1
|
Badger-Emeka L, Emeka P, Thirugnanasambantham K, Alatawi AS. The Role of Pseudomonas aeruginosa in the Pathogenesis of Corneal Ulcer, Its Associated Virulence Factors, and Suggested Novel Treatment Approaches. Pharmaceutics 2024; 16:1074. [PMID: 39204419 PMCID: PMC11360345 DOI: 10.3390/pharmaceutics16081074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (P. aeruginosa), is a diverse Gram-negative pathogen commonly associated with a wide spectrum of infections. It is indicated to be the most prevalent causative agent in the development of bacterial keratitis linked with the use of contact lens. Corneal infections attributed to P. aeruginosa frequently have poor clinical outcomes necessitating lengthy and costly therapies. Therefore, this review looks at the aetiology of P. aeruginosa bacterial keratitis as well as the bacterial drivers of its virulence and the potential therapeutics on the horizon. METHOD A literature review with the articles used for the review searched for and retrieved from PubMed, Scopus, and Google Scholar (date last accessed 1 April 2024). The keywords used for the search criteria were "Pseudomonas and keratitis, biofilm and cornea as well as P. aeruginosa". RESULTS P. aeruginosa is implicated in the pathogenesis of bacterial keratitis associated with contact lens usage. To reduce the potential seriousness of these infections, a variety of contact lens-cleaning options are available. However, continuous exposure to a range of antibiotics doses, from sub-inhibitory to inhibitory, has been shown to lead to the development of resistance to both antibiotics and disinfectant. Generally, there is a global public health concern regarding the rise of difficult-to-treat infections, particularly in the case of P. aeruginosa virulence in ocular infections. This study of the basic pathogenesis of a prevalent P. aeruginosa strain is therefore implicated in keratitis. To this effect, anti-virulence methods and phage therapy are being researched and developed in response to increasing antibiotic resistance. CONCLUSION This review has shown P. aeruginosa to be a significant cause of bacterial keratitis, particularly among users of contact lens. It also revealed treatment options, their advantages, and their drawbacks, including prospective candidates.
Collapse
Affiliation(s)
- Lorina Badger-Emeka
- Department of Biomedical Science, College of Medicine King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Promise Emeka
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia; (P.E.); (A.S.A.)
| | | | - Abdulaziz S. Alatawi
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia; (P.E.); (A.S.A.)
| |
Collapse
|
2
|
Zhang S, Cui T, Liu X, Zhan M, Song X, Xu Y, Yu R. Sludge biolysis pretreatment to reduce antibiotic resistance genes (ARGs): Insight into the relationship between potential ARGs hosts and BALOs' preferred prey. WATER RESEARCH 2024; 260:121949. [PMID: 38901315 DOI: 10.1016/j.watres.2024.121949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
As an important reservoir of antibiotic resistance genes (ARGs), the sludge discharged from wastewater treatment plants is the key intermediate for ARG transport into the environment. Bdellovibrio-and-like organisms (BALOs) are predatory bacteria that are expected to attack antibiotic-resistant bacteria (ARB). In this study, the screened BALOs (C3 & D15) were mixed with the sludge for biolysis to achieve the satisfying removal efficiencies of six tet genes, two sul genes, and one mobile genetic element (intl 1). Among them, tet(Q) demonstrated the highest reduction rate in relative abundance at 87.3 ± 1.0 %, while tet(X) displayed the lowest of 11.7 ± 0.2 %. The microorganisms, including Longilinea, Methanobacterium, Acetobacterium, Sulfurimonas, allobaculum, Gaiella, AAP99, Ellin6067, Rhodoferax, Ferruginibacter and Thermomonas, were expected to play a dual role in the reduction of ARGs by serving as ARB and BALOs' preferred prey. Meanwhile, BALOs consortium improved ARGs reduction efficiency via the expansion of the prey profile. Additionally, BALOs decreased the relative abundance of not only pathogens (Shinella, Rickettsia, Burkholderia, Acinetobacter, Aeromonas, Clostridium, Klebsiella and Pseudomonas), but also the ARGs' host pathogens (Mycobacterium, Plesiocystis, Burkholderia, and Bacteroides). Therefore, the application of BALOs for sludge biolysis are promising to decrease the sludge's public health risks via limiting the spread of ARGs and pathogens into the environment.
Collapse
Affiliation(s)
- Siyuan Zhang
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Tingting Cui
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xiaowen Liu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu, 210013, China
| | - Xin Song
- SUMEC Complete Equipment & Engineering CO. LTD, Nanjing 210018, China
| | - Yi Xu
- Nanjing No.1 Middle School, Nanjing, Jiangsu, 210013, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
3
|
Alexakis K, Baliou S, Ioannou P. Predatory Bacteria in the Treatment of Infectious Diseases and Beyond. Infect Dis Rep 2024; 16:684-698. [PMID: 39195003 DOI: 10.3390/idr16040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is an increasing problem worldwide, with significant associated morbidity and mortality. Given the slow production of new antimicrobials, non-antimicrobial methods for treating infections with significant AMR are required. This review examines the potential of predatory bacteria to combat infectious diseases, particularly those caused by pathogens with AMR. Predatory bacteria already have well-known applications beyond medicine, such as in the food industry, biocontrol, and wastewater treatment. Regarding their potential for use in treating infections, several in vitro studies have shown their potential in eliminating various pathogens, including those resistant to multiple antibiotics, and they also suggest minimal immune stimulation and cytotoxicity by predatory bacteria. In vivo animal studies have demonstrated safety and efficacy in reducing bacterial burden in various infection models. However, results can be inconsistent, suggesting dependence on factors like the animal model and the infecting bacteria. Until now, no clinical study in humans exists, but as experience with predatory bacteria grows, future studies including clinical studies in humans could be designed to evaluate their efficacy and safety in humans, thus leading to the potential for approval of a novel method for treating infectious diseases by bacteria.
Collapse
Affiliation(s)
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
4
|
Thatrimontrichai A, Surachat K, Singkhamanan K, Thongsuksai P. Differential Abundances of Bdellovibrio and Rheinheimera in the Oral Microbiota of Neonates With and Without Clinical Sepsis. Pediatr Infect Dis J 2024; 43:e195-e200. [PMID: 38295225 DOI: 10.1097/inf.0000000000004259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
BACKGROUND Neonatal sepsis is associated with high rates of morbidity and mortality, long hospital stays and high cost of care, thereby inflicting a burden on health care systems. Oral care with breast milk has been shown to modify the intestinal tract microbiota and immune system. Herein, we attempted to identify probiotics that may be beneficial to prevent or treat neonatal sepsis. METHODS This was a secondary analysis comparing the microbiota during oropharyngeal care in very-low-birth-weight infants with and without clinical sepsis. Oral samples were collected before oral feeding was initiated. The primary outcome was oral microbiota composition including diversity, relative abundance and linear discriminant analysis effect size. RESULTS Sixty-three neonates, including 39 and 24 with and without clinical sepsis, respectively, were enrolled. The medians gestational age and birth weight were 29 (27-30) weeks and 1010 (808-1263) g. Neonates with clinical sepsis had lower gestational age, birth weight (both P < 0.001) and lower rate of oral care with breast milk ( P = 0.03), but higher doses and days of antibiotic exposure (both P < 0.001) compared to neonates without clinical sepsis. No differences in alpha and beta diversities were found between groups and Streptococcus agalactiae was the most common bacteria in both groups. Linear discriminant analysis effect size analysis revealed that neonates without clinical sepsis had significantly higher abundances of order Bdellovibrionales, family Bdellovibrionaceae, genus Bdellovibrio and genus Rheinheimera . CONCLUSIONS Neonates without clinical sepsis had a significantly greater abundance of the Bdellovibrio and Rheinheimera genera.
Collapse
Affiliation(s)
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering
| | | | - Paramee Thongsuksai
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
5
|
Chen W, Zhang Y, Mi J. Assessing Antibiotic-Resistant Genes in University Dormitory Washing Machines. Microorganisms 2024; 12:1112. [PMID: 38930496 PMCID: PMC11205806 DOI: 10.3390/microorganisms12061112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
University dormitories represent densely populated environments, and washing machines are potential sites for the spread of bacteria and microbes. However, the extent of antibiotic resistance gene (ARG) variation in washing machines within university dormitories and their potential health risks are largely unknown. To disclose the occurrence of ARGs and antibiotic-resistant bacteria from university dormitories, we collected samples from washing machines in 10 dormitories and used metagenomic sequencing technology to determine microbial and ARG abundance. Our results showed abundant microbial diversity, with Proteobacteria being the dominant microorganism that harbors many ARGs. The majority of the existing ARGs were associated with antibiotic target alteration and efflux, conferring multidrug resistance. We identified tnpA and IS91 as the most abundant mobile genetic elements (MGEs) in washing machines and found that Micavibrio aeruginosavorus, Aquincola tertiaricarbonis, and Mycolicibacterium iranicum had high levels of ARGs. Our study highlights the potential transmission of pathogens from washing machines to humans and the surrounding environment. Pollution in washing machines poses a severe threat to public health and demands attention. Therefore, it is crucial to explore effective methods for reducing the reproduction of multidrug resistance.
Collapse
Affiliation(s)
- Wenbo Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China;
- Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Yu Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Jiandui Mi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China;
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
6
|
Romanowski EG, Brothers KM, Calvario RC, Stella NA, Kim T, Elsayed M, Kadouri DE, Shanks RMQ. Predatory bacteria prevent the proliferation of intraocular Serratia marcescens and fluoroquinolone-resistant Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001433. [PMID: 38358321 PMCID: PMC10924457 DOI: 10.1099/mic.0.001433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Endogenous endophthalmitis caused by Gram-negative bacteria is an intra-ocular infection that can rapidly progress to irreversible loss of vision. While most endophthalmitis isolates are susceptible to antibiotic therapy, the emergence of resistant bacteria necessitates alternative approaches to combat intraocular bacterial proliferation. In this study the ability of predatory bacteria to limit intraocular growth of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus was evaluated in a New Zealand white rabbit endophthalmitis prevention model. Predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus were able to reduce proliferation of keratitis isolates of P. aeruginosa and to a lesser extent S. marcescens. However, it was not able to significantly reduce the number of intraocular S. aureus, which is not a productive prey for these predatory bacteria, suggesting that the inhibitory effect on P. aeruginosa and S. marcescens requires active predation rather than an antimicrobial immune response. Similarly, UV-inactivated B. bacteriovorus were unable to prevent proliferation of P. aeruginosa. Together, these data indicate in vivo inhibition of Gram-negative bacteria proliferation within the intra-ocular environment by predatory bacteria.
Collapse
Affiliation(s)
- Eric G. Romanowski
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kimberly M. Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel C. Calvario
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas A. Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tami Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Daniel E. Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Robert M. Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Liu Y, Guo W, Wang W, Zhang H, Jin Y. In situ forming hydrogel loaded with predatory bacteria treats drug-resistant corneal infection. J Control Release 2023; 364:393-405. [PMID: 37898345 DOI: 10.1016/j.jconrel.2023.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The development of potent bactericidal antibiotic alternatives is important to address the current antibiotic crisis. A representative example is the topical delivery of predatory Bdellovibrio bacteriovorus bacteria to treat ocular bacterial infection. However, the direct topical use of B. bacteriovorus suspensions has the problem of easy loss and inactivation. Here, a B. bacteriovorus in situ forming hydrogel (BIG) was constructed for the ocular delivery of B. bacteriovorus. BIGs, as a fluid in their primitive state, were temperature- and cation- dually sensitive, which was rapidly transformed into immobile gels in the ocular environment. BIGs not only kept the activity of B. bacteriovorus but also retained on the ocular surface for a long time. The biosafety of BIGs was good without HCEC cell toxicity and hemolysis. More importantly, BIGs highly inhibited the growth of drug-resistant Pseudomonas aeruginosa whether in vitro or in the infected rat eyes. The ocular infection was completely controlled by BIGs with no corneal ulcers and inflammations. This living bacteria gel is a promising medication for the local treatment of drug-resistant bacteria-induced ocular infection.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Wanting Guo
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wanmei Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hui Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
8
|
Romanowski EG, Brothers KM, Calvario RC, Stella NA, Kim T, Elsayed M, Kadouri DE, Shanks RMQ. Intra-ocular Predation of Fluoroquinolone-Resistant Pseudomonas aeruginosa and Serratia marcescens by Predatory Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.558130. [PMID: 37745563 PMCID: PMC10516018 DOI: 10.1101/2023.09.17.558130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Endogenous endophthalmitis caused by Gram-negative bacteria is an intra-ocular infection that can rapidly progress to irreversible loss of vision. While most endophthalmitis isolates are susceptible to antibiotic therapy, the emergence of resistant bacteria necessitates alternative approaches to combat intraocular bacterial proliferation. In this study the ability of predatory bacteria to limit intraocular growth of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus was evaluated in a New Zealand White rabbit endophthalmitis prevention model. Predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus were able to reduce proliferation of keratitis isolates of P. aeruginosa and S. marcescens. However, it was not able to significantly reduce S. aureus, which is not a productive prey for these predatory bacteria, suggesting that the inhibitory effect on P. aeruginosa requires active predation rather than an antimicrobial immune response. Similarly, UV-inactivated B. bacteriovorus were unable to prevent proliferation of P. aeruginosa. Together, these data suggest in vivo predation of Gram-negative bacteria within the intra-ocular environment.
Collapse
Affiliation(s)
- Eric G Romanowski
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Kimberly M Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Rachel C Calvario
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Nicholas A Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Tami Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Robert M Q Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
9
|
Romanowski EG, Stella NA, Brazile BL, Lathrop KL, Franks JM, Sigal IA, Kim T, Elsayed M, Kadouri DE, Shanks RMQ. Predatory bacteria can reduce Pseudomonas aeruginosa induced corneal perforation and proliferation in a rabbit keratitis model. Ocul Surf 2023; 28:254-261. [PMID: 37146902 PMCID: PMC11265785 DOI: 10.1016/j.jtos.2023.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE Pseudomonas aeruginosa keratitis is a severe ocular infection that can lead to perforation of the cornea. In this study we evaluated the role of bacterial quorum sensing in generating corneal perforation and bacterial proliferation and tested whether co-injection of the predatory bacteria Bdellovibrio bacteriovorus could alter the clinical outcome. P. aeruginosa with lasR mutations were observed among keratitis isolates from a study collecting samples from India, so an isogenic lasR mutant strain of P. aeruginosa was included. METHODS Rabbit corneas were intracorneally infected with P. aeruginosa strain PA14 or an isogenic ΔlasR mutant and co-injected with PBS or B. bacteriovorus. After 24 h, eyes were evaluated for clinical signs of infection. Samples were analyzed by scanning electron microscopy, optical coherence tomography, sectioned for histology, and corneas were homogenized for CFU enumeration and for inflammatory cytokines. RESULTS We observed that 54% of corneas infected by wild-type PA14 presented with a corneal perforation (n = 24), whereas only 4% of PA14 infected corneas that were co-infected with B. bacteriovorus perforate (n = 25). Wild-type P. aeruginosa proliferation was reduced 7-fold in the predatory bacteria treated eyes. The ΔlasR mutant was less able to proliferate compared to the wild-type, but was largely unaffected by B. bacteriovorus. CONCLUSION These studies indicate a role for bacterial quorum sensing in the ability of P. aeruginosa to proliferate and cause perforation of the rabbit cornea. Additionally, this study suggests that predatory bacteria can reduce the virulence of P. aeruginosa in an ocular prophylaxis model.
Collapse
Affiliation(s)
- Eric G Romanowski
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicholas A Stella
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bryn L Brazile
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan M Franks
- Center for Biological Imaging, University of Pittsburgh School of Engineering, Pittsburgh, PA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tami Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Robert M Q Shanks
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Romanowski EG, Stella NA, Brazile BL, Lathrop KL, Franks J, Sigal IA, Kim T, Elsayed M, Kadouri DE, Shanks RM. Predatory Bacteria can Reduce Pseudomonas aeruginosa Induced Corneal Perforation and Proliferation in a Rabbit Keratitis Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532777. [PMID: 36993476 PMCID: PMC10055036 DOI: 10.1101/2023.03.15.532777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Purpose Pseudomonas aeruginosa keratitis is a severe ocular infection that can lead to perforation of the cornea. In this study we evaluated the role of bacterial quorum sensing in generating corneal perforation and bacterial proliferation and tested whether co-injection of the predatory bacteria Bdellovibrio bacteriovorus could alter the clinical outcome. P. aeruginosa with lasR mutations were observed among keratitis isolates from a study collecting samples from India, so an isogenic lasR mutant strain of P. aeruginosa was included. Methods Rabbit corneas were intracorneally infected with P. aeruginosa strain PA14 or an isogenic Δ lasR mutant and co-injected with PBS or B. bacteriovorus . After 24 h, eyes were evaluated for clinical signs of infection. Samples were analyzed by scanning electron microscopy, optical coherence tomography, sectioned for histology, and corneas were homogenized for CFU enumeration and for inflammatory cytokines. Results We observed that 54% of corneas infected by wild-type PA14 presented with a corneal perforation (n=24), whereas only 4% of PA14 infected corneas that were co-infected with B. bacteriovorus perforate (n=25). Wild-type P. aeruginosa proliferation was reduced 7-fold in the predatory bacteria treated eyes. The Δ lasR mutant was less able to proliferate compared to the wild-type, but was largely unaffected by B. bacteriovorus . Conclusion These studies indicate a role for bacterial quorum sensing in the ability of P. aeruginosa to proliferate and cause perforation of the rabbit cornea. Additionally, this study suggests that predatory bacteria can reduce the virulence of P. aeruginosa in an ocular prophylaxis model.
Collapse
Affiliation(s)
- Eric G. Romanowski
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nicholas A. Stella
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Bryn L. Brazile
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kira L. Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jonathan Franks
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Bioengineering, Swanson School of Medicine, University of Pittsburgh, Pittsburgh PA
| | - Tami Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Daniel E. Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Robert M.Q. Shanks
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
11
|
Hanashiro FTT, De Meester L, Vanhamel M, Mukherjee S, Gianuca AT, Verbeek L, van den Berg E, Souffreau C. Bacterioplankton Assembly Along a Eutrophication Gradient Is Mainly Structured by Environmental Filtering, Including Indirect Effects of Phytoplankton Composition. MICROBIAL ECOLOGY 2023; 85:400-410. [PMID: 35306576 DOI: 10.1007/s00248-022-01994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Biotic interactions are suggested to be key factors structuring bacterioplankton community assembly but are rarely included in metacommunity studies. Eutrophication of ponds and lakes provides a useful opportunity to evaluate how bacterioplankton assembly is affected by specific environmental conditions, especially also by biotic interactions with other trophic levels such as phytoplankton and zooplankton. Here, we evaluated the importance of deterministic and stochastic processes on bacterioplankton community assembly in 35 shallow ponds along a eutrophication gradient in Belgium and assessed the direct and indirect effects of phytoplankton and zooplankton community variation on bacterioplankton assembly through a path analysis and network analysis. Environmental filtering by abiotic factors (suspended matter concentration and pH) explained the largest part of the bacterioplankton community variation. Phytoplankton community structure affected bacterioplankton structure through its effect on variation in chlorophyll-a and suspended matter concentration. Bacterioplankton communities were also spatially structured through pH. Overall, our results indicate that environmental variation is a key component driving bacterioplankton assembly along a eutrophication gradient and that indirect biotic interactions can also be important in explaining bacterioplankton community composition. Furthermore, eutrophication led to divergence in community structure and more eutrophic ponds had a higher diversity of bacteria.
Collapse
Affiliation(s)
- Fabio Toshiro T Hanashiro
- Laboratory of Aquatic Ecology, Evolution & Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium.
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution & Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB), Müggelseedamm 310, 12587, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195, Berlin, Germany
| | - Matthias Vanhamel
- Laboratory of Aquatic Ecology, Evolution & Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| | - Shinjini Mukherjee
- Laboratory of Aquatic Ecology, Evolution & Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
- Laboratory of Reproductive Genomics, KU Leuven, ON I Herestraat 49, 3000, Leuven, Belgium
| | - Andros T Gianuca
- Laboratory of Aquatic Ecology, Evolution & Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-900, Brazil
| | - Laura Verbeek
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany
| | - Edwin van den Berg
- Laboratory of Aquatic Ecology, Evolution & Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| | - Caroline Souffreau
- Laboratory of Aquatic Ecology, Evolution & Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| |
Collapse
|
12
|
Strain-specific predation of Bdellovibrio bacteriovorus on Pseudomonas aeruginosa with a higher range for cystic fibrosis than for bacteremia isolates. Sci Rep 2022; 12:10523. [PMID: 35732651 PMCID: PMC9217795 DOI: 10.1038/s41598-022-14378-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
This work aimed to evaluate the predatory activity of Bdellovibrio bacteriovorus 109J on clinical isolates of Pseudomonas aeruginosa selected from well-characterized collections of cystic fibrosis (CF) lung colonization (n = 30) and bloodstream infections (BSI) (n = 48) including strains selected by genetic lineage (frequent and rare sequence types), antibiotic resistance phenotype (susceptible and multidrug-resistant isolates), and colony phenotype (mucoid and non-mucoid isolates). The intraspecies predation range (I-PR) was defined as the proportion of susceptible strains within the entire collection. In contrast, the predation efficiency (PE) is the ratio of viable prey cells remaining after predation compared to the initial inoculum. I-PR was significantly higher for CF (67%) than for BSI P. aeruginosa isolates (35%) probably related to an environmental origin of CF strains whereas invasive strains are more adapted to humans. I-PR correlation with bacterial features such as mucoid morphotype, genetic background, or antibiotic susceptibility profile was not detected. To test the possibility of increasing I-PR of BSI isolates, a polyhydroxyalkanoate depolymerase deficient B. bacteriovorus bd2637 mutant was used. Global median I-PR and PE values remained constant for both predators, but 31.2% of 109J-resistant isolates were susceptible to the mutant, and 22.9% of 109J-susceptible isolates showed resistance to predation by the mutant, pointing to a predator–prey specificity process. The potential use of predators in the clinical setting should be based on the determination of the I-PR for each species, and the PE of each particular target strain.
Collapse
|
13
|
Kowalski RP, Nayyar SV, Romanowski EG, Jhanji V. Anti-Infective Treatment and Resistance Is Rarely Problematic with Eye Infections. Antibiotics (Basel) 2022; 11:antibiotics11020204. [PMID: 35203807 PMCID: PMC8868068 DOI: 10.3390/antibiotics11020204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
The treatment of eye infections is very different than treating other body infections that require systemic anti-infectives. Endophthalmitis, keratitis, conjunctivitis, and other ocular infections are treated with direct injection and with topical drops directly to the infection site. There are no anti-infective susceptibility standards to interpret treatment success, but the systemic standards can be used to guide ocular therapy if the concentration of anti-infective in the ocular tissue is assumed to be higher than the concentration in the blood serum. This Perspective describes: (1) eye infections, (2) diagnostics of eye infections, (3) anti-infective treatment of eye infections, (4) anti-infective resistance of ocular pathogens, and (5) alternative anti-infective delivery and therapy. The data, based on years of clinical and laboratory research, support the premise that ocular infections are less problematic if etiologic agents are laboratory-diagnosed and if prompt, potent, anti-infective therapy is applied. Anti-infective susceptibility should be monitored to assure continued therapeutic success and the possibility of new-found resistance. New delivery systems and therapies may be helpful to better treat future ocular infections.
Collapse
Affiliation(s)
- Regis P. Kowalski
- Department of Ophthalmology, The Eye and Ear Institute, School of Medicine, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA; (E.G.R.); (V.J.)
- The Charles T. Campbell Eye Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh Medical Center, The Eye and Ear Institute, University of Pittsburgh School of Medicine, 203 Lothrop Street, Room 642, Pittsburgh, PA 15213, USA;
- Correspondence: ; Tel.: +1-412-647-7211
| | - Shannon V. Nayyar
- The Charles T. Campbell Eye Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh Medical Center, The Eye and Ear Institute, University of Pittsburgh School of Medicine, 203 Lothrop Street, Room 642, Pittsburgh, PA 15213, USA;
| | - Eric G. Romanowski
- Department of Ophthalmology, The Eye and Ear Institute, School of Medicine, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA; (E.G.R.); (V.J.)
- The Charles T. Campbell Eye Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh Medical Center, The Eye and Ear Institute, University of Pittsburgh School of Medicine, 203 Lothrop Street, Room 642, Pittsburgh, PA 15213, USA;
| | - Vishal Jhanji
- Department of Ophthalmology, The Eye and Ear Institute, School of Medicine, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA; (E.G.R.); (V.J.)
- The Charles T. Campbell Eye Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh Medical Center, The Eye and Ear Institute, University of Pittsburgh School of Medicine, 203 Lothrop Street, Room 642, Pittsburgh, PA 15213, USA;
| |
Collapse
|
14
|
Ooi MC, Goulden EF, Smith GG, Bridle AR. Predatory bacteria in the haemolymph of the cultured spiny lobster Panulirus ornatus. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34846286 PMCID: PMC8743626 DOI: 10.1099/mic.0.001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bdellovibrio and like organisms (BALOs) are Gram-negative obligate predators of other bacteria in a range of environments. The recent discovery of BALOs in the circulatory system of cultured spiny lobster P. ornatus warrants more investigation. We used a combination of co-culture agar and broth assays and transmission electron microscopy to show a Halobacteriovorax sp. strain Hbv preyed upon the model prey bacterium Vibrio sp. strain Vib. The haemolymph microbiome of juvenile P. ornatus was characterised following injection of phosphate buffered saline (control) or prey and/or predator bacteria for 3 d. The predator Hbv had no effect on survival compared to the control after 3 d. However, when compared to the prey only treatment group, lobsters injected with both prey and predator showed significantly lower abundance of genus Vibrio in the haemolymph bacterial community composition. This study indicates that predatory bacteria are not pathogenic and may assist in controlling microbial population growth in the haemolymph of lobsters.
Collapse
Affiliation(s)
- Mei C. Ooi
- Institute for Marine and Antarctic Studies, University of Tasmania, TAS, Australia
- *Correspondence: Mei C. Ooi,
| | - Evan F. Goulden
- Institute for Marine and Antarctic Studies, University of Tasmania, TAS, Australia
- Bribie Island Research Centre, Department of Agriculture and Fisheries, QLD, Australia
| | - Gregory G. Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, TAS, Australia
| | - Andrew R. Bridle
- Institute for Marine and Antarctic Studies, University of Tasmania, TAS, Australia
| |
Collapse
|
15
|
Cui M, Zheng M, Wiraja C, Chew SWT, Mishra A, Mayandi V, Lakshminarayanan R, Xu C. Ocular Delivery of Predatory Bacteria with Cryomicroneedles Against Eye Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102327. [PMID: 34494724 PMCID: PMC8564459 DOI: 10.1002/advs.202102327] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 05/11/2023]
Abstract
The development of potent antibiotic alternatives with rapid bactericidal properties is of great importance in addressing the current antibiotic crisis. One representative example is the topical delivery of predatory bacteria to treat ocular bacterial infections. However, there is a lack of suitable methods for the delivery of predatory bacteria into ocular tissue. This work introduces cryomicroneedles (cryoMN) for the ocular delivery of predatory Bdellovibrio bacteriovorus (B. bacteriovorus) bacteria. The cryoMN patches are prepared by freezing B. bacteriovorus containing a cryoprotectant medium in a microneedle template. The viability of B. bacteriovorus in cryoMNs remains above 80% as found in long-term storage studies, and they successfully impede the growth of gram-negative bacteria in vitro or in a rodent eye infection model. The infection is significantly relieved by nearly six times through 2.5 days of treatment without substantial effects on the cornea thickness and morphology. This approach represents the safe and efficient delivery of new class of antimicrobial armamentarium to otherwise impermeable ocular surface and opens up new avenues for the treatment of ocular surface disorders.
Collapse
Affiliation(s)
- Mingyue Cui
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Mengjia Zheng
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Sharon Wan Ting Chew
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Arti Mishra
- Ocular Infections & Anti‐Microbials Research GroupSingapore Eye Research InstituteThe Academia20 College Road, Discovery TowerSingapore169856Singapore
| | - Venkatesh Mayandi
- Ocular Infections & Anti‐Microbials Research GroupSingapore Eye Research InstituteThe Academia20 College Road, Discovery TowerSingapore169856Singapore
| | - Rajamani Lakshminarayanan
- Ocular Infections & Anti‐Microbials Research GroupSingapore Eye Research InstituteThe Academia20 College Road, Discovery TowerSingapore169856Singapore
- Ophthalmology and Visual Sciences Academic Clinical ProgramDuke‐NUS Graduate Medical School8 College RoadSingapore169857Singapore
- Department of PharmacyNational University of Singapore18 Science DriveSingapore117543Singapore
| | - Chenjie Xu
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
| |
Collapse
|
16
|
Hoshiko Y, Nishiyama Y, Moriya T, Kadokami K, López-Jácome LE, Hirano R, García-Contreras R, Maeda T. Quinolone Signals Related to Pseudomonas Quinolone Signal-Quorum Sensing Inhibits the Predatory Activity of Bdellovibrio bacteriovorus. Front Microbiol 2021; 12:722579. [PMID: 34566925 PMCID: PMC8461301 DOI: 10.3389/fmicb.2021.722579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Bdellovibrio bacteriovorus is one of the predatory bacteria; therefore, it can act as a novel “living antibiotic,” unlike the current antibiotics. Here the predation of Escherichia coli by B. bacteriovorus was inhibited in the presence of Pseudomonas aeruginosa. This study investigated whether P. aeruginosa-induced predation inhibition is associated with bacterial quorum sensing (QS). Each las, rhl, or pqs QS mutant in P. aeruginosa was used to check the predatory activity of E. coli cells using B. bacteriovorus. As a result, the predatory activity of B. bacteriovorus increased in a mutant pqs QS system, whereas wild-type PA14 inhibited the predatory activity. Moreover, the addition of 4-hydroxy-2-heptylquinoline (HHQ) or the analog triggered the low predatory activity of B. bacteriovorus and killed B. bacteriovorus cells. Therefore, a defensive action of P. aeruginosa against B. bacteriovorus is activated by the pqs QS system, which produces some quinolone compounds such as HHQ.
Collapse
Affiliation(s)
- Yuki Hoshiko
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Yoshito Nishiyama
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Tae Moriya
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, Kitakyushu, Japan
| | - Luis Esaú López-Jácome
- Department of Microbiology and Parasitology, Faculty of Medicine, UNAM, Mexico City, Mexico.,Laboratory of Infectology, National Institute of Rehabilitation Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Ryutaro Hirano
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | | | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
17
|
Aharon E, Mookherjee A, Pérez-Montaño F, Mateus da Silva G, Sathyamoorthy R, Burdman S, Jurkevitch E. Secretion systems play a critical role in resistance to predation by Bdellovibrio bacteriovorus. Res Microbiol 2021; 172:103878. [PMID: 34492337 DOI: 10.1016/j.resmic.2021.103878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 11/28/2022]
Abstract
Bdellovibrio bacteriovorus, a Gram-negative predatory bacterium belonging to the Bdellovibrio and like organisms (BALOs), predate on Gram-negative bacteria. BALO strains differ in prey range but so far, the genetic basis of resistance against BALO predation is hardly understood. We developed a loss-of-function approach to screen for sensitive mutants in a library of strain M6, a predation-resistant strain of the plant pathogen Acidovorax citrulli. The screen is based on tracking the growth of a B. bacteriovorus strain expressing the fluorescent reporter Tdtomato in mutant pools to reveal predation-sensitive variants. Two independent loci were identified in mutant strains exhibiting significant levels of susceptibility to the predator. Genes in the two loci were analysed using both protein sequence homology and protein structure modeling. Both were secretion-related proteins and thus associated to the bacterial cell wall. Successful complementation of gspK, a gene encoding for a minor pseudopilin protein confirmed the involvement of the type II secretion system in A. citrulli M6 resistance. This proof of concept study shows that our approach can identify key elements of the BALO-prey interaction, and it validates the hypothesis that mutational changes in a single gene can drastically impact prey resistance to BALO predation.
Collapse
Affiliation(s)
- Einav Aharon
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Abhirup Mookherjee
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Francisco Pérez-Montaño
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel; Department of Microbiology, University of Seville, Seville, Spain.
| | - Gustavo Mateus da Silva
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Rajesh Sathyamoorthy
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
18
|
Clearance of Gram-Negative Bacterial Pathogens from the Ocular Surface by Predatory Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10070810. [PMID: 34356731 PMCID: PMC8300752 DOI: 10.3390/antibiotics10070810] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
It was previously demonstrated that predatory bacteria are able to efficiently eliminate Gram-negative pathogens including antibiotic-resistant and biofilm-associated bacteria. In this proof-of-concept study we evaluated whether two species of predatory bacteria, Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus, were able to alter the survival of Gram-negative pathogens on the ocular surface. Clinical keratitis isolates of Pseudomonas aeruginosa (strain PAC) and Serratia marcescens (strain K904) were applied to the ocular surface of NZW rabbits followed by application of predatory bacteria. At time intervals, surviving pathogenic bacteria were enumerated. In addition, B. bacteriovorus and S. marcescens were applied to porcine organ culture corneas under contact lenses, and the ocular surface was examined by scanning electron microscopy. The ocular surface epithelial layer of porcine corneas exposed to S. marcescens, but not B. bacteriovorus was damaged. Using this model, neither pathogen could survive on the rabbit ocular surface for longer than 24 h. M. aeruginosavorus correlated with a more rapid clearance of P. aeruginosa but not S. marcescens from rabbit eyes. This study supports previous evidence that predatory bacteria are well tolerated by the cornea, but suggest that predatory bacteria do not considerably change the ability of the ocular surface to clear the tested Gram-negative bacterial pathogens from the ocular surface.
Collapse
|
19
|
Sathyamoorthy R, Huppert A, Kadouri DE, Jurkevitch E. Effects of the prey landscape on the fitness of the bacterial predators Bdellovibrio and like organisms. FEMS Microbiol Ecol 2021; 97:6178867. [PMID: 33739375 DOI: 10.1093/femsec/fiab047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/17/2021] [Indexed: 11/12/2022] Open
Abstract
Bdellovibrio and like organisms (BALOs) are obligate predatory bacteria commonly encountered in the environment. In dual predator-prey cultures, prey accessibility ensures optimal feeding and replication and rapid BALO population growth. However, the environmental prey landscape is complex, as it also incorporates non-prey cells and other particles. These may act as decoys, generating unproductive encounters which in turn may affect both predator and prey population dynamics. In this study, we hypothesized that increasing decoy:prey ratios would bring about increasing costs on the predator's reproductive fitness. We also tested the hypothesis that different BALOs and decoys would have different effects. To this end, we constructed prey landscapes including periplasmic or epibiotic predators including two types of decoy under a large range of initial decoy:prey ratio, and mixed cultures containing multiple predators and prey. We show that as decoy:prey ratios increase, the maximal predator population sizes is reduced and the time to reach it significantly increases. We found that BALOs spent less time handling non-prey (including superinfection-immune invaded prey) than prey cells, and did not differentiate between efficient and less efficient prey. This may explain why in multiple predator and prey cultures, less preferred prey appear to act as decoy.
Collapse
Affiliation(s)
- Rajesh Sathyamoorthy
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Amit Huppert
- Bio-statistical Unit, The Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
20
|
Waso M, Reyneke B, Havenga B, Khan S, Khan W. Insights into Bdellovibrio spp. mechanisms of action and potential applications. World J Microbiol Biotechnol 2021; 37:85. [PMID: 33860852 DOI: 10.1007/s11274-021-03054-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Recent studies investigating Bdellovibrio spp. have found that although this predator predominantly preys on Gram-negative organisms, under certain conditions (nutrient/prey limitation), it will adapt to survive and grow axenically (without prey) or in the presence of Gram-positive bacterial prey. These advances in the understanding of predatory bacteria have stimulated a renewed interest in these organisms and the potential applications of Bdellovibrio spp. to the benefit of society. Early studies primarily focused on the application of predatory bacteria as "live antibiotics" in the medical field, probiotics in aquaculture and veterinary medicine and their use in agriculture. Additionally, studies have investigated their prevalence in wastewater and environmental sources. However, comprehending that Bdellovibrio spp. may also prey on and target Gram-positive organisms, implies that these predators could specifically be applied for the bioremediation or removal of mixed bacterial communities. Recent studies have also indicated that Bdellovibrio spp. may be useful in controlling food spoilage organisms and subsequently decrease our reliance on food additives. This review will thus highlight recent developments in understanding Bdellovibrio spp. predation strategies and focus on potential new applications of these organisms for water treatment, food preservation, enhancement of industrial processes, and in combination therapies with bacteriophages and/or antibiotics to combat multi-drug resistant organisms.
Collapse
Affiliation(s)
- Monique Waso
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
21
|
Jafarian N, Sepahi AA, Naghavi NS, Hosseini F, Nowroozi J. Using autochthonous Bdellovibrio as a predatory bacterium for reduction of Gram-negative pathogenic bacteria in urban wastewater and reuse it. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 12:556-564. [PMID: 33613910 PMCID: PMC7884277 DOI: 10.18502/ijm.v12i6.5030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives: The microbial contamination of wastewater is associated with health risks. The aim of this study was to use the autochthonous Bdellovibrio potential to prey Gram-negative pathogenic bacteria as a bio-control agent to treat urban wastewater. Materials and Methods: Thirty-six raw sewage samples were collected for isolation of Bdellovibrio. Double layer plaque assay was used for isolation and the isolates were identified by microscopic examination and molecular analysis. To evaluate the predatory potential for decrease number of Gram-negative pathogenic bacteria, plaque perdition assay, reduction in host cells viability by colony-forming unit (CFU) counting, reduction in optical density (OD) in co-cultures and assay of killing efficiency were carried out. Also, the raw wastewater was treated by Bdellovibrio then the reduction in CFU counting and reduction in OD was evaluated. Results: Four strains of Bdellovibrio were isolated and were registered in Gene Bank. Clear plaques were observed after 3–6 days of incubation for all prey cells. The CFU enumerations of all preys were decreased after 48 hrs in co-cultures and raw wastewater. Also, OD was decreased down to 0.2 nm after 48 hrs. Conclusion: These autochthonous Bdellovibrio strains are proposed to use for bio-control of Gram-negative pathogenic bacteria in wastewater and reuse it for irrigation in arid regions.
Collapse
Affiliation(s)
- Neda Jafarian
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nafiseh Sadat Naghavi
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Hosseini
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Jamileh Nowroozi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Atterbury RJ, Tyson J. Predatory bacteria as living antibiotics - where are we now? MICROBIOLOGY-SGM 2021; 167. [PMID: 33465024 DOI: 10.1099/mic.0.001025] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Antimicrobial resistance (AMR) is a global health and economic crisis. With too few antibiotics in development to meet current and anticipated needs, there is a critical need for new therapies to treat Gram-negative infections. One potential approach is the use of living predatory bacteria, such as Bdellovibrio bacteriovorus (small Gram-negative bacteria that naturally invade and kill Gram-negative pathogens of humans, animals and plants). Moving toward the use of Bdellovibrio as a 'living antibiotic' demands the investigation and characterization of these bacterial predators in biologically relevant systems. We review the fundamental science supporting the feasibility of predatory bacteria as alternatives to antibiotics.
Collapse
Affiliation(s)
- Robert J Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Jess Tyson
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
23
|
Sathyamoorthy R, Kushmaro Y, Rotem O, Matan O, Kadouri DE, Huppert A, Jurkevitch E. To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators. THE ISME JOURNAL 2021; 15:109-123. [PMID: 32884113 PMCID: PMC7852544 DOI: 10.1038/s41396-020-00764-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
The small size of bacterial cells necessitates rapid adaption to sudden environmental changes. In Bdellovibrio bacteriovorus, an obligate predator of bacteria common in oligotrophic environments, the non-replicative, highly motile attack phase (AP) cell must invade a prey to ensure replication. AP cells swim fast and respire at high rates, rapidly consuming their own contents. How the predator survives in the absence of prey is unknown. We show that starvation for prey significantly alters swimming patterns and causes exponential decay in prey-searching cells over hours, until population-wide swim-arrest. Swim-arrest is accompanied by changes in energy metabolism, enabling rapid swim-reactivation upon introduction of prey or nutrients, and a sweeping change in gene expression and gene regulation that largely differs from those of the paradigmatic stationary phase. Swim-arrest is costly as it imposes a fitness penalty in the form of delayed growth. We track the control of the swim arrest-reactivation process to cyclic-di-GMP (CdG) effectors, including two motility brakes. CRISPRi transcriptional inactivation, and in situ localization of the brakes to the cell pole, demonstrated their essential role for effective survival under prey-induced starvation. Thus, obligate predators evolved a unique CdG-controlled survival strategy, enabling them to sustain their uncommon lifestyle under fluctuating prey supply.
Collapse
Affiliation(s)
- Rajesh Sathyamoorthy
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Yuval Kushmaro
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Or Rotem
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Seed-x., Magshimim, Israel
| | - Ofra Matan
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Amit Huppert
- Bio-statistical Unit, The Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
24
|
Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, Loy A, Naganuma T, Nakai R, Whitman WB, Hahn MW, Kuever J, Hugenholtz P. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 2020; 70:5972-6016. [DOI: 10.1099/ijsem.0.004213] [Citation(s) in RCA: 696] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The class
Deltaproteobacteria
comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum
Proteobacteria
, it rarely affiliates with other proteobacterial classes and is frequently not recovered as a monophyletic unit in phylogenetic analyses. Indeed, one branch of the class
Deltaproteobacteria
encompassing Bdellovibrio-like predators was recently reclassified into a separate proteobacterial class, the
Oligoflexia
. Here we systematically explore the phylogeny of taxa currently assigned to these classes using 120 conserved single-copy marker genes as well as rRNA genes. The overwhelming majority of markers reject the inclusion of the classes
Deltaproteobacteria
and
Oligoflexia
in the phylum
Proteobacteria
. Instead, the great majority of currently recognized members of the class
Deltaproteobacteria
are better classified into four novel phylum-level lineages. We propose the names Desulfobacterota phyl. nov. and Myxococcota phyl. nov. for two of these phyla, based on the oldest validly published names in each lineage, and retain the placeholder name SAR324 for the third phylum pending formal description of type material. Members of the class
Oligoflexia
represent a separate phylum for which we propose the name Bdellovibrionota phyl. nov. based on priority in the literature and general recognition of the genus Bdellovibrio. Desulfobacterota phyl. nov. includes the taxa previously classified in the phylum
Thermodesulfobacteria
, and these reclassifications imply that the ability of sulphate reduction was vertically inherited in the
Thermodesulfobacteria
rather than laterally acquired as previously inferred. Our analysis also indicates the independent acquisition of predatory behaviour in the phyla Myxococcota and Bdellovibrionota, which is consistent with their distinct modes of action. This work represents a stable reclassification of one of the most taxonomically challenging areas of the bacterial tree and provides a robust framework for future ecological and systematic studies.
Collapse
Affiliation(s)
- David W Waite
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Maria Chuvochina
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Claus Pelikan
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | | | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Alexander Loy
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | | | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Jan Kuever
- Department of Microbiology, Bremen Institute for Materials Testing, Bremen, Germany
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
25
|
Pérez J, Contreras-Moreno FJ, Marcos-Torres FJ, Moraleda-Muñoz A, Muñoz-Dorado J. The antibiotic crisis: How bacterial predators can help. Comput Struct Biotechnol J 2020; 18:2547-2555. [PMID: 33033577 PMCID: PMC7522538 DOI: 10.1016/j.csbj.2020.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Discovery of antimicrobials in the past century represented one of the most important advances in public health. Unfortunately, the massive use of these compounds in medicine and other human activities has promoted the selection of pathogens that are resistant to one or several antibiotics. The current antibiotic crisis is creating an urgent need for research into new biological weapons with the ability to kill these superbugs. Although a proper solution requires this problem to be addressed in a variety of ways, the use of bacterial predators is emerging as an excellent strategy, especially when used as whole cell therapeutic agents, as a source of new antimicrobial agents by awakening silent metabolic pathways in axenic cultures, or as biocontrol agents. Moreover, studies on their prey are uncovering mechanisms of resistance that can be shared by pathogens, representing new targets for novel antimicrobial agents. In this review we discuss potential of the studies on predator-prey interaction to provide alternative solutions to the problem of antibiotic resistance.
Collapse
Key Words
- AR, antibiotic resistance
- ARB, antibiotic-resistant bacteria
- ARG, antibiotic-resistant gene
- Antibiotic crisis
- BALOs
- BALOs, Bdellovibrio and like organisms
- BGC, biosynthetic gene cluster
- Bacterial predators
- HGT, horizontal gene transfer
- MDRB, multi-drug resistant bacteria
- Myxobacteria
- NRPS, nonribosomal peptide synthetase
- OMV, outer membrane vesicle
- OSMAC, one strain many compounds
- PKS, polyketide synthase
- SM, secondary metabolite
- WHO, World Health Organization
Collapse
Affiliation(s)
- Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | | | | | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
26
|
Bonfiglio G, Neroni B, Radocchia G, Marazzato M, Pantanella F, Schippa S. Insight into the Possible Use of the Predator Bdellovibrio bacteriovorus as a Probiotic. Nutrients 2020; 12:E2252. [PMID: 32731403 PMCID: PMC7468853 DOI: 10.3390/nu12082252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
The gut microbiota is a complex microbial ecosystem that coexists with the human organism in the intestinal tract. The members of this ecosystem live together in a balance between them and the host, contributing to its healthy state. Stress, aging, and antibiotic therapies are the principal factors affecting the gut microbiota composition, breaking the mutualistic relationship among microbes and resulting in the overgrowth of potential pathogens. This condition, called dysbiosis, has been linked to several chronic pathologies. In this review, we propose the use of the predator Bdellovibrio bacteriovorus as a possible probiotic to prevent or counteract dysbiotic outcomes and look at the findings of previous research.
Collapse
|
27
|
Youdkes D, Helman Y, Burdman S, Matan O, Jurkevitch E. Potential Control of Potato Soft Rot Disease by the Obligate Predators Bdellovibrio and Like Organisms. Appl Environ Microbiol 2020; 86:e02543-19. [PMID: 31953332 PMCID: PMC7054095 DOI: 10.1128/aem.02543-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial soft rot diseases caused by Pectobacterium spp. and Dickeya spp. affect a wide range of crops, including potatoes, a major food crop. As of today, farmers mostly rely on sanitary practices, water management, and plant nutrition for control. We tested the bacterial predators Bdellovibrio and like organisms (BALOs) to control potato soft rot. BALOs are small, motile predatory bacteria found in terrestrial and aquatic environments. They prey on a wide range of Gram-negative bacteria, including animal and plant pathogens. To this end, BALO strains HD100, 109J, and a ΔmerRNA derivative of HD100 were shown to efficiently prey on various rot-causing strains of Pectobacterium and Dickeya solani BALO control of maceration caused by a highly virulent strain of Pectobacterium carotovorum subsp. brasilense was then tested in situ using a potato slice assay. All BALO strains were highly effective at reducing disease, up to complete prevention. Effectivity was concentration dependent, and BALOs applied before P. carotovorum subsp. brasilense inoculation performed significantly better than those applied after the disease-causing agent, maybe due to in situ consumption of glucose by the prey, as glucose metabolism by live prey bacteria was shown to prevent predation. Dead predators and the supernatant of BALO cultures did not significantly prevent maceration, indicating that predation was the major mechanism for the prevention of the disease. Finally, plastic resistance to predation was affected by prey and predator population parameters, suggesting that population dynamics affect prey response to predation.IMPORTANCE Bacterial soft rot diseases caused by Pectobacterium spp. and Dickeya spp. are among the most important plant diseases caused by bacteria. Among other crops, they inflict large-scale damage to potatoes. As of today, farmers have few options to control them. The bacteria Bdellovibrio and like organisms (BALOs) are obligate predators of bacteria. We tested their potential to prey on Pectobacterium spp. and Dickeya spp. and to protect potato. We show that different BALOs can prey on soft rot-causing bacteria and prevent their growth in situ, precluding tissue maceration. Dead predators and the supernatant of BALO cultures did not significantly prevent maceration, showing that the effect is due to predation. Soft rot control by the predators was concentration dependent and was higher when the predator was inoculated ahead of the prey. As residual prey remained, we investigated what determines their level and found that initial prey and predator population parameters affect prey response to predation.
Collapse
Affiliation(s)
- Daniel Youdkes
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yael Helman
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ofra Matan
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
28
|
Laloux G. Shedding Light on the Cell Biology of the Predatory Bacterium Bdellovibrio bacteriovorus. Front Microbiol 2020; 10:3136. [PMID: 32038570 PMCID: PMC6985089 DOI: 10.3389/fmicb.2019.03136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022] Open
Abstract
Bdellovibrio bacteriovorus is a predatory bacterium that feeds upon and proliferates inside other Gram-negative bacteria. Upon entry into the periplasmic space of the prey envelope, B. bacteriovorus initiates an exquisite developmental program in which it digests the host resources and grows as a filament, which eventually divides in a non-binary manner, releasing a variable number of daughter cells. The progeny then escape from the prey ghost to encounter new victims and resume the predation cycle. Owing to its unique biology, B. bacteriovorus undoubtedly represents an attractive model to unravel novel mechanisms of bacterial cell cycle control and cellular organization. Yet, the molecular factors behind the sophisticated lifestyle of this micro-predator are still mysterious. In particular, the spatiotemporal dynamics of proteins that control key cellular processes such as transmission of the genetic information, cell growth and division remain largely unexplored. In this Perspective article, I highlight outstanding fundamental questions related to these aspects and arising from the original biology of this bacterium. I also discuss available insights and potential cell biology approaches based on quantitative live imaging techniques, in combination with bacterial genetics and biochemistry, to shed light on the intracellular organization of B. bacteriovorus in space and time.
Collapse
Affiliation(s)
- Géraldine Laloux
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
29
|
Thompson AF, English EL, Nock AM, Willsey GG, Eckstrom K, Cairns B, Bavelock M, Tighe SW, Foote A, Shulman H, Pericleous A, Gupta S, Kadouri DE, Wargo MJ. Characterizing species interactions that contribute to biofilm formation in a multispecies model of a potable water bacterial community. MICROBIOLOGY (READING, ENGLAND) 2020; 166:34-43. [PMID: 31585061 PMCID: PMC7137775 DOI: 10.1099/mic.0.000849] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022]
Abstract
Microbial biofilms are ubiquitous in drinking water systems, yet our understanding of drinking water biofilms lags behind our understanding of those in other environments. Here, a six-member model bacterial community was used to identify the interactions and individual contributions of each species to community biofilm formation. These bacteria were isolated from the International Space Station potable water system and include Cupriavidus metallidurans, Chryseobacterium gleum, Ralstonia insidiosa, Ralstonia pickettii, Methylorubrum (Methylobacterium) populi and Sphingomonas paucimobilis, but all six species are common members of terrestrial potable water systems. Using reconstituted assemblages, from pairs to all 6 members, community biofilm formation was observed to be robust to the absence of any single species and only removal of the C. gleum/S. paucimobilis pair, out of all 15 possible 2-species subtractions, led to loss of community biofilm formation. In conjunction with these findings, dual-species biofilm formation assays supported the view that the contribution of C. gleum to community biofilm formation was dependent on synergistic biofilm formation with either R. insidiosa or C. metallidurans. These data support a model of multiple, partially redundant species interactions to generate robustness in biofilm formation. A bacteriophage and multiple predatory bacteria were used to test the resilience of the community to the removal of individual members in situ, but the combination of precise and substantial depletion of a single target species was not achievable. We propose that this assemblage can be used as a tractable model to understand the molecular bases of the interactions described here and to decipher other functions of drinking water biofilms.
Collapse
Affiliation(s)
- Alex F. Thompson
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont Gradaute College, Burlington, VT 05405, USA
| | - Erika L. English
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicin, Burlington, VT 05405, USA
| | - Adam M. Nock
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicin, Burlington, VT 05405, USA
- Present address: Host Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Graham G. Willsey
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicin, Burlington, VT 05405, USA
- The Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicin, Burlington, VT 05405, USA
| | - Brynn Cairns
- Department of Natural Sciences, Northern Vermont University, Johnson, VT 05656, USA
| | | | - Scott W. Tighe
- The Vermont Integrated Genomics Resource, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Andrea Foote
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont Gradaute College, Burlington, VT 05405, USA
| | - Hannah Shulman
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicin, Burlington, VT 05405, USA
| | | | - Shilpi Gupta
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103
| | - Daniel E. Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103
| | - Matthew J. Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicin, Burlington, VT 05405, USA
- The Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| |
Collapse
|
30
|
Bonfiglio G, Neroni B, Radocchia G, Pompilio A, Mura F, Trancassini M, Di Bonaventura G, Pantanella F, Schippa S. Growth Control of Adherent-Invasive Escherichia coli (AIEC) by the Predator Bacteria Bdellovibrio bacteriovorus: A New Therapeutic Approach for Crohn's Disease Patients. Microorganisms 2019; 8:microorganisms8010017. [PMID: 31861852 PMCID: PMC7023281 DOI: 10.3390/microorganisms8010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 01/10/2023] Open
Abstract
In Crohn’s disease (CD) patients, intestinal dysbiosis with an overgrowth of Proteobacteria, mainly Escherichia coli, has been reported. A new pathotype of E. coli, the adherent-invasive Escherichia coli strain (AIEC), has been isolated from the mucosae of CD patients. AIEC strains play an important role in CD pathogenesis, increasing intestinal mucosa damage and inflammation. Several studies have been undertaken to find possible strategies/treatments aimed at AIEC strain reduction/elimination from CD patients’ intestinal mucosae. To date, a truly effective strategy against AIEC overgrowth is not yet available, and as such, further investigations are warranted. Bdellovibrio bacteriovorus is a predator bacterium which lives by invading Gram-negative bacteria, and is usually present both in natural and human ecosystems. The aim of this study was to evaluate a novel possible strategy to treat CD patients’ mucosae when colonized by AIEC strains, based on the utilization of the Gram-negative predatory bacteria, B. bacteriovorus. The overall results indicate that B. bacteriovorus is able to interfere with important steps in the dynamics of pathogenicity of AIEC strains by its predatory activity. We indicate, for the first time, the possibility of counteracting AIEC strain overgrowth by exploiting what naturally occurs in microbial ecosystems (i.e., predation).
Collapse
Affiliation(s)
- Giulia Bonfiglio
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, 00185 Roma, Italy; (G.B.); (B.N.); (G.R.); (M.T.); (F.P.)
| | - Bruna Neroni
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, 00185 Roma, Italy; (G.B.); (B.N.); (G.R.); (M.T.); (F.P.)
| | - Giulia Radocchia
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, 00185 Roma, Italy; (G.B.); (B.N.); (G.R.); (M.T.); (F.P.)
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Francesco Mura
- Electrical and Energy Engineering, Sapienza Nanoscience & Nanotechnology Laboratories (SNN-Lab), ‘Sapienza’ University of Rome, 00185 Roma, Italy;
| | - Maria Trancassini
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, 00185 Roma, Italy; (G.B.); (B.N.); (G.R.); (M.T.); (F.P.)
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Fabrizio Pantanella
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, 00185 Roma, Italy; (G.B.); (B.N.); (G.R.); (M.T.); (F.P.)
| | - Serena Schippa
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, 00185 Roma, Italy; (G.B.); (B.N.); (G.R.); (M.T.); (F.P.)
- Correspondence:
| |
Collapse
|
31
|
Assessment of predatory bacteria and prey interactions using culture-based methods and EMA-qPCR. Microbiol Res 2019; 228:126305. [DOI: 10.1016/j.micres.2019.126305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 10/26/2022]
|
32
|
Im H, Kwon H, Cho G, Kwon J, Choi SY, Mitchell RJ. Viscosity has dichotomous effects on Bdellovibrio bacteriovorus HD100 predation. Environ Microbiol 2019; 21:4675-4684. [PMID: 31498968 DOI: 10.1111/1462-2920.14799] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 09/05/2019] [Indexed: 11/28/2022]
Abstract
Bdellovibrio bacteriovorus HD100 is a highly motile predatory bacterium that consumes other Gram-negative bacteria for its sustenance. Here, we describe the impacts the media viscosity has both on the motility of predator and its attack rates. Experiments performed in polyethylene glycol (PEG) solutions, a linear polymer, found a viscosity of 10 mPa s (5% PEG) negatively impacted predation over a 24-h period. When the viscosity was increased to 27 mPa s (10% PEG), predation was nearly abolished. Tests with three other B. bacteriovorus strains, i.e., 109J and two natural isolates, found identical results. Short-term (2-h) experiments, however, found attack rates were improved in 1% PEG, which had a viscosity of 5.4 mPa s, using bioluminescent prey and their viabilities. In contrast, when experiments were performed in dextran, a branched polymer, no increase in predation was seen even though the viscosity was a comparable 5.1 mPa s. The enhanced attack rates in this solution coincided with a 31% increase in B. bacteriovorus HD100 swimming speeds (62 μm s-1 in 1% PEG vs. 47.5 μm s-1 in HEPES-salt).
Collapse
Affiliation(s)
- Hansol Im
- Division of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Heeun Kwon
- Division of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Gayoung Cho
- Division of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Jisoo Kwon
- Division of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Seong Yeol Choi
- Division of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Robert J Mitchell
- Division of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| |
Collapse
|
33
|
Brothers KM, Callaghan JD, Stella NA, Bachinsky JM, AlHigaylan M, Lehner KL, Franks JM, Lathrop KL, Collins E, Schmitt DM, Horzempa J, Shanks RMQ. Blowing epithelial cell bubbles with GumB: ShlA-family pore-forming toxins induce blebbing and rapid cellular death in corneal epithelial cells. PLoS Pathog 2019; 15:e1007825. [PMID: 31220184 PMCID: PMC6586354 DOI: 10.1371/journal.ppat.1007825] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Medical devices, such as contact lenses, bring bacteria in direct contact with human cells. Consequences of these host-pathogen interactions include the alteration of mammalian cell surface architecture and induction of cellular death that renders tissues more susceptible to infection. Gram-negative bacteria known to induce cellular blebbing by mammalian cells, Pseudomonas and Vibrio species, do so through a type III secretion system-dependent mechanism. This study demonstrates that a subset of bacteria from the Enterobacteriaceae bacterial family induce cellular death and membrane blebs in a variety of cell types via a type V secretion-system dependent mechanism. Here, we report that ShlA-family cytolysins from Proteus mirabilis and Serratia marcescens were required to induce membrane blebbling and cell death. Blebbing and cellular death were blocked by an antioxidant and RIP-1 and MLKL inhibitors, implicating necroptosis in the observed phenotypes. Additional genetic studies determined that an IgaA family stress-response protein, GumB, was necessary to induce blebs. Data supported a model where GumB and shlBA are in a regulatory circuit through the Rcs stress response phosphorelay system required for bleb formation and pathogenesis in an invertebrate model of infection and proliferation in a phagocytic cell line. This study introduces GumB as a regulator of S. marcescens host-pathogen interactions and demonstrates a common type V secretion system-dependent mechanism by which bacteria elicit surface morphological changes on mammalian cells. This type V secretion-system mechanism likely contributes bacterial damage to the corneal epithelial layer, and enables access to deeper parts of the tissue that are more susceptible to infection.
Collapse
Affiliation(s)
- Kimberly M. Brothers
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Jake D. Callaghan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Nicholas A. Stella
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Julianna M. Bachinsky
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Mohammed AlHigaylan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Kara L. Lehner
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Jonathan M. Franks
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Kira L. Lathrop
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Elliot Collins
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Deanna M. Schmitt
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Robert M. Q. Shanks
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
- * E-mail:
| |
Collapse
|
34
|
Hanashiro FTT, Mukherjee S, Souffreau C, Engelen J, Brans KI, Busschaert P, De Meester L. Freshwater Bacterioplankton Metacommunity Structure Along Urbanization Gradients in Belgium. Front Microbiol 2019; 10:743. [PMID: 31031725 PMCID: PMC6473040 DOI: 10.3389/fmicb.2019.00743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/25/2019] [Indexed: 12/29/2022] Open
Abstract
Urbanization is transforming and fragmenting natural environments worldwide, driving changes in biological communities through alterations in local environmental conditions as well as by changing the capacity of species to reach specific habitats. While the majority of earlier studies have been performed on higher plants and animals, it is crucial to increase our insight on microbial responses to urbanization across different spatial scales. Here, using a metacommunity approach, we evaluated the effects of urbanization on bacterioplankton communities in 50 shallow ponds in Belgium (Flanders region), one of the most urbanized areas in Northwest Europe. We estimated the relative importance of local environmental factors (35 abiotic and biotic variables), regional spatial factors and urbanization (built-up area) quantified at two spatial scales (200 m × 200 m and 3 km × 3 km). We show that urbanization at local or regional scales did not lead to strong changes in community composition and taxon diversity of bacterioplankton. Urbanization at regional scale (3 km × 3 km) explained only 2% of community composition variation while at local scale (200 m × 200 m), no effect was detected. Local environmental factors explained 13% (OTUs with relative abundance ≥ 0.1%) to 24% (12 dominant OTUs -≥ 1%) of community variation. Six local environmental variables significantly explained variation in bacterioplankton community composition: pH, alkalinity, conductivity, total phosphorus, abundance of Daphnia and concentration of copper (Cu), of which pH was partly mediated by urbanization. Our results indicate that environmental rather than spatial factors accounted for the variation in bacterioplankton community structure, suggesting that species sorting is the main process explaining bacterioplankton community assembly. Apparently, urbanization does not have a direct and strong effect on bacterioplankton metacommunity structure, probably due to the capacity of these organisms to adapt toward and colonize habitats with different environmental conditions and due to their fast adaptation and metabolic versatility. Thus, bacterioplankton communities inhabiting shallow ponds may be less affected by environmental conditions resulting from urbanization as compared to the impacts previously described for other taxa.
Collapse
Affiliation(s)
- Fabio Toshiro T Hanashiro
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Shinjini Mukherjee
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Caroline Souffreau
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jessie Engelen
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Kristien I Brans
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Pieter Busschaert
- Department of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium.,Division of Gynaecological Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Engulfment, persistence and fate of Bdellovibrio bacteriovorus predators inside human phagocytic cells informs their future therapeutic potential. Sci Rep 2019; 9:4293. [PMID: 30862785 PMCID: PMC6414686 DOI: 10.1038/s41598-019-40223-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
In assessing the potential of predatory bacteria, such as Bdellovibrio bacteriovorus, to become live therapeutic agents against bacterial infections, it is crucial to understand and quantify Bdellovibrio host cell interactions at a molecular level. Here, we quantify the interactions of live B. bacteriovorus with human phagocytic cells, determining the uptake mechanisms, persistence, associated cytokine responses and intracellular trafficking of the non-growing B. bacteriovorus in PMA-differentiated U937 cells. B. bacteriovorus are engulfed by U937 cells and persist for 24 h without affecting host cell viability and can be observed microscopically and recovered and cultured post-uptake. The uptake of predators is passive and depends on the dynamics of the host cell cytoskeleton; the engulfed predators are eventually trafficked through the phagolysosomal pathway of degradation. We have also studied the prevalence of B. bacteriovorus specific antibodies in the general human population. Together, these results quantify a period of viable persistence and the ultimate fate of B. bacteriovorus inside phagocytic cells. They provide new knowledge on predator availability inside hosts, plus potential longevity and therefore potential efficacy as a treatment in humans and open up future fields of work testing if predators can prey on host-engulfed pathogenic bacteria.
Collapse
|
36
|
Sun Q, Li J, Le T. Zinc Oxide Nanoparticle as a Novel Class of Antifungal Agents: Current Advances and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11209-11220. [PMID: 30299956 DOI: 10.1021/acs.jafc.8b03210] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Certain types of nanoparticles, especially zinc oxide nanoparticles (ZnONPs), are widely reported to be capable of the inhibition of harmful bacteria, yeasts, and filamentous fungi. The unique physicochemical and biological properties of ZnONPs also make them attractive to the food industry for use as a promising antifungal agent. This Review thoroughly introduces the preparation methods and antifungal properties of ZnONPs and analyzes their possible antifungal mechanisms. The applicability of ZnONPs in food packaging and nutritional supplements and as an antimicrobial additive is also documented. Moreover, evaluations for biological safety of ZnONPs are objectively reviewed in this paper. The discussions addressed in this Review not only have theoretical significance but also are conducive to the development of food safety, nutrition, and human health. The summarized knowledge and future perspectives outlined here are expected to promote and guide new research toward developing and optimizing the application of ZnONPs as a novel class of antifungal agents to help improve food quality as well as food safety in the near future.
Collapse
Affiliation(s)
- Qi Sun
- College of Life Sciences , Chongqing Normal University , No. 37 Chengzhong Road , Chongqing 401331 , People's Republic of China
| | - Jianmei Li
- College of Life Sciences , Chongqing Normal University , No. 37 Chengzhong Road , Chongqing 401331 , People's Republic of China
| | - Tao Le
- College of Life Sciences , Chongqing Normal University , No. 37 Chengzhong Road , Chongqing 401331 , People's Republic of China
| |
Collapse
|
37
|
Garcia CJ, Pericleous A, Elsayed M, Tran M, Gupta S, Callaghan JD, Stella NA, Franks JM, Thibodeau PH, Shanks RMQ, Kadouri DE. Serralysin family metalloproteases protects Serratia marcescens from predation by the predatory bacteria Micavibrio aeruginosavorus. Sci Rep 2018; 8:14025. [PMID: 30232396 PMCID: PMC6145908 DOI: 10.1038/s41598-018-32330-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 09/03/2018] [Indexed: 12/16/2022] Open
Abstract
Micavibrio aeruginosavorus is an obligate Gram-negative predatory bacterial species that feeds on other Gram-negative bacteria by attaching to the surface of its prey and feeding on the prey's cellular contents. In this study, Serratia marcescens with defined mutations in genes for extracellular cell structural components and secreted factors were used in predation experiments to identify structures that influence predation. No change was measured in the ability of the predator to prey on S. marcescens flagella, fimbria, surface layer, prodigiosin and phospholipase-A mutants. However, higher predation was measured on S. marcescens metalloprotease mutants. Complementation of the metalloprotease gene, prtS, into the protease mutant, as well as exogenous addition of purified serralysin metalloprotease, restored predation to wild type levels. Addition of purified serralysin also reduced the ability of M. aeruginosavorus to prey on Escherichia coli. Incubating M. aeruginosavorus with purified metalloprotease was found to not impact predator viability; however, pre-incubating prey, but not the predator, with purified metalloprotease was able to block predation. Finally, using flow cytometry and fluorescent microscopy, we were able to confirm that the ability of the predator to bind to the metalloprotease mutant was higher than that of the metalloprotease producing wild-type. The work presented in this study shows that metalloproteases from S. marcescens could offer elevated protection from predation.
Collapse
Affiliation(s)
- Carlos J Garcia
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Androulla Pericleous
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Michael Tran
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Shilpi Gupta
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Jake D Callaghan
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nicholas A Stella
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jonathan M Franks
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Patrick H Thibodeau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15221, USA
| | - Robert M Q Shanks
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA.
| |
Collapse
|
38
|
Ottaviani D, Chierichetti S, Angelico G, Forte C, Rocchegiani E, Manuali E, Leoni F. Halobacteriovorax isolated from marine water of the Adriatic sea, Italy, as an effective predator of Vibrio parahaemolyticus, non-O1/O139 V. cholerae, V. vulnificus. J Appl Microbiol 2018; 125:1199-1207. [PMID: 29931749 DOI: 10.1111/jam.14027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 06/04/2018] [Accepted: 06/15/2018] [Indexed: 12/01/2022]
Abstract
AIM To detect marine Bdellovibrio and like organisms (BALOs) which are able to infect Vibrio parahaemolyticus from seawater of the Adriatic, Italy. To test, prey specificity and predation efficiency of our Halobacteriovorax isolate, named HBXCO1, towards 17 Vibrio and 7 non-Vibrio strains linked to the Adriatic sea, Italy. METHODS AND RESULTS Double layer agar plating technique was used to enumerate BALOs and to evaluate their prey specificity and predation efficiency. Transmission electron microscopy and 16S rRNA analysis were used to identify them. Means of BALOs counts ranged from 5·0 PFU per ml (March 2017) to 98·6 PFU per ml (August 2016). HBXCO1 had the ability to attack all tested prey strains of V. parahaemolyticus, Vibrio cholerae non-O1/O139 and Vibrio vulnificus, but it did not prey on non-Vibrio strains and V. alginolyticus under the tested conditions. CONCLUSIONS Bdellovibrio and like organisms capable of infecting pathogenic vibrios are naturally present in seawater of the Adriatic, Italy. Isolate HBXCO1 shows prey specificity preferentially for the Vibrio genus and high predatory efficiency towards a wide range of pathogenic strains. SIGNIFICANCE AND IMPACT OF THE STUDY The public impact of V. parahaemolyticus, non-O1/O139 V. cholerae and V. vulnificus in bivalves is relevant and current decontamination processes are not always effective. We believe that the predator HBXCO1 represents a potential candidate for the development of strategies of biocontrol of pathogenic vibrios in bivalves from harvesting to trade.
Collapse
Affiliation(s)
- D Ottaviani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Laboratorio Nazionale di Riferimento per il controllo delle Contaminazioni Batteriche dei Molluschi Bivalvi Vivi, Ancona, Italy
| | - S Chierichetti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Laboratorio Nazionale di Riferimento per il controllo delle Contaminazioni Batteriche dei Molluschi Bivalvi Vivi, Ancona, Italy
| | - G Angelico
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Laboratorio Nazionale di Riferimento per il controllo delle Contaminazioni Batteriche dei Molluschi Bivalvi Vivi, Ancona, Italy
| | - C Forte
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Laboratorio Nazionale di Riferimento per il controllo delle Contaminazioni Batteriche dei Molluschi Bivalvi Vivi, Ancona, Italy
| | - E Rocchegiani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Laboratorio Nazionale di Riferimento per il controllo delle Contaminazioni Batteriche dei Molluschi Bivalvi Vivi, Ancona, Italy
| | - E Manuali
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Laboratorio Nazionale di Riferimento per il controllo delle Contaminazioni Batteriche dei Molluschi Bivalvi Vivi, Ancona, Italy
| | - F Leoni
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Laboratorio Nazionale di Riferimento per il controllo delle Contaminazioni Batteriche dei Molluschi Bivalvi Vivi, Ancona, Italy
| |
Collapse
|
39
|
Relative Contributions of Halobacteriovorax and Bacteriophage to Bacterial Cell Death under Various Environmental Conditions. mBio 2018; 9:mBio.01202-18. [PMID: 30087166 PMCID: PMC6083911 DOI: 10.1128/mbio.01202-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The role of protists and bacteriophages in bacterial predation in the microbial food web has been well studied. There is mounting evidence that Bdellovibrio and like organisms (BALOs) also contribute to bacterial mortality and, in some cases, more so than bacteriophages. A full understanding of the ecologic function of the microbial food web requires recognition of all major predators and the magnitude of each predator’s contribution. Here we investigated the contribution of Halobacteriovorax, one of the BALOs, and bacteriophages when incubated with their common prey, Vibrio vulnificus, in a seawater microcosm. We observed that Halobacteriovorax was the greatest responder to the prey, increasing 18-fold with a simultaneous 4.4-log-unit reduction of V. vulnificus at 40 h, whereas the bacteriophage population showed no significant increase. In subsequent experiments to formulate a medium that would support the predatory activities and replication of both predators, low-nutrient media favored the predation and replication of the Halobacteriovorax, whereas higher-nutrient media enhanced phage growth. The greatest prey reduction and replication of both Halobacteriovorax and phage were observed in media with moderate nutrient levels. Additional experiments show that the predatory activities of both predators were influenced by environmental conditions, specifically, temperature and salinity. The two predators combined exerted greater control on V. vulnificus, a synergism that may be exploited for practical applications to reduce bacterial populations. These findings suggest that along with bacteriophage and protists, Halobacteriovorax has the potential to have a prominent role in bacterial mortality and cycling of nutrients, two vital ecologic functions. Although much has been reported about the marine microbial food web and the role of micropredators, specifically viruses and protists, the contribution of Bdellovibrio-like predators has largely been ignored, posing a major gap in understanding food web processes. A complete scenario of the microbial food web cannot be developed until the roles of all major micropredators and the magnitude of their contributions to bacterial mortality, structuring of microbial communities, and cycling of nutrients are assessed. Here we show compelling evidence that Halobacteriovorax, a predatory bacterium, is a significant contributor to bacterial death and, in some cases, may rival viruses as agents of bacterial mortality. These results advance current understanding of the microbial loop and top-down control on the bacterial community.
Collapse
|
40
|
Gupta S, Lemenze A, Donnelly RJ, Connell ND, Kadouri DE. Keeping it together: absence of genetic variation and DNA incorporation by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus during predation. Res Microbiol 2018; 169:237-243. [PMID: 29751066 DOI: 10.1016/j.resmic.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
The use of predatory bacteria as a potential live therapeutic to control human infection is gaining increased attention. Earlier work with Micavibrio spp. and Bdellovibrio spp. has demonstrated the ability of these predators to control drug-resistant Gram-negative pathogens, Tier-1 select agents and biofilms. Additional studies also confirmed that introducing high doses of the predators into animals does not negatively impact animal well-being and might assist in reducing bacterial burden in vivo. The survival of predators requires extreme proximity to the prey cell, which might bring about horizontal transfer of genetic material, such as genes encoding for pathogenic genetic islands that would indirectly facilitate the spread of genetic material to other organisms. In this study, we examined the genetic makeup of several lab isolates of the predators Bdellovibriobacteriovorus and Micavibrioaeruginosavorus that were cultured repeatedly and stored over a course of 13 years. We also conducted controlled experiments in which the predators were sequentially co-cultured on Klebsiella pneumoniae followed by genetic analysis of the predator. In both cases, we saw little genetic variation and no evidence of horizontally transferred chromosomal DNA from the prey during predator-prey interaction. Culturing the predators repeatedly did not cause any change in predation efficacy.
Collapse
Affiliation(s)
- Shilpi Gupta
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07101, USA
| | - Alexander Lemenze
- Department of Medicine and the Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA; Molecular Resource Facility, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA
| | - Robert J Donnelly
- Molecular Resource Facility, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA
| | - Nancy D Connell
- Department of Medicine and the Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07101, USA.
| |
Collapse
|
41
|
Sandner-Miranda L, Vinuesa P, Cravioto A, Morales-Espinosa R. The Genomic Basis of Intrinsic and Acquired Antibiotic Resistance in the Genus Serratia. Front Microbiol 2018; 9:828. [PMID: 29867787 PMCID: PMC5958200 DOI: 10.3389/fmicb.2018.00828] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/11/2018] [Indexed: 12/18/2022] Open
Abstract
Serratia marcescens, a member of the Enterobacteriaceae family, was long thought to be a non-pathogenic bacterium prevalent in environmental habitats. Together with other members of this genus, it has emerged in recent years as an opportunistic nosocomial pathogen causing various types of infections. One important feature of pathogens belonging to this genus is their intrinsic and acquired resistance to a variety of antibiotic families, including β-lactam, aminoglycosides, quinolones and polypeptide antibiotics. The aim of this study was to elucidate which genes participate in the intrinsic and acquired antibiotic resistance of this genus in order to determine the Serratia genus resistome. We performed phylogenomic and comparative genomic analyses using 32 Serratia spp. genomes deposited in the NCBI GenBank from strains isolated from different ecological niches and different lifestyles. S. marcescens strain SmUNAM836, which was previously isolated from a Mexican adult with obstructive pulmonary disease, was included in this study. The results show that most of the antibiotic resistance genes (ARGs) were found on the chromosome, and to a lesser degree, on plasmids and transposons acquired through horizontal gene transfer. Four strains contained the gyrA point mutation in codon Ser83 that confers quinolone resistance. Pathogenic and environmental isolates presented a high number of ARGs, especially genes associated with efflux systems. Pathogenic strains, specifically nosocomial strains, presented more acquired resistance genes than environmental isolates. We may conclude that the environment provides a natural reservoir for antibiotic resistance, which has been underestimated in the medical field.
Collapse
Affiliation(s)
- Luisa Sandner-Miranda
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alejandro Cravioto
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosario Morales-Espinosa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
42
|
Negus D, Moore C, Baker M, Raghunathan D, Tyson J, Sockett RE. Predator Versus Pathogen: How Does Predatory Bdellovibrio bacteriovorus Interface with the Challenges of Killing Gram-Negative Pathogens in a Host Setting? Annu Rev Microbiol 2018; 71:441-457. [PMID: 28886689 DOI: 10.1146/annurev-micro-090816-093618] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bdellovibrio bacteriovorus is a small deltaproteobacterial predator that has evolved to invade, reseal, kill, and digest other gram-negative bacteria in soils and water environments. It has a broad host range and kills many antibiotic-resistant, clinical pathogens in vitro, a potentially useful capability if it could be translated to a clinical setting. We review relevant mechanisms of B. bacteriovorus predation and the physiological properties that would influence its survival in a mammalian host. Bacterial pathogens increasingly display conventional antibiotic resistance by expressing and varying surface and soluble biomolecules. Predators coevolved alongside prey bacteria and so encode diverse predatory enzymes that are hard for pathogens to resist by simple mutation. Predators do not replicate outside pathogens and thus express few transport proteins and thus few surface epitopes for host immune recognition. We explain these features, relating them to the potential of predatory bacteria as cellular medicines.
Collapse
Affiliation(s)
- David Negus
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , ,
| | - Chris Moore
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , ,
| | - Michelle Baker
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , , .,School of Computer Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom
| | - Dhaarini Raghunathan
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , ,
| | - Jess Tyson
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , ,
| | - R Elizabeth Sockett
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , ,
| |
Collapse
|
43
|
Abstract
The three main oral diseases of humans, that is, caries, periodontal diseases, and oral candidiasis, are associated with microbiome shifts initiated by changes in the oral environment and/or decreased effectiveness of mucosal immune surveillance. In this review, we discuss the role that microbial-based therapies may have in the control of these conditions. Most investigations on the use of microorganisms for management of oral disease have been conducted with probiotic strains with some positive but very discrete clinical outcomes. Other strategies such as whole oral microbiome transplantation or modification of community function by enrichment with health-promoting indigenous oral strains may offer more promise, but research in this field is still in its infancy. Any microbial-based therapeutics for oral conditions, however, are likely to be only one component within a holistic preventive strategy that should also aim at modification of the environmental influences responsible for the initiation and perpetuation of microbiome shifts associated with oral dysbiosis.
Collapse
|
44
|
Dwidar M, Yokobayashi Y. Controlling Bdellovibrio bacteriovorus Gene Expression and Predation Using Synthetic Riboswitches. ACS Synth Biol 2017; 6:2035-2041. [PMID: 28812884 DOI: 10.1021/acssynbio.7b00171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bdellovibrio bacteriovorus is a predatory bacterium that feeds on Gram-negative bacteria including a wide range of pathogens and thus has potential applications as a biocontrol agent. Owing to its unique life cycle, however, there are limited tools that enable genetic manipulation of B. bacteriovorus. This work describes our first steps toward engineering the predatory bacterium for practical applications by developing basic genetic parts to control gene expression. Specifically, we evaluated four robust promoters that are active during the attack phase of B. bacteriovorus. Subsequently, we tested several synthetic riboswitches that have been reported to function in Escherichia coli, and identified theophylline-activated riboswitches that function in B. bacteriovorus. Finally, we inserted the riboswitch into the bacterial chromosome to regulate expression of the flagellar sigma factor fliA, which was previously predicted to be essential for predation, and observed that the engineered strain shows a faster predation kinetics in the presence of theophylline.
Collapse
Affiliation(s)
- Mohammed Dwidar
- Nucleic Acid Chemistry and
Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and
Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| |
Collapse
|
45
|
Dharani S, Kim DH, Shanks RMQ, Doi Y, Kadouri DE. Susceptibility of colistin-resistant pathogens to predatory bacteria. Res Microbiol 2017; 169:52-55. [PMID: 28919044 DOI: 10.1016/j.resmic.2017.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
The increase in multidrug-resistant Gram-negative bacterial infections has forced the reintroduction of antibiotics such as colistin. However, the spread of the plasmid-borne mcr-1 colistin resistance gene have moved us closer to an era of untreatable Gram-negative infections. To evaluate whether predatory bacteria could be used as a potential therapeutic to treat this upcoming threat, the ability of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus to prey on several clinically relevant mcr-1-positive, colistin-resistant isolates was evaluated. No change in the ability of the predators to prey on free swimming and biofilms of prey cells harboring mcr-1 was measured, as compared to their mcr-1 negative strain.
Collapse
Affiliation(s)
- Sonal Dharani
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA.
| | - Dong Hyun Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA.
| | - Robert M Q Shanks
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA.
| |
Collapse
|
46
|
Sun Y, Ye J, Hou Y, Chen H, Cao J, Zhou T. Predation Efficacy of Bdellovibrio bacteriovorus on Multidrug-Resistant Clinical Pathogens and Their Corresponding Biofilms. Jpn J Infect Dis 2017; 70:485-489. [PMID: 28367880 DOI: 10.7883/yoken.jjid.2016.405] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to evaluate the predation efficacy of Bdellovibrio bacteriovorus on multidrug-resistant (MDR) or extensive drug resistant (XDR) gram-negative pathogens and their corresponding biofilms. In this study, we examined the ability of B. bacteriovorus to prey on MDR and XDR gram-negative clinical bacteria, including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Results showed that B. bacteriovorus was able to prey on all planktonic cultures, among which the most efficient predation was observed for drug-resistant E. coli, with a 3.11 log10 reduction in viability. Furthermore, B. bacteriovorus demonstrated promising efficacy in preventing biofilm formation and dispersing the established biofilm. Reductions in biofilm formation of E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii co-cultured with B. bacteriovorus were 65.2%, 37.1%, 44.7%, and 36.8%, respectively. Meanwhile, the established biofilms of E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii were significantly reduced by 83.4%, 81.8%, 83.1%, and 79.9%, respectively. A visual analysis supported by scanning electron microscopy demonstrated the role of B. bacteriovorus in removing the established biofilms. This study highlights the potential use of B. bacteriovorus as a biological control agent with the capability to prey on MDR/XDR gram-negative pathogens and eradicate biofilms.
Collapse
Affiliation(s)
- Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University
| | - Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University
| | - Yuanbo Hou
- School of Laboratory Medicine and Life Science, Wenzhou Medical University
| | - Huale Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University
| |
Collapse
|
47
|
Effect of predatory bacteria on the gut bacterial microbiota in rats. Sci Rep 2017; 7:43483. [PMID: 28262674 PMCID: PMC5337950 DOI: 10.1038/srep43483] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 01/14/2023] Open
Abstract
Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus are Gram-negative proteobacteria that are obligate predators of other Gram-negative bacteria and are considered potential alternatives to antibiotics. Most studies focusing on predatory bacteria have been performed in vitro, thus the effect of predatory bacteria on a live host, including the impact on the ecology of the native microbiota, has yet to be fully examined. In this study, intrarectal inoculations of Sprague-Dawley rats with predatory bacteria were performed. Additionally, feces were collected for seven days post-inoculation to determine the effect on gut bacterial diversity. Rat colonic tissue exhibited no abnormal histopathological effects due to predatory bacteria. A modest increase in pro-inflammatory cytokines was measured in the colons of rats inoculated with predatory bacteria by 24 and 48 hours, with all but IL-13 returning to baseline by seven days. V4 16S rRNA gene sequencing of fecal DNA demonstrated minimal shifts in taxonomic representation over the week due to predatory bacteria. Changes in bacterial populations due to exposure to B. bacteriovorus are predicted to contribute to health, however, an overgrowth of Prevotella was observed due to exposure to M. aeruginosavorus. This study further addresses safety concerns associated with the potential use of predatory bacteria to treat infections.
Collapse
|
48
|
McNeely D, Chanyi RM, Dooley JS, Moore JE, Koval SF. Biocontrol of Burkholderia cepacia complex bacteria and bacterial phytopathogens by Bdellovibrio bacteriovorus. Can J Microbiol 2016; 63:350-358. [PMID: 28177793 DOI: 10.1139/cjm-2016-0612] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bdellovibrio and like organisms are predatory bacteria that have the unusual property of using the cytoplasmic constituents of other Gram-negative bacteria as nutrients. These predators may thus provide an alternative approach to the biocontrol of human and plant pathogens. Predators were isolated on Burkholderia cenocepacia K56-2 and J2315 as prey cells, in enrichment cultures with soil and sewage. Three isolates (DM7C, DM8A, and DM11A) were identified as Bdellovibrio bacteriovorus on the basis of morphology, a periplasmic life cycle, and 16S rRNA gene sequencing. The prey range of these isolates was tested on Burkholderia cepacia complex bacteria and several phytopathogenic bacteria of agricultural importance. Of 31 strains of the Burkholderia cepacia complex tested, only 4 were resistant to predation by strain DM7C. A subset of 9 of the prey tested were also susceptible to strains DM8A and DM11A. Of 12 phytopathogens tested, 4 were resistant to strains DM7C and DM8A, and only 2 were resistant to strain DM11A. Thus, Bdellovibrio bacteriovorus strains retrieved from environmental samples on 2 Burkholderia cenocepacia isolates from cystic fibrosis patients did not distinguish in their prey range between other isolates of that pathogen or phytopathogens. Such strains hold promise as potential wide-spectrum biocontrol agents.
Collapse
Affiliation(s)
- Damian McNeely
- a Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada.,b School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland
| | - Ryan M Chanyi
- a Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada.,c Division of Urology, Department of Surgery, Lawson Health Research Institute, St. Joseph's Hospital, London, ON N6A 4V2, Canada
| | - James S Dooley
- b School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland
| | - John E Moore
- b School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland.,d Department of Bacteriology, Belfast City Hospital, Lisburn Road, Belfast BT9 7AD, Northern Ireland
| | - Susan F Koval
- a Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
49
|
Injections of Predatory Bacteria Work Alongside Host Immune Cells to Treat Shigella Infection in Zebrafish Larvae. Curr Biol 2016; 26:3343-3351. [PMID: 27889262 PMCID: PMC5196024 DOI: 10.1016/j.cub.2016.09.067] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/01/2016] [Accepted: 09/30/2016] [Indexed: 01/22/2023]
Abstract
Bdellovibrio bacteriovorus are predatory bacteria that invade and kill a range of Gram-negative bacterial pathogens in natural environments and in vitro [1, 2]. In this study, we investigated Bdellovibrio as an injected, antibacterial treatment in vivo, using zebrafish (Danio rerio) larvae infected with an antibiotic-resistant strain of the human pathogen Shigella flexneri. When injected alone, Bdellovibrio can persist for more than 24 hr in vivo yet exert no pathogenic effects on zebrafish larvae. Bdellovibrio injection of zebrafish containing a lethal dose of Shigella promotes pathogen killing, leading to increased zebrafish survival. Live-cell imaging of infected zebrafish reveals that Shigella undergo rounding induced by the invasive predation from Bdellovibrio in vivo. Furthermore, Shigella-dependent replication of Bdellovibrio was captured inside the zebrafish larvae, indicating active predation in vivo. Bdellovibrio can be engulfed and ultimately eliminated by host neutrophils and macrophages, yet have a sufficient dwell time to prey on pathogens. Experiments in immune-compromised zebrafish reveal that maximal therapeutic benefits of Bdellovibrio result from the synergy of both bacterial predation and host immunity, but that in vivo predation contributes significantly to the survival outcome. Our results demonstrate that successful antibacterial therapy can be achieved via the host immune system working together with bacterial predation by Bdellovibrio. Such cooperation may be important to consider in the fight against antibiotic-resistant infections in vivo. Injected predatory Bdellovibrio bacteria persist non-pathogenically in zebrafish Bdellovibrio injection promotes Shigella killing and increases zebrafish survival Bdellovibrio are eventually cleared by the zebrafish immune system Antibacterial therapy is achieved via the host immune system working with Bdellovibrio
Collapse
|
50
|
Gupta S, Laskar N, Kadouri DE. Evaluating the Effect of Oxygen Concentrations on Antibiotic Sensitivity, Growth, and Biofilm Formation of Human Pathogens. Microbiol Insights 2016; 9:37-46. [PMID: 27891050 PMCID: PMC5113855 DOI: 10.4137/mbi.s40767] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/02/2016] [Accepted: 10/06/2016] [Indexed: 01/20/2023] Open
Abstract
Standard antimicrobial susceptibility tests are performed in vitro under normal room oxygen conditions to predict the in vivo effectiveness of antimicrobial therapy. The aim of this study was to conduct a comprehensive analysis of the effect of different oxygen levels on the antibiotic susceptibility of two strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. It was found that anoxic conditions caused reduced sensitivity of bacteria to aminoglycoside antibiotics in four of six bacteria used in the study. In addition, oxygen limitation decreased the susceptibility of P. aeruginosa strains and K. pneumoniae strains to piperacillin/tazobactam and azithromycin, respectively. In contrast, five of six bacteria became more susceptible to tetracycline antibiotics under oxygen-limiting conditions. Our data highlight the importance of considering the potential in vivo oxygen levels within the infection site when setting susceptibility breakpoints for evaluating the therapeutic potential of a drug and its effect on antibiotic sensitivity of the pathogen.
Collapse
Affiliation(s)
- Shilpi Gupta
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Nozrin Laskar
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|