1
|
Xu M, Du R, Xing W, Chen X, Wan J, Wang S, Xiong L, Nandakumar KS, Holmdahl R, Geng H. Platelets derived citrullinated proteins and microparticles are potential autoantibodies ACPA targets in RA patients. Front Immunol 2023; 14:1084283. [PMID: 36761728 PMCID: PMC9902922 DOI: 10.3389/fimmu.2023.1084283] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Citrullinated neoepitopes have emerged as key triggers of autoantibodies anti-citrullinated protein antibodies (ACPA) synthesis in rheumatoid arthritis (RA) patients. Apart from their critical role in homeostasis and thrombosis, platelets have a significant contribution to inflammation as well. Although anuclear in nature, platelets have an intricate post-translational modification machinery. Till now, citrullination in platelets and its contribution to trigger autoantibodies ACPA production in RA is an unexplored research direction. Herein, we investigated the expression of peptidylarginine deiminase (PAD) enzymes and citrullinated proteins/peptides in the human platelets and platelet derived microparticles (PDP). Both PAD4 mRNA and protein, but not the other PAD isoforms, are detectable in the human platelets. With a strict filtering criterion,108 citrullination sites present on 76 proteins were identified in the human platelets, and 55 citrullinated modifications present on 37 different proteins were detected in the PDPs. Among them, some are well-known citrullinated autoantigens associated with RA. Citrullinated forms of thrombospondin-1, β-actin, and platelet factor-4 (also known as CXCL4) are highly immunogenic and bound by autoantibodies ACPA. Furthermore, ACPA from RA sera and synovial fluids recognized citrullinated proteins from platelets and significantly activated them as evidenced by P-selectin upregulation and sCD40 L secretion. These results clearly demonstrate the presence of citrullinated autoantigens in platelets and PDPs, thus could serve as potential targets of ACPA in RA.
Collapse
Affiliation(s)
- Minjie Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Rong Du
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenping Xing
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xueting Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jian Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Shengqing Wang
- Department of Dermatology, Hospital affiliated to Central China Normal University, Wuhan, China
| | - Li Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kutty Selva Nandakumar
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hui Geng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
2
|
Jiang SZ, To JL, Hughes MR, McNagny KM, Kim H. Platelet signaling at the nexus of innate immunity and rheumatoid arthritis. Front Immunol 2022; 13:977828. [PMID: 36505402 PMCID: PMC9732516 DOI: 10.3389/fimmu.2022.977828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disorder characterized by chronic inflammation of the synovial tissues and progressive destruction of bone and cartilage. The inflammatory response and subsequent tissue degradation are orchestrated by complex signaling networks between immune cells and their products in the blood, vascular endothelia and the connective tissue cells residing in the joints. Platelets are recognized as immune-competent cells with an important role in chronic inflammatory diseases such as RA. Here we review the specific aspects of platelet function relevant to arthritic disease, including current knowledge of the molecular crosstalk between platelets and other innate immune cells that modulate RA pathogenesis.
Collapse
Affiliation(s)
- Steven Z. Jiang
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey L. To
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Michael R. Hughes
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M. McNagny
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Anti-inflammatory activity of CD44 antibodies in murine immune thrombocytopenia is mediated by Fcγ receptor inhibition. Blood 2021; 137:2114-2124. [PMID: 33662988 DOI: 10.1182/blood.2020009497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/11/2021] [Indexed: 02/03/2023] Open
Abstract
Monoclonal immunoglobulin G (IgG) antibodies to CD44 (anti-CD44) are anti-inflammatory in numerous murine autoimmune models, but the mechanisms are poorly understood. Anti-CD44 anti-inflammatory activity shows complete therapeutic concordance with IV immunoglobulin (IVIg) in treating autoimmune disease models, making anti-CD44 a potential IVIg alternative. In murine immune thrombocytopenia (ITP), there is no mechanistic explanation for anti-CD44 activity, although anti-CD44 ameliorates disease similarly to IVIg. Here, we demonstrate a novel anti-inflammatory mechanism of anti-CD44 that explains disease amelioration by anti-CD44 in murine ITP. Macrophages treated with anti-CD44 in vitro had dramatically suppressed phagocytosis through FcγRs in 2 separate systems of IgG-opsonized platelets and erythrocytes. Phagocytosis inhibition by anti-CD44 was mediated by blockade of the FcγR IgG binding site without changing surface FcγR expression. Anti-CD44 of different subclasses revealed that FcγR blockade was specific to receptors that could be engaged by the respective anti-CD44 subclass, and Fc-deactivated anti-CD44 variants lost all FcγR-inhibiting activity. In vivo, anti-CD44 functioned analogously in the murine passive ITP model and protected mice from ITP when thrombocytopenia was induced through an FcγR that could be engaged by the CD44 antibody's subclass. Consistent with FcγR blockade, Fc-deactivated variants of anti-CD44 were completely unable to ameliorate ITP. Together, anti-CD44 inhibits macrophage FcγR function and ameliorates ITP consistent with an FcγR blockade mechanism. Anti-CD44 is a potential IVIg alternative and may be of particular benefit in ITP because of the significant role that FcγRs play in human ITP pathophysiology.
Collapse
|
4
|
Crow AR, Kapur R, Koernig S, Campbell IK, Jen CC, Mott PJ, Marjoram D, Khan R, Kim M, Brasseit J, Cruz-Leal Y, Amash A, Kahlon S, Yougbare I, Ni H, Zuercher AW, Käsermann F, Semple JW, Lazarus AH. Treating murine inflammatory diseases with an anti-erythrocyte antibody. Sci Transl Med 2020; 11:11/506/eaau8217. [PMID: 31434758 DOI: 10.1126/scitranslmed.aau8217] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/08/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Abstract
Treatment of autoimmune and inflammatory diseases typically involves immune suppression. In an opposite strategy, we show that administration of the highly inflammatory erythrocyte-specific antibody Ter119 into mice remodels the monocyte cellular landscape, leading to resolution of inflammatory disease. Ter119 with intact Fc function was unexpectedly therapeutic in the K/BxN serum transfer model of arthritis. Similarly, it rapidly reversed clinical disease progression in collagen antibody-induced arthritis (CAIA) and collagen-induced arthritis and completely corrected CAIA-induced increase in monocyte Fcγ receptor II/III expression. Ter119 dose-dependently induced plasma chemokines CCL2, CCL5, CXCL9, CXCL10, and CCL11 with corresponding alterations in monocyte percentages in the blood and liver within 24 hours. Ter119 attenuated chemokine production from the synovial fluid and prevented the accumulation of inflammatory cells and complement components in the synovium. Ter119 could also accelerate the resolution of hypothermia and pulmonary edema in an acute lung injury model. We conclude that this inflammatory anti-erythrocyte antibody simultaneously triggers a highly efficient anti-inflammatory effect with broad therapeutic potential.
Collapse
Affiliation(s)
- Andrew R Crow
- Canadian Blood Services Centre for Innovation, Ottawa, Ontario K1G 4J5, Canada.,Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Toronto Platelet Immunobiology Group, Toronto, Ontario, M5B 1T8 Canada
| | - Rick Kapur
- Canadian Blood Services Centre for Innovation, Ottawa, Ontario K1G 4J5, Canada.,Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Toronto Platelet Immunobiology Group, Toronto, Ontario, M5B 1T8 Canada.,Department of Hematology and Transfusion Medicine, Lund University, Lund 221 84, Sweden.,Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, Netherlands
| | - Sandra Koernig
- CSL Limited, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ian K Campbell
- CSL Limited, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Chao-Ching Jen
- Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Toronto Platelet Immunobiology Group, Toronto, Ontario, M5B 1T8 Canada
| | - Patrick J Mott
- Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Toronto Platelet Immunobiology Group, Toronto, Ontario, M5B 1T8 Canada
| | - Danielle Marjoram
- Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Toronto Platelet Immunobiology Group, Toronto, Ontario, M5B 1T8 Canada
| | - Ramsha Khan
- Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Toronto Platelet Immunobiology Group, Toronto, Ontario, M5B 1T8 Canada
| | - Michael Kim
- Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Toronto Platelet Immunobiology Group, Toronto, Ontario, M5B 1T8 Canada
| | - Jennifer Brasseit
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - Yoelys Cruz-Leal
- Canadian Blood Services Centre for Innovation, Ottawa, Ontario K1G 4J5, Canada.,Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Toronto Platelet Immunobiology Group, Toronto, Ontario, M5B 1T8 Canada
| | - Alaa Amash
- Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Toronto Platelet Immunobiology Group, Toronto, Ontario, M5B 1T8 Canada
| | - Simrat Kahlon
- Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Toronto Platelet Immunobiology Group, Toronto, Ontario, M5B 1T8 Canada
| | - Issaka Yougbare
- Canadian Blood Services Centre for Innovation, Ottawa, Ontario K1G 4J5, Canada.,Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Toronto Platelet Immunobiology Group, Toronto, Ontario, M5B 1T8 Canada
| | - Heyu Ni
- Canadian Blood Services Centre for Innovation, Ottawa, Ontario K1G 4J5, Canada.,Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Toronto Platelet Immunobiology Group, Toronto, Ontario, M5B 1T8 Canada.,Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Adrian W Zuercher
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - Fabian Käsermann
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - John W Semple
- Canadian Blood Services Centre for Innovation, Ottawa, Ontario K1G 4J5, Canada.,Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Toronto Platelet Immunobiology Group, Toronto, Ontario, M5B 1T8 Canada.,Department of Hematology and Transfusion Medicine, Lund University, Lund 221 84, Sweden.,Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Pharmacology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Alan H Lazarus
- Canadian Blood Services Centre for Innovation, Ottawa, Ontario K1G 4J5, Canada. .,Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Toronto Platelet Immunobiology Group, Toronto, Ontario, M5B 1T8 Canada.,Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
5
|
Tessandier N, Melki I, Cloutier N, Allaeys I, Miszta A, Tan S, Milasan A, Michel S, Benmoussa A, Lévesque T, Côté F, McKenzie SE, Gilbert C, Provost P, Brisson AR, Wolberg AS, Fortin PR, Martel C, Boilard É. Platelets Disseminate Extracellular Vesicles in Lymph in Rheumatoid Arthritis. Arterioscler Thromb Vasc Biol 2020; 40:929-942. [PMID: 32102567 PMCID: PMC8073225 DOI: 10.1161/atvbaha.119.313698] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The lymphatic system is a circulatory system that unidirectionally drains the interstitial tissue fluid back to blood circulation. Although lymph is utilized by leukocytes for immune surveillance, it remains inaccessible to platelets and erythrocytes. Activated cells release submicron extracellular vesicles (EV) that transport molecules from the donor cell. In rheumatoid arthritis, EV accumulate in the joint where they can interact with numerous cellular lineages. However, whether EV can exit the inflamed tissue to recirculate is unknown. Here, we investigated whether vascular leakage that occurs during inflammation could favor EV access to the lymphatic system. Approach and Results: Using an in vivo model of autoimmune inflammatory arthritis, we show that there is an influx of platelet EV, but not EV from erythrocytes or leukocytes, in joint-draining lymph. In contrast to blood platelet EV, lymph platelet EV lacked mitochondrial organelles and failed to promote coagulation. Platelet EV influx in lymph was consistent with joint vascular leakage and implicated the fibrinogen receptor α2bβ3 and platelet-derived serotonin. CONCLUSIONS These findings show that platelets can disseminate their EV in fluid that is inaccessible to platelets and beyond the joint in this disease.
Collapse
Affiliation(s)
- Nicolas Tessandier
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Imene Melki
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Nathalie Cloutier
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Isabelle Allaeys
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Adam Miszta
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill (A.M., A.S.W.)
- Montreal Heart Institute, Quebec, Canada (A.M., C.M.)
| | - Sisareuth Tan
- Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS-University of Bordeaux-IPB, Allée Geoffroy Saint-Hilaire, Pessac, France (S.T., A.R.B.)
| | - Andreea Milasan
- Department of Medicine, Faculty of Medicine (A.M., C.M.), Université de Montréal, Quebec, Canada
| | - Sara Michel
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Abderrahim Benmoussa
- Department of Nutrition, CHU Sainte-Justine (A.B.), Université de Montréal, Quebec, Canada
| | - Tania Lévesque
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Francine Côté
- Institut Imagine, Inserm U1163, Laboratoire Olivier Hermine, Paris, France (F.C.)
| | - Steven E McKenzie
- Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, PA (S.E.M.)
| | - Caroline Gilbert
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Patrick Provost
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
| | - Alain R Brisson
- Extracellular Vesicles and Membrane Repair, UMR-5248-CBMN CNRS-University of Bordeaux-IPB, Allée Geoffroy Saint-Hilaire, Pessac, France (S.T., A.R.B.)
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill (A.M., A.S.W.)
| | - Paul R Fortin
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Axe maladies infectieuses et inflammatoires, Centre de recherche du CHU de Québec-Université Laval, Québec, Canada (P.R.F., E.B.)
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine (A.M., C.M.), Université de Montréal, Quebec, Canada
- Montreal Heart Institute, Quebec, Canada (A.M., C.M.)
| | - Éric Boilard
- From the Centre de recherche du CHU de Québec, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, QC, Canada (N.T., I.M., N.C., I.A., S.M., T.L., C.G., P.P., P.R.F., E.B.)
- Axe maladies infectieuses et inflammatoires, Centre de recherche du CHU de Québec-Université Laval, Québec, Canada (P.R.F., E.B.)
| |
Collapse
|
6
|
Lofchy LA, Vu VP, Banda NK, Ramirez JR, Smith WJ, Gifford G, Gaikwad H, Scheinman RI, Simberg D. Evaluation of Targeting Efficiency of Joints with Anticollagen II Antibodies. Mol Pharm 2019; 16:2445-2451. [PMID: 31091104 DOI: 10.1021/acs.molpharmaceut.9b00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diseases of the joints affect over 10% of the world's population, resulting in significant morbidity. There is an unmet need in strategies for specific delivery of therapeutics to the joints. Collagen type II is synthesized by chondrocytes and is mainly restricted to the cartilage and tendons. Arthrogen-CIA is a commercially available anticollagen II antibody cocktail that reacts with 5 different epitopes on human, bovine, and mouse collagen II. Arthrogen has been used for induction of experimental rheumatoid arthritis (RA) in mice because of high complement activation on the cartilage surface. Native collagen II might serve as a useful target for potential delivery of therapeutics to the joint. To evaluate the efficiency and specificity of targeting collagen II, Arthrogen was labeled with near-infrared (NIR) dye IRDye 800 or IRDye 680. Using ex vivo NIR imaging, we demonstrate that Arthrogen efficiently and specifically accumulated in the limb joints regardless of the label dye or injection route (intravenous and subcutaneous). After subcutaneous injection, the mean fluorescence of the hind limb joints was 19 times higher than that of the heart, 8.7 times higher than that of the liver, and 3.7 times higher than that of the kidney. Control mouse IgG did not show appreciable accumulation. Microscopically, the antibody accumulated on the cartilage surface of joints and on endosteal surfaces. A monoclonal antibody against a single epitope of collagen II showed similar binding affinity and elimination half-life, but about three times lower targeting efficiency than Arthrogen in vitro and ex vivo, and about two times lower targeting efficiency in vivo. We suggest that an antibody against multiple epitopes of collagen II could be developed into a highly effective and specific targeting strategy for diseases of the joints or spine.
Collapse
Affiliation(s)
| | | | - Nirmal K Banda
- Division of Rheumatology, School of Medicine , University of Colorado Denver , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Joseline Ramos Ramirez
- Division of Rheumatology, School of Medicine , University of Colorado Denver , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | | | | | | | | | | |
Collapse
|
7
|
Gao S, Yi Y, Xia G, Yu C, Ye C, Tu F, Shen L, Wang W, Hua C. The characteristics and pivotal roles of triggering receptor expressed on myeloid cells-1 in autoimmune diseases. Autoimmun Rev 2018; 18:25-35. [PMID: 30408584 DOI: 10.1016/j.autrev.2018.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023]
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) engagement can directly trigger inflammation or amplify an inflammatory response by synergizing with TLRs or NLRs. Autoimmune diseases are a family of chronic systemic inflammatory disorders. The pivotal role of TREM-1 in inflammation makes it important to explore its immunological effects in autoimmune diseases. In this review, we summarize the structural and functional characteristics of TREM-1. Particularly, we discuss recent findings on TREM-1 pathway regulation in various autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), type 1 diabetes (T1D), and psoriasis. This receptor may potentially be manipulated to alter the inflammatory response to chronic inflammation and possible therapies are explored in this review.
Collapse
Affiliation(s)
- Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yongdong Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Guojun Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Chengyang Yu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Chenmin Ye
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Fuyang Tu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Leibin Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Wenqian Wang
- Department of Breast Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
8
|
From blood coagulation to innate and adaptive immunity: the role of platelets in the physiology and pathology of autoimmune disorders. Rheumatol Int 2018; 38:959-974. [PMID: 29492586 PMCID: PMC5954012 DOI: 10.1007/s00296-018-4001-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Thrombosis and cardiovascular complications are common manifestations of a variety of pathological conditions, including infections and chronic inflammatory diseases. Hence, there is great interest in determining the hitherto unforeseen immune role of the main blood coagulation executor-the platelet. Platelets store and release a plethora of immunoactive molecules, generate microparticles, and interact with cells classically belonging to the immune system. The observed effects of platelet involvement in immune processes, especially in autoimmune diseases, are conflicting-from inciting inflammation to mediating its resolution. An in-depth understanding of the role of platelets in inflammation and immunity could open new therapeutic pathways for patients with autoimmune disorders. This review aims to summarize the current knowledge on the role of platelets in the patomechanisms of autoimmune disorders and suggests directions for future research.
Collapse
|
9
|
Abstract
Platelets are megakaryocyte-derived cellular fragments, which lack a nucleus and are the smallest circulating cells and are classically known to have a major role in supporting hemostasis. Apart from this well-established role, it is now becoming evident that platelets are also capable of conveying other important functions, such as during infection and inflammation. This paper will outline these nonhemostatic functions in two major sections termed "Platelets versus pathogens" and "Platelet-target cell communication". Platelets actively contribute to protection against invading pathogens and are capable of regulating immune functions in various target cells, all through sophisticated and efficient mechanisms. These relatively novel features will be highlighted, illustrating the multifunctional role of platelets in inflammation.
Collapse
Affiliation(s)
- Rick Kapur
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael׳s Hospital, Canadian Blood Services, Toronto, Ontario, Canada
| | - John W Semple
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael׳s Hospital, Canadian Blood Services, Toronto, Ontario, Canada; Departments of Pharmacology, Medicine, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Amash A, Wang L, Wang Y, Bhakta V, Fairn GD, Hou M, Peng J, Sheffield WP, Lazarus AH. CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcγ Receptor– and Complement Receptor 3–Dependent Mechanisms. THE JOURNAL OF IMMUNOLOGY 2016; 196:3331-40. [DOI: 10.4049/jimmunol.1502198] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/08/2016] [Indexed: 11/19/2022]
|
11
|
Habets KLL, Trouw LA, Levarht EWN, Korporaal SJA, Habets PAM, de Groot P, Huizinga TWJ, Toes REM. Anti-citrullinated protein antibodies contribute to platelet activation in rheumatoid arthritis. Arthritis Res Ther 2015; 17:209. [PMID: 26268317 PMCID: PMC4548712 DOI: 10.1186/s13075-015-0665-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/29/2015] [Indexed: 01/11/2023] Open
Abstract
Introduction Although the role of platelets in rheumatoid arthritis (RA) is relatively unexplored, recent studies point towards a contribution of platelets in arthritis. We set out to determine platelet phenotype in RA and studied whether this could be influenced by the presence of anti-citrullinated protein antibodies (ACPA). Methods Platelets from healthy controls were incubated in the presence of plasma of patients with RA or age- and sex-matched healthy controls and plasma from ACPAneg or ACPApos patients or in the presence of plate-bound ACPA. Characteristics of platelets isolated from patients with RA were correlated to disease activity. Results Platelets isolated from healthy controls displayed markers of platelet activation in the presence of plasma derived from RA patients, as determined by P-selectin expression, formation of aggregates and secretion of soluble CD40 ligand (sCD40L). Furthermore, levels of P-selectin expression and sCD40L release correlated with high ACPA titres. In accordance with these findings, enhanced platelet activation was observed after incubation with ACPApos plasma versus ACPAneg plasma. Pre-incubation of platelets with blocking antibodies directed against low-affinity immunoglobulin G receptor (FcγRIIa) completely inhibited the ACPA-mediated activation. In addition, expression of P-selectin measured as number of platelets correlated with Disease Activity Score in 44 joints, C-reactive protein level, ACPA status and ACPA level. Conclusions We show for the first time that ACPA can mediate an FcγRIIa-dependent activation of platelets. As ACPA can be detected several years before RA disease onset and activated platelets contribute to vascular permeability, these data implicate a possible role for ACPA-mediated activation of platelets in arthritis onset. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0665-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim L L Habets
- Department of Rheumatology, Leiden University Medical Centre, C1-R, PO Box 9600, 2300, RC, Leiden, the Netherlands.
| | - Leendert A Trouw
- Department of Rheumatology, Leiden University Medical Centre, C1-R, PO Box 9600, 2300, RC, Leiden, the Netherlands.
| | - E W Nivine Levarht
- Department of Rheumatology, Leiden University Medical Centre, C1-R, PO Box 9600, 2300, RC, Leiden, the Netherlands.
| | - Suzanne J A Korporaal
- Department of Clinical Chemistry and Haematology, University Medical Centre, Utrecht, the Netherlands. .,Division of Biopharmaceutics, Leiden Amsterdam Centre for Drug Research, University of Leiden, Leiden, the Netherlands.
| | - Petra A M Habets
- Knowledge Centre Forensic Psychiatric Care, Rekem Psychiatric Hospital, Rekem, Belgium.
| | - Philip de Groot
- Department of Clinical Chemistry and Haematology, University Medical Centre, Utrecht, the Netherlands.
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Centre, C1-R, PO Box 9600, 2300, RC, Leiden, the Netherlands.
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Centre, C1-R, PO Box 9600, 2300, RC, Leiden, the Netherlands.
| |
Collapse
|
12
|
Kapur R, Zufferey A, Boilard E, Semple JW. Nouvelle cuisine: platelets served with inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:5579-87. [PMID: 26048965 DOI: 10.4049/jimmunol.1500259] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Platelets are small cellular fragments with the primary physiological role of maintaining hemostasis. In addition to this well-described classical function, it is becoming increasingly clear that platelets have an intimate connection with infection and inflammation. This stems from several platelet characteristics, including their ability to bind infectious agents and secrete many immunomodulatory cytokines and chemokines, as well as their expression of receptors for various immune effector and regulatory functions, such as TLRs, which allow them to sense pathogen-associated molecular patterns. Furthermore, platelets contain RNA that can be nascently translated under different environmental stresses, and they are able to release membrane microparticles that can transport inflammatory cargo to inflammatory cells. Interestingly, acute infections can also result in platelet breakdown and thrombocytopenia. This report highlights these relatively new aspects of platelets and, thus, their nonhemostatic nature in an inflammatory setting.
Collapse
Affiliation(s)
- Rick Kapur
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; Canadian Blood Services, Toronto, Ontario M5B 1W8, Canada
| | - Anne Zufferey
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Eric Boilard
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - John W Semple
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; Canadian Blood Services, Toronto, Ontario M5B 1W8, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario M5B 1W8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5B 1W8, Canada; and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
13
|
Jordan AR, Racine RR, Hennig MJP, Lokeshwar VB. The Role of CD44 in Disease Pathophysiology and Targeted Treatment. Front Immunol 2015; 6:182. [PMID: 25954275 PMCID: PMC4404944 DOI: 10.3389/fimmu.2015.00182] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/02/2015] [Indexed: 12/17/2022] Open
Abstract
The cell-surface glycoprotein CD44 is involved in a multitude of important physiological functions including cell proliferation, adhesion, migration, hematopoiesis, and lymphocyte activation. The diverse physiological activity of CD44 is manifested in the pathology of a number of diseases including cancer, arthritis, bacterial and viral infections, interstitial lung disease, vascular disease, and wound healing. This diversity in biological activity is conferred by both a variety of distinct CD44 isoforms generated through complex alternative splicing, posttranslational modifications (e.g., N- and O-glycosylation), interactions with a number of different ligands, and the abundance and spatial distribution of CD44 on the cell surface. The extracellular matrix glycosaminoglycan hyaluronic acid (HA) is the principle ligand of CD44. This review focuses both CD44-hyaluronan dependent and independent CD44 signaling and the role of CD44–HA interaction in various pathophysiologies. The review also discusses recent advances in novel treatment strategies that exploit the CD44–HA interaction either for direct targeting or for drug delivery.
Collapse
Affiliation(s)
- Andre R Jordan
- Sheila and David Fuente Program in Cancer Biology, University of Miami-Miller School of Medicine , Miami, FL , USA
| | - Ronny R Racine
- Department of Urology, University of Miami-Miller School of Medicine , Miami, FL , USA
| | - Martin J P Hennig
- Department of Urology, University of Miami-Miller School of Medicine , Miami, FL , USA ; Department of Urology and Uro-oncology, Hannover Medical School , Hannover , Germany
| | - Vinata B Lokeshwar
- Department of Urology, University of Miami-Miller School of Medicine , Miami, FL , USA ; Department of Cell Biology, University of Miami-Miller School of Medicine , Miami, FL , USA ; Miami Clinical Translational Institute, University of Miami-Miller School of Medicine , Miami, FL , USA
| |
Collapse
|
14
|
Crow AR, Amash A, Lazarus AH. CD44 antibody-mediated amelioration of murine immune thrombocytopenia (ITP): mouse background determines the effect of FcγRIIb genetic disruption. Transfusion 2014; 55:1492-500. [DOI: 10.1111/trf.12957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 10/01/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Andrew R. Crow
- Canadian Blood Services Centre for Innovation; Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science; St Michael's Hospital; Toronto Ontario Canada
- Department of Laboratory Medicine; Laboratory Medicine & Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Alaa Amash
- Keenan Research Centre for Biomedical Science; St Michael's Hospital; Toronto Ontario Canada
- Department of Laboratory Medicine; Laboratory Medicine & Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Alan H. Lazarus
- Canadian Blood Services Centre for Innovation; Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science; St Michael's Hospital; Toronto Ontario Canada
- Department of Laboratory Medicine; Laboratory Medicine & Pathobiology; University of Toronto; Toronto Ontario Canada
- Departments of Medicine; Laboratory Medicine & Pathobiology; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
15
|
Petrey AC, de la Motte CA. Hyaluronan, a crucial regulator of inflammation. Front Immunol 2014; 5:101. [PMID: 24653726 PMCID: PMC3949149 DOI: 10.3389/fimmu.2014.00101] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/25/2014] [Indexed: 12/30/2022] Open
Abstract
Hyaluronan (HA), a major component of the extracellular matrix (ECM), plays a key role in regulating inflammation. Inflammation is associated with accumulation and turnover of HA polymers by multiple cell types. Increasingly through the years, HA has become recognized as an active participant in inflammatory, angiogenic, fibrotic, and cancer promoting processes. HA and its binding proteins regulate the expression of inflammatory genes, the recruitment of inflammatory cells, the release of inflammatory cytokines, and can attenuate the course of inflammation, providing protection against tissue damage. A growing body of evidence suggests the cell responses are HA molecular weight dependent. HA fragments generated by multiple mechanisms throughout the course of inflammatory pathologies, elicit cellular responses distinct from intact HA. This review focuses on the role of HA in the promotion and resolution of inflammation.
Collapse
Affiliation(s)
- Aaron C Petrey
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, OH , USA
| | - Carol A de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, OH , USA
| |
Collapse
|