1
|
Zhang M, Yang L, Jia J, Xu F, Gao S, Han F, Deng M, Wang J, Li V, Yu M, Sun Y, Yuan H, Zhou Y, Li N. Increased GHS-R1a expression in the hippocampus impairs memory encoding and contributes to AD-associated memory deficits. Commun Biol 2024; 7:1334. [PMID: 39415032 PMCID: PMC11484987 DOI: 10.1038/s42003-024-06914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024] Open
Abstract
Growth hormone secretagogue receptor 1a (GHS-R1a), also known as the ghrelin receptor, is an important nutrient sensor and metabolic regulator in both humans and rodents. Increased GHS-R1a expression is observed in the hippocampus of both Alzheimer's disease (AD) patients and AD model mice. However, the causal relationship between GHS-R1a elevation in the hippocampus and AD memory deficits remains uncertain. Here, we find that increasing GHS-R1a expression in dCA1 pyramidal neurons impairs hippocampus-dependent memory formation, which is abolished by local administration of the endogenous antagonist LEAP2. GHS-R1a elevation in dCA1 pyramidal neurons suppresses excitability and blocks memory allocation in these neurons. Chemogenetic activation of those high GHS-R1a neurons during training rescues GHS-R1a overexpression-induced memory impairment. Moreover, we demonstrate that increasing GHS-R1a expression in dCA1 pyramidal neurons hampers these neurons' ability to encode spatial memory and reduces engram size in the dCA1 region. Finally, we show that GHS-R1a deletion mitigates spatial memory deficits in APP/PS1 mice with increased GHS-R1a expression in the hippocampus. Our findings reveal a negative, causal relationship between hippocampal GHS-R1a expression and memory encoding, and suggest that blocking the abnormal increase in GHS-R1a activity/expression may be a promising approach to improve memory and treat cognitive decline in AD.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274000, China
| | - Liu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jiajia Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Fenghua Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Shanshan Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Fubing Han
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Mingru Deng
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, 266042, China
| | - Jiwei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Vincent Li
- Beverly Hills High School, Beverly Hills, CA, 90212, USA
| | - Ming Yu
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Haicheng Yuan
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, 266042, China
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China.
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China.
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China.
| | - Nan Li
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China.
| |
Collapse
|
2
|
Castro G, Mendes NF, Weissmann L, Quaresma PGF, Saad MJA, Prada PO. Multiple metabolic signals in the CeA regulate feeding: The role of AMPK. Mol Cell Endocrinol 2024; 589:112232. [PMID: 38604549 DOI: 10.1016/j.mce.2024.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The central nucleus of the amygdala (CeA) is part of the dopaminergic reward system and controls energy balance. Recently, a cluster of neurons was identified as responsive to the orexigenic effect of ghrelin and fasting. However, the signaling pathway by which ghrelin and fasting induce feeding is unknown. AMP-activated protein kinase (AMPK) is a cellular energy sensor, and its Thr172 phosphorylation (AMPKThr172) in the mediobasal hypothalamus regulates food intake. However, whether the expression and activation of AMPK in CeA could be one of the intracellular signaling activated in response to ghrelin and fasting eliciting food intake is unknown. AIM To evaluate the activation of AMPK into CeA in response to ghrelin, fasting, and 2-deoxy-D-glucose (2DG) and whether feeding accompanied these changes. In addition, to investigate whether the inhibition of AMPK into CeA could decrease food intake. METHODS On a chow diet, eight-week-old Wistar male rats were stereotaxically implanted with a cannula in the CeA to inject several modulators of AMPKα1/2Thr172 phosphorylation, and we performed physiological and molecular assays. KEY FINDINGS Fasting increased, and refeeding reduced AMPKThr172 in the CeA. Intra-CeA glucose injection decreased feeding, whereas injection of 2DG, a glucoprivation inductor, in the CeA, increased food intake and blood glucose, despite faint increases in AMPKThr172. Intra-CeA ghrelin injection increased food intake and AMPKThr172. To further confirm the role of AMPK in the CeA, chronic injection of Melanotan II (MTII) in CeA reduced body mass and food intake over seven days together with a slight decrease in AMPKThr172. SIGNIFICANCE Our findings identified that AMPK might be part of the signaling machinery in the CeA, which responds to nutrients and hormones contributing to feeding control. The results can contribute to understanding the pathophysiological mechanisms of altered feeding behavior/consumption, such as binge eating of caloric-dense, palatable food.
Collapse
Affiliation(s)
- Gisele Castro
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Natália Ferreira Mendes
- Department of Translational Medicine (Section of Pharmacology), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Laís Weissmann
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Mario Jose Abdalla Saad
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patricia Oliveira Prada
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil; School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, SP, Brazil; Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
3
|
Reich N, Hölscher C. Beyond Appetite: Acylated Ghrelin As A Learning, Memory and Fear Behavior-modulating Hormone. Neurosci Biobehav Rev 2022; 143:104952. [DOI: 10.1016/j.neubiorev.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/27/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
4
|
Yu M, Zhu QQ, Niu ML, Li N, Ren BQ, Yu TB, Zhou ZS, Guo JD, Zhou Y. Ghrelin infusion into the basolateral amygdala suppresses CTA memory formation in rats via the PI3K/Akt/mTOR and PLC/PKC signaling pathways. Acta Pharmacol Sin 2022; 43:2242-2252. [PMID: 35169271 PMCID: PMC9433413 DOI: 10.1038/s41401-022-00859-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Ghrelin is a circulating orexigenic hormone that promotes feeding behavior and regulates metabolism in humans and rodents. We previously reported that local infusion of ghrelin into the basolateral amygdala (BLA) blocked memory acquisition for conditioned taste aversion (CTA) by activating growth hormone secretagogue receptor 1a. In this study, we further explored the underlying mechanism and signaling pathways mediating ghrelin modulation of CTA memory in rats. Pharmacological agents targeting distinct signaling pathways were infused into the BLA during conditioning. We showed that preadministration of the PI3K inhibitor LY294002 abolished the repressive effect of ghrelin on CTA memory. Moreover, LY294002 pretreatment prevented ghrelin from inhibiting Arc and zif268 mRNA expression in the BLA triggered by CTA memory retrieval. Preadministration of rapamycin eliminated the repressive effect of ghrelin, while Gsk3 inhibitors failed to mimic ghrelin's effect. In addition, PLC and PKC inhibitors microinfused in the BLA blocked ghrelin's repression of CTA acquisition. These results demonstrate that ghrelin signaling in the BLA shapes CTA memory via the PI3K/Akt/mTOR and PLC/PKC pathways. We conducted in vivo multichannel recordings from mouse BLA neurons and found that microinjection of ghrelin (20 µM) suppressed intrinsic excitability. By means of whole-cell recordings from rat brain slices, we showed that bath application of ghrelin (200 nM) had no effect on basal synaptic transmission or synaptic plasticity of BLA pyramidal neurons. Together, this study reveals the mechanism underlying ghrelin-induced interference with CTA memory acquisition in rats, i.e., suppression of intrinsic excitability of BLA principal neurons via the PI3K/Akt/mTOR and PLC/PKC pathways.
Collapse
Affiliation(s)
- Ming Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Qian-Qian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Ming-Lu Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Bai-Qing Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Teng-Bo Yu
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Zhi-Shang Zhou
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Ji-Dong Guo
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China.
- Department of rehabilitation medicine, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
Chen X, Dong J, Jiao Q, Du X, Bi M, Jiang H. "Sibling" battle or harmony: crosstalk between nesfatin-1 and ghrelin. Cell Mol Life Sci 2022; 79:169. [PMID: 35239020 PMCID: PMC11072372 DOI: 10.1007/s00018-022-04193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Ghrelin was first identified as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) in 1999, with the function of stimulating the release of growth hormone (GH), while nesfatin-1 was identified in 2006. Both peptides are secreted by the same kind of endocrine cells, X/A-like cells in the stomach. Compared with ghrelin, nesfatin-1 exerts opposite effects on energy metabolism, glucose metabolism, gastrointestinal functions and regulation of blood pressure, but exerts similar effects on anti-inflammation and neuroprotection. Up to now, nesfatin-1 remains as an orphan ligand because its receptor has not been identified. Several studies have shown the effects of nesfatin-1 are dependent on the receptor of ghrelin. We herein compare the effects of nesfatin-1 and ghrelin in several aspects and explore the possibility of their interactions.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Jing Dong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
6
|
Li N, Li N, Xu F, Yu M, Qiao Z, Zhou Y. Selectively increasing GHS-R1a expression in dCA1 excitatory/inhibitory neurons have opposite effects on memory encoding. Mol Brain 2021; 14:157. [PMID: 34641940 PMCID: PMC8513281 DOI: 10.1186/s13041-021-00866-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Aim Growth hormone secretagogue receptor 1a (GHS-R1a) is widely distributed in brain including the hippocampus. Studies have demonstrated the critical role of hippocampal ghrelin/GHS-R1a signaling in synaptic physiology, memory and cognitive dysfunction associated with Alzheimer’s disease (AD). However, current reports are inconsistent, and the mechanism underlying memory modulation of GHS-R1a signaling is uncertain. In this study, we aim to investigate the direct impact of selective increase of GHS-R1a expression in dCA1 excitatory/inhibitory neurons on learning and memory. Methods Endogenous GHS-R1a distribution in dCA1 excitatory/inhibitory neurons was assessed by fluorescence in situ hybridization. Cre-dependent GHS-R1a overexpression in excitatory or inhibitory neurons was done by stereotaxic injection of aav-hSyn-DIO-hGhsr1a-2A-eGFP virus in dCA1 region of vGlut1-Cre or Dlx5/6-Cre mice respectively. Virus-mediated GHS-R1a upregulation in dCA1 neurons was confirmed by quantitative RT-PCR. Different behavioral paradigms were used to evaluate long-term memory performance. Results GHS-R1a is distributed both in dCA1 excitatory pyramidal neurons (αCaMKII+) and in inhibitory interneurons (GAD67+). Selective increase of GHS-R1a expression in dCA1 pyramidal neurons impaired spatial memory and object-place recognition memory. In contrast, selective increase of GHS-R1a expression in dCA1 interneurons enhanced long-term memory performance. Our findings reveal, for the first time, a neuronal type-specific role that hippocampal GHS-R1a signaling plays in regulating memory. Therefore, manipulating GHS-R1a expression/activity in different subpopulation of neurons may help to clarify current contradictory findings and to elucidate mechanism of memory control by ghrelin/GHS-R1a signaling, under both physiological and pathological conditions such as AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13041-021-00866-8.
Collapse
Affiliation(s)
- Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Na Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Fenghua Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ming Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Zichen Qiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China. .,Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, 266071, Shandong, China. .,Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, 266000, Shangdong, China.
| |
Collapse
|
7
|
Decarie-Spain L, Kanoski SE. Ghrelin and Glucagon-Like Peptide-1: A Gut-Brain Axis Battle for Food Reward. Nutrients 2021; 13:977. [PMID: 33803053 PMCID: PMC8002922 DOI: 10.3390/nu13030977] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022] Open
Abstract
Eating behaviors are influenced by the reinforcing properties of foods that can favor decisions driven by reward incentives over metabolic needs. These food reward-motivated behaviors are modulated by gut-derived peptides such as ghrelin and glucagon-like peptide-1 (GLP-1) that are well-established to promote or reduce energy intake, respectively. In this review we highlight the antagonizing actions of ghrelin and GLP-1 on various behavioral constructs related to food reward/reinforcement, including reactivity to food cues, conditioned meal anticipation, effort-based food-motivated behaviors, and flavor-nutrient preference and aversion learning. We integrate physiological and behavioral neuroscience studies conducted in both rodents and human to illustrate translational findings of interest for the treatment of obesity or metabolic impairments. Collectively, the literature discussed herein highlights a model where ghrelin and GLP-1 regulate food reward-motivated behaviors via both competing and independent neurobiological and behavioral mechanisms.
Collapse
Affiliation(s)
- Lea Decarie-Spain
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Scott E. Kanoski
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
8
|
Exogenous ghrelin administration increases alcohol self-administration and modulates brain functional activity in heavy-drinking alcohol-dependent individuals. Mol Psychiatry 2018; 23:2029-2038. [PMID: 29133954 DOI: 10.1038/mp.2017.226] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/17/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022]
Abstract
Preclinical evidence suggests that ghrelin, a peptide synthesized by endocrine cells of the stomach and a key component of the gut-brain axis, is involved in alcohol seeking as it modulates both central reward and stress pathways. However, whether and how ghrelin administration may impact alcohol intake in humans is not clear. For, we believe, the first time, this was investigated in the present randomized, crossover, double-blind, placebo-controlled, human laboratory study. Participants were non-treatment-seeking alcohol-dependent heavy-drinking individuals. A 10-min loading dose of intravenous ghrelin/placebo (3 mcg kg-1) followed by a continuous ghrelin/placebo infusion (16.9 ng/kg/min) was administered. During a progressive-ratio alcohol self-administration experiment, participants could press a button to receive intravenous alcohol using the Computerized Alcohol Infusion System. In another experiment, brain functional magnetic resonance imaging was conducted while participants performed a task to gain points for alcohol, food or no reward. Results showed that intravenous ghrelin, compared to placebo, significantly increased the number of alcohol infusions self-administered (percent change: 24.97±10.65, P=0.04, Cohen's d=0.74). Participants were also significantly faster to initiate alcohol self-administration when they received ghrelin, compared to placebo (P=0.03). The relationships between breath alcohol concentration and subjective effects of alcohol were also moderated by ghrelin administration. Neuroimaging data showed that ghrelin increased the alcohol-related signal in the amygdala (P=0.01) and modulated the food-related signal in the medial orbitofrontal cortex (P=0.01) and nucleus accumbens (P=0.08). These data indicate that ghrelin signaling affects alcohol seeking in humans and should be further investigated as a promising target for developing novel medications for alcohol use disorder.
Collapse
|
9
|
Li N, Song G, Wang Y, Zhu Q, Han F, Zhang C, Zhou Y. Blocking constitutive activity of GHSR1a in the lateral amygdala facilitates acquisition of conditioned taste aversion. Neuropeptides 2018; 68:22-27. [PMID: 29254662 DOI: 10.1016/j.npep.2017.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/05/2017] [Accepted: 12/05/2017] [Indexed: 11/28/2022]
Abstract
Ghrelin is a circulating peptide hormone promoting feeding and regulating energy metabolism in human and rodents. Ghrelin functions by binding to its receptor, the growth hormone secretagogue receptor 1a (GHSR1a), which are widely distributed throughout the brain including the amygdala, a brain region important for regulating valenced behavior, such as aversion. Interestingly, GHSR1a was once characterized by highly constitutive, ligand-independent activity. However, the physiological importance of such ligand-independent signaling on aversive memory processing has not been tested yet. Here, we applied [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-Substance P (D-SP), a full inverse agonist for GHSR1a, into the lateral amygdala (LA) and investigated the effect of blocking GHSR1a constitutive activity on conditioned taste aversion (CTA) in rats. We found that intra-LA infusion of a single low dose of D-SP (8ng/0.5μl/side) facilitates CTA acquisition. Moreover, pre-administration of a high dose of D-SP into the LA abolishes the suppressive effect of exogenous ghrelin on CTA acquisition. In contrast, pre-administration of the same dose of D-SP does not affect the suppression of substance P, a potent neurokinin-1 (NK1) receptor ligand, on CTA. Therefore, our data indicated that the spontaneous or basal activity of GHSR1a signaling in the LA might interfere with CTA memory formation. D-SP decreases the constitutive activity of GHSR1a and thus facilitates CTA. Altogether, our present findings along with previous results support the idea that ghrelin/GHSR1a signaling in the LA circuit blocks conditioned taste aversion.
Collapse
Affiliation(s)
- Nan Li
- Department of Physiology, Medical College of Qingdao University, Qingdao 266071, Shandong, China
| | - Ge Song
- Department of Physiology, Medical College of Qingdao University, Qingdao 266071, Shandong, China
| | - Yaohui Wang
- Department of Physiology, Medical College of Qingdao University, Qingdao 266071, Shandong, China
| | - Qianqian Zhu
- Department of Physiology, Medical College of Qingdao University, Qingdao 266071, Shandong, China
| | - Fubing Han
- Department of Physiology, Medical College of Qingdao University, Qingdao 266071, Shandong, China
| | - Chonghui Zhang
- Department of Physiology, Medical College of Qingdao University, Qingdao 266071, Shandong, China
| | - Yu Zhou
- Department of Physiology, Medical College of Qingdao University, Qingdao 266071, Shandong, China.
| |
Collapse
|
10
|
Beheshti S, Aslani N. Local injection of d-lys-3-GHRP-6 in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation. Neuropeptides 2018; 67:20-26. [PMID: 29137815 DOI: 10.1016/j.npep.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022]
Abstract
It is well known that the hormone ghrelin affects learning and memory in different experimental models of learning. Though, the effect of antagonism of ghrelin receptor type 1a (GHS-R1a) in various regions of the brain and on different stages of learning has not been examined. In this study the effect of injection of a GHS-R1a selective antagonist (d-Lys-3-GHRP-6) into the basolateral amygdala, dentate gyrus or ventral tegmental area was examined on memory consolidation in the passive avoidance task. Adult male Wistar rats weighing 230-280g were used. Animals underwent stereotaxic surgery and cannulated in their amygdala, dentate gyrus or ventral tegmental area. One week after surgery, the rats received different doses of d-Lys-3-GHRP-6 (0.08, 0.8, and 8nM), immediately after training. The control groups received solvent of the drug. Twenty four hours later in the test day, memory retrieval was assessed. In all groups, post-training injection of d-Lys-3-GHRP-6 decreased step-through latency and increased entries into the dark compartment and time spent in the dark compartment, significantly and in a dose-dependent manner. The results indicate that antagonism of the GHS-R1a in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation and show that the ghrelin signaling has a widespread influence on cognitive performance.
Collapse
Affiliation(s)
- Siamak Beheshti
- Division of Animal Sciences, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - Neda Aslani
- Division of Animal Sciences, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
11
|
Zallar LJ, Farokhnia M, Tunstall BJ, Vendruscolo LF, Leggio L. The Role of the Ghrelin System in Drug Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:89-119. [PMID: 29056157 DOI: 10.1016/bs.irn.2017.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past years, a significant volume of research has implicated the appetitive hormone ghrelin in the mechanisms underlying drug use and addiction. From a neuroscientific standpoint, ghrelin modulates both reward and stress pathways, two key drivers of substance use behaviors. Previous investigations support a connection between the ghrelin system and alcohol, stimulants, and tobacco use in both animals and humans, while the research on opioids and cannabis is scarce. In general, upregulation of the ghrelin system seems to enhance craving for drugs as well as substances use. On the other hand, acute and chronic exposure to drugs of abuse influences the ghrelin system at different levels. This chapter summarizes the literature on the relationship between the ghrelin system and substance-related behaviors. We also review recent work investigating the ghrelin system as a potential pharmacological target for treating substance use disorders and discuss the need for additional research.
Collapse
Affiliation(s)
- Lia J Zallar
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States; Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Mehdi Farokhnia
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States
| | - Brendan J Tunstall
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States; Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States.
| |
Collapse
|
12
|
Harmatz ES, Stone L, Lim SH, Lee G, McGrath A, Gisabella B, Peng X, Kosoy E, Yao J, Liu E, Machado NJ, Weiner VS, Slocum W, Cunha RA, Goosens KA. Central Ghrelin Resistance Permits the Overconsolidation of Fear Memory. Biol Psychiatry 2017; 81:1003-1013. [PMID: 28010876 PMCID: PMC5447505 DOI: 10.1016/j.biopsych.2016.11.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/25/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND There are many contradictory findings about the role of the hormone ghrelin in aversive processing, with studies suggesting that ghrelin signaling can both inhibit and enhance aversion. Here, we characterize and reconcile the paradoxical role of ghrelin in the acquisition of fearful memories. METHODS We used enzyme-linked immunosorbent assay to measure endogenous acyl-ghrelin and corticosterone at time points surrounding auditory fear learning. We used pharmacological (systemic and intra-amygdala) manipulations of ghrelin signaling and examined several aversive and appetitive behaviors. We also used biotin-labeled ghrelin to visualize ghrelin binding sites in coronal brain sections of amygdala. All work was performed in rats. RESULTS In unstressed rodents, endogenous peripheral acyl-ghrelin robustly inhibits fear memory consolidation through actions in the amygdala and accounts for virtually all interindividual variability in long-term fear memory strength. Higher levels of endogenous ghrelin after fear learning were associated with weaker long-term fear memories, and pharmacological agonism of the ghrelin receptor during the memory consolidation period reduced fear memory strength. These fear-inhibitory effects cannot be explained by changes in appetitive behavior. In contrast, we show that chronic stress, which increases both circulating endogenous acyl-ghrelin and fear memory formation, promotes profound loss of ghrelin binding sites in the amygdala and behavioral insensitivity to ghrelin receptor agonism. CONCLUSIONS These studies provide a new link between stress, a novel type of metabolic resistance, and vulnerability to excessive fear memory formation and reveal that ghrelin can regulate negative emotionality in unstressed animals without altering appetite.
Collapse
Affiliation(s)
- Elia S Harmatz
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge
| | - Lauren Stone
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge
| | - Seh Hong Lim
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Graham Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge
| | - Anna McGrath
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge
| | - Barbara Gisabella
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge
| | - Xiaoyu Peng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge
| | - Eliza Kosoy
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge
| | - Junmei Yao
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge
| | - Elizabeth Liu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge
| | - Nuno J Machado
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Veronica S Weiner
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge
| | - Warren Slocum
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ki A Goosens
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge.
| |
Collapse
|
13
|
Kageyama H, Shiba K, Hirako S, Wada N, Yamanaka S, Nogi Y, Takenoya F, Nonaka N, Hirano T, Inoue S, Shioda S. Anti-obesity effect of intranasal administration of galanin-like peptide (GALP) in obese mice. Sci Rep 2016; 6:28200. [PMID: 27323911 PMCID: PMC4914964 DOI: 10.1038/srep28200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 06/01/2016] [Indexed: 11/09/2022] Open
Abstract
Galanin-like peptide (GALP) has an anti-obesity effect in rats and mice. It has been reported that the uptake of GALP by the brain is higher after intranasal administration than with intravenous injection. This study therefore aimed to clarify the effect of intranasal administration of GALP on the feeding behavior of lean and obese mice. Autoradiography revealed the presence of (125)I-GALP in the olfactory bulb and the brain microcirculation. The body weights of ob/ob mice gradually increased during vehicle treatment, but remained unchanged in response to repeated intranasal administration of GALP, with both ob/ob and diet-induced obese mice displaying significantly decreased food intake, water intake and locomotor activity when treated with GALP. These results suggest that intranasal administration is an effective route whereby GALP can exert its effect as an anti-obesity drug.
Collapse
Affiliation(s)
- Haruaki Kageyama
- Division of Nutrition, Faculty of Health Care, Kiryu University, Gunma 379-2392, Japan
| | - Kanako Shiba
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Saitama 339-8539, Japan
| | - Nobuhiro Wada
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan.,Department of Internal Medicine, Graduate school of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Satoru Yamanaka
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Yukinori Nogi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Fumiko Takenoya
- Department of Exercise and Sports Physiology, Hoshi University School of Pharmacy and Pharmaceutical Science, Tokyo 142-8501, Japan
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo 142-8555, Japan
| | - Tsutomu Hirano
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Shuji Inoue
- Division of Nutrition, Faculty of Health Care, Kiryu University, Gunma 379-2392, Japan
| | - Seiji Shioda
- Hoshi University School of Pharmacy and Pharmaceutical Sciences, Global Research Center for Innovative Life Science, Peptide Drug Innovation, Tokyo 142-8501, Japan
| |
Collapse
|
14
|
Morley JE. Peptides and aging: Their role in anorexia and memory. Peptides 2015; 72:112-8. [PMID: 25895851 DOI: 10.1016/j.peptides.2015.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 12/16/2022]
Abstract
The rapid aging of the world's population has led to a need to increase our understanding of the pathophysiology of the factors leading to frailty and cognitive decline. Peptides have been shown to be involved in the pathophysiology of frailty and cognitive decline. Weight loss is a major component of frailty. In this review, we demonstrate a central role for both peripheral peptides (e.g., cholecystokinin and ghrelin) and neuropeptides (e.g., dynorphin and alpha-MSH) in the pathophysiology of the anorexia of aging. Similarly, peripheral peptides (e.g., ghrelin, glucagon-like peptide 1, and cholecystokinin) are modulators of memory. A number of centrally acting neuropeptides have also been shown to modulate cognitive processes. Amyloid-beta peptide in physiological levels is a memory enhancer, while in high (pathological) levels, it plays a key role in the development of Alzheimer's disease.
Collapse
Affiliation(s)
- John E Morley
- Divisions of Geriatric Medicine and Endocrinology, Saint Louis University School of Medicine, St Louis, MO, United States.
| |
Collapse
|
15
|
Gomez JL, Cunningham CL, Finn DA, Young EA, Helpenstell LK, Schuette LM, Fidler TL, Kosten TA, Ryabinin AE. Differential effects of ghrelin antagonists on alcohol drinking and reinforcement in mouse and rat models of alcohol dependence. Neuropharmacology 2015; 97:182-93. [PMID: 26051399 PMCID: PMC4537402 DOI: 10.1016/j.neuropharm.2015.05.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 12/15/2022]
Abstract
An effort has been mounted to understand the mechanisms of alcohol dependence in a way that may allow for greater efficacy in treatment. It has long been suggested that drugs of abuse seize fundamental reward pathways and disrupt homeostasis to produce compulsive drug seeking behaviors. Ghrelin, an endogenous hormone that affects hunger state and release of growth hormone, has been shown to increase alcohol intake following administration, while antagonists decrease intake. Using rodent models of dependence, the current study examined the effects of two ghrelin receptor antagonists, [DLys3]-GHRP-6 (DLys) and JMV2959, on dependence-induced alcohol self-administration. In two experiments adult male C57BL/6J mice and Wistar rats were made dependent via intermittent ethanol vapor exposure. In another experiment, adult male C57BL/6J mice were made dependent using the intragastric alcohol consumption (IGAC) procedure. Ghrelin receptor antagonists were given prior to voluntary ethanol drinking. Ghrelin antagonists reduced ethanol intake, preference, and operant self-administration of ethanol and sucrose across these models, but did not decrease food consumption in mice. In experiments 1 and 2, voluntary drinking was reduced by ghrelin receptor antagonists, however this reduction did not persist across days. Despite the transient effects of ghrelin antagonists, the drugs had renewed effectiveness following a break in administration as seen in experiment 1. The results show the ghrelin system as a potential target for studies of alcohol abuse. Further research is needed to determine the central mechanisms of these drugs and their influence on addiction in order to design effective pharmacotherapies.
Collapse
Affiliation(s)
- Juan L Gomez
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Christopher L Cunningham
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Deborah A Finn
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Portland VA Healthcare System, Department of Research, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA
| | - Emily A Young
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Lily K Helpenstell
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Lindsey M Schuette
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Tara L Fidler
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Therese A Kosten
- Baylor College of Medicine, Menninger Department of Psychiatry & Behavioral Sciences, Michael E Debakey VAMC, 2002 Holcombe Blvd, Houston, TX 77030, USA
| | - Andrey E Ryabinin
- Oregon Health & Science University, Department of Behavioral Neuroscience and Portland Alcohol Research Center, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
16
|
Huang CC, Chou D, Yeh CM, Hsu KS. Acute food deprivation enhances fear extinction but inhibits long-term depression in the lateral amygdala via ghrelin signaling. Neuropharmacology 2015; 101:36-45. [PMID: 26384653 DOI: 10.1016/j.neuropharm.2015.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
Fear memory-encoding thalamic input synapses to the lateral amygdala (T-LA) exhibit dynamic efficacy changes that are tightly correlated with fear memory strength. Previous studies have shown that auditory fear conditioning involves strengthening of synaptic strength, and conversely, fear extinction training leads to T-LA synaptic weakening and occlusion of long-term depression (LTD) induction. These findings suggest that the mechanisms governing LTD at T-LA synapses may determine the behavioral outcomes of extinction training. Here, we explored this hypothesis by implementing food deprivation (FD) stress in mice to determine its effects on fear extinction and LTD induction at T-LA synapses. We found that FD increased plasma acylated ghrelin levels and enhanced fear extinction and its retention. Augmentation of fear extinction by FD was blocked by pretreatment with growth hormone secretagogue receptor type-1a antagonist D-Lys(3)-GHRP-6, suggesting an involvement of ghrelin signaling. Confirming previous findings, two distinct forms of LTD coexist at thalamic inputs to LA pyramidal neurons that can be induced by low-frequency stimulation (LFS) or paired-pulse LFS (PP-LFS) paired with postsynaptic depolarization, respectively. Unexpectedly, we found that FD impaired the induction of PP-LFS- and group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG)-induced LTD, but not LFS-induced LTD. Ghrelin mimicked the effects of FD to impair the induction of PP-LFS- and DHPG-induced LTD at T-LA synapses, which were blocked by co-application of D-Lys(3)-GHRP-6. The sensitivity of synaptic transmission to 1-naphthyl acetyl spermine was not altered by either FD or ghrelin treatment. These results highlight distinct features of fear extinction and LTD at T-LA synapses.
Collapse
Affiliation(s)
- Chiung-Chun Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Dylan Chou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Che-Ming Yeh
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
17
|
Braquet P, Mercier G, Reynes J, Jeandel C, Pinzani V, Guilpain P, Rivière S, Le Quellec A. [Diagnostic value of selective anorexia in pathological weight loss]. Rev Med Interne 2015; 37:84-90. [PMID: 26302696 DOI: 10.1016/j.revmed.2015.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/18/2015] [Accepted: 07/27/2015] [Indexed: 11/30/2022]
Abstract
PURPOSE The diagnostic value of selective anorexia is debated. Some authors have suggested an association between meat aversion and cancer, but most do not use it as a diagnostic tool. We aimed to characterize anorexia of different diseases to search for an association between selective aversions and diagnostic groups. METHODS All the patients admitted to three departments of a teaching hospital were included consecutively for 22months if they had more than 10 % weight loss in less than one year. Patients were excluded if history taking was not reliable, or if they suffered from anorexia nervosa. We compiled diagnoses at discharge and validated them six months later. We used logistic regression to identify independent factors associated with selective anorexia. RESULTS Inclusion criteria were met in 106patients (female 44 %, median age 65years). Most frequent diagnoses were: cancer (36 %), infection (35 %), digestive diseases (19 %), non organic diseases (21 %). Recent selective anorexia was found in 46 % of the cases. It was significantly associated with female gender (P=0.002), marginally with young age (P=0.069) and long duration of weight loss (P=0.079). Opioid use at admission was negatively associated with selective anorexia (P=0.001). No specific diagnostic category was found to be associated. CONCLUSION Selective anorexia does not appear to be a useful symptom to investigate pathological weight loss. It behaves more like a non-specific reactivation by current disease of earlier latent personal food aversions.
Collapse
Affiliation(s)
- P Braquet
- Équipe « médecine interne ; maladies multi-organiques », département de médecine interne, CHRU de Saint-Éloi, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France.
| | - G Mercier
- Département de l'information médicale, CHRU, 34295 Montpellier, France
| | - J Reynes
- Département des maladies infectieuses et tropicales, CHRU, 34295 Montpellier, France
| | - C Jeandel
- Département de gérontologie, CHRU Centre-Balmès, 34295 Montpellier, France
| | - V Pinzani
- Centre régional de pharmacovigilance, CHRU, 34295 Montpellier, France
| | - P Guilpain
- Équipe « médecine interne ; maladies multi-organiques », département de médecine interne, CHRU de Saint-Éloi, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France
| | - S Rivière
- Équipe « médecine interne ; maladies multi-organiques », département de médecine interne, CHRU de Saint-Éloi, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France
| | - A Le Quellec
- Équipe « médecine interne ; maladies multi-organiques », département de médecine interne, CHRU de Saint-Éloi, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France
| |
Collapse
|
18
|
Loch D, Breer H, Strotmann J. Endocrine Modulation of Olfactory Responsiveness: Effects of the Orexigenic Hormone Ghrelin. Chem Senses 2015; 40:469-79. [DOI: 10.1093/chemse/bjv028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Mao LF, Wang LD, Zhang HW, Liu JH, Du XJ, Peng ZH. Functional dyspepsia and brain-gut peptides. Shijie Huaren Xiaohua Zazhi 2015; 23:570-576. [DOI: 10.11569/wcjd.v23.i4.570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Functional dyspepsia (FD) is a frequently occurring gastrointestinal disorder, but its etiology and pathogenesis are still unclear because it is associated with multiple factors. As a typically physical and psychological disease, the role of psychological factors in the pathogenesis of FD involves the brain-gut axis, mainly abnormal stimulation processing by the central nervous system and abnormal levels of brain-gut peptides. Brain-gut peptides are the molecular basis of the action of the brain-gut axis, and the brain-gut axis affects the occurrence of FD by regulating the levels of brain-gut peptides. So far, 15 brain-gut peptides associated with FD have been found, which are predominantly expressed in the hypothalamus, medulla oblongata, spinal cord and gastrointestinal mucosa. The aim of this study is to clarify the relationship between brain-gut peptide levels and the occurrence of FD based on brain-gut peptide in terms of their secretion and mechanisms of action.
Collapse
|
20
|
Sano Y, Shobe JL, Zhou M, Huang S, Shuman T, Cai DJ, Golshani P, Kamata M, Silva AJ. CREB regulates memory allocation in the insular cortex. Curr Biol 2014; 24:2833-7. [PMID: 25454591 PMCID: PMC4743759 DOI: 10.1016/j.cub.2014.10.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 09/04/2014] [Accepted: 10/08/2014] [Indexed: 01/19/2023]
Abstract
The molecular and cellular mechanisms of memory storage have attracted a great deal of attention. By comparison, little is known about memory allocation, the process that determines which specific neurons in a neural network will store a given memory. Previous studies demonstrated that memory allocation is not random in the amygdala; these studies showed that amygdala neurons with higher levels of the cyclic-AMP-response-element-binding protein (CREB) are more likely to be recruited into encoding and storing fear memory. To determine whether specific mechanisms also regulate memory allocation in other brain regions and whether CREB also has a role in this process, we studied insular cortical memory representations for conditioned taste aversion (CTA). In this task, an animal learns to associate a taste (conditioned stimulus [CS]) with the experience of malaise (such as that induced by LiCl; unconditioned stimulus [US]). The insular cortex is required for CTA memory formation and retrieval. CTA learning activates a subpopulation of neurons in this structure, and the insular cortex and the basolateral amygdala (BLA) interact during CTA formation. Here, we used a combination of approaches, including viral vector transfections of insular cortex, arc fluorescence in situ hybridization (FISH), and designer receptors exclusively activated by designer drugs (DREADD) system, to show that CREB levels determine which insular cortical neurons go on to encode a given conditioned taste memory.
Collapse
Affiliation(s)
- Yoshitake Sano
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Psychology, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin L Shobe
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Psychology, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Miou Zhou
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Psychology, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shan Huang
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Psychology, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tristan Shuman
- Department of Neurology at David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Denise J Cai
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Psychology, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peyman Golshani
- Department of Neurology at David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Masakazu Kamata
- Department of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Psychology, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
21
|
Boudebesse C, Geoffroy PA, Henry C, Germain A, Scott J, Lajnef M, Leboyer M, Bellivier F, Etain B. Links between sleep and body mass index in bipolar disorders: an exploratory study. Eur Psychiatry 2014; 30:89-93. [PMID: 24908150 DOI: 10.1016/j.eurpsy.2014.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/23/2014] [Accepted: 04/19/2014] [Indexed: 01/20/2023] Open
Abstract
STUDY OBJECTIVES Obesity and excess bodyweight are highly prevalent in individuals with bipolar disorders (BD) and are associated with adverse consequences. Multiple factors may explain increased bodyweight in BD including side effects of psychotropic medications, and reduced physical activity. Research in the general population demonstrates that sleep disturbances may also contribute to metabolic burden. We present a cross-sectional study of the associations between body mass index (BMI) and sleep parameters in patients with BD as compared with healthy controls (HC). METHODS Twenty-six French outpatients with remitted BD and 29 HC with a similar BMI completed a 21-day study of sleep parameters using objective (actigraphy) and subjective (PSQI: Pittsburgh Sleep Quality Index) assessments. RESULTS In BD cases, but not in HC, higher BMI was significantly correlated with lower sleep efficiency (P=0.009) and with several other sleep parameters: shorter total sleep time (P=0.01), longer sleep onset latency (P=0.05), higher fragmentation index (P=0.008), higher inter-day variability (P=0.05) and higher PSQI total score (P=0.004). CONCLUSIONS The findings suggest a link between a high BMI and several sleep disturbances in BD, including lower sleep efficiency. Physiological mechanisms in BD cases may include an exaggeration of phenomena observed in non-clinical populations. However, larger scale studies are required to clarify the links between metabolic and sleep-wake cycle disturbances in BD.
Collapse
Affiliation(s)
- C Boudebesse
- Inserm, U955, Créteil, France; AP-HP, Hôpital H.-Mondor-A.-Chenevier, Pôle de Psychiatrie, DHU PePSY, Créteil, France; Fondation Fondamental, Créteil, France.
| | - P-A Geoffroy
- Inserm, U955, Créteil, France; Fondation Fondamental, Créteil, France; Pôle de Psychiatrie, Université Lille Nord de France, CHRU de Lille, Lille, France
| | - C Henry
- Inserm, U955, Créteil, France; Université Paris Est, Faculté de Médecine, Créteil, France; AP-HP, Hôpital H.-Mondor-A.-Chenevier, Pôle de Psychiatrie, DHU PePSY, Créteil, France; Fondation Fondamental, Créteil, France
| | - A Germain
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - J Scott
- Academic Psychiatry, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK; Centre for Affective Disorders, Institute of Psychiatry, London, UK
| | | | - M Leboyer
- Inserm, U955, Créteil, France; Université Paris Est, Faculté de Médecine, Créteil, France; AP-HP, Hôpital H.-Mondor-A.-Chenevier, Pôle de Psychiatrie, DHU PePSY, Créteil, France; Fondation Fondamental, Créteil, France
| | - F Bellivier
- Fondation Fondamental, Créteil, France; AP-HP, GH Saint-Louis-Lariboisière-Fernand-Widal, Pôle Neurosciences, Paris, France; Université Paris-7 Paris-Diderot, UFR de Médecine, Paris, France
| | - B Etain
- Inserm, U955, Créteil, France; AP-HP, Hôpital H.-Mondor-A.-Chenevier, Pôle de Psychiatrie, DHU PePSY, Créteil, France; Fondation Fondamental, Créteil, France
| |
Collapse
|
22
|
Stoyanova II, le Feber J. Ghrelin accelerates synapse formation and activity development in cultured cortical networks. BMC Neurosci 2014; 15:49. [PMID: 24742241 PMCID: PMC3998954 DOI: 10.1186/1471-2202-15-49] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While ghrelin was initially related to appetite stimulation and growth hormone secretion, it also has a neuroprotective effect in neurodegenerative diseases and regulates cognitive function. The cellular basis of those processes is related to synaptic efficacy and plasticity. Previous studies have shown that ghrelin not only stimulates synapse formation in cultured cortical neurons and hippocampal slices, but also alters some of the electrophysiological properties of neurons in the hypothalamus, amygdala and other subcortical areas. However, direct evidence for ghrelin's ability to modulate the activity in cortical neurons is not available yet. In this study, we investigated the effect of acylated ghrelin on the development of the activity level and activity patterns in cortical neurons, in relation to its effect on synaptogenesis. Additionally, we quantitatively evaluated the expression of the receptor for acylated ghrelin--growth hormone secretagogue receptor-1a (GHSR-1a) during development. RESULTS We performed electrophysiology and immunohistochemistry on dissociated cortical cultures from neonates, treated chronically with acylated ghrelin. On average 76±4.6% of the cortical neurons expressed GHSR-1a. Synapse density was found to be much higher in ghrelin treated cultures than in controls across all age groups (1, 2 or 3 weeks). In all cultures (control and ghrelin treated), network activity gradually increased until it reached a maximum after approximately 3 weeks, followed by a slight decrease towards a plateau. During early developmental stages (1-2 weeks), the activity was much higher in ghrelin treated cultures and consequently, they reached the plateau value almost a week earlier than controls. CONCLUSIONS Acylated ghrelin leads to earlier network formation and activation in cultured cortical neuronal networks, the latter being a possibly consequence of accelerated synaptogenesis.
Collapse
Affiliation(s)
- Irina I Stoyanova
- Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Sciences, Institute for Biomedical Engineering and Technical Medicine MIRA, BSS, ZH 226, University of Twente, P,O, Box 217, Enschede 7500 AE, The Netherlands.
| | | |
Collapse
|
23
|
Ghrelin but not nesfatin-1 affects certain forms of learning and memory in both rats and mice. Brain Res 2013; 1541:42-51. [DOI: 10.1016/j.brainres.2013.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/09/2013] [Accepted: 10/13/2013] [Indexed: 12/16/2022]
|
24
|
Ghrelin administration enhances neurogenesis but impairs spatial learning and memory in adult mice. Neuroscience 2013; 257:175-85. [PMID: 24211302 DOI: 10.1016/j.neuroscience.2013.10.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/11/2013] [Accepted: 10/25/2013] [Indexed: 12/11/2022]
Abstract
Ghrelin, an orexigenic brain-gut hormone promoting feeding and regulating energy metabolism in human and rodents, was reported to enhance both adult neurogenesis and hippocampus-dependent memory formation. However, it is still unclear whether ghrelin-induced hippocampus neurogenesis is responsible for its memory improvement. Using 5-bromo-2' deoxyuridien (BrdU) to birth-date newborn neurons and c-Fos expression to identify dentate gyrus (DG) neurons involved in memory processes, we checked here the effect of ghrelin treatment on adult neurogenesis and cognitive behaviors in mice. We further examined the possible effect of ghrelin on the recruitment of new neurons into the spatial memory traces in intact mice. We found that systemic ghrelin treatment (80μg/kg, ip injection once daily for 8days) stimulated neurogenesis in the adult hippocampus, but had no effect on spatial memory formation. Consistently, it did not affect the incorporation of newborn neurons into the spatial memory circuits. On the contrary, local infusion of ghrelin (8ng/0.5μl into CA1 region of the hippocampus) impaired spatial memory formation, but did not affect adult neurogenesis. Our results thus suggested that ghrelin plays distinct roles in modulating adult neurogenesis and the memory acquisition in the hippocampus, the two processes may not be correlated and may be mediated by different mechanisms.
Collapse
|