1
|
Rodrigues GRD, Brito LF, Mota LFM, Cyrillo JNSG, Valente JPS, Benfica LF, Silva Neto JB, Borges MS, Monteiro FM, Faro LE, Albuquerque LG, Mercadante MEZ. Genome-wide association studies and functional annotation of pre-weaning calf mortality and reproductive traits in Nellore cattle from experimental selection lines. BMC Genomics 2024; 25:1196. [PMID: 39695361 DOI: 10.1186/s12864-024-11113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Reproductive efficiency is crucial for the long-term economic sustainability of beef cattle production. Pregnancy loss and stillbirth are complex reproductive traits that do not yet have their genomic background fully understood, especially in zebu breeds (Bos taurus indicus). Hence, this study aimed to perform a genome-wide association study (GWAS) and functional annotation for conception success (CS), pregnancy loss (PL), stillbirth (SB), and pre-weaning calf mortality (PWM) in Nellore cattle. In this study, 3,728 cows with 17,094 reproductive records and 11,785 calves were evaluated. A total of 3,351 genotyped animals and 383,739 SNP markers were considered for GWAS analyses. SNP effects were estimated using the weighted single-step GWAS (WssGWAS), which considered two iterations. The top ten genomic windows with the highest contribution to the additive genetic variance of the traits were selected for gene annotation. Candidate genes were then analyzed for Gene Ontology terms (GO) and metabolic pathways. RESULTS The top ten genomic windows that explained the largest proportion of the direct additive genetic variance ([Formula: see text]) for CS, PL, SB, and PWM accounted for 17.03% (overlapping with 79 genes), 16.76% (57 genes), 11.71% (73 genes), and 12.03% (65 genes) of the total [Formula: see text], respectively. For CS, significant GO terms included Somitogenesis (GO:0001756), Somite Development (GO:0061053), and Chromosome Segregation (GO:0007059). Considering PL, the processes annotated were the Regulation of Hormone Secretion (GO:0046883), and Hormone Transport (GO:0009914), along with the Glucagon Signaling Pathway (bta04922). Embryonic Development (GO:0045995), and Cerebellum Development (GO:0021549) were the main biological processes found in the gene enrichment analysis for SB. For PWM, the Regulation of Glucose metabolic processes (GO:0010906), Zinc Ion Homeostasis (GO:0055069), Lactation (GO:0007595), and Regulation of Insulin Secretion (GO:0050796) were the most significant GO terms observed. CONCLUSIONS These findings provide valuable information on genomic regions, candidate genes, biological processes, and metabolic pathways that may significantly influence the expression of complex reproductive traits in Nellore cattle, offering potential contributions to breeding strategies and future genomic selection strategies.
Collapse
Affiliation(s)
- Gustavo R D Rodrigues
- São Paulo State University, School of Agriculture and Veterinary Science, Jaboticabal, SP, 14884-900, Brazil.
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP, 14174-000, Brazil.
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Lúcio F M Mota
- São Paulo State University, School of Agriculture and Veterinary Science, Jaboticabal, SP, 14884-900, Brazil
| | - Joslaine N S G Cyrillo
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP, 14174-000, Brazil
| | - Júlia P S Valente
- São Paulo State University, School of Agriculture and Veterinary Science, Jaboticabal, SP, 14884-900, Brazil
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP, 14174-000, Brazil
| | - Lorena F Benfica
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - João B Silva Neto
- São Paulo State University, School of Agriculture and Veterinary Science, Jaboticabal, SP, 14884-900, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Marcelo S Borges
- São Paulo State University, School of Agriculture and Veterinary Science, Jaboticabal, SP, 14884-900, Brazil
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP, 14174-000, Brazil
| | - Fábio M Monteiro
- São Paulo State University, School of Agriculture and Veterinary Science, Jaboticabal, SP, 14884-900, Brazil
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP, 14174-000, Brazil
| | - Lenira El Faro
- São Paulo State University, School of Agriculture and Veterinary Science, Jaboticabal, SP, 14884-900, Brazil
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP, 14174-000, Brazil
| | - Lucia G Albuquerque
- São Paulo State University, School of Agriculture and Veterinary Science, Jaboticabal, SP, 14884-900, Brazil
- National Council for Science and Technological Development, Brasilia, DF, 71605-001, Brazil
| | - Maria E Z Mercadante
- São Paulo State University, School of Agriculture and Veterinary Science, Jaboticabal, SP, 14884-900, Brazil.
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP, 14174-000, Brazil.
- National Council for Science and Technological Development, Brasilia, DF, 71605-001, Brazil.
| |
Collapse
|
2
|
Nguyen TV, Bolormaa S, Reich CM, Chamberlain AJ, Vander Jagt CJ, Daetwyler HD, MacLeod IM. Empirical versus estimated accuracy of imputation: optimising filtering thresholds for sequence imputation. Genet Sel Evol 2024; 56:72. [PMID: 39548370 PMCID: PMC11566673 DOI: 10.1186/s12711-024-00942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Genotype imputation is a cost-effective method for obtaining sequence genotypes for downstream analyses such as genome-wide association studies (GWAS). However, low imputation accuracy can increase the risk of false positives, so it is important to pre-filter data or at least assess the potential limitations due to imputation accuracy. In this study, we benchmarked three different imputation programs (Beagle 5.2, Minimac4 and IMPUTE5) and compared the empirical accuracy of imputation with the software estimated accuracy of imputation (Rsqsoft). We also tested the accuracy of imputation in cattle for autosomal and X chromosomes, SNP and INDEL, when imputing from either low-density or high-density genotypes. RESULTS The accuracy of imputing sequence variants from real high-density genotypes was higher than from low-density genotypes. In our software benchmark, all programs performed well with only minor differences in accuracy. While there was a close relationship between empirical imputation accuracy and the imputation Rsqsoft, this differed considerably for Minimac4 compared to Beagle 5.2 and IMPUTE5. We found that the Rsqsoft threshold for removing poorly imputed variants must be customised according to the software and this should be accounted for when merging data from multiple studies, such as in meta-GWAS studies. We also found that imposing an Rsqsoft filter has a positive impact on genomic regions with poor imputation accuracy due to large segmental duplications that are susceptible to error-prone alignment. Overall, our results showed that on average the imputation accuracy for INDEL was approximately 6% lower than SNP for all software programs. Importantly, the imputation accuracy for the non-PAR (non-Pseudo-Autosomal Region) of the X chromosome was comparable to autosomal imputation accuracy, while for the PAR it was substantially lower, particularly when starting from low-density genotypes. CONCLUSIONS This study provides an empirically derived approach to apply customised software-specific Rsqsoft thresholds for downstream analyses of imputed variants, such as needed for a meta-GWAS. The very poor empirical imputation accuracy for variants on the PAR when starting from low density genotypes demonstrates that this region should be imputed starting from a higher density of real genotypes.
Collapse
Affiliation(s)
- Tuan V Nguyen
- Agriculture Victoria, Centre for AgriBiosciences, AgriBio, Bundoora, VIC, 3083, Australia.
| | - Sunduimijid Bolormaa
- Agriculture Victoria, Centre for AgriBiosciences, AgriBio, Bundoora, VIC, 3083, Australia
| | - Coralie M Reich
- Agriculture Victoria, Centre for AgriBiosciences, AgriBio, Bundoora, VIC, 3083, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, Centre for AgriBiosciences, AgriBio, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Christy J Vander Jagt
- Agriculture Victoria, Centre for AgriBiosciences, AgriBio, Bundoora, VIC, 3083, Australia
| | - Hans D Daetwyler
- Agriculture Victoria, Centre for AgriBiosciences, AgriBio, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, Centre for AgriBiosciences, AgriBio, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
3
|
Gozdek M, Mucha S, Prostek A, Kamola D, Sadkowski T. Distribution of Recessive Genetic Defect Carriers in Holstein Friesian Cattle: A Polish Perspective. Animals (Basel) 2024; 14:3170. [PMID: 39595223 PMCID: PMC11591101 DOI: 10.3390/ani14223170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Genetic disorders are caused by a hereditary change in the structure of DNA that may hurt the health and life of animals. Several recessive haplotypes and a few causative mutations are known in Holstein Friesian cattle: CDH (Holstein cholesterol deficiency), haplotypes with a homozygous deficiency in Holstein (HH1, HH3, HH4, HH5, HH6, HH7), BLAD (bovine leukocyte adhesion deficiency), DUMPS (deficiency of uridine monophosphate synthase), FXI (factor XI deficiency), HHM (mule foot, syndactyly), and BC (citrullinaemia). From a breeding point of view, these genetic diseases have highly negative effects and are a significant problem for breeders, exposing them to economic losses and hurting animal welfare. This study aimed to characterize the Polish population of Holstein Friesian dairy cattle, considering the carrier status of twelve selected genetic defects. This study was based on genotype data collected from 78,884 cows and 691 bulls of the Holstein Friesian variety. The studies were performed using Illumina Infinium microarrays. Among both bulls and cows, the highest numbers of carriers were detected for HH5 (appropriately 6.7% and 5.4%). The lowest numbers of carriers were detected for DUMPS, factor XI, and HHM. The study revealed one calf suffering from cholesterol deficiency.
Collapse
Affiliation(s)
- Marta Gozdek
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.G.); (A.P.)
- Polish Federation of Cattle Breeders and Dairy Farmers, 00-515 Warsaw, Poland;
| | - Sebastian Mucha
- Polish Federation of Cattle Breeders and Dairy Farmers, 00-515 Warsaw, Poland;
| | - Adam Prostek
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.G.); (A.P.)
| | - Dariusz Kamola
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.G.); (A.P.)
| |
Collapse
|
4
|
van den Berg I, Nguyen TV, Nguyen TTT, Pryce JE, Nieuwhof GJ, MacLeod IM. Imputation accuracy and carrier frequency of deleterious recessive defects in Australian dairy cattle. J Dairy Sci 2024; 107:9591-9601. [PMID: 38945256 DOI: 10.3168/jds.2024-24780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Widespread genotyping has enabled the identification of putative recessive mutations that affect fertility through early embryonic fetal loss, or that compromise neonate or calf viability. The use of artificial insemination in the global dairy population can rapidly spread these harmful mutations, and testing for multiple mutations can become relatively expensive if not all tests are available on the same SNP panel. However, it is possible to provide heifer and cow predicted carrier status to farmers at no additional cost if the animals are genotyped with a standard SNP panel. Additionally, for defects where the causal mutation is unknown but a haplotype of markers has been associated with the defect, the carrier status can be predicted based on that haplotype. The aims of this study were 3-fold: (1) to determine the accuracy of imputation of putative causal mutations for recessive deleterious conditions in Australian dairy cattle, (2) to impute carrier status for known recessive deleterious conditions in all genotyped Australian Holstein, Jersey, and Red breed cows, and (3) to determine the changes in carrier frequencies across time for these recessive deleterious mutations. We used the F1 statistic, combining precision and recall, to assess the accuracy of carrier status prediction. We showed that known deleterious mutations can be accurately imputed in Australian Holstein and Jersey cattle that are not directly genotyped for the causal mutation, with F1 ranging between 0.88 and 0.99. For recessive deleterious conditions not included on the standard Australian SNP panel, carrier status could be predicted using a marker haplotype, with F1 ranging from 0.91 to 0.92. Most putative causals and haplotypes were either stable with a low carrier percentage or had a declining carrier percentage. However, several recessive mutations showed a relatively high or increasing percentage, highlighting the importance of detecting carriers to reduce the number of at-risk matings. Furthermore, the high carrier percentage of the recently identified bovine lymphocyte intestinal retention defect mutation emphasizes the importance of detection of novel mutations.
Collapse
Affiliation(s)
- I van den Berg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia.
| | - T V Nguyen
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | | | - J E Pryce
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | | | - I M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
5
|
Besnard F, Guintard A, Grohs C, Guzylack-Piriou L, Cano M, Escouflaire C, Hozé C, Leclerc H, Buronfosse T, Dutheil L, Jourdain J, Barbat A, Fritz S, Deloche MC, Remot A, Gaussères B, Clément A, Bouchier M, Contat E, Relun A, Plassard V, Rivière J, Péchoux C, Vilotte M, Eche C, Kuchly C, Charles M, Boulling A, Viard G, Minéry S, Barbey S, Birbes C, Danchin-Burge C, Launay F, Mattalia S, Allais-Bonnet A, Ravary B, Millemann Y, Guatteo R, Klopp C, Gaspin C, Iampietro C, Donnadieu C, Milan D, Arcangioli MA, Boussaha M, Foucras G, Boichard D, Capitan A. Massive detection of cryptic recessive genetic defects in dairy cattle mining millions of life histories. Genome Biol 2024; 25:248. [PMID: 39343954 PMCID: PMC11441225 DOI: 10.1186/s13059-024-03384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Dairy cattle breeds are populations of limited effective size, subject to recurrent outbreaks of recessive defects that are commonly studied using positional cloning. However, this strategy, based on the observation of animals with characteristic features, may overlook a number of conditions, such as immune or metabolic genetic disorders, which may be confused with pathologies of environmental etiology. RESULTS We present a data mining framework specifically designed to detect recessive defects in livestock that have been previously missed due to a lack of specific signs, incomplete penetrance, or incomplete linkage disequilibrium. This approach leverages the massive data generated by genomic selection. Its basic principle is to compare the observed and expected numbers of homozygotes for sliding haplotypes in animals with different life histories. Within three cattle breeds, we report 33 new loci responsible for increased risk of juvenile mortality and present a series of validations based on large-scale genotyping, clinical examination, and functional studies for candidate variants affecting the NOA1, RFC5, and ITGB7 genes. In particular, we describe disorders associated with NOA1 and RFC5 mutations for the first time in vertebrates. CONCLUSIONS The discovery of these many new defects will help to characterize the genetic basis of inbreeding depression, while their management will improve animal welfare and reduce losses to the industry.
Collapse
Affiliation(s)
- Florian Besnard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
- IDELE, 149 Rue de Bercy, 75012, Paris, France.
| | - Ana Guintard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Cécile Grohs
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Margarita Cano
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Clémentine Escouflaire
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Chris Hozé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Hélène Leclerc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | | | - Lucie Dutheil
- IHAP, Université de Toulouse, INRAE, ENVT, 31076, Toulouse, France
| | - Jeanlin Jourdain
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Anne Barbat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Sébastien Fritz
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Marie-Christine Deloche
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Aude Remot
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | | | - Adèle Clément
- IHAP, Université de Toulouse, INRAE, ENVT, 31076, Toulouse, France
| | - Marion Bouchier
- VetAgro Sup, Université Lyon1, 69280, Marcy-L'Etoile, France
| | - Elise Contat
- VetAgro Sup, Université Lyon1, 69280, Marcy-L'Etoile, France
| | - Anne Relun
- Oniris, INRAE, BIOEPAR, 44300, Nantes, France
| | | | - Julie Rivière
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, 78350, Jouy-en-Josas, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Marthe Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Camille Eche
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320, Castanet-Tolosan, France
| | - Claire Kuchly
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320, Castanet-Tolosan, France
| | - Mathieu Charles
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Arnaud Boulling
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Guillaume Viard
- ELIANCE, 75012, Paris, France
- Université Paris-Saclay, INRAE, Ecole Nationale Vétérinaire d'Alfort, BREED, 78350, Jouy-en-Josas, France
| | | | - Sarah Barbey
- UE326, Unité Expérimentale du Pin, INRAE, 61310, Le Pin Au Haras, France
| | - Clément Birbes
- Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, 31320, Castanet-Tolosan, France
| | | | - Frédéric Launay
- UE326, Unité Expérimentale du Pin, INRAE, 61310, Le Pin Au Haras, France
| | | | - Aurélie Allais-Bonnet
- ELIANCE, 75012, Paris, France
- Université Paris-Saclay, INRAE, Ecole Nationale Vétérinaire d'Alfort, BREED, 78350, Jouy-en-Josas, France
| | | | | | | | - Christophe Klopp
- Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, 31320, Castanet-Tolosan, France
| | - Christine Gaspin
- Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, 31320, Castanet-Tolosan, France
| | - Carole Iampietro
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320, Castanet-Tolosan, France
| | - Cécile Donnadieu
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320, Castanet-Tolosan, France
| | - Denis Milan
- GenPhySE, Université Fédérale de Toulouse, INRAE, INPT, ENVT, 31320, Castanet-Tolosan, France
| | | | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT, 31076, Toulouse, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Aurélien Capitan
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
- ELIANCE, 75012, Paris, France.
| |
Collapse
|
6
|
Grant JR, Herman EK, Barlow LD, Miglior F, Schenkel FS, Baes CF, Stothard P. A large structural variant collection in Holstein cattle and associated database for variant discovery, characterization, and application. BMC Genomics 2024; 25:903. [PMID: 39350025 PMCID: PMC11440700 DOI: 10.1186/s12864-024-10812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Structural variants (SVs) such as deletions, duplications, and insertions are known to contribute to phenotypic variation but remain challenging to identify and genotype. A more complete, accessible, and assessable collection of SVs will assist efforts to study SV function in cattle and to incorporate SV genotyping into animal evaluation. RESULTS In this work we produced a large and deeply characterized collection of SVs in Holstein cattle using two popular SV callers (Manta and Smoove) and publicly available Illumina whole-genome sequence (WGS) read sets from 310 samples (290 male, 20 female, mean 20X coverage). Manta and Smoove identified 31 K and 68 K SVs, respectively. In total the SVs cover 5% (Manta) and 6% (Smoove) of the reference genome, in contrast to the 1% impacted by SNPs and indels. SV genotypes from each caller were confirmed to accurately recapitulate animal relationships estimated using WGS SNP genotypes from the same dataset, with Manta genotypes outperforming Smoove, and deletions outperforming duplications. To support efforts to link the SVs to phenotypic variation, overlapping and tag SNPs were identified for each SV, using genotype sets extracted from the WGS results corresponding to two bovine SNP chips (BovineSNP50 and BovineHD). 9% (Manta) and 11% (Smoove) of the SVs were found to have overlapping BovineHD panel SNPs, while 21% (Manta) and 9% (Smoove) have BovineHD panel tag SNPs. A custom interactive database ( https://svdb-dc.pslab.ca ) containing the identified sequence variants with extensive annotations, gene feature information, and BAM file content for all SVs was created to enable the evaluation and prioritization of SVs for further study. Illustrative examples involving the genes POPDC3, ORM1, G2E3, FANCI, TFB1M, FOXC2, N4BP2, GSTA3, and COPA show how this resource can be used to find well-supported genic SVs, determine SV breakpoints, design genotyping approaches, and identify processed pseudogenes masquerading as deletions. CONCLUSIONS The resources developed through this study can be used to explore sequence variation in Holstein cattle and to develop strategies for studying SVs of interest. The lack of overlapping and tag SNPs from commonly used SNP chips for most of the SVs suggests that other genotyping approaches will be needed (for example direct genotyping) to understand their potential contributions to phenotype. The included SV genotype assessments point to challenges in characterizing SVs, especially duplications, using short-read data and support ongoing efforts to better characterize cattle genomes through long-read sequencing. Lastly, the identification of previously known functional SVs and additional CDS-overlapping SVs supports the phenotypic relevance of this dataset.
Collapse
Affiliation(s)
- Jason R Grant
- Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Emily K Herman
- Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Lael D Barlow
- Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- , Lactanet, Guelph, ON, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Christine F Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Paul Stothard
- Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
7
|
Gozdek M, Mucha S, Prostek A, Sadkowski T. Selected Monogenic Genetic Diseases in Holstein Cattle-A Review. Genes (Basel) 2024; 15:1052. [PMID: 39202412 PMCID: PMC11353376 DOI: 10.3390/genes15081052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Genetic disorders arise from alterations in the hereditary information encoded in DNA, leading to potential detrimental effects on the well-being and vitality of organisms. Within the bovine population, genetic conditions inherited in an autosomal recessive manner are frequently associated with particular breeds. In recent years, several recessive haplotypes and a few causative mutations have been discovered in Holstein cattle: CDH (Holstein cholesterol deficiency), haplotypes with a homozygous deficiency in Holstein (HH1, HH3, HH4, HH5, HH6 and HH7), BLAD (bovine leukocyte adhesion deficiency) and DUMPS (deficiency of uridine monophosphate synthase). All of these diseases are inherited in an autosomal recessive manner. From a breeding perspective, recessive mutations specifically exhibit considerable detrimental effects and are a significant problem for breeders, exposing them to economic losses. Individual mutations can cause embryo death at any stage of pregnancy. Only genetic research and conscious selection of animals for mating will lead to a reduction in the number of carriers and elimination of mutations from the population.
Collapse
Affiliation(s)
- Marta Gozdek
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.G.); (A.P.)
- Polish Federation of Cattle Breeders and Dairy Farmers, 00-515 Warsaw, Poland;
| | - Sebastian Mucha
- Polish Federation of Cattle Breeders and Dairy Farmers, 00-515 Warsaw, Poland;
| | - Adam Prostek
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.G.); (A.P.)
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.G.); (A.P.)
| |
Collapse
|
8
|
Ben Braiek M, Szymczak S, André C, Bardou P, Fidelle F, Granado-Tajada I, Plisson-Petit F, Sarry J, Woloszyn F, Moreno-Romieux C, Fabre S. A single base pair duplication in the SLC33A1 gene is associated with fetal losses and neonatal lethality in Manech Tête Rousse dairy sheep. Anim Genet 2024; 55:644-657. [PMID: 38922751 DOI: 10.1111/age.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
We recently discovered that the Manech Tête Rousse (MTR) deficient homozygous haplotype 2 (MTRDHH2) probably carries a recessive lethal mutation in sheep. In this study, we fine-mapped this region through whole-genome sequencing of five MTRDHH2 heterozygous carriers and 95 non-carriers from various ovine breeds. We identified a single base pair duplication within the SLC33A1 gene, leading to a frameshift mutation and a premature stop codon (p.Arg246Alafs*3). SLC33A1 encodes a transmembrane transporter of acetyl-coenzyme A that is crucial for cellular metabolism. To investigate the lethality of this mutation in homozygous MTR sheep, we performed at-risk matings using artificial insemination (AI) between heterozygous SLC33A1 variant carriers (SLC33A1_dupG). Pregnancy was confirmed 15 days post-AI using a blood test measuring interferon Tau-stimulated MX1 gene expression. Ultrasonography between 45 and 60 days post-AI revealed a 12% reduction in AI success compared with safe matings, indicating embryonic/fetal loss. This was supported by the MX1 differential expression test suggesting fetal losses between 15 and 60 days of gestation. We also observed a 34.7% pre-weaning mortality rate in 49 lambs born from at-risk matings. Homozygous SLC33A1_dupG lambs accounted for 47% of this mortality, with deaths occurring mostly within the first 5 days without visible clinical signs. Therefore, appropriate management of SLC33A1_dupG with an allele frequency of 0.04 in the MTR selection scheme would help increase overall fertility and lamb survival.
Collapse
Affiliation(s)
- Maxime Ben Braiek
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Soline Szymczak
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | | | | | - Itsasne Granado-Tajada
- Department of Animal Production, NEIKER-BRTA Basque Institute of Agricultural Research and Development, Arkaute, Spain
| | | | - Julien Sarry
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Florent Woloszyn
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Stéphane Fabre
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| |
Collapse
|
9
|
Khan MYA, Dai D, Su X, Tian J, Zhou J, Ma L, Wang Y, Wen W, Zhang Y. Multiplex fluorescent amplification-refractory mutation system PCR method for the detection of 10 genetic defects in Holstein cattle and its comparison with the KASP genotyping assay. Anim Genet 2024; 55:457-464. [PMID: 38622758 DOI: 10.1111/age.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/27/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
The common deleterious genetic defects in Holstein cattle include haplotypes 1-6 (HH1-HH6), haplotypes for cholesterol deficiency (HCD), bovine leukocyte adhesion deficiency (BLAD), complex vertebral malformation (CVM) and brachyspina syndrome (BS). Recessive inheritance patterns of these genetic defects permit the carriers to function normally, but homozygous recessive genotypes cause embryo loss or neonatal death. Therefore, rapid detection of the carriers is essential to manage these genetic defects. This study was conducted to develop a single-tube multiplex fluorescent amplification-refractory mutation system (mf-ARMS) PCR method for efficient genotyping of these 10 genetic defects and to compare its efficiency with the kompetitive allele specific PCR (KASP) genotyping assay. The mf-ARMS PCR method introduced 10 sets of tri-primers optimized with additional mismatches in the 3' end of wild and mutant-specific primers, size differentiation between wild and mutant-specific primers, fluorescent labeling of universal primers, adjustment of annealing temperatures and optimization of primer concentrations. The genotyping of 484 Holstein cows resulted in 16.12% carriers with at least one genetic defect, while no homozygous recessive genotype was detected. This study found carrier frequencies ranging from 0.0% (HH6) to 3.72% (HH3) for individual defects. The mf-ARMS PCR method demonstrated improved detection, time and cost efficiency compared with the KASP method for these defects. Therefore, the application of mf-ARMS PCR for genotyping Holstein cattle is anticipated to decrease the frequency of lethal alleles and limit the transmission of these genetic defects.
Collapse
Affiliation(s)
- Md Yousuf Ali Khan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Bangladesh Livestock Research Institute, Dhaka, Bangladesh
| | - Dongmei Dai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xin Su
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jia Tian
- Laboratory of Dairy Herd Improvement, NingXia Animal Husbandry Station, Yinchuan, China
| | - Jiamin Zhou
- Laboratory of Dairy Herd Improvement, NingXia Animal Husbandry Station, Yinchuan, China
| | - Liqin Ma
- Laboratory of Dairy Herd Improvement, NingXia Animal Husbandry Station, Yinchuan, China
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wan Wen
- Laboratory of Dairy Herd Improvement, NingXia Animal Husbandry Station, Yinchuan, China
| | - Yi Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Arias KD, Fernández I, Gutiérrez JP, Álvarez I, Goyache F. Population dynamics of potentially harmful haplotypes: a pedigree analysis. BMC Genomics 2024; 25:487. [PMID: 38755557 PMCID: PMC11097446 DOI: 10.1186/s12864-024-10407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND The identification of low-frequency haplotypes, never observed in homozygous state in a population, is considered informative on the presence of potentially harmful alleles (candidate alleles), putatively involved in inbreeding depression. Although identification of candidate alleles is challenging, studies analyzing the dynamics of potentially harmful alleles are lacking. A pedigree of the highly endangered Gochu Asturcelta pig breed, including 471 individuals belonging to 51 different families with at least 5 offspring each, was genotyped using the Axiom PigHDv1 Array (658,692 SNPs). Analyses were carried out on four different cohorts defined according to pedigree depth and at the whole population (WP) level. RESULTS The 4,470 Linkage Blocks (LB) identified in the Base Population (10 individuals), gathered a total of 16,981 alleles in the WP. Up to 5,466 (32%) haplotypes were statistically considered candidate alleles, 3,995 of them (73%) having one copy only. The number of alleles and candidate alleles varied across cohorts according to sample size. Up to 4,610 of the alleles identified in the WP (27% of the total) were present in one cohort only. Parentage analysis identified a total of 67,742 parent-offspring incompatibilities. The number of mismatches varied according to family size. Parent-offspring inconsistencies were identified in 98.2% of the candidate alleles and 100% of the LB in which they were located. Segregation analyses informed that most potential candidate alleles appeared de novo in the pedigree. Only 17 candidate alleles were identified in the boar, sow, and paternal and maternal grandparents and were considered segregants. CONCLUSIONS Our results suggest that neither mutation nor recombination are the major forces causing the apparition of candidate alleles. Their occurrence is more likely caused by Allele-Drop-In events due to SNP calling errors. New alleles appear when wrongly called SNPs are used to construct haplotypes. The presence of candidate alleles in either parents or grandparents of the carrier individuals does not ensure that they are true alleles. Minimum Allele Frequency thresholds may remove informative alleles. Only fully segregant candidate alleles should be considered potentially harmful alleles. A set of 16 candidate genes, potentially involved in inbreeding depression, is described.
Collapse
Affiliation(s)
- Katherine D Arias
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, Gijón, 33394, Spain
| | - Iván Fernández
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, Gijón, 33394, Spain
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, Madrid, 28040, Spain
| | - Isabel Álvarez
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, Gijón, 33394, Spain
| | - Félix Goyache
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, Gijón, 33394, Spain.
| |
Collapse
|
11
|
Ask-Gullstrand P, Strandberg E, Båge R, Rius-Vilarrasa E, Berglund B. The effect of genetic defects on pregnancy loss in Swedish dairy cattle. J Dairy Sci 2024; 107:2999-3005. [PMID: 37977438 DOI: 10.3168/jds.2023-24159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
The effect of carrier status of 10 lethal recessive genetic defects on pregnancy maintenance in Swedish dairy cattle was examined. The genetic defects were Ayrshire Haplotype 1, Ayrshire Haplotype 2, BTA12, BTA23, and Brown Swiss Haplotype 2 in Red Dairy Cattle (RDC), and Holstein Haplotype 1, 3, 4, 6, and 7 (HH1-HH7) in Holstein. Effects of carrier status of BTA12 and HH3 on conception rate (CR), interval from first to last service (FLS), and milk production were also examined. Data were obtained for 1,429 herds in the Swedish milk recording system, while information on carrier status of genetic defects was obtained from the Nordic Cattle Genetic Evaluation. In total, data on 158,795 inseminations in 28,432 RDC and 22,018 Holstein females were available. Data permitted separate analyses of BTA12 and HH3, but carrier frequencies of other defects were too low to enable further analysis. Pregnancy loss was defined as failure to maintain pregnancy, where pregnancy status was confirmed with manual and chemical pregnancy diagnosis, insemination, calving, sales and culling data. Odds ratios (OR) and probabilities of pregnancy loss and CR were estimated using generalized linear mixed models, while pregnancy loss, CR, FLS, milk, protein, and fat yields were analyzed using linear mixed models. Pregnancy losses were reported on average within the first month post-AI. At-risk matings were more prone to suffer pregnancy loss in BTA12 (OR = 1.79) and HH3 carriers (OR = 1.77) than not-at-risk matings. At-risk matings also had lower CR (OR = 0.62 and 0.63 for BTA12 and HH3, respectively) than not-at-risk matings. Carrier females of BTA12 had longer FLS and higher milk production than noncarriers. Conception rate and pregnancy maintenance could be improved by avoiding at-risk matings. This finding could help reduce pregnancy loss due to genetic defects in the breeding program for improved fertility.
Collapse
Affiliation(s)
- P Ask-Gullstrand
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | - E Strandberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - R Båge
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | | | - B Berglund
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
12
|
Ben Braiek M, Moreno-Romieux C, André C, Astruc JM, Bardou P, Bordes A, Debat F, Fidelle F, Granado-Tajada I, Hozé C, Plisson-Petit F, Rivemale F, Sarry J, Tadi N, Woloszyn F, Fabre S. Searching for homozygous haplotype deficiency in Manech Tête Rousse dairy sheep revealed a nonsense variant in the MMUT gene affecting newborn lamb viability. Genet Sel Evol 2024; 56:16. [PMID: 38424485 PMCID: PMC10905913 DOI: 10.1186/s12711-024-00886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Recessive deleterious variants are known to segregate in livestock populations, as in humans, and some may be lethal in the homozygous state. RESULTS We used phased 50 k single nucleotide polymorphism (SNP) genotypes and pedigree data to scan the genome of 6845 Manech Tête Rousse dairy sheep to search for deficiency in homozygous haplotypes (DHH). Five Manech Tête Rousse deficient homozygous haplotypes (MTRDHH1 to 5) were identified, with a homozygous deficiency ranging from 84 to 100%. These haplotypes are located on Ovis aries chromosome (OAR)1 (MTRDHH2 and 3), OAR10 (MTRDHH4), OAR13 (MTRDHH5), and OAR20 (MTRDHH1), and have carrier frequencies ranging from 7.8 to 16.6%. When comparing at-risk matings between DHH carriers to safe matings between non-carriers, two DHH (MTRDHH1 and 2) were linked with decreased insemination success and/or increased stillbirth incidence. We investigated the MTRDHH1 haplotype, which substantially increased stillbirth rate, and identified a single nucleotide variant (SNV) inducing a premature stop codon (p.Gln409*) in the methylmalonyl-CoA mutase (MMUT) gene by using a whole-genome sequencing approach. We generated homozygous lambs for the MMUT mutation by at-risk mating between heterozygous carriers, and most of them died within the first 24 h after birth without any obvious clinical symptoms. Reverse transcriptase-qPCR and western blotting on post-mortem liver and kidney biological samples showed a decreased expression of MMUT mRNA in the liver and absence of a full-length MMUT protein in the mutant homozygous lambs. CONCLUSIONS We identified five homozygous deficient haplotypes that are likely to harbor five independent deleterious recessive variants in sheep. One of these was detected in the MMUT gene, which is associated with lamb lethality in the homozygous state. A specific management of these haplotypes/variants in the MTR dairy sheep selection program would help enhance the overall fertility and lamb survival.
Collapse
Affiliation(s)
- Maxime Ben Braiek
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | | | | | - Jean-Michel Astruc
- Institut de l'Elevage, 24 Chemin de Borde-Rouge, 31321, Castanet-Tolosan, France
| | | | - Arnaud Bordes
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Frédéric Debat
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | | | - Itsasne Granado-Tajada
- Department of Animal Production, NEIKER-BRTA Basque Institute of Agricultural Research and Development, Agrifood Campus of Arkaute s/n, 01080, Arkaute, Spain
| | - Chris Hozé
- Eliance, 149 Rue de Bercy, 75595, Paris, France
- GABI, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | | | - François Rivemale
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Julien Sarry
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Némuel Tadi
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Florent Woloszyn
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Stéphane Fabre
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France.
| |
Collapse
|
13
|
Costes V, Sellem E, Marthey S, Hoze C, Bonnet A, Schibler L, Kiefer H, Jaffrezic F. Multi-omics data integration for the identification of biomarkers for bull fertility. PLoS One 2024; 19:e0298623. [PMID: 38394258 PMCID: PMC10890740 DOI: 10.1371/journal.pone.0298623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Bull fertility is an important economic trait, and the use of subfertile semen for artificial insemination decreases the global efficiency of the breeding sector. Although the analysis of semen functional parameters can help to identify infertile bulls, no tools are currently available to enable precise predictions and prevent the commercialization of subfertile semen. Because male fertility is a multifactorial phenotype that is dependent on genetic, epigenetic, physiological and environmental factors, we hypothesized that an integrative analysis might help to refine our knowledge and understanding of bull fertility. We combined -omics data (genotypes, sperm DNA methylation at CpGs and sperm small non-coding RNAs) and semen parameters measured on a large cohort of 98 Montbéliarde bulls with contrasting fertility levels. Multiple Factor Analysis was conducted to study the links between the datasets and fertility. Four methodologies were then considered to identify the features linked to bull fertility variation: Logistic Lasso, Random Forest, Gradient Boosting and Neural Networks. Finally, the features selected by these methods were annotated in terms of genes, to conduct functional enrichment analyses. The less relevant features in -omics data were filtered out, and MFA was run on the remaining 12,006 features, including the 11 semen parameters and a balanced proportion of each type of-omics data. The results showed that unlike the semen parameters studied the-omics datasets were related to fertility. Biomarkers related to bull fertility were selected using the four methodologies mentioned above. The most contributory CpGs, SNPs and miRNAs targeted genes were all found to be involved in development. Interestingly, fragments derived from ribosomal RNAs were overrepresented among the selected features, suggesting roles in male fertility. These markers could be used in the future to identify subfertile bulls in order to increase the global efficiency of the breeding sector.
Collapse
Affiliation(s)
- Valentin Costes
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
| | - Eli Sellem
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
| | - Sylvain Marthey
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Chris Hoze
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
| | - Aurélie Bonnet
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
| | | | - Hélène Kiefer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Florence Jaffrezic
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
| |
Collapse
|
14
|
Surati U, Mohan M, Jayakumar S, Verma A, Niranjan SK. Genome-wide in silico analysis leads to identification of deleterious L290V mutation in RBBP5 gene in Bos indicus. Anim Biotechnol 2023; 34:4851-4859. [PMID: 37051916 DOI: 10.1080/10495398.2023.2199502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Genome-wide deleterious mutations were identified in zebu cattle (Bos indicus) using in silico approach. The ddRAD sequence data of Sahiwal cattle were annotated and aligned with the cattle reference genome (ARS-UCD1.2). A total of 279,383 SNPs were identified at Read Depth10, which were further filtered to 692 missense SNPs. These SNPs were further analyzed, for functional consequences, by using Variant Effect Predictor, PolyPhen, PROVEAN, and PANTHER tools. A total of 18 SNPs, were finally identified as deleterious, and among these, 12 SNPs were mapped on nine different genes. ERRAT, ProSA-web, Project HOPE, TM-Align, and YASSARA tools, further confirmed the protein malfunctioning of one missense (L290V) mutation of Retinoblastoma binding protein-5 (RBBP5) gene, transcribing a cell cycle regulatory protein and associated with Retinoblastoma in human. This derived bioinformatics pipeline may be useful for preliminarily identifying the deleterious DNA mutations in livestock, specifically in absence of any genetic disease records.
Collapse
Affiliation(s)
- Utsav Surati
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
- ICAR-National Dairy Research Institute, Karnal, India
| | - M Mohan
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
- ICAR-National Dairy Research Institute, Karnal, India
| | - S Jayakumar
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | - Archana Verma
- ICAR-National Dairy Research Institute, Karnal, India
| | | |
Collapse
|
15
|
Sudhakar A, Nayee N, Saha S, Donthula SK, Poojara HV, Gohil T, Patel AC, Maurya BK. Role of genetic introgression in introducing mutant alleles in Bos indicus cattle and prevalence of lethal genetic disorders in Bos taurus × Bos indicus and Bos indicus cattle in India. Trop Anim Health Prod 2023; 55:399. [PMID: 37940810 DOI: 10.1007/s11250-023-03798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Fertility is an important trait associated with reproductive performance and animal welfare concern. Lethal alleles affect fertility through early embryonic death, abortions, and stillbirth depending on the genetic expression of the allele. Holstein Friesian and Jersey are two major Bos taurus breeds used widely for increasing milk yield along with purebreds of Bos indicus breeds like Gir, Kankrej, Sahiwal, and Tharparkar. In the present study, prevalence of lethal mutants in crossbred Holstein Friesian (CBHF, n = 2435), crossbred Jersey (CBJY, n = 2874), Gir (n = 3288), Kankrej (n = 593), Sahiwal (n = 965), and Tharparkar (n = 18) were studied. Heterozygous carrier animals were identified for bovine leukocyte adhesion deficiency (BLAD), Citrullinemia, complex vertebral malformation (CVM), Brachyspina, Holstein Haplotype 1 (HH1), Holstein Haplotype 3 (HH3),Holstein Haplotype 4 (HH4) and Jersey Haplotype 1 (JH1). Breed purity analysis confirmed inheritance of Bos taurus genes contributing to the presence of lethal mutant alleles like BLAD, Citrullinemia, HH1, and JH1 in apparently phenotypic Bos indicus animals. Screening and elimination of heterozygous carrier bulls/cows is essential to control fertility loss associated with lethal alleles.
Collapse
Affiliation(s)
- A Sudhakar
- National Dairy Development Board (NDDB), Anand, 388001, Gujarat, India.
| | - Nilesh Nayee
- National Dairy Development Board (NDDB), Anand, 388001, Gujarat, India
| | - Sujit Saha
- National Dairy Development Board (NDDB), Anand, 388001, Gujarat, India
| | | | - Hardik V Poojara
- National Dairy Development Board (NDDB), Anand, 388001, Gujarat, India
| | - Tejas Gohil
- Sabarmati Ashram Gaushala ( Genomics lab), Anand, 388001, Gujarat, India
| | - Aashish C Patel
- College of Veterinary Science and Animal Husbandry, KU, Anand, 388001, Gujarat, India
| | - Brijesh K Maurya
- National Dairy Development Board (NDDB), Anand, 388001, Gujarat, India
- NDDB CALF Ltd., Anand, 388001, Gujarat, India
| |
Collapse
|
16
|
Id-Lahoucine S, Cánovas A, Legarra A, Casellas J. Transmission ratio distortion regions in the context of genomic evaluation and their effects on reproductive traits in cattle. J Dairy Sci 2023; 106:7786-7798. [PMID: 37210358 DOI: 10.3168/jds.2022-23062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/19/2023] [Indexed: 05/22/2023]
Abstract
Transmission ratio distortion (TRD), which is a deviation from Mendelian expectations, has been associated with basic mechanisms of life such as sperm and ova fertility and viability at developmental stages of the reproductive cycle. In this study different models including TRD regions were tested for different reproductive traits [days from first service to conception (FSTC), number of services, first service nonreturn rate (NRR), and stillbirth (SB)]. Thus, in addition to a basic model with systematic and random effects, including genetic effects modeled through a genomic relationship matrix, we developed 2 additional models, including a second genomic relationship matrix based on TRD regions, and TRD regions as a random effect assuming heterogeneous variances. The analyses were performed with 10,623 cows and 1,520 bulls genotyped for 47,910 SNPs, 590 TRD regions, and several records ranging from 9,587 (FSTC) to 19,667 (SB). The results of this study showed the ability of TRD regions to capture some additional genetic variance for some traits; however, this did not translate into higher accuracy for genomic prediction. This could be explained by the nature of TRD itself, which may arise in different stages of the reproductive cycle. Nevertheless, important effects of TRD regions were found on SB (31 regions) and NRR (18 regions) when comparing at-risk versus control matings, especially for regions with allelic TRD pattern. Particularly for NRR, the probability of observing nonpregnant cow increases by up to 27% for specific TRD regions, and the probability of observing stillbirth increased by up to 254%. These results support the relevance of several TRD regions on some reproductive traits, especially those with allelic patterns that have not received as much attention as recessive TRD patterns.
Collapse
Affiliation(s)
- S Id-Lahoucine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph N1G 2W1, ON, Canada
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph N1G 2W1, ON, Canada.
| | - A Legarra
- INRAE, UR631 SAGA, BP 52627, 32326 Castanet-Tolosan, France
| | - J Casellas
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
17
|
Branda-Sica A, Artigas R, de Torres E, Kinley E, Nicolini P, Federici MT, Llambí S. Monitoring of recessive defects associated with low reproductive performance in dairy cattle in Uruguay. Open Vet J 2023; 13:1290-1298. [PMID: 38027404 PMCID: PMC10658014 DOI: 10.5455/ovj.2023.v13.i10.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background Most dairy cattle breeds originate show an average generational inbreeding rate of 1%, which favors the occurrence of recessive defects associated with low reproductive performance. Aim The objective of this study was to monitor recessive defects associated with low reproductive performance in dairy cattle. Methods To monitor bulls carrying the Holstein Friesian haplotype (HH) 1, HH3, and HH4 haplotypes, we analyzed the records of 3,028 national and imported Holstein Friesian bulls from the 2021 updated sires' catalog published by "Evaluaciones Genéticas Lecheras"; and to determine the presence of these mentioned haplotypes, as well as Jersey haplotype (JH) 1 and complex vertebral malformation (CVM), were genotype with the GeneTitan® 2,500 single nucleotide polymorphism (SNP) bovine chip, estimate their frequencies and evaluate their impact on the fertility of 100 Holstein Friesian cows and 70 Holstein Friesian-Jersey crosses belonging to an experimental dairy. Results From a total of 1,468 (48.5%) bulls with genetic information from the sires' catalog for HH1 and 1,471 (48.6%) for HH3 and HH4, we found 90 (6.1%) carriers for HH1, 60 (4.1%) for HH3, and 6 (0.4%) for HH4, respectively. By genotyping with the chip, we calculated the herd frequency of the mutant alleles and herd prevalence of carriers for HH1 and CVM as q = 0.003 and 0.022; 0.59% and 4.3% (call rate >0.99), respectively. No mutant alleles were found for HH3, HH4, and JH1 in the analyzed population. We examined reproductive data by observing the presence of CVM and HH1 mutant alleles in repeat cows with an average of four services to achieve pregnancy. Conclusion This study demonstrated the presence of recessive defects associated with low reproductive performance in the analyzed population, which can affect the health and productivity of dairy cattle. Therefore, cows and bulls should be closely monitored through genetic testing to lower the incidence of recessive defects in dairy cattle.
Collapse
Affiliation(s)
- Andrea Branda-Sica
- Instituto Nacional de Investigación Agropecuaria, Sistema Ganadero Extensivo—Salud Animal, Canelones, Uruguay
| | - Rody Artigas
- Facultad de Veterinaria, Unidad Académica de Genética y Mejora Animal, Universidad de la República, Montevideo, Uruguay
| | - Elena de Torres
- Facultad de Veterinaria, Campo Experimental N°2, Universidad de la República, San José, Uruguay
| | - Evangelina Kinley
- Facultad de Veterinaria, Campo Experimental N°2, Universidad de la República, San José, Uruguay
| | - Paula Nicolini
- Centro Universitario de Tacuarembó, Instituto Superior de la Carne, Universidad de la República, Tacuarembó, Uruguay
| | - María Teresa Federici
- Instituto Nacional de Investigación Agropecuaria, Sistema Ganadero Extensivo—Salud Animal, Canelones, Uruguay
| | - Silvia Llambí
- Facultad de Veterinaria, Unidad Académica de Genética y Mejora Animal, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
18
|
Id-Lahoucine S, Casellas J, Lu D, Sargolzaei M, Miller S, Cánovas A. Distortion of Mendelian segregation across the Angus cattle genome uncovering regions affecting reproduction. Sci Rep 2023; 13:13393. [PMID: 37591956 PMCID: PMC10435455 DOI: 10.1038/s41598-023-37710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/26/2023] [Indexed: 08/19/2023] Open
Abstract
Nowadays, the availability of genotyped trios (sire-dam-offspring) in the livestock industry enables the implementation of the transmission ratio distortion (TRD) approach to discover deleterious alleles in the genome. Various biological mechanisms at different stages of the reproductive cycle such as gametogenesis, embryo development and postnatal viability can induce signals of TRD (i.e., deviation from Mendelian inheritance expectations). In this study, TRD was evaluated using both SNP-by-SNP and sliding windows of 2-, 4-, 7-, 10- and 20-SNP across 92,942 autosomal SNPs for 258,140 genotyped Angus cattle including 7,486 sires, 72,688 dams and 205,966 offspring. Transmission ratio distortion was characterized using allelic (specific- and unspecific-parent TRD) and genotypic parameterizations (additive- and dominance-TRD). Across the Angus autosomal chromosomes, 851 regions were clearly found with decisive evidence for TRD. Among these findings, 19 haplotypes with recessive patterns (potential lethality for homozygote individuals) and 52 regions with allelic patterns exhibiting complete or quasi-complete absence for homozygous individuals in addition to under-representation (potentially reduced viability) of the carrier (heterozygous) offspring were found. In addition, 64 (12) and 20 (4) regions showed significant influence on the trait heifer pregnancy at p-value < 0.05 (after chromosome-wise false discovery rate) and 0.01, respectively, reducing the pregnancy rate up to 15%, thus, supporting the biological importance of TRD phenomenon in reproduction.
Collapse
Affiliation(s)
- S Id-Lahoucine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - J Casellas
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - D Lu
- Angus Genetics Inc., St. Joseph, MO, 64506, USA
| | - M Sargolzaei
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Select Sires, Inc., Plain City, OH, 43064, USA
| | - S Miller
- AGBU, a joint venture of NSW Department of Primary Industries and University of New England, Armidale, 2351, Australia
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
19
|
Id-Lahoucine S, Casellas J, Suárez-Vega A, Fonseca PAS, Schenkel FS, Sargolzaei M, Cánovas A. Unravelling transmission ratio distortion across the bovine genome: identification of candidate regions for reproduction defects. BMC Genomics 2023; 24:383. [PMID: 37422635 DOI: 10.1186/s12864-023-09455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Biological mechanisms affecting gametogenesis, embryo development and postnatal viability have the potential to alter Mendelian inheritance expectations resulting in observable transmission ratio distortion (TRD). Although the discovery of TRD cases have been around for a long time, the current widespread and growing use of DNA technologies in the livestock industry provides a valuable resource of large genomic data with parent-offspring genotyped trios, enabling the implementation of TRD approach. In this research, the objective is to investigate TRD using SNP-by-SNP and sliding windows approaches on 441,802 genotyped Holstein cattle and 132,991 (or 47,910 phased) autosomal SNPs. RESULTS The TRD was characterized using allelic and genotypic parameterizations. Across the whole genome a total of 604 chromosomal regions showed strong significant TRD. Most (85%) of the regions presented an allelic TRD pattern with an under-representation (reduced viability) of carrier (heterozygous) offspring or with the complete or quasi-complete absence (lethality) for homozygous individuals. On the other hand, the remaining regions with genotypic TRD patterns exhibited the classical recessive inheritance or either an excess or deficiency of heterozygote offspring. Among them, the number of most relevant novel regions with strong allelic and recessive TRD patterns were 10 and 5, respectively. In addition, functional analyses revealed candidate genes regulating key biological processes associated with embryonic development and survival, DNA repair and meiotic processes, among others, providing additional biological evidence of TRD findings. CONCLUSIONS Our results revealed the importance of implementing different TRD parameterizations to capture all types of distortions and to determine the corresponding inheritance pattern. Novel candidate genomic regions containing lethal alleles and genes with functional and biological consequences on fertility and pre- and post-natal viability were also identified, providing opportunities for improving breeding success in cattle.
Collapse
Affiliation(s)
- Samir Id-Lahoucine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Joaquim Casellas
- Departament de Ciència Animal I Dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Aroa Suárez-Vega
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Pablo A S Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mehdi Sargolzaei
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Select Sires, Inc, Plain City, OH, 43064, USA
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
20
|
Dechow C, Frye E, Maunsell F. Identification of a putative haplotype associated with recumbency in Holstein calves. JDS COMMUNICATIONS 2022; 3:412-415. [PMID: 36465504 PMCID: PMC9709600 DOI: 10.3168/jdsc.2022-0224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/29/2022] [Indexed: 06/17/2023]
Abstract
Thirty-four Holstein calves from multiple farms were found recumbent during the neonatal period with no detectable neurologic, infectious, or metabolic abnormalities. Most calves did not survive beyond 6 wk of age. The objective of this study was to conduct a genome-wide association and pedigree analysis to determine if a genetic origin was plausible. There were 101,917 DNA markers for 18 affected calves and 26 unaffected family controls available for analysis. Genome-wide association, homozygosity screening, and a parental based transmission disequilibrium test were conducted in PLINK. A genomic region on the end of chromosome 16 that contained 78 markers based on a recessive inheritance model and that spanned 5.1 million bp was considered the most probable region for a genetic defect; the region was narrowed to 2.1 million bp following homozygosity screening and the transmission disequilibrium test with all affected calves homozygous in the candidate region and 1 homozygous control. A genotyped sire and 2 dams with imputed genotypes were heterozygous in the candidate region. A common sire born in 2008 was identified that was present for both paternal and maternal lineages of all affected calves; nearly all lineages traced through a prolific son born in 2010 who was genotyped and was heterozygous for the candidate region. Therefore, a possible genetic defect with incomplete penetrance on chromosome 16 that results in recumbency has been identified. Further efforts with an increase in families represented are needed to confirm a genetic basis, and identify the mutation and mode of inheritance.
Collapse
Affiliation(s)
- C.D. Dechow
- Department of Animal Science, Pennsylvania State University, University Park 16802
| | - E. Frye
- Department of Population Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - F.P. Maunsell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville
| |
Collapse
|
21
|
Genomic Prediction for Abortion in Lactating Holstein Dairy Cows. Animals (Basel) 2022; 12:ani12162079. [PMID: 36009669 PMCID: PMC9405033 DOI: 10.3390/ani12162079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Abortion in dairy cattle causes great economic losses due to reduced animal health, increase in culling rates, reduction in calf production, and milk yield, among others. Although the etiology of abortions can be of various origins, previous research has shown a genetic component. The objectives of this study were to (1) describe the development of the genomic prediction for cow abortions in lactating Holstein dairy cattle based on producer-recorded data and ssGBLUP methodology and (2) evaluate the efficacy of genomic predictions for cow abortions in commercial herds of US Holstein cows using data from herds that do not contribute phenotypic information to the evaluation. We hypothesized that cows with greater genomic predictions for cow abortions (Z_Abort STA) would have a reduced incidence of abortion. Phenotypic data on abortions, pedigree, and genotypes were collected directly from commercial dairy producers upon obtaining their permission. Abortion was defined as the loss of a confirmed pregnancy after 42 and prior to 260 days of gestation, treated as a binary outcome (0, 1), and analyzed using a threshold model. Data from a different subset of animals were used to test the efficacy of the prediction. The additive genetic variance for the cow abortion trait (Z_Abort) was 0.1235 and heritability was 0.0773. For all animals with genotypes (n = 1,662,251), mean reliability was 42%, and genomic predicted transmitting abilities (gPTAs) ranged from −8.8 to 12.4. Z_Abort had a positive correlation with cow and calf health traits and reproductive traits, and a negative correlation with production traits. Z_Abort effectively identified cows with a greater or lesser risk of abortion (16.6% vs. 11.0% for the worst and best genomics groups, respectively; p < 0.0001). The inclusion of cow abortion genomic predictions in a multi-trait selection index would allow dairy producers and consultants to reduce the incidence of abortion and to select high-producing, healthier, and more profitable cows.
Collapse
|
22
|
Reich P, Falker-Gieske C, Pook T, Tetens J. Development and validation of a horse reference panel for genotype imputation. Genet Sel Evol 2022; 54:49. [PMID: 35787788 PMCID: PMC9252005 DOI: 10.1186/s12711-022-00740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Genotype imputation is a cost-effective method to generate sequence-level genotypes for a large number of animals. Its application can improve the power of genomic studies, provided that the accuracy of imputation is sufficiently high. The purpose of this study was to develop an optimal strategy for genotype imputation from genotyping array data to sequence level in German warmblood horses, and to investigate the effect of different factors on the accuracy of imputation. Publicly available whole-genome sequence data from 317 horses of 46 breeds was used to conduct the analyses. Results Depending on the size and composition of the reference panel, the accuracy of imputation from medium marker density (60K) to sequence level using the software Beagle 5.1 ranged from 0.64 to 0.70 for horse chromosome 3. Generally, imputation accuracy increased as the size of the reference panel increased, but if genetically distant individuals were included in the panel, the accuracy dropped. Imputation was most precise when using a reference panel of multiple but related breeds and the software Beagle 5.1, which outperformed the other two tested computer programs, Impute 5 and Minimac 4. Genome-wide imputation for this scenario resulted in a mean accuracy of 0.66. Stepwise imputation from 60K to 670K markers and subsequently to sequence level did not improve the accuracy of imputation. However, imputation from higher density (670K) was considerably more accurate (about 0.90) than from medium density. Likewise, imputation in genomic regions with a low marker coverage resulted in a reduced accuracy of imputation. Conclusions The accuracy of imputation in horses was influenced by the size and composition of the reference panel, the marker density of the genotyping array, and the imputation software. Genotype imputation can be used to extend the limited amount of available sequence-level data from horses in order to boost the power of downstream analyses, such as genome-wide association studies, or the detection of embryonic lethal variants. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00740-8.
Collapse
Affiliation(s)
- Paula Reich
- Department of Animal Sciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.
| | - Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, 37075, Göttingen, Germany
| | - Torsten Pook
- Department of Animal Sciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, 37075, Göttingen, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, 37075, Göttingen, Germany
| |
Collapse
|
23
|
Häfliger IM, Spengeler M, Seefried FR, Drögemüller C. Four novel candidate causal variants for deficient homozygous haplotypes in Holstein cattle. Sci Rep 2022; 12:5435. [PMID: 35361830 PMCID: PMC8971413 DOI: 10.1038/s41598-022-09403-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Mendelian variants can determine both insemination success and neonatal survival and thus influence fertility and rearing success of cattle. We present 24 deficient homozygous haplotype regions in the Holstein population of Switzerland and provide an overview of the previously identified haplotypes in the global Holstein breed. This study encompasses massive genotyping, whole-genome sequencing (WGS) and phenotype association analyses. We performed haplotype screenings on almost 53 thousand genotyped animals including 114 k SNP data with two different approaches. We revealed significant haplotype associations to several survival, birth and fertility traits. Within haplotype regions, we mined WGS data of hundreds of bovine genomes for candidate causal variants, which were subsequently evaluated by using a custom genotyping array in several thousand breeding animals. With this approach, we confirmed the known deleterious SMC2:p.Phe1135Ser missense variant associated with Holstein haplotype (HH) 3. For two previously reported deficient homozygous haplotypes that show negative associations to female fertility traits, we propose candidate causative loss-of-function variants: the HH13-related KIR2DS1:p.Gln159* nonsense variant and the HH21-related NOTCH3:p.Cys44del deletion. In addition, we propose the RIOX1:p.Ala133_Glu142del deletion as well as the PCDH15:p.Leu867Val missense variant to explain the unexpected low number of homozygous haplotype carriers for HH25 and HH35, respectively. In conclusion, we demonstrate that with mining massive SNP data in combination with WGS data, we can map several haplotype regions and unravel novel recessive protein-changing variants segregating at frequencies of 1 to 5%. Our findings both confirm previously identified loci and expand the spectrum of undesired alleles impairing reproduction success in Holstein cattle, the world's most important dairy breed.
Collapse
Affiliation(s)
- Irene M Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland.
| | | | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland
| |
Collapse
|
24
|
Gutiérrez-Reinoso MA, Aponte PM, García-Herreros M. A review of inbreeding depression in dairy cattle: current status, emerging control strategies, and future prospects. J DAIRY RES 2022; 89:1-10. [PMID: 35225176 DOI: 10.1017/s0022029922000188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dairy cattle breeding has historically focused on relatively small numbers of elite bulls as sires of sons. In recent years, even if generation intervals were reduced and more diverse sires of sons could have been selected, genomic selection has not fundamentally changed the fact that a large number of individuals are being analyzed. However, a relatively small number of elite bulls are still siring those animals. Therefore inbreeding-derived negative consequences in the gene pool have brought concern. The detrimental effects of non-additive genetic changes such as inbreeding depression and dominance have been widely disseminated while seriously affecting bioeconomically important parameters because of an antagonistic relationship between dairy production and reproductive traits. Therefore, the estimation of benefits and limitations of inbreeding and variance of the selection response deserves to be evaluated and discussed to preserve genetic variability, a significant concern in the selection of individuals for reproduction and production. Short-term strategies for genetic merit improvement through modern breeding programs have severely lowered high-producing dairy cattle fertility potential. Since the current selection programs potentially increase long-term costs, genetic diversity has decreased globally as a consequence. Therefore, a greater understanding of the potential that selection programs have for supporting long-term genetic sustainability and genetic diversity among dairy cattle populations should be prioritized in managing farm profitability. The present review provides a broad approach to current inbreeding-derived problems, identifying critical points to be solved and possible alternative strategies to control selection against homozygous haplotypes while maintaining sustained selection pressure. Moreover, this manuscript explores future perspectives, emphasizing theoretical applications and critical points, and strategies to avoid the adverse effects of inbreeding in dairy cattle. Finally, this review provides an overview of challenges that will soon require multidisciplinary approaches to managing dairy cattle populations, intending to combine increases in productive trait phenotypes with improvements in reproductive, health, welfare, linear conformation, and adaptability traits into the foreseeable future.
Collapse
Affiliation(s)
- Miguel A Gutiérrez-Reinoso
- Universidad Técnica de Cotopaxi, Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria (UTC), Latacunga, Ecuador
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán (UdeC), Chile
| | - Pedro M Aponte
- Universidad San Francisco de Quito (USFQ), Colegio de Ciencias Biológicas y Ambientales (COCIBA), Campus Cumbayá, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, iBioMed, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito, Ecuador
| | | |
Collapse
|
25
|
Albertino LG, Albuquerque ALH, Ferreira JF, Oliveira JPM, Borges AS, Patelli THC, Oliveira-Filho JP. Allele Frequency of APAF1 Mutation in Holstein Cattle in Brazil. Front Vet Sci 2022; 9:822224. [PMID: 35280144 PMCID: PMC8904897 DOI: 10.3389/fvets.2022.822224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
APAF1 is an autosomal recessive inherited mutation, associated with Holstein haplotype 1 (HH1) and characterized by a substitution of cytosine for a thymine (c.1741C>T) in chromosome 5. The mutation causes fetal and embryonic loss, between 60 and 200 days of gestation, and reduced conception rate. The ARMS-PCR is considered a simple and low-cost method to determine single nucleotide polymorphism (SNP) with no need for genetic sequencing of the animal genome. This study aimed to verify the allelic frequency of APAF1 mutation in Brazilian Holstein cattle. A total of 248 Holstein DNA samples (210 cows and 38 bulls) were analyzed, and synthetic genes were manufactured to validate the primers developed by the authors. All animals assessed in this study were classified as wild-type for APAF1 mutation. The primers and protocol developed for the ARMS-PCR technique work with 100% specificity and efficiency since the amplicon formations are as expected according to the genotypes. In conclusion, the mutation responsible for APAF1 was not detected in the Brazilian Holstein cattle population assessed in this prevalence study, although it is not possible to affirm that APAF1 does not occur in Brazilian Holstein animals. The tetra-primer ARMS-PCR protocol for APAF1 mutation that has been validated here may be a relatively simple and economical method to determine the animals' genotype.
Collapse
Affiliation(s)
- Lukas Garrido Albertino
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Brazil
| | | | - Julia Franco Ferreira
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Brazil
| | | | - Alexandre Secorun Borges
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Brazil
| | | | - José Paes Oliveira-Filho
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Brazil
- *Correspondence: José Paes Oliveira-Filho
| |
Collapse
|
26
|
Ben Braiek M, Moreno-Romieux C, Allain C, Bardou P, Bordes A, Debat F, Drögemüller C, Plisson-Petit F, Portes D, Sarry J, Tadi N, Woloszyn F, Fabre S. A Nonsense Variant in CCDC65 Gene Causes Respiratory Failure Associated with Increased Lamb Mortality in French Lacaune Dairy Sheep. Genes (Basel) 2021; 13:genes13010045. [PMID: 35052387 PMCID: PMC8774411 DOI: 10.3390/genes13010045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/04/2022] Open
Abstract
We recently demonstrated that the Lacaune deficient homozygous haplotype 6 (LDHH6) potentially hosts a recessive perinatal lethal mutation in Lacaune dairy sheep mapped on OAR3. In the present study, we have analyzed the whole-genome sequences of two Lacaune ram heterozygous carriers of LDHH6. After variant calling and filtering against the variants of 86 non-carrier rams, we have identified a single nucleotide variant (SNV) in the two LDHH6 carriers whose variant allele induced a premature stop codon (p.Glu111*) in the Coiled-Coil Domain Containing 65 (CCDC65) gene. CCDC65 is involved in the assembly of the nexin-dynein regulatory complex for the formation of microtubules in ciliated cells. In order to identify the phenotype in homozygous sheep, we generated at-risk matings (n = 17) between rams and ewes heterozygous for the candidate variant in CCDC65. A total of 16 lambs were born alive with five genotyped as homozygous carriers. The homozygous lambs suffered from respiratory problems, and four of them died within the first month of life. At necropsy, we observed a broad hepatization of lung lobes possibly induced by infectious pneumonia. The management of this lethal recessive allele (frequency of 0.06) through reasoned mating in the Lacaune sheep selection schemes could reduce lamb mortality by 2%.
Collapse
Affiliation(s)
- Maxime Ben Braiek
- GenPhySE, Université de Toulouse, Institut National de Recherche Pour L’agriculture, L’alimentation et l’environnement (INRAE), Ecole Nationale Vétérinaire de Toulouse (ENVT), 31326 Castanet-Tolosan, France; (M.B.B.); (C.M.-R.); (A.B.); (F.D.); (F.P.-P.); (J.S.); (N.T.); (F.W.)
| | - Carole Moreno-Romieux
- GenPhySE, Université de Toulouse, Institut National de Recherche Pour L’agriculture, L’alimentation et l’environnement (INRAE), Ecole Nationale Vétérinaire de Toulouse (ENVT), 31326 Castanet-Tolosan, France; (M.B.B.); (C.M.-R.); (A.B.); (F.D.); (F.P.-P.); (J.S.); (N.T.); (F.W.)
| | - Charlotte Allain
- UE Domaine de La Fage, Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 12250 Saint-Jean et Saint-Paul, France; (C.A.); (D.P.)
| | - Philippe Bardou
- Sigenae, Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 31326 Castanet-Tolosan, France;
| | - Arnaud Bordes
- GenPhySE, Université de Toulouse, Institut National de Recherche Pour L’agriculture, L’alimentation et l’environnement (INRAE), Ecole Nationale Vétérinaire de Toulouse (ENVT), 31326 Castanet-Tolosan, France; (M.B.B.); (C.M.-R.); (A.B.); (F.D.); (F.P.-P.); (J.S.); (N.T.); (F.W.)
| | - Frédéric Debat
- GenPhySE, Université de Toulouse, Institut National de Recherche Pour L’agriculture, L’alimentation et l’environnement (INRAE), Ecole Nationale Vétérinaire de Toulouse (ENVT), 31326 Castanet-Tolosan, France; (M.B.B.); (C.M.-R.); (A.B.); (F.D.); (F.P.-P.); (J.S.); (N.T.); (F.W.)
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | - Florence Plisson-Petit
- GenPhySE, Université de Toulouse, Institut National de Recherche Pour L’agriculture, L’alimentation et l’environnement (INRAE), Ecole Nationale Vétérinaire de Toulouse (ENVT), 31326 Castanet-Tolosan, France; (M.B.B.); (C.M.-R.); (A.B.); (F.D.); (F.P.-P.); (J.S.); (N.T.); (F.W.)
| | - David Portes
- UE Domaine de La Fage, Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 12250 Saint-Jean et Saint-Paul, France; (C.A.); (D.P.)
| | - Julien Sarry
- GenPhySE, Université de Toulouse, Institut National de Recherche Pour L’agriculture, L’alimentation et l’environnement (INRAE), Ecole Nationale Vétérinaire de Toulouse (ENVT), 31326 Castanet-Tolosan, France; (M.B.B.); (C.M.-R.); (A.B.); (F.D.); (F.P.-P.); (J.S.); (N.T.); (F.W.)
| | - Némuel Tadi
- GenPhySE, Université de Toulouse, Institut National de Recherche Pour L’agriculture, L’alimentation et l’environnement (INRAE), Ecole Nationale Vétérinaire de Toulouse (ENVT), 31326 Castanet-Tolosan, France; (M.B.B.); (C.M.-R.); (A.B.); (F.D.); (F.P.-P.); (J.S.); (N.T.); (F.W.)
| | - Florent Woloszyn
- GenPhySE, Université de Toulouse, Institut National de Recherche Pour L’agriculture, L’alimentation et l’environnement (INRAE), Ecole Nationale Vétérinaire de Toulouse (ENVT), 31326 Castanet-Tolosan, France; (M.B.B.); (C.M.-R.); (A.B.); (F.D.); (F.P.-P.); (J.S.); (N.T.); (F.W.)
| | - Stéphane Fabre
- GenPhySE, Université de Toulouse, Institut National de Recherche Pour L’agriculture, L’alimentation et l’environnement (INRAE), Ecole Nationale Vétérinaire de Toulouse (ENVT), 31326 Castanet-Tolosan, France; (M.B.B.); (C.M.-R.); (A.B.); (F.D.); (F.P.-P.); (J.S.); (N.T.); (F.W.)
- Correspondence:
| |
Collapse
|
27
|
Häfliger IM, Seefried FR, Spengeler M, Drögemüller C. Mining massive genomic data of two Swiss Braunvieh cattle populations reveals six novel candidate variants that impair reproductive success. Genet Sel Evol 2021; 53:95. [PMID: 34915862 PMCID: PMC8675516 DOI: 10.1186/s12711-021-00686-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background This study was carried out on the two Braunvieh populations reared in Switzerland, the dairy Brown Swiss (BS) and the dual-purpose Original Braunvieh (OB). We performed a genome-wide analysis of array data of trios (sire, dam, and offspring) from the routine genomic selection to identify candidate regions showing missing homozygosity and phenotypic associations with five fertility, ten birth, and nine growth-related traits. In addition, genome-wide single SNP regression studies based on 114,890 single nucleotide polymorphisms (SNPs) for each of the two populations were performed. Furthermore, whole-genome sequencing data of 430 cattle including 70 putative haplotype carriers were mined to identify potential candidate variants that were validated by genotyping the current population using a custom array. Results Using a trio-based approach, we identified 38 haplotype regions for BS and five for OB that segregated at low to moderate frequencies. For the BS population, we confirmed two known haplotypes, BH1 and BH2. Twenty-four variants that potentially explained the missing homozygosity and associated traits were detected, in addition to the previously reported TUBD1:p.His210Arg variant associated with BH2. For example, for BS we identified a stop-gain variant (p.Arg57*) in the MRPL55 gene in the haplotype region on chromosome 7. This region is associated with the ‘interval between first and last insemination’ trait in our data, and the MRPL55 gene is known to be associated with early pregnancy loss in mice. In addition, we discuss candidate missense variants in the CPT1C, MARS2, and ACSL5 genes for haplotypes mapped in BS. In OB, we highlight a haplotype region on chromosome 19, which is potentially caused by a frameshift variant (p.Lys828fs) in the LIG3 gene, which is reported to be associated with early embryonic lethality in mice. Furthermore, we propose another potential causal missense variant in the TUBGCP5 gene for a haplotype mapped in OB. Conclusions We describe, for the first time, several haplotype regions that segregate at low to moderate frequencies and provide evidence of causality by trait associations in the two populations of Swiss Braunvieh. We propose a list of six protein-changing variants as potentially causing missing homozygosity. These variants need to be functionally validated and incorporated in the breeding program. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00686-3.
Collapse
Affiliation(s)
- Irene M Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland.
| | | | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland
| |
Collapse
|
28
|
Häfliger IM, Seefried FR, Drögemüller C. Reverse Genetic Screen for Deleterious Recessive Variants in the Local Simmental Cattle Population of Switzerland. Animals (Basel) 2021; 11:3535. [PMID: 34944310 PMCID: PMC8698008 DOI: 10.3390/ani11123535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
We herein report the result of a large-scale reverse genetic screen in the Swiss Simmental population, a local dual-purpose cattle breed. We aimed to detect possible recessively inherited variants affecting protein-coding genes, as such deleterious variants can impair fertility and rearing success significantly. We used 115,000 phased SNP data of almost 10 thousand cattle with pedigree data. This revealed evidence for 11 genomic regions of 1.17 Mb on average, with haplotypes (SH1 to SH11) showing a significant depletion in homozygosity and an allele frequency between 3.2 and 10.6%. For the proposed haplotypes, it was unfortunately not possible to evaluate associations with fertility traits as no corresponding data were available. For each haplotype region, possible candidate genes were listed based on their known function in development and disease. Subsequent mining of single-nucleotide variants and short indels in the genomes of 23 sequenced haplotype carriers allowed us to identify three perfectly linked candidate causative protein-changing variants: a SH5-related DIS3:p.Ile678fs loss-of-function variant, a SH8-related CYP2B6:p.Ile313Asn missense variant, and a SH9-related NUBPL:p.Ser143Tyr missense variant. None of these variants occurred in homozygous state in any of more than 5200 sequenced cattle of various breeds. Selection against these alleles in order to reduce reproductive failure and animal loss is recommended.
Collapse
Affiliation(s)
- Irene M. Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| |
Collapse
|
29
|
Yang Y, Si J, Lv X, Dai D, Liu L, Tang S, Wang Y, Zhang S, Xiao W, Zhang Y. Integrated analysis of whole genome and transcriptome sequencing reveals a frameshift mutation associated with recessive embryonic lethality in Holstein cattle. Anim Genet 2021; 53:137-141. [PMID: 34873723 DOI: 10.1111/age.13160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022]
Abstract
Embryo loss is an important factor affecting fertility in dairy production. HH2 was identified as a haplotype on chromosome 1 associated with embryonic lethality in Holstein cattle. In the current study, both short- and long-read WGS was performed on four carriers and four non-carriers of HH2 to screen for variants in concordance with HH2 haplotype status. Sequence variation analysis revealed five putative functional variants of protein-coding genes, including a frameshift mutation (g.107172616delT) in intraflagellar transport protein 80 (IFT80) gene. Transcriptome analysis of whole blood indicated that no gene exhibited significantly differential expression or allele-specific expression between carriers and non-carriers in the candidate region. This evidence points to g.107172616delT as the highest priority causative mutation for HH2. Protein prediction reveals that the frameshift mutation results in a premature stop codon to reduce the peptide chain from 760 to 383 amino acids and greatly alters the structure and function of IFT80 protein. Our results demonstrate that the use of a combination of multiple high-throughput sequencing technologies is an efficient strategy to screen for the candidate causative mutations responsible for Mendelian traits, including genetic disorders.
Collapse
Affiliation(s)
- Y Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - J Si
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - X Lv
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - D Dai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - L Liu
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - S Tang
- Beijing Animal Husbandry Station, Beijing, 100107, China
| | - Y Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - S Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - W Xiao
- Beijing Animal Husbandry Station, Beijing, 100107, China
| | - Y Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
30
|
Kadri NK, Mapel XM, Pausch H. The intronic branch point sequence is under strong evolutionary constraint in the bovine and human genome. Commun Biol 2021; 4:1206. [PMID: 34675361 PMCID: PMC8531310 DOI: 10.1038/s42003-021-02725-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
The branch point sequence is a cis-acting intronic motif required for mRNA splicing. Despite their functional importance, branch point sequences are not routinely annotated. Here we predict branch point sequences in 179,476 bovine introns and investigate their variability using a catalogue of 29.4 million variants detected in 266 cattle genomes. We localize the bovine branch point within a degenerate heptamer "nnyTrAy". An adenine residue at position 6, that acts as branch point, and a thymine residue at position 4 of the heptamer are more strongly depleted for mutations than coding sequences suggesting extreme purifying selection. We provide evidence that mutations affecting these evolutionarily constrained residues lead to alternative splicing. We confirm evolutionary constraints on branch point sequences using a catalogue of 115 million SNPs established from 3,942 human genomes of the gnomAD database.
Collapse
Affiliation(s)
- Naveen Kumar Kadri
- grid.5801.c0000 0001 2156 2780Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Xena Marie Mapel
- grid.5801.c0000 0001 2156 2780Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Hubert Pausch
- grid.5801.c0000 0001 2156 2780Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| |
Collapse
|
31
|
Khan MYA, Omar AI, He Y, Chen S, Zhang S, Xiao W, Zhang Y. Prevalence of nine genetic defects in Chinese Holstein cattle. Vet Med Sci 2021; 7:1728-1735. [PMID: 33991412 PMCID: PMC8464240 DOI: 10.1002/vms3.525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/22/2021] [Accepted: 04/22/2021] [Indexed: 11/06/2022] Open
Abstract
Worldwide use of elite sires has caused inbreeding accumulation and high frequencies of genetic defects in dairy cattle populations. In recent years, several genetic defect genes or haplotypes have been identified in Holstein cattle. A rapid and reliable microfluidic chip with Kompetitive allele-specific PCR (KASP) assay was developed in our previous study for the detection of heterozygotes at eight genetic defect loci of bovine leukocyte adhesion deficiency (BLAD), Brachyspina syndrome (BS), complex vertebral malformation (CVM), Holstein haplotype 1 (HH1), Holstein haplotype 3 (HH3), Holstein haplotype 4 (HH4), Holstein haplotype 5 (HH5) and haplotype for cholesterol deficiency (HCD). This study aimed to extend that assay to include a newly identified genetic defect of Holstein haplotype 6 (HH6) and to estimate the frequencies of carriers for each of the nine genetic defects in six Chinese Holstein herds. Of the 1633 cows, carrier frequencies of the genetic defects were 6.92%, 5.76%, 4.46%, 4.30%, 3.62%, 2.94%, 1.86% and 0.37% for HH1, HH3, CVM, HH5, HCD, BS, HH6 and BLAD, respectively. No carrier was found for HH4. Notably, 27.43% of cows carried at least one genetic defect, while 2.27% and 0.12% of cows carried double and triple genetic defect alleles, respectively. The existence of genetic defects calls for routine molecular testing and effective management of genetic defects by avoiding carrier-to-carrier mating in production herds and eliminating or at least reducing the frequency of the defective alleles through marker-assisted selection in breeding herds.
Collapse
Affiliation(s)
- Md. Yousuf Ali Khan
- National Engineering Laboratory for Animal BreedingKey Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Abdullah I. Omar
- National Engineering Laboratory for Animal BreedingKey Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yuwei He
- National Engineering Laboratory for Animal BreedingKey Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shaohu Chen
- Dairy Data Center of China Dairy AssociationBeijingChina
| | - Shengli Zhang
- National Engineering Laboratory for Animal BreedingKey Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Wei Xiao
- Beijing Animal Husbandry StationBeijingChina
| | - Yi Zhang
- National Engineering Laboratory for Animal BreedingKey Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
32
|
Sabetova KD, Podrechneva IY, Belokurov SG, Schiogolev PO, Kofiadi IA. Test System for BLAD Mutation Diagnosis in Cattle Populations. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421080135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Identification of homozygous haplotypes carrying putative recessive lethal mutations that compromise fertility traits in French Lacaune dairy sheep. Genet Sel Evol 2021; 53:41. [PMID: 33932977 PMCID: PMC8088666 DOI: 10.1186/s12711-021-00634-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background Homozygous recessive deleterious mutations can cause embryo/fetal or neonatal lethality, or genetic defects that affect female fertility and animal welfare. In livestock populations under selection, the frequency of such lethal mutations may increase due to inbreeding, genetic drift, and/or the positive pleiotropic effects of heterozygous carriers on selected traits. Results By scanning the genome of 19,102 Lacaune sheep using 50 k single nucleotide polymorphism (SNP) phased genotypes and pedigree data, we identified 11 Lacaune deficient homozygous haplotypes (LDHH1 to LDHH11) showing a highly significant deficit of homozygous animals ranging from 79 to 100%. These haplotypes located on chromosomes 3, 4, 13, 17 and 18, spanned regions from 1.2 to 3.0 Mb long with a frequency of heterozygous carriers between 3.7 and 12.1%. When we compared at-risk matings (between carrier rams and daughters of carrier rams) and safe matings, seven of the 11 haplotypes were associated with a significant alteration of two fertility traits, a reduced success of artificial insemination (LDHH1, 2, 8 and 9), and/or an increased stillbirth rate (LDHH3, 6, 8, 9, and 10). The 11 haplotypes were also tested for a putative selective advantage of heterozygous carrier rams based on their daughter yield deviation for six dairy traits (milk, fat and protein yields, fat and protein contents and lactation somatic cell score). LDHH1, 3, 4, 5, 7, 9 and 11 were associated with positive effects on at least one selected dairy trait, in particular milk yield. For each haplotype, the most probable candidate genes were identified based on their roles in lethality of mouse knock-out models and in mammalian genetic disorders. Conclusions Based on a reverse genetic strategy, we identified at least 11 haplotypes with homozygous deficiency segregating in French Lacaune dairy sheep. This strategy represents a first tool to limit at-risk matings in the Lacaune dairy selection scheme. We assume that most of the identified LDHH are in strong linkage disequilibrium with a recessive lethal mutation that affects embryonic or juvenile survival in sheep but is yet to be identified. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00634-1.
Collapse
|
34
|
Hiltpold M, Kadri NK, Janett F, Witschi U, Schmitz-Hsu F, Pausch H. Autosomal recessive loci contribute significantly to quantitative variation of male fertility in a dairy cattle population. BMC Genomics 2021; 22:225. [PMID: 33784962 PMCID: PMC8010996 DOI: 10.1186/s12864-021-07523-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cattle are ideally suited to investigate the genetics of male fertility. Semen from individual bulls is used for thousands of artificial inseminations for which the fertilization success is monitored. Results from the breeding soundness examination and repeated observations of semen quality complement the fertility evaluation for each bull. RESULTS In a cohort of 3881 Brown Swiss bulls that had genotypes at 683,609 SNPs, we reveal four novel recessive QTL for male fertility on BTA1, 18, 25, and 26 using haplotype-based association testing. A QTL for bull fertility on BTA1 is also associated with sperm head shape anomalies. All other QTL are not associated with any of the semen quality traits investigated. We perform complementary fine-mapping approaches using publicly available transcriptomes as well as whole-genome sequencing data of 125 Brown Swiss bulls to reveal candidate causal variants. We show that missense or nonsense variants in SPATA16, VWA3A, ENSBTAG00000006717 and ENSBTAG00000019919 are in linkage disequilibrium with the QTL. Using whole-genome sequence data, we detect strong association (P = 4.83 × 10- 12) of a missense variant (p.Ile193Met) in SPATA16 with male fertility. However, non-coding variants exhibit stronger association at all QTL suggesting that variants in regulatory regions contribute to variation in bull fertility. CONCLUSION Our findings in a dairy cattle population provide evidence that recessive variants may contribute substantially to quantitative variation in male fertility in mammals. Detecting causal variants that underpin variation in male fertility remains difficult because the most strongly associated variants reside in poorly annotated non-coding regions.
Collapse
Affiliation(s)
- Maya Hiltpold
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland.
| | - Naveen Kumar Kadri
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland
| | - Fredi Janett
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | | | | | - Hubert Pausch
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland
| |
Collapse
|
35
|
Sasaki S, Watanabe T, Ibi T, Hasegawa K, Sakamoto Y, Moriwaki S, Kurogi K, Ogino A, Yasumori T, Wakaguri H, Muraki E, Miki Y, Yoshida Y, Inoue Y, Tabuchi I, Iwao K, Arishima T, Kawashima K, Watanabe M, Sugano S, Sugimoto Y, Suzuki Y. Identification of deleterious recessive haplotypes and candidate deleterious recessive mutations in Japanese Black cattle. Sci Rep 2021; 11:6687. [PMID: 33758295 PMCID: PMC7988166 DOI: 10.1038/s41598-021-86225-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/05/2021] [Indexed: 02/01/2023] Open
Abstract
Intensive use of a few elite sires has increased the risk of the manifestation of deleterious recessive traits in cattle. Substantial genotyping data gathered using single-nucleotide polymorphism (SNP) arrays have identified the haplotypes with homozygous deficiency, which may compromise survival. We developed Japanese Black cattle haplotypes (JBHs) using SNP array data (4843 individuals) and identified deleterious recessive haplotypes using exome sequencing of 517 sires. We identified seven JBHs with homozygous deficiency. JBH_10 and JBH_17 were associated with the resuming of estrus after artificial insemination, indicating that these haplotypes carried deleterious mutations affecting embryonic survival. The exome data of 517 Japanese Black sires revealed that AC_000165.1:g.85341291C>G of IARS in JBH_8_2, AC_000174.1:g.74743512G>T of CDC45 in JBH_17, and a copy variation region (CNVR_27) of CLDN16 in JBH_1_1 and JBH_1_2 were the candidate mutations. A novel variant AC_000174.1:g.74743512G>T of CDC45 in JBH_17 was located in a splicing donor site at a distance of 5 bp, affecting pre-mRNA splicing. Mating between heterozygotes of JBH_17 indicated that homozygotes carrying the risk allele died around the blastocyst stage. Analysis of frequency of the CDC45 risk allele revealed that its carriers were widespread throughout the tested Japanese Black cattle population. Our approach can effectively manage the inheritance of recessive risk alleles in a breeding population.
Collapse
Affiliation(s)
- Shinji Sasaki
- grid.267625.20000 0001 0685 5104Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Nakagami-gun, Okinawa, 903-0213 Japan ,grid.258333.c0000 0001 1167 1801United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065 Japan
| | - Toshio Watanabe
- Maebashi Institute of Animal Science, Livestock Improvement Association of Japan, Inc., Maebashi, 371-0121 Japan
| | - Takayuki Ibi
- grid.261356.50000 0001 1302 4472Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka, Okayama, 700-8530 Japan
| | - Kiyotoshi Hasegawa
- Shimane Prefecture Livestock Technology Center, Koshi, Izumo, Shimane 693-0031 Japan
| | - Yoichi Sakamoto
- Shimane Prefecture Livestock Technology Center, Koshi, Izumo, Shimane 693-0031 Japan
| | - Shunsuke Moriwaki
- Shimane Prefecture Livestock Technology Center, Koshi, Izumo, Shimane 693-0031 Japan
| | - Kazuhito Kurogi
- Maebashi Institute of Animal Science, Livestock Improvement Association of Japan, Inc., Maebashi, 371-0121 Japan
| | - Atsushi Ogino
- Maebashi Institute of Animal Science, Livestock Improvement Association of Japan, Inc., Maebashi, 371-0121 Japan
| | - Takanori Yasumori
- Maebashi Institute of Animal Science, Livestock Improvement Association of Japan, Inc., Maebashi, 371-0121 Japan
| | - Hiroyuki Wakaguri
- grid.26999.3d0000 0001 2151 536XDepartment of Medical Genome Sciences, and Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562 Japan
| | - Eiji Muraki
- Hida Beef Cattle Research Department, Gifu Prefectural Livestock Research Institute, Makigadou, Kiomi, Takayama, Gifu 506-0101 Japan
| | - Youko Miki
- Hyogo Prefectural Technology Center for Agriculture, Forest and Fisher, Hokubu Agricultural Technology Institute, Asago, Hyogo 669-5254 Japan
| | - Yuichi Yoshida
- Hyogo Prefectural Technology Center for Agriculture, Forest and Fisher, Hokubu Agricultural Technology Institute, Asago, Hyogo 669-5254 Japan
| | - Yoshinobu Inoue
- Tottori Prefecture Livestock Research Center, Tohaku-gun, Kotoura-cho 689-2503 Japan
| | - Ichiro Tabuchi
- Tottori Prefecture Livestock Research Center, Tohaku-gun, Kotoura-cho 689-2503 Japan
| | - Ken Iwao
- Tottori Prefecture Livestock Research Center, Tohaku-gun, Kotoura-cho 689-2503 Japan
| | - Taichi Arishima
- Cattle Breeding Development Institute of Kagoshima Prefecture, Osumi, So, Kagoshima 899-8212 Japan
| | - Keisuke Kawashima
- Cattle Breeding Development Institute of Kagoshima Prefecture, Osumi, So, Kagoshima 899-8212 Japan
| | - Manabu Watanabe
- grid.26999.3d0000 0001 2151 536XDepartment of Medical Genome Sciences, and Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562 Japan
| | - Sumio Sugano
- grid.26999.3d0000 0001 2151 536XDepartment of Medical Genome Sciences, and Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562 Japan
| | - Yoshikazu Sugimoto
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Yushima, Bunkyouku, Tokyo 113-0034 Japan
| | - Yutaka Suzuki
- grid.26999.3d0000 0001 2151 536XDepartment of Medical Genome Sciences, and Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562 Japan
| |
Collapse
|
36
|
Bérodier M, Berg P, Meuwissen T, Boichard D, Brochard M, Ducrocq V. Improved dairy cattle mating plans at herd level using genomic information. Animal 2020; 15:100016. [PMID: 33516018 DOI: 10.1016/j.animal.2020.100016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022] Open
Abstract
From 2012 to 2018, 223 180 Montbéliarde females were genotyped in France and the number of newly genotyped females increased at a rate of about 33% each year. With female genotyping information, farmers have access to the genomic estimated breeding values of the females in their herd and to their carrier status for genetic defects or major genes segregating in the breed. This information, combined with genomic coancestry, can be used when planning matings in order to maximize the expected on-farm profit of future female offspring. We compared different mating allocation approaches for their capacity to maximize the expected genetic gain while limiting expected progeny inbreeding and the probability to conceive an offspring homozygous for a lethal recessive allele. Three mate allocation strategies (random mating (RAND), sequential mating (gSEQ€) and linear programing mating (gLP€)) were compared on 160 actual Montbéliarde herds using male and female genomic information. Then, we assessed the benefit of using female genomic information by comparing matings planned using only female pedigree information with the equivalent strategy using genomic information. We measured the benefit of adding genomic expected inbreeding and risk of conception of an offspring homozygous for a lethal recessive allele to Net merit in mating plans. The influence of three constraints was tested: by relaxing the constraint on availability of a particular semen type (sexed or conventional) for bulls, by adding an upper limit of 8.5% coancestry between mate pairs or by using a more stringent maximum use of a bull in a herd (5% vs 10%). The use of genomic information instead of pedigree information improved the mate allocation method in terms of progeny expected genetic merit, genetic diversity and risk to conceive an offspring homozygous for a lethal recessive allele. Optimizing mate allocation using linear programming and constraining coancestry to a maximum of 8.5% per mate pair reduced the average coancestry with a small impact on expected Net Merit. In summary, for male and female selection pathways, using genomic information is more efficient than using pedigree information to maximize genetic gain while constraining the expected inbreeding of the progeny and the risk to conceive an offspring homozygous for a lethal recessive allele. This study also underlines the key role of semen type (sexed vs conventional) and the associated constraints on the mate allocation algorithm to maximize genetic gain while maintaining genetic diversity and limiting the risk to conceive an offspring homozygous for a lethal recessive allele.
Collapse
Affiliation(s)
- M Bérodier
- UMR GABI, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; MO3, 01250, Ceyzériat, France.
| | - P Berg
- Norwegian University of Life Sciences, PB 5002, N-1432 Ås, Norway
| | - T Meuwissen
- Norwegian University of Life Sciences, PB 5002, N-1432 Ås, Norway
| | - D Boichard
- UMR GABI, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - M Brochard
- MO3, 01250, Ceyzériat, France; Umotest, 01250, Ceyzériat, France
| | - V Ducrocq
- UMR GABI, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
37
|
Gutiérrez-Reinoso MA, Aponte PM, Cabezas J, Rodriguez-Alvarez L, Garcia-Herreros M. Genomic Evaluation of Primiparous High-Producing Dairy Cows: Inbreeding Effects on Genotypic and Phenotypic Production-Reproductive Traits. Animals (Basel) 2020; 10:ani10091704. [PMID: 32967074 PMCID: PMC7552765 DOI: 10.3390/ani10091704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Improving the genomic prediction methodologies in high-producing dairy cattle is a key factor for the selection of suitable individuals to ensure better productivity. However, the most advanced prediction tools based on genotyping show ~75% reliability. Nowadays, the incorporation of new indices to genomic prediction methods, such as the Inbreeding Index (II), can significantly facilitate the selection of reliable production and reproductive traits for progeny selection. Thus, the objective of this study was to determine the impact of II (low: LI and high: HI), based on genomic analysis, and its effect on production and reproductive phenotypic traits in high-producing primiparous dairy cows. Individuals with II between ≥2.5 and ≤5.0 have shown up to a two-fold increase in negative correlations comparing LI versus HI genomic production and reproductive parameters, severely affecting important traits such as Milk Production at 305 d, Protein Production at 305 d, Fertility Index, and Daughter Pregnancy Rate. Therefore, high-producing dairy cows face an increased risk of negative II-derived effects in their selection programs, particularly at II ≥ 2.5. Abstract The main objective of this study was to analyze the effects of the inbreeding degree in high-producing primiparous dairy cows genotypically and phenotypically evaluated and its impacts on production and reproductive parameters. Eighty Holstein–Friesian primiparous cows (age: ~26 months; ~450 kg body weight) were previously genomically analyzed to determine the Inbreeding Index (II) and were divided into two groups: low inbreeding group (LI: <2.5; n = 40) and high inbreeding group (HI: ≥2.5 and ≤5.0; n = 40). Genomic determinations of production and reproductive parameters (14 in total), together with analyses of production (12) and reproductive (11) phenotypic parameters (23 in total) were carried out. Statistically significant differences were obtained between groups concerning the genomic parameters of Milk Production at 305 d and Protein Production at 305 d and the reproductive parameter Daughter Calving Ease, the first two being higher in cows of the HI group and the third lower in the LI group (p < 0.05). For the production phenotypic parameters, statistically significant differences were observed between both groups in the Total Fat, Total Protein, and Urea parameters, the first two being higher in the LI group (p < 0.05). Also, significant differences were observed in several reproductive phenotypic parameters, such as Number of Services per Conception, Calving to Conception Interval, Days Open Post Service, and Current Inter-Partum Period, all of which negatively influenced the HI group (p < 0.05). In addition, correlation analyses were performed between production and reproductive genomic parameters separately and in each consanguinity group. The results showed multiple positive and negative correlations between the production and reproductive parameters independently of the group analyzed, being these correlations more remarkable for the reproductive parameters in the LI group and the production parameters in the HI group (p < 0.05). In conclusion, the degree of inbreeding significantly influenced the results, affecting different genomic and phenotypic production and reproductive parameters in high-producing primiparous cows. The determination of the II in first-calf heifers is crucial to evaluate the negative effects associated with homozygosity avoiding an increase in inbreeding depression on production and reproductive traits.
Collapse
Affiliation(s)
- Miguel A. Gutiérrez-Reinoso
- Departamento de Ciencia Animal, Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile; (M.A.G.-R.); (J.C.)
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 050150, Ecuador
| | - Pedro Manuel Aponte
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Quito 170157, Ecuador;
- Instituto de Investigaciones en Biomedicina “One-health”, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170157, Ecuador
| | - Joel Cabezas
- Departamento de Ciencia Animal, Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile; (M.A.G.-R.); (J.C.)
| | - Lleretny Rodriguez-Alvarez
- Departamento de Ciencia Animal, Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile; (M.A.G.-R.); (J.C.)
- Correspondence: (L.R.-A.); (M.G.-H.); Tel.: +56-42-220-8835 (L.R.-A.); Fax: +351-24-3767 (ext. 330) (M.G.-H.)
| | - Manuel Garcia-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
- Correspondence: (L.R.-A.); (M.G.-H.); Tel.: +56-42-220-8835 (L.R.-A.); Fax: +351-24-3767 (ext. 330) (M.G.-H.)
| |
Collapse
|
38
|
Purfield DC, Evans RD, Berry DP. Breed- and trait-specific associations define the genetic architecture of calving performance traits in cattle. J Anim Sci 2020; 98:5829000. [PMID: 32365208 PMCID: PMC7247537 DOI: 10.1093/jas/skaa151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022] Open
Abstract
Reducing the incidence of both the degree of assistance required at calving, as well as the extent of perinatal mortality (PM) has both economic and societal benefits. The existence of heritable genetic variability in both traits signifies the presence of underlying genomic variability. The objective of the present study was to locate regions of the genome, and by extension putative genes and mutations, that are likely to be underpinning the genetic variability in direct calving difficulty (DCD), maternal calving difficulty (MCD), and PM. Imputed whole-genome single-nucleotide polymorphism (SNP) data on up to 8,304 Angus (AA), 17,175 Charolais (CH), 16,794 Limousin (LM), and 18,474 Holstein-Friesian (HF) sires representing 5,866,712 calving events from descendants were used. Several putative quantitative trait loci (QTL) regions associated with calving performance both within and across dairy and beef breeds were identified, although the majority were both breed- and trait-specific. QTL surrounding and encompassing the myostatin (MSTN) gene were associated (P < 5 × 10−8) with DCD and PM in both the CH and LM populations. The well-known Q204X mutation was the fifth strongest association with DCD in the CH population and accounted for 5.09% of the genetic variance in DCD. In contrast, none of the 259 segregating variants in MSTN were associated (P > × 10−6) with DCD in the LM population but a genomic region 617 kb downstream of MSTN was associated (P < 5 × 10−8). The genetic architecture for DCD differed in the HF population relative to the CH and LM, where two QTL encompassing ZNF613 on Bos taurus autosome (BTA)18 and PLAG1 on BTA14 were identified in the former. Pleiotropic SNP associated with all three calving performance traits were also identified in the three beef breeds; 5 SNP were pleiotropic in AA, 116 in LM, and 882 in CH but no SNP was associated with more than one trait within the HF population. The majority of these pleiotropic SNP were on BTA2 surrounding MSTN and were associated with both DCD and PM. Multiple previously reported, but also novel QTL, associated with calving performance were detected in this large study. These also included QTL regions harboring SNP with the same direction of allele substitution effect for both DCD and MCD thus contributing to a more effective simultaneous selection for both traits.
Collapse
Affiliation(s)
- Deirdre C Purfield
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Co. Cork, Ireland.,Irish Cattle Breeding Federation, Bandon, Co. Cork, Ireland
| | - Ross D Evans
- Irish Cattle Breeding Federation, Bandon, Co. Cork, Ireland
| | - Donagh P Berry
- Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
39
|
Tani M, Tanaka S, Oeda C, Azumi Y, Kawamura H, Sakaue M, Ito M. SLC37A2, a phosphorus-related molecule, increases in smooth muscle cells in the calcified aorta. J Clin Biochem Nutr 2020; 68:23-31. [PMID: 33536709 PMCID: PMC7844665 DOI: 10.3164/jcbn.19-114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/04/2020] [Indexed: 11/24/2022] Open
Abstract
Vascular calcification is major source of cardiovascular disease in patients with chronic kidney disease. Hyperphosphatemia leads to increased intracellular phosphorus influx, which leads to an increase in osteoblast-like cells in vascular smooth muscle cell. PiT-1 transports phosphate in vascular smooth muscle cell. However, the mechanism of vascular calcification is not completely understood. This study investigated candidate phosphorus-related molecules other than PiT-1. We hypothesized that phosphorus-related molecules belonging to the solute-carrier (SLC) superfamily would be involved in vascular calcification. As a result of DNA microarray analysis, we focused on SLC37A2 and showed that mRNA expression of these cells increased on calcified aotic smooth muscle cells (AoSMC). SLC37A2 has been reported to transport both glucose-6-phosphate/phosphate and phosphate/phosphate exchanges. In vitro analysis showed that SLC37A2 expression was not affected by inflammation on AoSMC. The expression of SLC37A2 mRNA and protein increased in calcified AoSMC. In vivo analysis showed that SLC37A2 mRNA expression in the aorta of chronic kidney disease rats was correlated with osteogenic marker genes. Furthermore, SLC37A2 was expressed at the vascular calcification area in chronic kidney disease rats. As a result, we showed that SLC37A2 is one of the molecules that increase with vascular calcification in vitro and in vivo.
Collapse
Affiliation(s)
- Mariko Tani
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Sarasa Tanaka
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Chihiro Oeda
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Yuichi Azumi
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Hiromi Kawamura
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Motoyoshi Sakaue
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Mikiko Ito
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| |
Collapse
|
40
|
Novel approach to incorporate information about recessive lethal genes increases the accuracy of genomic prediction for mortality traits. Heredity (Edinb) 2020; 125:155-166. [PMID: 32533106 PMCID: PMC7426854 DOI: 10.1038/s41437-020-0329-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 01/30/2023] Open
Abstract
The genetic underpinnings of calf mortality can be partly polygenic and partly due to deleterious effects of recessive lethal alleles. Prediction of the genetic merits of selection candidates should thus take into account both genetic components contributing to calf mortality. However, simultaneously modeling polygenic risk and recessive lethal allele effects in genomic prediction is challenging due to effects that behave differently. In this study, we present a novel approach where mortality risk probabilities from polygenic and lethal allele components are predicted separately to compute the total risk probability of an individual for its future offspring as a basis for selection. We present methods for transforming genomic estimated breeding values of polygenic effect into risk probabilities using normal density and cumulative distribution functions and show computations of risk probability from recessive lethal alleles given sire genotypes and population recessive allele frequencies. Simulated data were used to test the novel approach as implemented in probit, logit, and linear models. In the simulation study, the accuracy of predicted risk probabilities was computed as the correlation between predicted mortality probabilities and observed calf mortality for validation sires. The results indicate that our novel approach can greatly increase the accuracy of selection for mortality traits compared with the accuracy of predictions obtained without distinguishing polygenic and lethal gene effects.
Collapse
|
41
|
Kumar A, Gupta I, Mohan G, Vineeth M, Ravi kumar D, Jayakumar S, Niranjan S. Development of PCR based assays for detection of lethal Holstein haplotype 1, 3 and 4 in Holstein Friesian cattle. Mol Cell Probes 2020; 50:101503. [DOI: 10.1016/j.mcp.2019.101503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 11/26/2022]
|
42
|
Wu X, Mesbah-Uddin M, Guldbrandtsen B, Lund MS, Sahana G. Novel haplotypes responsible for prenatal death in Nordic Red and Danish Jersey cattle. J Dairy Sci 2020; 103:4570-4578. [PMID: 32197842 DOI: 10.3168/jds.2019-17831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/27/2020] [Indexed: 01/04/2023]
Abstract
Haplotypes that are common in a population but not observed as homotypes in living animals may harbor lethal alleles that compromise embryo survival. In this study, we searched for homozygous-deficient haplotypes in the genomes of 19,309 Nordic Red Dairy (RDC) and 4,291 Danish Jersey (JER) cattle genotyped using the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). For statistically significant deficient haplotypes, we evaluated the effect on nonreturn rate in at-risk matings (mating between carrier bull and daughter of carrier sire) versus not-at-risk matings (mating between noncarrier bull and daughter of noncarrier sire). Next, we analyzed whole-genome sequence variants from the 1000 Bull Genomes Project to identify putative causal variants underlying these haplotypes. In RDC, we identified 3 homozygous-deficient regions (HDR) that overlapped with known recessive lethal mutations: a 662-kb deletion on chromosome 12 in RDC [Online Mendelian Inheritance in Animals (OMIA) 001901-9913), a missense mutation in TUBD1, g.11063520T>C, in Braunvieh cattle (OMIA 001939-9913), and a 525-kb deletion on chromosome 23 in RDC (OMIA 001991-9913)]. In addition, we identified 15 novel HDR and their tag haplotypes for the underlying causative variants. The tag haplotype located between 39.2 and 40.3 Mbp on chromosome 18 had a negative effect on nonreturn rate in at-risk mating, confirming embryonic lethality. In Danish Jersey, we identified 12 novel HDR and their tag haplotypes for underlying causative variants. For 3 of these 12 tag haplotypes, insemination records of at-risk mating showed a negative effect on nonreturn rate, confirming the association with early embryonic mortality. Cattle that had both genotype and whole-genome sequence data were analyzed to detect the causative variants underlying each tag haplotype. However, none of the functional variants or deletions showed concordance with carrier status of the novel tag haplotypes. Carrier status of these detected haplotypes can be used to select bulls to reduce the frequencies of lethal alleles in the population and to avoid at-risk matings.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, 8830 Tjele, Denmark.
| | - Md Mesbah-Uddin
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, 8830 Tjele, Denmark; Animal Genetics and Integrative Biology, UMR 1313 GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, 8830 Tjele, Denmark
| | - Mogens S Lund
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, 8830 Tjele, Denmark
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, 8830 Tjele, Denmark.
| |
Collapse
|
43
|
Gross N, Strillacci MG, Peñagaricano F, Khatib H. Characterization and functional roles of paternal RNAs in 2-4 cell bovine embryos. Sci Rep 2019; 9:20347. [PMID: 31889064 PMCID: PMC6937301 DOI: 10.1038/s41598-019-55868-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022] Open
Abstract
Embryos utilize oocyte-donated RNAs until they become capable of producing RNAs through embryonic genome activation (EGA). The sperm's influence over pre-EGA RNA content of embryos remains unknown. Recent studies have revealed that sperm donate non-genomic components upon fertilization. Thus, sperm may also contribute to RNA presence in pre-EGA embryos. The first objective of this study was to investigate whether male fertility status is associated with the RNAs present in the bovine embryo prior to EGA. A total of 65 RNAs were found to be differentially expressed between 2-4 cell bovine embryos derived from high and low fertility sires. Expression patterns were confirmed for protein phosphatase 1 regulatory subunit 36 (PPP1R36) and ataxin 2 like (ATXN2L) in three new biological replicates. The knockdown of ATXN2L led to a 22.9% increase in blastocyst development. The second objective of this study was to characterize the parental origin of RNAs present in pre-EGA embryos. Results revealed 472 sperm-derived RNAs, 2575 oocyte-derived RNAs, 2675 RNAs derived from both sperm and oocytes, and 663 embryo-exclusive RNAs. This study uncovers an association of male fertility with developmentally impactful RNAs in 2-4 cell embryos. This study also provides an initial characterization of paternally-contributed RNAs to pre-EGA embryos. Furthermore, a subset of 2-4 cell embryo-specific RNAs was identified.
Collapse
Affiliation(s)
- Nicole Gross
- University of Wisconsin, Department of Animal Sciences, Madison, WI, 53706, USA
| | | | | | - Hasan Khatib
- University of Wisconsin, Department of Animal Sciences, Madison, WI, 53706, USA.
| |
Collapse
|
44
|
Oliveira Júnior GA, Santos DJA, Cesar ASM, Boison SA, Ventura RV, Perez BC, Garcia JF, Ferraz JBS, Garrick DJ. Fine mapping of genomic regions associated with female fertility in Nellore beef cattle based on sequence variants from segregating sires. J Anim Sci Biotechnol 2019; 10:97. [PMID: 31890201 PMCID: PMC6913038 DOI: 10.1186/s40104-019-0403-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Impaired fertility in cattle limits the efficiency of livestock production systems. Unraveling the genetic architecture of fertility traits would facilitate their improvement by selection. In this study, we characterized SNP chip haplotypes at QTL blocks then used whole-genome sequencing to fine map genomic regions associated with reproduction in a population of Nellore (Bos indicus) heifers. METHODS The dataset comprised of 1337 heifers genotyped using a GeneSeek® Genomic Profiler panel (74677 SNPs), representing the daughters from 78 sires. After performing marker quality control, 64800 SNPs were retained. Haplotypes carried by each sire at six previously identified QTL on BTAs 5, 14 and 18 for heifer pregnancy and BTAs 8, 11 and 22 for antral follicle count were constructed using findhap software. The significance of the contrasts between the effects of every two paternally-inherited haplotype alleles were used to identify sires that were heterozygous at each QTL. Whole-genome sequencing data localized to the haplotypes from six sires and 20 other ancestors were used to identify sequence variants that were concordant with the haplotype contrasts. Enrichment analyses were applied to these variants using KEGG and MeSH libraries. RESULTS A total of six (BTA 5), six (BTA 14) and five (BTA 18) sires were heterozygous for heifer pregnancy QTL whereas six (BTA 8), fourteen (BTA 11), and five (BTA 22) sires were heterozygous for number of antral follicles' QTL. Due to inadequate representation of many haplotype alleles in the sequenced animals, fine mapping analysis could only be reliably performed for the QTL on BTA 5 and 14, which had 641 and 3733 concordant candidate sequence variants, respectively. The KEGG "Circadian rhythm" and "Neurotrophin signaling pathway" were significantly associated with the genes in the QTL on BTA 5 whereas 32 MeSH terms were associated with the QTL on BTA 14. Among the concordant sequence variants, 0.2% and 0.3% were classified as missense variants for BTAs 5 and 14, respectively, highlighting the genes MTERF2, RTMB, ENSBTAG00000037306 (miRNA), ENSBTAG00000040351, PRKDC, and RGS20. The potential causal mutations found in the present study were associated with biological processes such as oocyte maturation, embryo development, placenta development and response to reproductive hormones. CONCLUSIONS The identification of heterozygous sires by positionally phasing SNP chip data and contrasting haplotype effects for previously detected QTL can be used for fine mapping to identify potential causal mutations and candidate genes. Genomic variants on genes MTERF2, RTBC, miRNA ENSBTAG00000037306, ENSBTAG00000040351, PRKDC, and RGS20, which are known to have influence on reproductive biological processes, were detected.
Collapse
Affiliation(s)
- Gerson A. Oliveira Júnior
- Department of Veterinary Medicine, University of São Paulo (USP), Faculty of Animal Science and Food Engineer, Pirassununga, SP Brazil
- Department of Animal Bioscience, Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON Canada
| | - Daniel J. A. Santos
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Aline S. M. Cesar
- Department of Animal Science, University of São Paulo (USP), Piracicaba, SP Brazil
| | - Solomon A. Boison
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ricardo V. Ventura
- Department of Animal Bioscience, Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON Canada
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, Brazil
| | - Bruno C. Perez
- Department of Veterinary Medicine, University of São Paulo (USP), Faculty of Animal Science and Food Engineer, Pirassununga, SP Brazil
| | - José F. Garcia
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), Araçatuba, SP Brazil
| | - José Bento S. Ferraz
- Department of Veterinary Medicine, University of São Paulo (USP), Faculty of Animal Science and Food Engineer, Pirassununga, SP Brazil
| | - Dorian J. Garrick
- School of Agriculture, Massey University, Ruakura Ag Centre, Hamilton, New Zealand
| |
Collapse
|
45
|
Jagannathan V, Drögemüller C, Leeb T. A comprehensive biomedical variant catalogue based on whole genome sequences of 582 dogs and eight wolves. Anim Genet 2019; 50:695-704. [PMID: 31486122 PMCID: PMC6842318 DOI: 10.1111/age.12834] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 12/16/2022]
Abstract
The domestic dog serves as an excellent model to investigate the genetic basis of disease. More than 400 heritable traits analogous to human diseases have been described in dogs. To further canine medical genetics research, we established the Dog Biomedical Variant Database Consortium (DBVDC) and present a comprehensive list of functionally annotated genome variants that were identified with whole genome sequencing of 582 dogs from 126 breeds and eight wolves. The genomes used in the study have a minimum coverage of 10× and an average coverage of ~24×. In total, we identified 23 133 692 single-nucleotide variants (SNVs) and 10 048 038 short indels, including 93% undescribed variants. On average, each individual dog genome carried ∼4.1 million single-nucleotide and ~1.4 million short-indel variants with respect to the reference genome assembly. About 2% of the variants were located in coding regions of annotated genes and loci. Variant effect classification showed 247 141 SNVs and 99 562 short indels having moderate or high impact on 11 267 protein-coding genes. On average, each genome contained heterozygous loss-of-function variants in 30 potentially embryonic lethal genes and 97 genes associated with developmental disorders. More than 50 inherited disorders and traits have been unravelled using the DBVDC variant catalogue, enabling genetic testing for breeding and diagnostics. This resource of annotated variants and their corresponding genotype frequencies constitutes a highly useful tool for the identification of potential variants causative for rare inherited disorders in dogs.
Collapse
Affiliation(s)
- V Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
46
|
|
47
|
Reinartz S, Distl O. Short communication: Lethal mutations in Vorderwald cattle through Montbéliarde incrossings. J Dairy Sci 2019; 103:613-618. [PMID: 31733870 DOI: 10.3168/jds.2019-17213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022]
Abstract
Vorderwald cattle are a dual-purpose cattle breed with high migrant contributions from Montbéliarde bulls in the recent past. Through the wide use of Montbéliarde bulls, undesirable alleles were also disseminated into the Vorderwald population. Haplotypes on bovine chromosome 19 (MH1) and 29 (MH2), supposed to harbor lethal mutations, were identified in Montbéliarde cattle. A study in French Montbéliarde cattle identified the PFAS:g.28511199C>T (rs455876205) variant as the most likely MH1 embryonic lethal mutation. The objective of the present study was to determine whether the PFAS:g.28511199C>T variant was introduced into Vorderwald cattle through Montbéliarde bulls and disseminated in this population. The present study expands on previous work on the deleterious SLC37A2 variant (ss2019324563) of the MH2 locus. Herein, we traced the ss2019324563 variant back to the Montbéliarde bull, which was the most likely source for this deleterious mutation in Vorderwald cattle. We genotyped 354 Vorderwald cattle for the PFAS variant, resulting in 41 heterozygous individuals and a T allele frequency of 0.058. An aborted fetus homozygous mutant for SLC37A2 from our previous study on the MH2 locus in Vorderwald cattle was wild type for the PFAS variant. Both lethal mutations were segregating independently of each other, and we found no indications of joint occurrence in a larger number of animals. Neither SLC37A2 nor PFAS double heterozygous mutants were lethal. The earliest animal with a heterozygous PFAS genotype was 1 of 5 migrant Montbéliarde bulls, and this bull was the most likely origin of the deleterious PFAS allele in Vorderwald cattle. All Vorderwald cattle under study born before introgression of this Montbéliarde bull were homozygous wild type. In addition, all 41 heterozygous Vorderwald cattle had genetic contributions from this Montbéliarde bull, whereas in 74 Vorderwald cattle without genes from Montbéliarde bulls, the PFAS T allele was not observed. In a sample of actual German Fleckvieh the PFAS T allele could be found at a very low frequency. Our study demonstrated the introgression of lethal variants through Montbéliarde bulls into a traditional cattle breed highly adapted to harsh local conditions. These findings underline the need to screen bulls for lethal mutations before their wide use in breeding, particularly in breeds with a focus on preservation of their genetic uniqueness.
Collapse
Affiliation(s)
- S Reinartz
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - O Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
48
|
Hozé C, Escouflaire C, Mesbah-Uddin M, Barbat A, Boussaha M, Deloche MC, Boichard D, Fritz S, Capitan A. Short communication: A splice site mutation in CENPU is associated with recessive embryonic lethality in Holstein cattle. J Dairy Sci 2019; 103:607-612. [PMID: 31733857 DOI: 10.3168/jds.2019-17056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/02/2019] [Indexed: 12/30/2022]
Abstract
A genome scan for homozygous haplotype deficiency coupled with whole-genome sequence data analysis is a very effective method to identify embryonic lethal mutations in cattle. Among other factors, the power of the approach depends on the availability of a greater amount of genotyping and sequencing data. In the present study, we analyzed the largest known panel of Illumina BovineSNP50 (Illumina Inc., San Diego, CA) genotypes, comprising 401,896 Holstein animals, and we report the mapping of a new embryonic lethal haplotype on chromosome 27, called HH7. We fine mapped the locus in a 2.0-Mb interval using an identical-by-descent approach and analyzed genome sequence data from 4 carrier and 143 noncarrier Holstein bulls to identify the causative mutation. We detected a strong candidate variant in the gene encoding centromere protein U (CENPU), a centromere component essential for proper chromosome segregation during mitosis. The mutant allele is a deletion of 4 nucleotides located at position +3 to +6 bp after the splicing donor site of exon 11. Cross-species nucleotide alignment revealed that the nucleotide at position +3 is entirely conserved among vertebrates, suggesting that it plays an important role in the regulation of CENPU splicing. For verification, we genotyped the candidate variant in 232,775 Holstein individuals and did not observe any homozygotes, whereas 16 were expected (Poisson P-value = 1.1 × 10-7; allele frequency = 0.8%). In addition, genotyping of 250,602 animals from 19 additional breeds revealed that the mutant allele is restricted to animals of Holstein descent. Finally, we estimated the effect of the candidate variant on 2 fertility traits in at-risk mating (i.e., between carrier bulls and daughters of carrier bulls) versus non-risk mating. In agreement with a recessive lethal inheritance pattern, we observed a marked reduction in both conception rate and 56-d nonreturn rate in heifers and cows. The effect on 56-d nonreturn rate suggests that a substantial proportion of homozygous mutants die before 35 d after insemination, which is consistent with the early embryonic death previously reported in CENPU-/- mouse embryos. In conclusion, we demonstrate that with more than 400,000 genotypes, we can map very rare recessive lethal mutations segregating at a frequency below 1% in the population. We recommend performing new analyses regularly as data are accumulating.
Collapse
Affiliation(s)
- C Hozé
- Allice, 75595 Paris, France; GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - C Escouflaire
- Allice, 75595 Paris, France; GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - M Mesbah-Uddin
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| | - A Barbat
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - M Boussaha
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - M C Deloche
- Allice, 75595 Paris, France; GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - D Boichard
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - S Fritz
- Allice, 75595 Paris, France; GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - A Capitan
- Allice, 75595 Paris, France; GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
49
|
Zhang Y, Liang D, Huang H, Yang Z, Wang Y, Yu Y, Liu L, Zhang S, Han J, Xiao W. Technical note: Development and application of KASP assays for rapid screening of 8 genetic defects in Holstein cattle. J Dairy Sci 2019; 103:619-624. [PMID: 31704007 DOI: 10.3168/jds.2019-16345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022]
Abstract
Specific DNA mutations underlying several genetic defects associated with embryo loss or reduced calf survivability have been identified in dairy cattle, and a convenient and cost-effective platform is required for their routine screening. We developed Kompetitive allele-specific PCR (KASP) assays for discrimination of the wild-type alleles from the associated defective alleles at each of 8 common genetic defects in Holstein cattle, involving 5 SNP [HH1, HH3, HH4, bovine leukocyte adhesion deficiency (BLAD), and complex vertebral malformation (CVM)] and 3 insertion or deletion mutations [HH5, haplotype for cholesterol deficiency (HCD), and brachyspina (BS)]. A total of 390 cows from a Chinese Holstein herd were genotyped and the carriers identified at 7 of these 8 loci (except HH4), with the highest carrier frequencies found for CVM (10.5%) and HH1 (10.0%), followed by HH3 (2.6%), BS (2.1%), HCD (1.3%), HH5 (0.8%), and BLAD (0.5%). Surprisingly, 102 cows (26.2%) carried at least 1 of the 7 defective alleles. Our results demonstrate that these KASP assays are simple, rapid, and reliable for the detection of multiple genetic defects. The high carrier frequency of these genetic defects indicates an urgent need for routine molecular testing to eliminate the deleterious alleles from Chinese Holstein cattle.
Collapse
Affiliation(s)
- Yi Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Dong Liang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hetian Huang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhancheng Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing 100192, China
| | - Shengli Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Wei Xiao
- Beijing Animal Husbandry Station, Beijing 100107, China.
| |
Collapse
|
50
|
Wu X, Mesbah-Uddin M, Guldbrandtsen B, Lund MS, Sahana G. Haplotypes responsible for early embryonic lethality detected in Nordic Holsteins. J Dairy Sci 2019; 102:11116-11123. [PMID: 31548059 DOI: 10.3168/jds.2019-16651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022]
Abstract
Widespread use of a limited number of elite sires in dairy cattle breeding increases the risk of some deleterious allelic variants spreading in the population. Genomic data are being used to detect relatively common (frequency >1%) haplotypes that never occur in the homozygous state in live animals. Such haplotypes likely include recessive lethal or semilethal alleles. The aim of this study was to detect such haplotypes in the Nordic Holstein population and to identify causal genetic factors underlying these haplotypes. Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA) genotypes for 26,312 Nordic Holstein animals were phased to construct haplotypes. Haplotypes that are common in the population but never observed as homozygous were identified. Two such haplotypes overlapped with previously identified recessive lethal mutations in Holsteins-namely, structural maintenance of chromosomes 2 (HH3) and brachyspina. In addition, we identified 9 novel putative recessive lethal-carrying haplotypes, with 26 to 36 homozygous individuals expected among the genotyped animals but only 0 to 3 homozygotes observed. For 2 out of 9 homozygous-deficient haplotypes, insemination records of at-risk mating (carrier bull with daughter of carrier sire) showed reduced insemination success compared with not-at-risk mating (noncarrier bull with daughter of noncarrier sire), supporting early embryonic mortality. To detect the causative variant underlying each homozygous-deficient haplotype, data from the 1000 Bull Genome Project were used. However, no variants or deletions identified in the chromosome regions covered by the haplotypes showed concordance with haplotype carrier status. The carrier status of detected haplotypes could be used to select bulls to reduce the frequency of the latent lethal mutations in the population. If desired, at-risk matings could be avoided.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark.
| | - Md Mesbah-Uddin
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark; Animal Genetics and Integrative Biology, UMR 1313 GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark
| | - Mogens S Lund
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark
| |
Collapse
|