recent seasons. The H3-based phylogenetic tree showed that a special strain A/Hangzhou/A289/2012 fell in a cluster among viruses with reduced VE predominantly circulating in 2013. Our findings underscore a possible early warning for the circulation of A(H3N2) variants with antigenic drift during the previous seasons.
Collapse
Affiliation(s)
- Tie-Juan Shao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jun Li
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Zhejiang 310021, China.
| | - Xin-Fen Yu
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Zhejiang 310021, China
| | - Yu Kou
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Zhejiang 310021, China
| | - Yin-Yan Zhou
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Zhejiang 310021, China
| | - Xin Qian
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Zhejiang 310021, China
| |
Collapse
|
21
|
Rash A, Woodward A, Bryant N, McCauley J, Elton D. An efficient genome sequencing method for equine influenza [H3N8] virus reveals a new polymorphism in the PA-X protein. Virol J 2014; 11:159. [PMID: 25183201 PMCID: PMC4161859 DOI: 10.1186/1743-422x-11-159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND H3N8 equine influenza virus (EIV) has caused disease outbreaks in horses across the world since its first isolation in 1963. However, unlike human, swine and avian influenza, there is relatively little sequence data available for this virus. The majority of published sequences are for the segment encoding haemagglutinin (HA), one of the two surface glycoproteins, making it difficult to study the evolution of the other gene segments and determine the level of reassortment occurring between sub-lineages. METHODS To facilitate the generation of full genome sequences for EIV, we developed a simple, cost-effective and efficient method. M13-tagged primers were used to amplify short, overlapping RT-PCR products, which were then sequenced using Sanger dideoxynucleotide sequencing technology. We also modified a previously published method, developed for human H3N2 and avian H5N1 influenza viruses, which was based on the ligation of viral RNA and subsequent amplification by RT-PCR, to sequence the non-coding termini (NCRs). This necessitated the design of novel primers for an N8 neuraminidase segment. RESULTS Two field isolates were sequenced successfully, A/equine/Lincolnshire/1/07 and A/equine/Richmond/1/07, representative of the Florida sublineage clades 1 and 2 respectively. A total of 26 PCR products varying in length from 400-600 nucleotides allowed full coverage of the coding sequences of the eight segments, with sufficient overlap to allow sequence assembly with no primer-derived sequences. Sequences were also determined for the non-coding regions and revealed cytosine at nucleotide 4 in the polymerase segments. Analysis of EIV genomes sequenced using these methods revealed a novel polymorphism in the PA-X protein in some isolates. CONCLUSIONS These methods can be used to determine the genome sequences of EIV, including the NCRs, from both clade 1 and clade 2 of the Florida sublineage. Full genomes were covered efficiently using fewer PCR products than previously reported methods for influenza A viruses, the techniques used are affordable and the equipment required is available in most research laboratories. The adoption of these methods will hopefully allow for an increase in the number of full genomes available for EIV, leading to improved surveillance and a better understanding of EIV evolution.
Collapse
Affiliation(s)
- Adam Rash
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK.
| | | | | | | | | |
Collapse
|
22
|
Emergence of G186D mutation in the presence of R292K mutation in an immunocompromised child infected with influenza A/H3N2 virus, treated with oseltamivir. J Clin Microbiol 2014; 52:1749-50. [PMID: 24599981 DOI: 10.1128/jcm.00538-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An immunocompromised child with influenza A/H3N2 virus infection, treated with oseltamivir from day 1, had nasal swabs taken on days 1, 4, 7, and 10 of the illness. Pyrosequencing showed increasing proportions of viruses with R292K (neuraminidase gene) and G186D (hemagglutinin gene) mutations, resulting in a viral load rebound by day 10.
Collapse
|
23
|
Lee HK, Tang JWT, Kong DHL, Loh TP, Chiang DKL, Lam TTY, Koay ESC. Comparison of mutation patterns in full-genome A/H3N2 influenza sequences obtained directly from clinical samples and the same samples after a single MDCK passage. PLoS One 2013; 8:e79252. [PMID: 24223916 PMCID: PMC3815150 DOI: 10.1371/journal.pone.0079252] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022] Open
Abstract
Human influenza viruses can be isolated efficiently from clinical samples using Madin-Darby canine kidney (MDCK) cells. However, this process is known to induce mutations in the virus as it adapts to this non-human cell-line. We performed a systematic study to record the pattern of MDCK-induced mutations observed across the whole influenza A/H3N2 genome. Seventy-seven clinical samples collected from 2009-2011 were included in the study. Two full influenza genomes were obtained for each sample: one from virus obtained directly from the clinical sample and one from the matching isolate cultured in MDCK cells. Comparison of the full-genome sequences obtained from each of these sources showed that 42% of the 77 isolates had acquired at least one MDCK-induced mutation. The presence or absence of these mutations was independent of viral load or sample origin (in-patients versus out-patients). Notably, all the five hemagglutinin missense mutations were observed at the hemaggutinin 1 domain only, particularly within or proximal to the receptor binding sites and antigenic site of the virus. Furthermore, 23% of the 77 isolates had undergone a MDCK-induced missense mutation, D151G/N, in the neuraminidase segment. This mutation has been found to be associated with reduced drug sensitivity towards the neuraminidase inhibitors and increased viral receptor binding efficiency to host cells. In contrast, none of the neuraminidase sequences obtained directly from the clinical samples contained the D151G/N mutation, suggesting that this mutation may be an indicator of MDCK culture-induced changes. These D151 mutations can confound the interpretation of the hemagglutination inhibition assay and neuraminidase inhibitor resistance results when these are based on MDCK isolates. Such isolates are currently in routine use in the WHO influenza vaccine and drug-resistance surveillance programs. Potential data interpretation miscalls can therefore be avoided by careful exclusion of such D151 mutants after further sequence analysis.
Collapse
Affiliation(s)
- Hong Kai Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - Julian Wei-Tze Tang
- Alberta Provincial Laboratory for Public Health, University of Alberta Hospital, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
- * E-mail: (JW-TT); (ES-CK)
| | - Debra Han-Lin Kong
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - Donald Kok-Leong Chiang
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | | | - Evelyn Siew-Chuan Koay
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore, Singapore
- * E-mail: (JW-TT); (ES-CK)
| |
Collapse
|