1
|
Sentell ZT, Mougharbel L, Nurcombe ZW, Babayeva S, Henein M, Chu LL, Akpa MM, Chung CF, Rivière JB, Pupavac M, Li R, Rosenblatt DS, Majewski J, Goodyer PR, Torban E, Kitzler TM. Use of patient-derived cell models for characterization of compound heterozygous hypomorphic C2CD3 variants in a patient with isolated nephronophthisis. Hum Mol Genet 2024:ddae182. [PMID: 39690811 DOI: 10.1093/hmg/ddae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Primary ciliopathies are a heterogeneous group of rare disorders predominantly caused by autosomal-recessive genetic variants that disrupt non-motile ciliary function. They often manifest as a syndromic phenotype, frequently involving the kidney. Biallelic pathogenic variants in C2CD3 disrupt ciliogenesis and Sonic Hedgehog (SHH) signaling, resulting in a severe ciliopathy (Orofaciodigital syndrome XIV, OMIM 615948). We present compound heterozygous missense variants in C2CD3 that partially disrupt ciliary function in a patient with isolated renal disease. METHODS Exome sequencing identified biallelic C2CD3 missense variants (p.Pro168Leu; p.Thr2079Met). Patient-derived fibroblasts and urinary renal epithelial cells (URECs), and human RPE-1 C2CD3 knockout (KO) cell-lines were used for in vitro studies. RESULTS Cilia length was significantly shorter in patient-derived fibroblasts compared to an unaffected sibling (2.309 vs. 2.850 μm, P < 0.0001), while URECs showed significantly shortened cilia (2.068 vs. 2.807 μm, P < 0.0001) and a 40.8% reduction in ciliation (P < 0.001). The latter was not observed in fibroblasts, suggesting a kidney-specific effect. SHH signaling was dysregulated in patient cells as expression of GLI3 activator protein and GLI1 mRNA was significantly reduced. C2CD3 localization to the basal body was significantly reduced in patient URECs. Finally, rescue experiments in C2CD3 KO RPE-1 cells corroborated these findings by demonstrating a reduced capacity to restore ciliogenesis for each variant. CONCLUSION Biallelic hypomorphic missense variants in C2CD3 may contribute to an isolated nephronophthisis phenotype with impaired ciliogenesis and SHH signaling. Our findings underscore the importance of functional testing to characterize candidate gene-disease relationships in patients with nephropathy of unknown etiology.
Collapse
Affiliation(s)
- Zachary T Sentell
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Lina Mougharbel
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Zachary W Nurcombe
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Sima Babayeva
- Department of Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Marc Henein
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Lee Lee Chu
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Murielle M Akpa
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Chen-Fang Chung
- Department of Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Jean-Baptiste Rivière
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - Mihaela Pupavac
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - Rui Li
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - David S Rosenblatt
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Departments of Human Genetics, Medicine, Pediatrics and Biology, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Divisions of Medical Genetics and Medical Biochemistry, Department of Specialized Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - Paul R Goodyer
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Department of Pediatrics, Division of Nephrology, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Elena Torban
- Department of Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Thomas M Kitzler
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
2
|
Siragam V, Maltseva M, Castonguay N, Galipeau Y, Srinivasan MM, Soto JH, Dankar S, Langlois MA. Seasonal human coronaviruses OC43, 229E, and NL63 induce cell surface modulation of entry receptors and display host cell-specific viral replication kinetics. Microbiol Spectr 2024; 12:e0422023. [PMID: 38864599 PMCID: PMC11218498 DOI: 10.1128/spectrum.04220-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
The emergence of the COVID-19 pandemic prompted an increased interest in seasonal human coronaviruses. OC43, 229E, NL63, and HKU1 are endemic seasonal coronaviruses that cause the common cold and are associated with generally mild respiratory symptoms. In this study, we identified cell lines that exhibited cytopathic effects (CPE) upon infection by three of these coronaviruses and characterized their viral replication kinetics and the effect of infection on host surface receptor expression. We found that NL63 produced CPE in LLC-MK2 cells, while OC43 produced CPE in MRC-5, HCT-8, and WI-38 cell lines, while 229E produced CPE in MRC-5 and WI-38 by day 3 post-infection. We observed a sharp increase in nucleocapsid and spike viral RNA (vRNA) from day 3 to day 5 post-infection for all viruses; however, the abundance and the proportion of vRNA copies measured in the supernatants and cell lysates of infected cells varied considerably depending on the virus-host cell pair. Importantly, we observed modulation of coronavirus entry and attachment receptors upon infection. Infection with 229E and OC43 led to a downregulation of CD13 and GD3, respectively. In contrast, infection with NL63 and OC43 leads to an increase in ACE2 expression. Attempts to block entry of NL63 using either soluble ACE2 or anti-ACE2 monoclonal antibodies demonstrated the potential of these strategies to greatly reduce infection. Overall, our results enable a better understanding of seasonal coronaviruses infection kinetics in permissive cell lines and reveal entry receptor modulation that may have implications in facilitating co-infections with multiple coronaviruses in humans.IMPORTANCESeasonal human coronavirus is an important cause of the common cold associated with generally mild upper respiratory tract infections that can result in respiratory complications for some individuals. There are no vaccines available for these viruses, with only limited antiviral therapeutic options to treat the most severe cases. A better understanding of how these viruses interact with host cells is essential to identify new strategies to prevent infection-related complications. By analyzing viral replication kinetics in different permissive cell lines, we find that cell-dependent host factors influence how viral genes are expressed and virus particles released. We also analyzed entry receptor expression on infected cells and found that these can be up- or down-modulated depending on the infecting coronavirus. Our findings raise concerns over the possibility of infection enhancement upon co-infection by some coronaviruses, which may facilitate genetic recombination and the emergence of new variants and strains.
Collapse
MESH Headings
- Humans
- Virus Replication
- Coronavirus NL63, Human/physiology
- Coronavirus NL63, Human/genetics
- Coronavirus 229E, Human/physiology
- Coronavirus 229E, Human/genetics
- Coronavirus OC43, Human/physiology
- Coronavirus OC43, Human/genetics
- Cell Line
- Virus Internalization
- Seasons
- Kinetics
- Receptors, Virus/metabolism
- Receptors, Virus/genetics
- Common Cold/virology
- Common Cold/metabolism
- SARS-CoV-2/physiology
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- RNA, Viral/metabolism
- RNA, Viral/genetics
- Animals
- COVID-19/virology
- COVID-19/metabolism
- Coronavirus/physiology
- Coronavirus/genetics
Collapse
Affiliation(s)
- Vinayakumar Siragam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mariam Maltseva
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Nicolas Castonguay
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mrudhula Madapuji Srinivasan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Justino Hernandez Soto
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Samar Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- The Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Zhu XY, Klomjit N, Pawar AS, Puranik AS, Yang ZZ, Lutgens E, Eirin A, Lerman A, Textor SC, Lerman LO. Altered immune cell phenotypes within chronically ischemic human kidneys distal to occlusive renal artery disease. Am J Physiol Renal Physiol 2024; 326:F257-F264. [PMID: 38031731 PMCID: PMC11198973 DOI: 10.1152/ajprenal.00234.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
Renal artery stenosis (RAS) is a major cause of ischemic kidney disease, which is largely mediated by inflammation. Mapping the immune cell composition in ischemic kidneys might provide useful insight into the disease pathogenesis and uncover therapeutic targets. We used mass cytometry (CyTOF) to explore the single-cell composition in a unique data set of human kidneys nephrectomized due to chronic occlusive vascular disease (RAS, n = 3), relatively healthy donor kidneys (n = 6), and unaffected sections of kidneys with renal cell carcinoma (RCC, n = 3). Renal fibrosis and certain macrophage populations were also evaluated in renal sections. Cytobank analysis showed in RAS kidneys decreased cell populations expressing epithelial markers (CD45-/CD13+) and increased CD45+ inflammatory cells, whereas scattered tubular-progenitor-like cells (CD45-/CD133+/CD24+) increased compared with kidney donors. Macrophages switched to proinflammatory phenotypes in RAS, and the numbers of IL-10-producing dendritic cells (DC) were also lower. Compared with kidney donors, RAS kidneys had decreased overall DC populations but increased plasmacytoid DC. Furthermore, senescent active T cells (CD45+/CD28+/CD57+), aged neutrophils (CD45+/CD15+/CD24+/CD11c+), and regulatory B cells (CD45+/CD14-/CD24+/CD44+) were increased in RAS. RCC kidneys showed a distribution of cell phenotypes comparable with RAS but less pronounced, accompanied by an increase in CD34+, CD370+, CD103+, and CD11c+/CD103+ cells. Histologically, RAS kidneys showed significantly increased fibrosis and decreased CD163+/CD141+ cells. The single-cell platform CyTOF enables the detection of significant changes in renal cells, especially in subsets of immune cells in ischemic human kidneys. Endogenous pro-repair cell types in RAS warrant future study for potential immune therapy.NEW & NOTEWORTHY The single-cell platform mass cytometry (CyTOF) enables detection of significant changes in one million of renal cells, especially in subsets of immune cells in ischemic human kidneys distal to renal artery stenosis (RAS). We found that pro-repair cell types such as scattered tubular-progenitor-like cells, aged neutrophils, and regulatory B cells show a compensatory increase in RAS. Immune cell phenotype changes may reflect ongoing inflammation and impaired immune defense capability in the kidneys.
Collapse
Affiliation(s)
- Xiang-Yang Zhu
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Nattawat Klomjit
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Aditya S Pawar
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Amrutesh S Puranik
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Zhi-Zhang Yang
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States
| | - Esther Lutgens
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States
| | - Alfonso Eirin
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States
| | - Stephen C Textor
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Lilach O Lerman
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
4
|
Müller A, Lozoya M, Chen X, Weissig V, Nourbakhsh M. Farnesol Inhibits PI3 Kinase Signaling and Inflammatory Gene Expression in Primary Human Renal Epithelial Cells. Biomedicines 2023; 11:3322. [PMID: 38137543 PMCID: PMC10741437 DOI: 10.3390/biomedicines11123322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic inflammation and elevated cytokine levels are closely associated with the progression of chronic kidney disease (CKD), which is responsible for the manifestation of numerous complications and mortality. In addition to conventional CKD therapies, the possibility of using natural compounds with anti-inflammatory potential has attracted widespread attention in scientific research. This study aimed to study the potential anti-inflammatory effects of a natural oil compound, farnesol, in primary human renal proximal tubule epithelial cell (RPTEC) culture. Farnesol was encapsulated in lipid-based small unilamellar vesicles (SUVs) to overcome its insolubility in cell culture medium. The cell attachment of empty vesicles (SUVs) and farnesol-loaded vesicles (farnesol-SUVs) was examined using BODIPY, a fluorescent dye with hydrophobic properties. Next, we used multiple protein, RNA, and protein phosphorylation arrays to investigate the impact of farnesol on inflammatory signaling in RPTECs. The results indicated that farnesol inhibits TNF-α/IL-1β-induced phosphorylation of the PI3 kinase p85 subunit and subsequent transcriptional activation of the inflammatory genes TNFRSF9, CD27, TNFRSF8, DR6, FAS, IL-7, and CCL2. Therefore, farnesol may be a promising natural compound for treating CKD.
Collapse
Affiliation(s)
- Aline Müller
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (A.M.); (X.C.)
| | - Maria Lozoya
- College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA; (M.L.); (V.W.)
| | - Xiaoying Chen
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (A.M.); (X.C.)
| | - Volkmar Weissig
- College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA; (M.L.); (V.W.)
| | - Mahtab Nourbakhsh
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (A.M.); (X.C.)
| |
Collapse
|
5
|
Freund P, Skopnik CM, Metzke D, Goerlich N, Klocke J, Grothgar E, Prskalo L, Hiepe F, Enghard P. Addition of formaldehyde releaser imidazolidinyl urea and MOPS buffer to urine samples enables delayed processing for flow cytometric analysis of urinary cells: A simple, two step conservation method of urinary cells for flow cytometry. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:417-425. [PMID: 36880455 DOI: 10.1002/cyto.b.22117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
INTRODUCTION Kidney diseases are a major health concern worldwide. Currently there is a large unmet need for novel biomarkers to non-invasively diagnose and monitor kidney diseases. Urinary cells are promising biomarkers and their analysis by flow cytometry has demonstrated its utility in diverse clinical settings. However, up to date this methodology depends on fresh samples, as cellular event counts and the signal-to-noise-ratio deter over time. Here we developed an easy-to-use two-step preservation method for conservation of urine samples for subsequent flow cytometry. METHODS The protocol utilizes a combination of the formaldehyde releasing agent imidazolidinyl urea (IU) and MOPS buffer, leading to gentle fixation of urinary cells. RESULTS The preservation method increases acceptable storing time of urine samples from several hours to up to 6 days. Cellular event counts and staining properties of cells remain comparable to fresh untreated samples. OUTLOOK The hereby presented preservation method facilitates future investigations on flow cytometry of urinary cells as potential biomarkers and may enable broad implementation in clinical practice.
Collapse
Affiliation(s)
- Paul Freund
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| | - Christopher M Skopnik
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| | - Diana Metzke
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| | - Nina Goerlich
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| | - Jan Klocke
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| | - Emil Grothgar
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| | - Luka Prskalo
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| | - Falk Hiepe
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charite - Universital Hospital Berlin, Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| |
Collapse
|
6
|
Olde Hanhof CJA, Dilmen E, Yousef Yengej FA, Latta F, Ammerlaan CME, Schreurs J, Hooijmaijers L, Jansen J, Rookmaaker MB, Orhon I, Verhaar MC, Hoenderop JG. Differentiated mouse kidney tubuloids as a novel in vitro model to study collecting duct physiology. Front Cell Dev Biol 2023; 11:1086823. [PMID: 36760360 PMCID: PMC9905633 DOI: 10.3389/fcell.2023.1086823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Kidney tubuloids are cell models that are derived from human or mouse renal epithelial cells and show high similarities with their in vivo counterparts. Tubuloids grow polarized in 3D, allow for long-term expansion, and represent multiple segments of the nephron, as shown by their gene expression pattern. In addition, human tubuloids form tight, functional barriers and have been succesfully used for drug testing. Our knowledge of mouse tubuloids, on the other hand, is only minimal. In this study, we further characterized mouse tubuloids and differentiated them towards the collecting duct, which led to a significant upregulation of collecting duct-specific mRNAs of genes and protein expression, including the water channel AQP2 and the sodium channel ENaC. Differentiation resulted in polarized expression of collecting duct water channels AQP2 and AQP3. Also, a physiological response to desmopressin and forskolin stimulation by translocation of AQP2 to the apical membrane was demonstrated. Furthermore, amiloride-sensitive ENaC-mediated sodium uptake was shown in differentiated tubuloids using radioactive tracer sodium. This study demonstrates that mouse tubuloids can be differentiated towards the collecting duct and exhibit collecting duct-specific function. This illustrates the potential use of mouse kidney tubuloids as novel in vitro models to study (patho)physiology of kidney diseases.
Collapse
Affiliation(s)
- C. J. A. Olde Hanhof
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - E. Dilmen
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - F. A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - F. Latta
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C. M. E. Ammerlaan
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. Schreurs
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - L. Hooijmaijers
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - J. Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children’s Hospital, Nijmegen, Netherlands,Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - M. B. Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - I. Orhon
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - M. C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. G. Hoenderop
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands,*Correspondence: J. G. Hoenderop,
| |
Collapse
|
7
|
Olsson PO, Yeonwoo J, Park K, Yoo YM, Hwang WS. Live births from urine derived cells. PLoS One 2023; 18:e0278607. [PMID: 36696395 PMCID: PMC9876353 DOI: 10.1371/journal.pone.0278607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/21/2022] [Indexed: 01/26/2023] Open
Abstract
Here we report urine-derived cell (UDC) culture and subsequent use for cloning which resulted in the successful development of cloned canine pups, which have remained healthy into adulthood. Bovine UDCs were used in vitro to establish comparative differences between cell sources. UDCs were chosen as a readily available and noninvasive source for obtaining cells. We analyzed the viability of cells stored in urine over time and could consistently culture cells which had remained in urine for 48hrs. Cells were shown to be viable and capable of being transfected with plasmids. Although primarily of epithelial origin, cells were found from multiple lineages, indicating that they enter the urine from more than one source. Held in urine, at 4°C, the majority of cells maintained their membrane integrity for several days. When compared to in vitro fertilization (IVF) derived embryos or those from traditional SCNT, UDC derived embryos did not differ in total cell number or in the number of DNA breaks, measured by TUNEL stain. These results indicate that viable cells can be obtained from multiple species' urine, capable of being used to produce live offspring at a comparable rate to other cell sources, evidenced by a 25% pregnancy rate and 2 live births with no losses in the canine UDC cloning trial. This represents a noninvasive means to recover the breeding capacity of genetically important or infertile animals. Obtaining cells in this way may provide source material for human and animal studies where cells are utilized.
Collapse
Affiliation(s)
| | | | - Kyumi Park
- Department of Companion Animal & Animal Resources Science, Joongbu University, Geumsan-gun, Republic of Korea
| | - Yeong-Min Yoo
- Lab of Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - W. S. Hwang
- UAE Biotech Research Center, Abu Dhabi, UAE
- * E-mail:
| |
Collapse
|
8
|
Lee EH, Lee JN, Ha YS, Chung JW, Yoon BH, Jeon M, Kim HT, Oh SH, Kwon TG, Kim BS, Chun SY. Perirenal adipose tissues as a human elastin source, and optimize the extraction process. J Biomater Appl 2023; 37:1054-1070. [PMID: 36547265 DOI: 10.1177/08853282221146628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elastin is very rarely repaired extracellular matrix (ECM) in physiological condition. The commercial human elastin for exogenous medical treatment is very expensive, and has a potential for disease transmission. Animal-origin elastin is relatively low price, but has concerns for xenogeneic immune responses. Considering cost and safety, we focused on the perirenal adipose tissue, donated from healthy young people via donor nephrectomy. Until now, all of the perirenal adipose tissues are discarded as a medical waste after kidney transplantation. In the present study, we applied perirenal adipose tissues as the source of human elastin, and optimized the extraction process to get high purified and quantified elastin. Through pre-processing step, the delipidated and decellularized ECM was prepared. Next, with four different elastin extraction process (acidic solvents, neutral salt, organic solvents or hot alkali method), elastin was extracted, and the concentration of amino acid between each product was compared, and bright-field/electron microscopy, Fourier transform infrared (FT-IR) spectroscopy and cytotoxicity analysis were also performed. As controls, bovine neck ligament-derived and human skin-derived elastin were used. Among the elastin extraction methods, the hot alkali insoluble product showed (1) relatively high positive area of Verhoeff's and low Masson's trichrome stain, (2) 64.24% purity, 159.29 mg/g quantity, and ∼6.37% yield in amino acid analysis, (3) β-sheet second structure, and (4) thin fiber composed mesh-like sheet structure in SEM image. These values were higher than those of the commercial human skin elastin. When comparing hydrolyzed forms, α-elastin from hot alkali insoluble product showed enhanced cell proliferation and maintained cell properties compared to the κ-elastin. Therefore, we confirmed that the perirenal adipose tissue is an ideal source of human elastin with safety assurance, and the hot alkali process combined with pre-process seems to be the optimal method for elastin extraction with high purity and quantity.
Collapse
Affiliation(s)
- Eun Hye Lee
- Joint Institute for Regenerative Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Jae-Wook Chung
- Department of Urology, School of Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Bo Hyun Yoon
- Joint Institute for Regenerative Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Minji Jeon
- Joint Institute for Regenerative Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Hyun Tae Kim
- Department of Urology, School of Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, 34937Dankook University, Cheonan, South Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - Bum Soo Kim
- Department of Urology, School of Medicine, 34986Kyungpook National University, Daegu, South Korea
| | - So Young Chun
- BioMedical Research Institute, 65396Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
9
|
Chen YY, Hong H, Lei YT, Zou J, Yang YY, He LY. ACE2 deficiency exacerbates obesity-related glomerulopathy through its role in regulating lipid metabolism. Cell Death Discov 2022; 8:401. [PMID: 36180463 PMCID: PMC9523180 DOI: 10.1038/s41420-022-01191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity-related glomerulopathy is a secondary glomerular disease and its incidence has been increased globally in parallel with the obesity epidemic. ORG emerged as a growing cause of end-stage renal disease in recent years. Unbalanced production of adipokines at the adipose tissue as well as low-grade inflammatory processes play central roles in ORG progression. ORG mouse model with ACE2-knockout was generated and kidney injury was evaluated by biochemistry and histological staining assays. Protein and mRNA expressions were quantified by ELISA, western blot or qRT-PCR methods. ACE2 deficiency aggravated ORG-related renal injuries and stimulated both lipid accumulation and inflammatory responses. Further, Nrf2 pathway was deactivated upon ACE2-knockout. By contrast, ACE2 overexpression reactivated Nrf2 pathway and ameliorated ORG symptoms by decreasing fat deposition and reducing inflammatory responses. Our data demonstrated that ACE2 exerted the beneficial effects by acting through Nrf2 signaling pathway, suggesting the protective role of ACE2 against lipid accumulation and inflammatory responses in ORG pathogenesis.
Collapse
Affiliation(s)
- Yin-Yin Chen
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan Province, P. R. China
| | - Han Hong
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan Province, P. R. China
| | - Yu-Ting Lei
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan Province, P. R. China
| | - Jia Zou
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan Province, P. R. China
| | - Yi-Ya Yang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan Province, P. R. China
| | - Li-Yu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, Hunan Province, P. R. China.
| |
Collapse
|
10
|
Tobin JD, Robinson CN, Luttrell-Williams ES, Landry GM, Dwyer D, McMartin KE. Role of plasma membrane dicarboxylate transporters in the uptake and toxicity of diglycolic acid, a metabolite of diethylene glycol, in human proximal tubule cells. Toxicol Sci 2022; 190:1-12. [PMID: 36087010 DOI: 10.1093/toxsci/kfac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diethylene glycol (DEG) mass poisonings have resulted from ingestion of pharmaceuticals mistakenly adulterated with DEG, typically leading to proximal tubular necrosis and acute kidney injury. The metabolite, diglycolic acid (DGA) accumulates greatly in kidney tissue and its direct administration results in toxicity identical to that in DEG-treated rats. DGA is a dicarboxylic acid, similar in structure to metabolites like succinate. These studies have assessed the mechanism for cellular accumulation of DGA, specifically whether DGA is taken into primary cultures of human proximal tubule (HPT) cells via sodium dicarboxylate transporters (NaDC-1 or NaDC-3) like those responsible for succinate uptake. When HPT cells were cultured on membrane inserts, sodium dependent succinate uptake was observed from both apical and basolateral directions. Pretreatment with the NaDC-1 inhibitor N-(p-amylcinnamoyl)anthranilic acid (ACA) markedly reduced apical uptakes of both succinate and DGA. Basolateral uptake of both succinate and DGA were decreased similarly following combined treatment with ACA and the NaDC-3 inhibitor 2,3-dimethylsuccinate. When the cells were pre-treated with siRNA to knockdown NaDC-1 function, apical uptake of succinate and toxicity of apically applied DGA were reduced, while the reduction in basolateral succinate uptake and basolateral DGA toxicity was marginal with NaDC-3 knockdown. DGA reduced apical uptake of succinate, but not basolateral uptake. This study confirmed that primary HPT cells retain sodium dicarboxylate transport functionality and that DGA was taken up by these transporters. This study identified NaDC-1 as a likely and NaDC-3 as a possible molecular target to reduce uptake of this toxic metabolite by the kidney.
Collapse
Affiliation(s)
- Julie D Tobin
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Corie N Robinson
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Elliot S Luttrell-Williams
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Greg M Landry
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Donard Dwyer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130.,Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Kenneth E McMartin
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| |
Collapse
|
11
|
Zivotic M, Dundjerovic D, Naumovic R, Kovacevic S, Ivanov M, Karanovic D, Nikolic G, Markovic-Lipkovski J, Radojevic Skodric S, Nesovic Ostojic J. Clinicopathological Relevance of PAX8 Expression Patterns in Acute Kidney Injury and Chronic Kidney Diseases. Diagnostics (Basel) 2022; 12:2036. [PMID: 36140438 PMCID: PMC9497907 DOI: 10.3390/diagnostics12092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription factor PAX8, expressed during embryonic kidney development, has been previously detected in various kidney tumors. In order to investigate expression of PAX8 transcription factor in acute kidney injury (AKI) and chronic kidney diseases (CKD), immunohistochemical analysis was performed. Presence, location and extent of PAX8 expression were analyzed among 31 human kidney samples of AKI (25 autopsy cases, 5 kidney biopsies with unknown etiology and 1 AKI with confirmed myoglobin cast nephropathy), as well as in animals with induced postischemic AKI. Additionally, expression pattern was analyzed in 20 kidney biopsy samples of CKD. Our study demonstrates that various kidney diseases with chronic disease course that results in the formation of tubular atrophy and interstitial fibrosis, lead to PAX8 expression in the nuclei of proximal tubules. Furthermore, patients with PAX8 detected within the damaged proximal tubuli would be carefully monitored, since deterioration in kidney function was observed during follow-up. We also showed that myoglobin provoked acute kidney injury followed with large extent of renal damage, was associated with strong nuclear expression of PAX8 in proximal tubular cells. These results were supported and followed by data obtained in experimental model of induced postischemic acute kidney injury. Considering these findings, we can assume that PAX8 protein might be involved in regeneration process and recovery after acute kidney injury. Thus, accordingly, all investigation concerning PAX8 immunolabeling should be performed on biopsy samples of the living individuals.
Collapse
Affiliation(s)
- Maja Zivotic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dusko Dundjerovic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Radomir Naumovic
- Clinic of Nephrology, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sanjin Kovacevic
- Institute of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Ivanov
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela Karanovic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Gorana Nikolic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | | | - Jelena Nesovic Ostojic
- Institute of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Wu HHL, Goldys EM, Pollock CA, Saad S. Exfoliated Kidney Cells from Urine for Early Diagnosis and Prognostication of CKD: The Way of the Future? Int J Mol Sci 2022; 23:7610. [PMID: 35886957 PMCID: PMC9324667 DOI: 10.3390/ijms23147610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic kidney disease (CKD) is a global health issue, affecting more than 10% of the worldwide population. The current approach for formal diagnosis and prognostication of CKD typically relies on non-invasive serum and urine biomarkers such as serum creatinine and albuminuria. However, histological evidence of tubulointerstitial fibrosis is the 'gold standard' marker of the likelihood of disease progression. The development of novel biomedical technologies to evaluate exfoliated kidney cells from urine for non-invasive diagnosis and prognostication of CKD presents opportunities to avoid kidney biopsy for the purpose of prognostication. Efforts to apply these technologies more widely in clinical practice are encouraged, given their potential as a cost-effective approach, and no risk of post-biopsy complications such as bleeding, pain and hospitalization. The identification of biomarkers in exfoliated kidney cells from urine via western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence techniques, measurement of cell and protein-specific messenger ribonucleic acid (mRNA)/micro-RNA and other techniques have been reported. Recent innovations such as multispectral autofluorescence imaging and single-cell RNA sequencing (scRNA-seq) have brought additional dimensions to the clinical application of exfoliated kidney cells from urine. In this review, we discuss the current evidence regarding the utility of exfoliated proximal tubule cells (PTC), podocytes, mesangial cells, extracellular vesicles and stem/progenitor cells as surrogate markers for the early diagnosis and prognostication of CKD. Future directions for development within this research area are also identified.
Collapse
Affiliation(s)
- Henry H. L. Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia; (H.H.L.W.); (C.A.P.)
- School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Ewa M. Goldys
- School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Carol A. Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia; (H.H.L.W.); (C.A.P.)
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia; (H.H.L.W.); (C.A.P.)
| |
Collapse
|
13
|
Nishiya Y, Kawaguchi K, Kudo K, Kawaguchi T, Obayashi J, Tanaka K, Ohyama K, Furuta S, Seki Y, Koike J, Pringle KC, Kitagawa H. Factors influencing the development of Multicystic Dysplastic Kidney (MCDK) following urinary tract obstruction in the fetal lamb. Pediatr Surg Int 2022; 38:913-918. [PMID: 35394167 DOI: 10.1007/s00383-022-05116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Creating obstructive uropathy (OU) during glomerulogenesis in the fetal lamb results in multicystic dysplastic kidney (MCDK) at term. We explored this using immunohistochemical techniques. METHOD OU was created in fetal lambs at 60-day gestation, ligating the urethra and urachus. The kidneys of MCDK lambs, 60-day gestation fetal lambs, full-term lamb (145 days), term sham-operated lambs, and adult ewes were evaluated by HE staining, and immunohistochemistry with paired box genes 2 (PAX2) and CD10. RESULTS Multiple cysts were found in the MCDK model. CD10 was expressed in proximal tubular epithelial cells, glomerular epithelial cells, and medullary stromal cells in the kidneys of 60-day gestation fetal lambs and full-term lambs and adult ewes. PAX2 expression was found in ureteric buds, C- and S-shaped bodies, epithelial cells of collecting ducts, and Bowman's capsule of fetal kidneys at 60-day gestation, but only in the collecting ducts of full-term fetal lambs and adult ewes. Both CD10 and PAX2 were expressed in the cystic epithelial cells of the MCDK model. DISCUSSION PAX2 expression in cystic epithelial cells suggests that cyst formation is associated with disturbed down-regulation of PAX2 in the nephrogenic zone epithelial cells during the renal development in the OU model.
Collapse
Affiliation(s)
- Yuri Nishiya
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Kohei Kawaguchi
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Kosuke Kudo
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Takuya Kawaguchi
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Juma Obayashi
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Kunihide Tanaka
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Kei Ohyama
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Shigeyuki Furuta
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Yasuji Seki
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Junki Koike
- Department of Pathology, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Kevin C Pringle
- Department of Obstetrics and Gynecology, University of Otago, Lambton Centre, 117 Lambton Quay, Wellington Central, Wellington, 6011, New Zealand
| | - Hiroaki Kitagawa
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511.
| |
Collapse
|
14
|
Lidberg KA, Muthusamy S, Adil M, Mahadeo A, Yang J, Patel RS, Wang L, Bammler TK, Reichel J, Yeung CK, Himmelfarb J, Kelly EJ, Akilesh S. Serum Protein Exposure Activates a Core Regulatory Program Driving Human Proximal Tubule Injury. J Am Soc Nephrol 2022; 33:949-965. [PMID: 35197326 PMCID: PMC9063895 DOI: 10.1681/asn.2021060751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 02/06/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The kidneys efficiently filter waste products while retaining serum proteins in the circulation. However, numerous diseases compromise this barrier function, resulting in spillage of serum proteins into the urine (proteinuria). Some studies of glomerular filtration suggest that tubules may be physiologically exposed to nephrotic-range protein levels. Therefore, whether serum components can directly injure the downstream tubular portions of the kidney, which in turn can lead to inflammation and fibrosis, remains controversial. METHODS We tested the effects of serum protein exposure in human kidney tubule microphysiologic systems and with orthogonal epigenomic approaches since animal models cannot directly assess the effect of serum components on tubules. RESULTS Serum, but not its major protein component albumin, induced tubular injury and secretion of proinflammatory cytokines. Epigenomic comparison of serum-injured tubules and intact kidney tissue revealed canonical stress-inducible regulation of injury-induced genes. Concordant transcriptional changes in microdissected tubulointerstitium were also observed in an independent cohort of patients with proteinuric kidney disease. CONCLUSIONS Our results demonstrate a causal role for serum proteins in tubular injury and identify regulatory mechanisms and novel pathways for intervention.
Collapse
Affiliation(s)
- Kevin A. Lidberg
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Selvaraj Muthusamy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Mohamed Adil
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Anish Mahadeo
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Jade Yang
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | | | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Jonathan Reichel
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Catherine K. Yeung
- Department of Pharmacy, University of Washington, Seattle, Washington
- Kidney Research Institute, Seattle, Washington
| | - Jonathan Himmelfarb
- Kidney Research Institute, Seattle, Washington
- Nephrology Division, Department of Medicine, University of Washington, Seattle, Washington
| | - Edward J. Kelly
- Department of Pharmaceutics, University of Washington, Seattle, Washington
- Kidney Research Institute, Seattle, Washington
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
- Kidney Research Institute, Seattle, Washington
| |
Collapse
|
15
|
Forte E, Ramialison M, Nim HT, Mara M, Li JY, Cohn R, Daigle SL, Boyd S, Stanley EG, Elefanty AG, Hinson JT, Costa MW, Rosenthal NA, Furtado MB. Adult mouse fibroblasts retain organ-specific transcriptomic identity. eLife 2022; 11:71008. [PMID: 35293863 PMCID: PMC8959603 DOI: 10.7554/elife.71008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/15/2022] [Indexed: 01/18/2023] Open
Abstract
Organ fibroblasts are essential components of homeostatic and diseased tissues. They participate in sculpting the extracellular matrix, sensing the microenvironment, and communicating with other resident cells. Recent studies have revealed transcriptomic heterogeneity among fibroblasts within and between organs. To dissect the basis of interorgan heterogeneity, we compare the gene expression of murine fibroblasts from different tissues (tail, skin, lung, liver, heart, kidney, and gonads) and show that they display distinct positional and organ-specific transcriptome signatures that reflect their embryonic origins. We demonstrate that expression of genes typically attributed to the surrounding parenchyma by fibroblasts is established in embryonic development and largely maintained in culture, bioengineered tissues and ectopic transplants. Targeted knockdown of key organ-specific transcription factors affects fibroblast functions, in particular genes involved in the modulation of fibrosis and inflammation. In conclusion, our data reveal that adult fibroblasts maintain an embryonic gene expression signature inherited from their organ of origin, thereby increasing our understanding of adult fibroblast heterogeneity. The knowledge of this tissue-specific gene signature may assist in targeting fibrotic diseases in a more precise, organ-specific manner.
Collapse
Affiliation(s)
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Hieu T Nim
- Faculty of Information Technology, Monash University, Clayton, Australia
| | | | - Jacky Y Li
- Murdoch Children's Research Institute, Parkville, Australia
| | - Rachel Cohn
- Jackson Laboratory, Farmington, United States
| | | | - Sarah Boyd
- Centre for Inflammatory Diseases, Monash University, Clayton, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Dettin M, Roso M, Messina GML, Iucci G, Peluso V, Russo T, Zamuner A, Santi M, Milan Manani S, Zanella M, Battocchio C, Marletta G, Modesti M, Rassu M, De Cal M, Ronco C. Electrospun Chitosan Functionalized with C12, C14 or C16 Tails for Blood-Contacting Medical Devices. Gels 2022; 8:gels8020113. [PMID: 35200494 PMCID: PMC8872026 DOI: 10.3390/gels8020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Medical applications stimulate the need for materials with broad potential. Chitosan, the partially deacetylated derivative of chitin, offers many interesting characteristics, such as biocompatibility and chemical derivatization possibility. In the present study, porous scaffolds composed of electrospun interwoven nanometric fibers are produced using chitosan or chitosan functionalized with aliphatic chains of twelve, fourteen or sixteen methylene groups. The scaffolds were thoroughly characterized by SEM and XPS. The length of the aliphatic tail influenced the physico-chemical and dynamic mechanical properties of the functionalized chitosan. The electrospun membranes revealed no interaction of Gram+ or Gram− bacteria, resulting in neither antibacterial nor bactericidal, but constitutively sterile. The electrospun scaffolds demonstrated the absence of cytotoxicity, inflammation response, and eryptosis. These results open the door to their application for blood purification devices, hemodialysis membranes, and vascular grafts.
Collapse
Affiliation(s)
- Monica Dettin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (M.D.); (M.R.); (M.M.)
| | - Martina Roso
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (M.D.); (M.R.); (M.M.)
| | - Grazia M. L. Messina
- Department of Chemistry, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy; (G.M.L.M.); (G.M.)
| | - Giovanna Iucci
- Department of Sciences, University Roma Tre, Via della Vasca Navale 79, 00146 Rome, Italy; (G.I.); (M.S.); (C.B.)
| | - Valentina Peluso
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Viale J.F. Kennedy 54−Mostra d’Oltremare PAD. 20, 80125 Naples, Italy; (V.P.); (T.R.)
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Viale J.F. Kennedy 54−Mostra d’Oltremare PAD. 20, 80125 Naples, Italy; (V.P.); (T.R.)
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (M.D.); (M.R.); (M.M.)
- Correspondence: ; Tel.: +30-0498-275-553
| | - Marta Santi
- Department of Sciences, University Roma Tre, Via della Vasca Navale 79, 00146 Rome, Italy; (G.I.); (M.S.); (C.B.)
| | - Sabrina Milan Manani
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute (IRRIV), AULSS8, San Bortolo Hospital, Viale Rodolfi 37, 36100 Vicenza, Italy; (S.M.M.); (M.Z.); (M.R.); (M.D.C.); (C.R.)
| | - Monica Zanella
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute (IRRIV), AULSS8, San Bortolo Hospital, Viale Rodolfi 37, 36100 Vicenza, Italy; (S.M.M.); (M.Z.); (M.R.); (M.D.C.); (C.R.)
| | - Chiara Battocchio
- Department of Sciences, University Roma Tre, Via della Vasca Navale 79, 00146 Rome, Italy; (G.I.); (M.S.); (C.B.)
| | - Giovanni Marletta
- Department of Chemistry, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy; (G.M.L.M.); (G.M.)
| | - Michele Modesti
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy; (M.D.); (M.R.); (M.M.)
| | - Mario Rassu
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute (IRRIV), AULSS8, San Bortolo Hospital, Viale Rodolfi 37, 36100 Vicenza, Italy; (S.M.M.); (M.Z.); (M.R.); (M.D.C.); (C.R.)
| | - Massimo De Cal
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute (IRRIV), AULSS8, San Bortolo Hospital, Viale Rodolfi 37, 36100 Vicenza, Italy; (S.M.M.); (M.Z.); (M.R.); (M.D.C.); (C.R.)
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute (IRRIV), AULSS8, San Bortolo Hospital, Viale Rodolfi 37, 36100 Vicenza, Italy; (S.M.M.); (M.Z.); (M.R.); (M.D.C.); (C.R.)
- Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
17
|
The Nephrotoxin Puromycin Aminonucleoside Induces Injury in Kidney Organoids Differentiated from Induced Pluripotent Stem Cells. Cells 2022; 11:cells11040635. [PMID: 35203286 PMCID: PMC8870209 DOI: 10.3390/cells11040635] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), which can progress to end stage renal disease (ESRD), are a worldwide health burden. Organ transplantation or kidney dialysis are the only effective available therapeutic tools. Therefore, in vitro models of kidney diseases and the development of prospective therapeutic options are urgently needed. Within the kidney, the glomeruli are involved in blood filtration and waste excretion and are easily affected by changing cellular conditions. Puromycin aminonucleoside (PAN) is a nephrotoxin, which can be employed to induce acute glomerular damage and to model glomerular disease. For this reason, we generated kidney organoids from three iPSC lines and treated these with PAN in order to induce kidney injury. Morphological observations revealed the disruption of glomerular and tubular structures within the kidney organoids upon PAN treatment, which were confirmed by transcriptome analyses. Subsequent analyses revealed an upregulation of immune response as well as inflammatory and cell-death-related processes. We conclude that the treatment of iPSC-derived kidney organoids with PAN induces kidney injury mediated by an intertwined network of inflammation, cytoskeletal re-arrangement, DNA damage, apoptosis and cell death. Furthermore, urine-stem-cell-derived kidney organoids can be used to model kidney-associated diseases and drug discovery.
Collapse
|
18
|
Generation of Induced Nephron Progenitor-like Cells from Human Urine-Derived Cells. Int J Mol Sci 2021; 22:ijms222413449. [PMID: 34948246 PMCID: PMC8708572 DOI: 10.3390/ijms222413449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Regenerative medicine strategies employing nephron progenitor cells (NPCs) are a viable approach that is worthy of substantial consideration as a promising cell source for kidney diseases. However, the generation of induced nephron progenitor-like cells (iNPCs) from human somatic cells remains a major challenge. Here, we describe a novel method for generating NPCs from human urine-derived cells (UCs) that can undergo long-term expansion in a serum-free condition. Results: Here, we generated iNPCs from human urine-derived cells by forced expression of the transcription factors OCT4, SOX2, KLF4, c-MYC, and SLUG, followed by exposure to a cocktail of defined small molecules. These iNPCs resembled human embryonic stem cell-derived NPCs in terms of their morphology, biological characteristics, differentiation potential, and global gene expression and underwent a long-term expansion in serum-free conditions. Conclusion: This study demonstrates that human iNPCs can be readily generated and expanded, which will facilitate their broad applicability in a rapid, efficient, and patient-specific manner, particularly holding the potential as a transplantable cell source for patients with kidney disease.
Collapse
|
19
|
Agarwal S, Sudhini YR, Polat OK, Reiser J, Altintas MM. Renal cell markers: lighthouses for managing renal diseases. Am J Physiol Renal Physiol 2021; 321:F715-F739. [PMID: 34632812 DOI: 10.1152/ajprenal.00182.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kidneys, one of the vital organs in our body, are responsible for maintaining whole body homeostasis. The complexity of renal function (e.g., filtration, reabsorption, fluid and electrolyte regulation, and urine production) demands diversity not only at the level of cell types but also in their overall distribution and structural framework within the kidney. To gain an in depth molecular-level understanding of the renal system, it is imperative to discern the components of kidney and the types of cells residing in each of the subregions. Recent developments in labeling, tracing, and imaging techniques have enabled us to mark, monitor, and identify these cells in vivo with high efficiency in a minimally invasive manner. In this review, we summarize different cell types, specific markers that are uniquely associated with those cell types, and their distribution in the kidney, which altogether make kidneys so special and different. Cellular sorting based on the presence of certain proteins on the cell surface allowed for the assignment of multiple markers for each cell type. However, different studies using different techniques have found contradictions in cell type-specific markers. Thus, the term "cell marker" might be imprecise and suboptimal, leading to uncertainty when interpreting the data. Therefore, we strongly believe that there is an unmet need to define the best cell markers for a cell type. Although the compendium of renal-selective marker proteins presented in this review is a resource that may be useful to researchers, we acknowledge that the list may not be necessarily exhaustive.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | | | - Onur K Polat
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Jochen Reiser
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | | |
Collapse
|
20
|
Potential and Limits of Kidney Cells for Evaluation of Renal Excretion. Pharmaceuticals (Basel) 2021; 14:ph14090908. [PMID: 34577608 PMCID: PMC8464824 DOI: 10.3390/ph14090908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/02/2022] Open
Abstract
A large number of therapeutic drugs, herbal components and their metabolites are excreted by the kidneys. Therefore, generally applied models for estimating renal excretion, including freshly isolated rat proximal tubule cells, cultured tubule cells and immortalized kidney cell lines MDCKII, NRK-52E, IHKE-1 and Caki-1, were investigated regarding their predictive potential for active renal transport. Cultured proximal tubule cells showed an epithelial cell-like morphology and formed tight monolayers. However, mRNA expression analyses and immunohistochemical studies revealed patterns of tight junction proteins that were notably different from freshly isolated cells and distinct from those in vivo. High levels of mannitol permeation were found in NRK-52E, IHKE-1 and Caki-1 cells, suggesting that they are not suitable for bidirectional transport studies. Cultured cells and freshly isolated cells also differed in proximal tubule markers and transport proteins, indicating that cultured primary cells were in a state of dedifferentiation. Cell lines MDCKII, NRK-52E, IHKE-1 and Caki-1 did not accurately reflect the characteristics of proximal tubules. The expression patterns of marker and transport proteins differed from freshly isolated primary cells. In summary, each of these models has profound disadvantages to consider when adopting them reliable models for the in vivo situation. Thus, they should not be used alone but only in combination.
Collapse
|
21
|
Shi T, Cheung M. Urine-derived induced pluripotent/neural stem cells for modeling neurological diseases. Cell Biosci 2021; 11:85. [PMID: 33985584 PMCID: PMC8117626 DOI: 10.1186/s13578-021-00594-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
Neurological diseases are mainly modeled using rodents through gene editing, surgery or injury approaches. However, differences between humans and rodents in terms of genetics, neural development, and physiology pose limitations on studying disease pathogenesis in rodent models for neuroscience research. In the past decade, the generation of induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) by reprogramming somatic cells offers a powerful alternative for modeling neurological diseases and for testing regenerative medicines. Among the different somatic cell types, urine-derived stem cells (USCs) are an ideal cell source for iPSC and iNSC reprogramming, as USCs are highly proliferative, multipotent, epithelial in nature, and easier to reprogram than skin fibroblasts. In addition, the use of USCs represents a simple, low-cost and non-invasive procedure for generating iPSCs/iNSCs. This review describes the cellular and molecular properties of USCs, their differentiation potency, different reprogramming methods for the generation of iPSCs/iNSCs, and their potential applications in modeling neurological diseases.
Collapse
Affiliation(s)
- Tianyuan Shi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
22
|
Deng Z, Jing Z, Guo Y, Ma J, Yan H, Shi Z, Deng H, Liang Y, Wang S, Cui Z, Pan Y, Qiu X, Wang Y. Expression of immunoglobulin G in human proximal tubular epithelial cells. Mol Med Rep 2021; 23:327. [PMID: 33760139 PMCID: PMC7974459 DOI: 10.3892/mmr.2021.11966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
Proximal tubular epithelial cells (PTECs) have innate immune characteristics, and produce proinflammatory factors, chemokines and complement components that drive epithelial‑mesenchymal transition (EMT). Our previous studies revealed that human mesangial cells and podocytes were able to synthesize and secrete immunoglobulin (Ig)A and IgG, respectively. The aim of the present study was to evaluate the expression of Igs in PTECs. Firstly, IgG was detected in the cytoplasm, the cell membrane and the lumen of PTECs in the normal renal cortex by immunohistochemistry. Secondly, Igγ gene transcription and V(D)J recombination were detected in single PTECs by nested PCR and Sanger sequencing. Thirdly, Igγ, Igκ and Igλ were clearly detected in an immortalized PTEC line (HK‑2) by immunostaining and western blotting, in which RP215 (an antibody that predominantly binds to non‑B cell‑derived IgG) was used. In addition, Igγ, Igκ and Igλ gene transcripts, conservative V(D)J recombination in the Igγ variable region, recombination activating gene 1/2 and activation‑induced cytidine deaminase were all detected in HK‑2 cells. These data suggested that PTECs may express IgG in a similar manner to B cells. Furthermore, IgG expression was upregulated by TGF‑β1 and may be involved in EMT.
Collapse
Affiliation(s)
- Zhenling Deng
- Department of Nephrology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Ziyang Jing
- Department of Nephrology, Peking University Third Hospital, Beijing 100191, P.R. China
- Department of Nephrology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Yanhong Guo
- Department of Nephrology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Junfan Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
| | - Huige Yan
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
| | - Zhan Shi
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
| | - Hui Deng
- Department of Nephrology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yaoxian Liang
- Department of Nephrology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Song Wang
- Department of Nephrology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Zhuan Cui
- Department of Nephrology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yuejuan Pan
- Department of Nephrology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
| | - Yue Wang
- Department of Nephrology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
23
|
Modiwala M, Jadav T, Sahu AK, Tekade RK, Sengupta P. A Critical Review on Advancement in Analytical Strategies for the Quantification of Clinically Relevant Biological Transporters. Crit Rev Anal Chem 2021; 52:1557-1571. [PMID: 33691566 DOI: 10.1080/10408347.2021.1891859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Success of a drug discovery program is highly dependent on rapid scientific advancement and periodic inclusion of sensitive and specific analytical techniques. Biological membrane transporters can significantly alter the bioavailability of a molecule in its actual site of action. Expression of transporter proteins responsible for drug transport is extremely low in the biological system. Therefore, proper scientific planning in selection of their quantitative analytical technique is essential. This article discusses critical advancement in the analytical strategies for quantification of clinically relevant biological transporters for the drugs. Article cross-talked key planning and execution strategies concerning analytical quantification of the transporters during drug discovery programs.
Collapse
Affiliation(s)
- Mustafa Modiwala
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
24
|
Ortiz-Rey JA, Fachal C, Juaneda-Magdalena L, Muñoz-Martín M, Repáraz-Andrade A, Teijeira S, Lamas-Barreiro JM, Almuster-Domínguez S, San Miguel-Fraile P, Gómez-de María C. Clear cell clusters in the kidney: a rare finding that should not be misdiagnosed as renal cell carcinoma. Virchows Arch 2021; 479:57-67. [PMID: 33447899 DOI: 10.1007/s00428-021-03018-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 12/19/2022]
Abstract
Clear cytoplasm is a major characteristic feature of most malignant renal neoplasms. Benign clear cells in the renal parenchyma, usually histiocytes, can occasionally be found, but they are infrequently of an epithelial nature. We report histological, immunohistochemical, ultrastructural, and cytogenomic features of clear epithelial cell clusters incidentally found in four kidney specimens. Multiple microscopic clear cell clusters were present in the cortex, often in subcapsular location. They were composed of large epithelial cells with strikingly clear cytoplasm, without nuclear atypia, arranged in solid nests, and some tubules with narrow lumina. Immunohistochemically, they were positive for AE1AE3, PAX 8, EMA, kidney-specific cadherin, cytokeratin 7, E cadherin, and CD117, with focal immunoreactivity for CD10. Carbonic anhydrase IX, vimentin, and markers related to apoptosis and proliferation were negative. Ultrastructurally, the cytoplasms were enlarged and poor in organelles, showing ballooning degeneration. Array comparative genomic hybridization showed no chromosomal gains or losses. Clear cell clusters constitute a rare finding in the kidney and must be differentiated from benign lesions (ectopic adrenal tissue, osmotic tubulopathy, histiocytic clusters, renal adenomas) and renal cell carcinomas. Clear cell clusters appear to be generated from "endocrine-type" atrophic tubules whose cells are enlarged due to intracellular oedema. Immunohistochemistry shows a distal nephron phenotype with a limited expression of a proximal marker, CD10. Coexisting chronic renal disease or ischemic conditions seem to be related to the development of clear cell clusters. Pathological, ultrastructural, and cytogenomic features do not support a preneoplastic nature of this lesion, at least in the cases studied here.
Collapse
Affiliation(s)
- José-Antonio Ortiz-Rey
- Department of Pathology, Hospital Álvaro Cunqueiro, Clara Campoamor Av., 341, 36312, Vigo, Spain. .,Uropathology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| | - Carmen Fachal
- Department of Pathology, Hospital Álvaro Cunqueiro, Clara Campoamor Av., 341, 36312, Vigo, Spain
| | - Laura Juaneda-Magdalena
- Department of Pathology, Hospital Álvaro Cunqueiro, Clara Campoamor Av., 341, 36312, Vigo, Spain
| | - Mónica Muñoz-Martín
- Department of Pathology, Hospital Álvaro Cunqueiro, Clara Campoamor Av., 341, 36312, Vigo, Spain
| | | | - Susana Teijeira
- Biobank of Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | | | | | - Pilar San Miguel-Fraile
- Department of Pathology, Hospital Álvaro Cunqueiro, Clara Campoamor Av., 341, 36312, Vigo, Spain.,Uropathology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | | |
Collapse
|
25
|
Giraud S, Kerforne T, Zely J, Ameteau V, Couturier P, Tauc M, Hauet T. The inhibition of eIF5A hypusination by GC7, a preconditioning protocol to prevent brain death-induced renal injuries in a preclinical porcine kidney transplantation model. Am J Transplant 2020; 20:3326-3340. [PMID: 32400964 DOI: 10.1111/ajt.15994] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 01/25/2023]
Abstract
The eIF5A hypusination inhibitor GC7 (N1-guanyl-1,7-diaminoheptane) was shown to protect from ischemic injuries. We hypothesized that GC7 could be useful for preconditioning kidneys from donors before transplantation. Using a preclinical porcine brain death (BD) donation model, we carried out in vivo evaluation of GC7 pretreatment (3 mg/kg iv, 5 minutes after BD) at the beginning of the 4h-donor management, after which kidneys were collected and cold-stored (18h in University of Wisconsin solution) and 1 was allotransplanted. Groups were defined as following (n = 6 per group): healthy (CTL), untreated BD (Vehicle), and GC7-treated BD (Vehicle + GC7). At the end of 4h-management, GC7 treatment decreased BD-induced markers, as radical oxygen species markers. In addition, GC7 increased expression of mitochondrial protective peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC1α) and antioxidant proteins (superoxyde-dismutase-2, heme oxygenase-1, nuclear factor [erythroid-derived 2]-like 2 [NRF2], and sirtuins). At the end of cold storage, GC7 treatment induced an increase of NRF2 and PGC1α mRNA and a better mitochondrial integrity/homeostasis with a decrease of dynamin- related protein-1 activation and increase of mitofusin-2. Moreover, GC7 treatment significantly improved kidney outcome during 90 days follow-up after transplantation (fewer creatininemia and fibrosis). Overall, GC7 treatment was shown to be protective for kidneys against BD-induced injuries during donor management and subsequently appeared to preserve antioxidant defenses and mitochondria homeostasis; these protective effects being accompanied by a better transplantation outcome.
Collapse
Affiliation(s)
- Sebastien Giraud
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Service de Biochimie, CHU de Poitiers, Poitiers, France
| | - Thomas Kerforne
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Faculté de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France.,Service d'Anesthésie-Réanimation, CHU de Poitiers, Poitiers, France
| | - Jeremy Zely
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Faculté de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France.,Service d'Anesthésie-Réanimation, CHU de Poitiers, Poitiers, France
| | - Virginie Ameteau
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Faculté de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France
| | - Pierre Couturier
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Service de Biochimie, CHU de Poitiers, Poitiers, France.,MOPICT 'plate-forme MOdélisation Préclinique - Innovations Chirurgicale et Technologique', Domaine Expérimental du Magneraud, Surgères, France
| | - Michel Tauc
- Université Cote d'Azur, LP2M, CNRS-7370, Nice, France
| | - Thierry Hauet
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Service de Biochimie, CHU de Poitiers, Poitiers, France.,Faculté de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France.,MOPICT 'plate-forme MOdélisation Préclinique - Innovations Chirurgicale et Technologique', Domaine Expérimental du Magneraud, Surgères, France.,FHU SUPORT 'SUrvival oPtimization in ORgan Transplantation', Poitiers, France
| |
Collapse
|
26
|
Deng Z, Wang X, Liu Y, Tian X, Deng S, Sun Y, Wang S, Zheng D, Cui Z, Pan Y, A L, Yan H, Qiu X, Wang Y. Single-cell RNA sequencing confirms IgG transcription and limited diversity of V HDJ H rearrangements in proximal tubular epithelial cells. Sci Rep 2020; 10:19657. [PMID: 33184300 PMCID: PMC7661700 DOI: 10.1038/s41598-020-75013-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/29/2020] [Indexed: 01/19/2023] Open
Abstract
Increasing evidence has confirmed that immunoglobulins (Igs) can be expressed in non-B cells. Our previous work demonstrated that mesangial cells and podocytes express IgA and IgG, respectively. The aim of this work was to reveal whether proximal tubular epithelial cells (PTECs) express Igs. High-throughput single-cell RNA sequencing (scRNA-seq) detected Igs in a small number of PTECs, and then we combined nested PCR with Sanger sequencing to detect the transcripts and characterize the repertoires of Igs in PTECs. We sorted PTECs from the normal renal cortex of two patients with renal cancer by FACS and further confirmed their identify by LRP2 gene expression. Only the transcripts of the IgG heavy chain were successfully amplified in 91/111 single PTECs. We cloned and sequenced 469 VHDJH transcripts from 91 single PTECs and found that PTEC-derived IgG exhibited classic VHDJH rearrangements with nucleotide additions at the junctions and somatic hypermutations. Compared with B cell-derived IgG, PTEC-derived IgG displayed less diversity of VHDJH rearrangements, predominant VH1-24/DH2-15/JH4 sequences, biased VH1 usage, centralized VH gene segment location at the 3′ end of the genome and non-Gaussian distribution of the CDR3 length. These results demonstrate that PTECs can express a distinct IgG repertoire that may have implications for their role in the renal tubular epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Zhenling Deng
- Department of Nephrology, Peking University Third Hospital, 49 Huayuanbei Road, Beijing, 100191, People's Republic of China
| | - Xinyao Wang
- Department of Nephrology, Peking University Third Hospital, 49 Huayuanbei Road, Beijing, 100191, People's Republic of China
| | - Yue Liu
- Department of Nephrology, Peking University Third Hospital, 49 Huayuanbei Road, Beijing, 100191, People's Republic of China
| | - Xinyu Tian
- Department of Nephrology, Peking University Third Hospital, 49 Huayuanbei Road, Beijing, 100191, People's Republic of China
| | - Shaohui Deng
- Department of Nephrology, Peking University Third Hospital, 49 Huayuanbei Road, Beijing, 100191, People's Republic of China
| | - Yingchun Sun
- Department of Nephrology, Peking University Third Hospital, 49 Huayuanbei Road, Beijing, 100191, People's Republic of China
| | - Song Wang
- Department of Nephrology, Peking University Third Hospital, 49 Huayuanbei Road, Beijing, 100191, People's Republic of China
| | - Danxia Zheng
- Department of Nephrology, Peking University Third Hospital, 49 Huayuanbei Road, Beijing, 100191, People's Republic of China
| | - Zhuan Cui
- Department of Nephrology, Peking University Third Hospital, 49 Huayuanbei Road, Beijing, 100191, People's Republic of China
| | - Yuejuan Pan
- Department of Nephrology, Peking University Third Hospital, 49 Huayuanbei Road, Beijing, 100191, People's Republic of China
| | - Lata A
- Department of Nephrology, Peking University Third Hospital, 49 Huayuanbei Road, Beijing, 100191, People's Republic of China
| | - Huige Yan
- Department of Immunology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, People's Republic of China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, People's Republic of China.
| | - Yue Wang
- Department of Nephrology, Peking University Third Hospital, 49 Huayuanbei Road, Beijing, 100191, People's Republic of China.
| |
Collapse
|
27
|
Mihevc M, Petreski T, Maver U, Bevc S. Renal proximal tubular epithelial cells: review of isolation, characterization, and culturing techniques. Mol Biol Rep 2020; 47:9865-9882. [PMID: 33170426 DOI: 10.1007/s11033-020-05977-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
The kidney is a complex organ, comprised primarily of glomerular, tubular, mesangial, and endothelial cells, and podocytes. The fact that renal cells are terminally differentiated at 34 weeks of gestation is the main obstacle in regeneration and treatment of acute kidney injury or chronic kidney disease. Furthermore, the number of chronic kidney disease patients is ever increasing and with it the medical community should aim to improve existing and develop new methods of renal replacement therapy. On the other hand, as polypharmacy is on the rise, thought should be given into developing new ways of testing drug safety. A possible way to tackle these issues is with isolation and culture of renal cells. Several protocols are currently described to isolate the desired cells, of which the most isolated are the proximal tubular epithelial cells. They play a major role in water homeostasis, acid-base control, reabsorption of compounds, and secretion of xenobiotics and endogenous metabolites. When exposed to ischemic, toxic, septic, or obstructive conditions their death results in what we clinically perceive as acute kidney injury. Additionally, due to renal cells' limited regenerative potential, the profibrotic environment inevitably leads to chronic kidney disease. In this review we will focus on human proximal tubular epithelial cells. We will cover human kidney culture models, cell sources, isolation, culture, immortalization, and characterization subdivided into morphological, phenotypical, and functional characterization.
Collapse
Affiliation(s)
- Matic Mihevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia
| | - Tadej Petreski
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Uroš Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia.
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| |
Collapse
|
28
|
Bansal A, Balasubramanian S, Dhawan S, Leung A, Chen Z, Natarajan R. Integrative Omics Analyses Reveal Epigenetic Memory in Diabetic Renal Cells Regulating Genes Associated With Kidney Dysfunction. Diabetes 2020; 69:2490-2502. [PMID: 32747424 PMCID: PMC7576555 DOI: 10.2337/db20-0382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes and the leading cause of end-stage renal failure. Epigenetics has been associated with metabolic memory in which prior periods of hyperglycemia enhance the future risk of developing DKD despite subsequent glycemic control. To understand the mechanistic role of such epigenetic memory in human DKD and to identify new therapeutic targets, we profiled gene expression, DNA methylation, and chromatin accessibility in kidney proximal tubule epithelial cells (PTECs) derived from subjects with and without type 2 diabetes (T2D). T2D-PTECs displayed persistent gene expression and epigenetic changes with and without transforming growth factor-β1 treatment, even after culturing in vitro under similar conditions as nondiabetic PTECs, signified by deregulation of fibrotic and transport-associated genes (TAGs). Motif analysis of differential DNA methylation and chromatin accessibility regions associated with genes differentially regulated in T2D revealed enrichment for SMAD3, HNF4A, and CTCF transcription factor binding sites. Furthermore, the downregulation of several TAGs in T2D (including CLDN10, CLDN14, CLDN16, SLC16A2, and SLC16A5) was associated with promoter hypermethylation, decreased chromatin accessibility, and reduced enrichment of HNF4A, histone H3-lysine-27-acetylation, and CTCF. Together, these integrative analyses reveal epigenetic memory underlying the deregulation of key target genes in T2D-PTECs that may contribute to sustained renal dysfunction in DKD.
Collapse
Affiliation(s)
- Anita Bansal
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Sreeram Balasubramanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Zhen Chen
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
29
|
El-Mokhtar MA, Seddik MI, Osman A, Adel S, Abdel Aziz EM, Mandour SA, Mohammed N, Zarzour MA, Abdel-Wahid L, Radwan E, Sayed IM. Hepatitis E Virus Mediates Renal Injury via the Interaction between the Immune Cells and Renal Epithelium. Vaccines (Basel) 2020; 8:E454. [PMID: 32824088 PMCID: PMC7564770 DOI: 10.3390/vaccines8030454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Renal disorders are associated with Hepatitis E virus (HEV) infection. Progression to end-stage renal disease and acute kidney injury are complications associated with HEV infection. The mechanisms by which HEV mediates the glomerular diseases remain unclear. CD10+/CD13+ primary proximal tubular (PT) epithelial cells, isolated from healthy donors, were infected with HEV. Inflammatory markers and kidney injury markers were assessed in the presence or absence of peripheral blood mononuclear cells (PBMCs) isolated from the same donors. HEV replicated efficiently in the PT cells as shown by the increase in HEV load over time and the expression of capsid Ag. In the absence of PBMCs, HEV was not nephrotoxic, with no direct effect on the transcription of chemokines (Cxcl-9, Cxcl-10, and Cxcl-11) nor the kidney injury markers (kidney injury molecule 1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and interleukin 18 (lL-18)). While higher inflammatory responses, upregulation of chemokines and kidney injury markers expression, and signs of nephrotoxicity were recorded in HEV-infected PT cells cocultured with PBMCs. Interestingly, a significantly higher level of IFN-γ was released in the PBMCs-PT coculture compared to PT alone during HEV infection. In conclusion: The crosstalk between immune cells and renal epithelium and the signal axes IFN-γ/chemokines and IL-18 could be the immune-mediated mechanisms of HEV-induced renal disorder.
Collapse
Affiliation(s)
- Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Mohamed Ismail Seddik
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (M.I.S.); (A.O.)
| | - Asmaa Osman
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (M.I.S.); (A.O.)
| | - Sara Adel
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut 71515, Egypt;
| | - Essam M. Abdel Aziz
- Department of Internal Medicine, Nephrology Division, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Sahar A. Mandour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 66111, Egypt;
| | - Nasreldin Mohammed
- Department of Urology and Renal Transplantation Centre, Faculty of Medicine, Assiut University Hospital, Assiut 71515, Egypt; (N.M.); (M.A.Z.)
| | - Mohamed A. Zarzour
- Department of Urology and Renal Transplantation Centre, Faculty of Medicine, Assiut University Hospital, Assiut 71515, Egypt; (N.M.); (M.A.Z.)
| | - Lobna Abdel-Wahid
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Ibrahim M. Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Chapron A, Chapron BD, Hailey DW, Chang SY, Imaoka T, Thummel KE, Kelly E, Himmelfarb J, Shen D, Yeung CK. An Improved Vascularized, Dual-Channel Microphysiological System Facilitates Modeling of Proximal Tubular Solute Secretion. ACS Pharmacol Transl Sci 2020; 3:496-508. [PMID: 32566915 PMCID: PMC7296546 DOI: 10.1021/acsptsci.9b00078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 11/30/2022]
Abstract
A vascularized human proximal tubule model in a dual-channel microphysiological system (VPT-MPS) was developed, representing an advance over previous, single-cell-type kidney microphysiological systems. Human proximal tubule epithelial cells (PTECs) and human umbilical vein endothelial cells (HUVECs) were cocultured in side-by-side channels. Over 24 h of coculturing, PTECs maintained polarized expression of Na+/K+ ATPase, tight junctions (ZO-1), and OAT1. HUVECs showed the absence of ZO-1 but expressed endothelial cell marker (CD-31). In time-lapse imaging studies, fluorescein isothiocyanate (FITC)-dextran passed freely from the HUVEC vessel into the supporting extracellular matrix, confirming the leakiness of the endothelium (at 80 min, matrix/intravessel fluorescence ratio = 0.2). Dextran-associated fluorescence accumulated in the matrix adjacent to the basolateral aspect of the PTEC tubule with minimal passage of the compound into the tubule lumen observed (at 80 min, tubule lumen/matrix fluorescence ratio = 0.01). This demonstrates that the proximal tubule compartment is the rate-limiting step in the secretion of compounds in VPT-MPS. In kinetic studies with radiolabeled markers, p-aminohippuric acid (PAH) exhibited greater output into the tubule lumen than did paracellular markers mannitol and FITC-dextran (tubule outflow/vessel outflow concentration ratio of 7.7% vs 0.5 and 0.4%, respectively). A trend toward reduced PAH secretion by 45% was observed upon coadministration of probenecid. This signifies functional expression of renal transporters in PTECs that normally mediate the renal secretion of PAH. The VPT-MPS holds the promise of providing an in vitro platform for evaluating the renal secretion of new drug candidates and investigating the dysregulation of tubular drug secretion in chronic kidney disease.
Collapse
Affiliation(s)
- Alenka Chapron
- Department
of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, Washington 98195, United States
| | - Brian D. Chapron
- Department
of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, Washington 98195, United States
| | - Dale W. Hailey
- Lynn
and Mike Garvey Imaging Core, Institute
for Stem Cell and Regenerative Medicine, Seattle, Washington 98109, United States
- Department
of Pathology, School of Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Shih-Yu Chang
- Department
of Pharmacy, School of Pharmacy, University
of Washington, Seattle Washington 98195, United States
| | - Tomoki Imaoka
- Department
of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, Washington 98195, United States
| | - Kenneth E. Thummel
- Department
of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, Washington 98195, United States
| | - Edward Kelly
- Department
of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, Washington 98195, United States
| | - Jonathan Himmelfarb
- Kidney
Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Danny Shen
- Department
of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, Washington 98195, United States
| | - Catherine K. Yeung
- Department
of Pharmacy, School of Pharmacy, University
of Washington, Seattle Washington 98195, United States
- Kidney
Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
31
|
Shiva N, Sharma N, Kulkarni YA, Mulay SR, Gaikwad AB. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sci 2020; 256:117860. [PMID: 32534037 DOI: 10.1016/j.lfs.2020.117860] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Optimal tissue oxygenation is essential for its normal function. Suboptimal oxygenation or ischemia contributes to increased mortalities during various pathological conditions such as stroke, acute kidney injury (AKI), cardiac failure. Despite the rapid progression of renal tissue injury, the mechanism underlying renal ischemia/reperfusion injury (IRI) remains highly unclear. Experimental in vitro and in vivo models epitomizing the fundamental process is critical to the research of the pathogenesis of IRI and the development of plausible therapeutics. In this review, we describe the in vitro and in vivo models of IRI, ranges from proximal tubular cell lines to surgery-based animal models like clamping of both renal pedicles (bilateral IRI), clamping of one renal pedicle (unilateral IRI), clamping of one/or both renal arteries/or vein, or unilateral IRI with contralateral nephrectomy (uIRIx). Also, advanced technologies like three-dimensional kidney organoids, kidney-on-a-chip are explained. This review provides thoughtful information for establishing reliable and pertinent models for studying IRI-associated acute renal pathologies.
Collapse
Affiliation(s)
- Niharika Shiva
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
32
|
Yoon JY, Gedye C, Paterson J, Ailles L. Stem/progenitor cell marker expression in clear cell renal cell carcinoma: a potential relationship with the immune microenvironment to be explored. BMC Cancer 2020; 20:272. [PMID: 32245446 PMCID: PMC7119074 DOI: 10.1186/s12885-020-06733-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/10/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a markedly heterogeneous disease in many aspects, including the tumour microenvironment. Our previous study showed the importance of the tumour microenvironment in ccRCC xeno-transplant success rates. In order to better understand the potential relationship between TICs and the immune microenvironment, we employed a multi-modal approach, examining RNA and protein expression (flow cytometry, immunohistochemistry). METHODS We first examined the gene expression pattern of 18 stem/progenitor marker genes in the cancer genome atlas (TCGA) ccRCC cohort. Flow cytometry was next employed to examine lineage-specific expression levels of stem/progenitor markers and immune population makeup in six, disaggregated, primary ccRCC specimens. Immunohistochemistry was performed on a commercial ccRCC tissue microarray (TMA). RESULTS The 18 genes differed with respect to their correlation patterns with one another and to their prognostic significance. By flow cytometry, correlating expression frequency of 12 stem/progenitor markers and CD10 resulted in two clusters-one with CD10 (marker of proximal tubular differentiation), and second cluster containing mostly mesenchymal stem cell (MSC) markers, including CD146. In turn, these clusters differed with respect to their correlation with different CD45+ lineage markers and their expression of immune checkpoint pathway proteins. To confirm these findings, four stem/progenitor marker expression patterns were compared with CD4, CD8 and CD20 in a ccRCC TMA which showed a number of similar trends with respect to frequency of the different tumour-infiltrating leukocytes. CONCLUSION Taken together, we observed heterogeneous but patterned expression levels of different stem/progenitor markers. Our results suggest a non-random relationship between their expression patterns with the immune microenvironment populations in ccRCC.
Collapse
Affiliation(s)
- Ju-Yoon Yoon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, M5S 1A1, Canada.
| | - Craig Gedye
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Joshua Paterson
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Laurie Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Han X, Sun Z. Epigenetic Regulation of KL (Klotho) via H3K27me3 (Histone 3 Lysine [K] 27 Trimethylation) in Renal Tubule Cells. Hypertension 2020; 75:1233-1241. [PMID: 32223380 DOI: 10.1161/hypertensionaha.120.14642] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
KL (klotho) levels decline with age, which is an important mechanistic driver of aging. KL gene deficiency is associated with hypertension. The purpose of this study is to investigate the potential role of H3K27me3 (histone 3 lysine [K] 27 trimethylation) in the regulation of KL gene expression and examine the related molecular pathways that may drive kidney cell aging. Kidneys were collected from 6-month-old WT (wild type; young WT), 30-month-old WT (aged WT), and 6- (young) and 20-month-old (aged) KL mutant mice, respectively. We demonstrated that the H3K27me3 level was increased in kidneys of aged WT and KL mutant mice versus young WT mice. Elevation of H3K27me3 levels was likely due to downregulation of the H3K27 (histone H3 Lys 27)-specific demethylase JMJD3 (the Jumonji domain containing-3) in the aged kidneys. Inhibition of PRC2 (polycomb repressive complex C2; histone trimethyltransferase) decreased the H3K27me3 levels leading to an increase in the expression of KL in cultured primary renal tubule cells assessed by Western blot and KL promoter activity assays. The chromatin immunoprecipitation qPCR assay revealed that H3K27me3 was physically associated with the KL promoter region. Furthermore, aging impaired the SGK1 (serum- and glucocorticoid-induced protein kinase 1)/FOXO3a (the forkhead box class O 3a) signaling leading to upregulation of p53 and p16 (aging markers) in the kidney of aged WT mice. KL may regulate the SGK1/FOXO3 signaling, which was decreased due to KL deficiency. Thus, aging-associated downregulation of KL gene expression may be partly attributed to upregulation of H3K27me3 levels. Downregulation of KL may impair the SGK1/FOXO3 signaling contributing to kidney cell aging.
Collapse
Affiliation(s)
- Xiaobin Han
- From the Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis
| | - Zhongjie Sun
- From the Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
34
|
Kim J, Jeong JH, Jung J, Jeon H, Lee S, Lim JS, Go H, Oh JS, Kim YG, Lee CK, Yoo B, Hong S. Immunological characteristics and possible pathogenic role of urinary CD11c+ macrophages in lupus nephritis. Rheumatology (Oxford) 2020; 59:2135-2145. [DOI: 10.1093/rheumatology/keaa053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/20/2020] [Indexed: 01/08/2023] Open
Abstract
Abstract
Objectives
Kidney-infiltrating immune cells can contribute to the pathogenesis of lupus nephritis (LN). We investigated the immunological characteristics of CD11c+ macrophages and their functions associated with the pathogenesis of LN.
Methods
CD11c+ macrophages were examined in the urine samples of patients with LN. Phenotypic markers and pro-inflammatory cytokine expression levels were analysed by flow cytometry. To determine the origin of urinary macrophages, peripheral monocytes were treated with sera from patients with systemic lupus erythematosus (SLE). The pathogenic role of CD11c+ macrophages in tubulointerstitial damage was investigated using SLE sera-treated monocytes and HK-2 cells.
Results
Urinary CD11c+ macrophages expressed pro-inflammatory cytokines, such as IL-6 and IL-1β, and resembled infiltrated monocytes rather than tissue-resident macrophages with respect to surface marker expression. CD11c+ macrophages had high expression levels of the chemokine receptor CXCR3, which were correlated with cognate chemokine IP-10 expression in urinary tubular epithelial cells. When treated with sera from SLE patients, peripheral monocytes acquired the morphological and functional characteristics of urinary CD11c+ macrophages, which was blocked by DNase treatment. Finally, SLE sera-treated monocytes induced fibronectin expression, apoptosis and cell detachment in HK-2 cells via production of IL-6.
Conclusion
CD11c+ macrophages may be involved in the pathogenesis of tubulointerstitial injury in LN.
Collapse
Affiliation(s)
- Jihye Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Hye Jeong
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaehyung Jung
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hanwool Jeon
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Seon Oh
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang-Keun Lee
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bin Yoo
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seokchan Hong
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
35
|
Igami K, Uchiumi T, Ueda S, Kamioka K, Setoyama D, Gotoh K, Akimoto M, Matsumoto S, Kang D. Characterization and function of medium and large extracellular vesicles from plasma and urine by surface antigens and Annexin V. PEERJ ANALYTICAL CHEMISTRY 2020. [DOI: 10.7717/peerj-achem.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background
Extracellular vesicles (EVs) are released by most cell types and are involved in multiple basic biological processes. Medium/large EVs (m/lEVs), which are of a different size from exosomes, play an important role in the coagulation in blood, and are secreted from cancer cells, etc., suggesting functions related to malignant transformation. The m/lEVs levels in blood or urine may help unravel pathophysiological findings in many diseases. However, it remains unclear how many naturally-occurring m/lEV subtypes exist as well as how their characteristics and functions differ from one another.
Methods
We used the blood and urinal sample from each 10 healthy donors for analysis. Using a flow cytometer, we focus on characterization of EVs with large sizes (>200 nm) that are different from exosomes. We also searched for a membrane protein for characterization with a flow cytometer using shotgun proteomics. We then identified m/lEVs pelleted from plasma and urine samples by differential centrifugation and characterized by flow cytometry.
Results
Using proteomic profiling, we identified several proteins involved in m/lEV biogenesis including adhesion molecules, peptidases and exocytosis regulatory proteins. In healthy human plasma, we could distinguish m/lEVs derived from platelets, erythrocytes, monocytes/macrophages, T and B cells, and vascular endothelial cells with more than two positive surface antigens. The ratio of phosphatidylserine appearing on the membrane surface differed depending on the cell-derived m/lEVs. In urine, 50% of m/lEVs were Annexin V negative but contained various membrane peptidases derived from renal tubular villi. Urinary m/lEVs, but not plasma m/lEVs, showed peptidase activity. The knowledge of the new characteristics is considered to be useful as a diagnostic material and the newly developed method suggests the possibility of clinical application.
Collapse
Affiliation(s)
- Ko Igami
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
- Business Management Division, Clinical Laboratory Business Segment, LSI Medience Corporation, Tokyo, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Clinical Chemistry, Division of Biochemical Science and Technology, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Ueda
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuyuki Kamioka
- Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
- Department of Medical Solutions, LSI Medience Corporation, Tokyo, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaru Akimoto
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinya Matsumoto
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
Goerlich N, Brand HA, Langhans V, Tesch S, Schachtner T, Koch B, Paliege A, Schneider W, Grützkau A, Reinke P, Enghard P. Kidney transplant monitoring by urinary flow cytometry: Biomarker combination of T cells, renal tubular epithelial cells, and podocalyxin-positive cells detects rejection. Sci Rep 2020; 10:796. [PMID: 31964937 PMCID: PMC6972704 DOI: 10.1038/s41598-020-57524-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/31/2019] [Indexed: 01/19/2023] Open
Abstract
Creatinine and proteinuria are used to monitor kidney transplant patients. However, renal biopsies are needed to diagnose renal graft rejection. Here, we assessed whether the quantification of different urinary cells would allow non-invasive detection of rejection. Urinary cell numbers of CD4+ and CD8+ T cells, monocytes/macrophages, tubular epithelial cells (TEC), and podocalyxin(PDX)-positive cells were determined using flow cytometry and were compared to biopsy results. Urine samples of 63 renal transplant patients were analyzed. Patients with transplant rejection had higher amounts of urinary T cells than controls; however, patients who showed worsening graft function without rejection had similar numbers of T cells. T cells correlated with histological findings (interstitial inflammation p = 0.0005, r = 0.70; tubulitis p = 0.006, r = 0.58). Combining the amount of urinary T cells and TEC, or T cells and PDX+ cells, yielded a significant segregation of patients with rejection from patients without rejection (all p < 0.01, area under the curve 0.89–0.91). Urinary cell populations analyzed by flow cytometry have the potential to introduce new monitoring methods for kidney transplant patients. The combination of urinary T cells, TEC, and PDX-positive cells may allow non-invasive detection of transplant rejection.
Collapse
Affiliation(s)
| | | | | | | | | | - Benjamin Koch
- Goethe University Hospital Frankfurt, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Ko JN, Jung JK, Park YI, Shin HJ, Huh J, Back S, Kim YJ, Kim JH, Go H. Multistaining Optimization for Epstein-Barr Virus-Encoded RNA In Situ Hybridization and Immunohistochemistry of Formalin-Fixed Paraffin-Embedded Tissues Using an Automated Immunostainer. J Pathol Transl Med 2019; 53:317-326. [PMID: 31455058 PMCID: PMC6755655 DOI: 10.4132/jptm.2019.08.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/06/2019] [Indexed: 11/29/2022] Open
Abstract
Background Single staining is commonly performed for practical pathologic diagnoses. However, this method is limited in its ability to specify cellular morphology and immunophenotype and often requires consumption of limited tissue. This study aimed to describe an optimized protocol for multiple in situ hybridization (ISH) and immunohistochemistry (IHC). Methods The quality of multistaining was evaluated by carefully changing each step of ISH and IHC in an angioimmunoblastic T-cell lymphoma (AITL) case on a Ventana BenchMark XT automated immunostainer. The optimized protocols were also performed using another immunostainer and in 15 cases of five Epstein-Barr virus (EBV)–associated malignancies using formalin-fixed paraffin-embedded tissue. Results The quality of various ISH-IHC staining protocols was semi-quantitatively evaluated. The best EBV-encoded RNA (EBER)-ISH/double IHC staining quality, equivalent to single staining, was obtained using the following considerations: initial EBER-ISH application, use of protease and antigen retrieval reagent (cell conditioning 1 [CC1] treatment time was minimized due to impact on tissue quality), additional baking/ deparaffinization not needed, and reduced dilution ratio and increased reaction time for primary antibody compared with single immunostaining. Furthermore, shorter second CC1 treatment time yielded better results. Multiple staining was the best quality in another immunostainer and for different types of EBV-associated malignancies when it was performed in the same manner as for the Ventana BenchMark XT as determined for AITL. Conclusions EBER-ISH and double IHC could be easily used in clinical practice with currently available automated immunostainers and adjustment of reagent treatment time, dilution ratio, and antibody reaction time.
Collapse
Affiliation(s)
- Jae Nam Ko
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Kyoung Jung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yun Ik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hwa Jeong Shin
- Department of Research Support Team, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sol Back
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yu Jin Kim
- Department of Research Support Team, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Ho Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Sánchez-Romero N, Martínez-Gimeno L, Caetano-Pinto P, Saez B, Sánchez-Zalabardo JM, Masereeuw R, Giménez I. A simple method for the isolation and detailed characterization of primary human proximal tubule cells for renal replacement therapy. Int J Artif Organs 2019; 43:45-57. [DOI: 10.1177/0391398819866458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The main physiological functions of renal proximal tubule cells in vivo are reabsorption of essential nutrients from the glomerular filtrate and secretion of waste products and xenobiotics into urine. Currently, there are several established cell lines of human origin available as in vitro models of proximal tubule. However, these cells appeared to be limited in their biological relevance, because essential characteristics of the original tissue are lost once the cells are cultured. As a consequence of these limitations, primary human proximal tubule cells constitute a suitable and a biologically more relevant in vitro model to study this specific segment of the nephron and therefore, these cells can play an important role in renal regenerative medicine applications. Here, we describe a protocol to isolate proximal tubule cells from human nephrectomies. We explain the steps performed for an in-depth characterization of the cells, including the study of markers from others segments of the nephron, with the goal to determine the purity of the culture and the stability of proteins, enzymes, and transporters along time. The human proximal tubule cells isolated and used throughout this study showed many proximal tubule characteristics, including monolayer organization, cell polarization with the expression of tight junctions and primary cilia, expression of proximal tubule–specific proteins, such as megalin and sodium/glucose cotransporter 2, among others. The cells also expressed enzymatic activity for dipeptidyl peptidase IV, as well as for gamma glutamyl transferase 1, and expressed transporter activity for organic anion transporter 1, P-glycoprotein, multidrug resistance proteins, and breast cancer resistance protein. In conclusion, characterization of our cells confirmed presence of putative proximal tubule markers and the functional expression of multiple endogenous organic ion transporters mimicking renal reabsorption and excretion. These findings can constitute a valuable tool in the development of bioartificial kidney devices.
Collapse
Affiliation(s)
- Natalia Sánchez-Romero
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Laura Martínez-Gimeno
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Pedro Caetano-Pinto
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Mechanistic Safety and ADME Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Berta Saez
- Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Universidad San Jorge, Zaragoza, Spain
| | | | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ignacio Giménez
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
39
|
Renggli K, Rousset N, Lohasz C, Nguyen OTP, Hierlemann A. Integrated Microphysiological Systems: Transferable Organ Models and Recirculating Flow. ADVANCED BIOSYSTEMS 2019; 3:e1900018. [PMID: 32627410 PMCID: PMC7610576 DOI: 10.1002/adbi.201900018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Studying and understanding of tissue and disease mechanisms largely depend on the availability of suitable and representative biological model systems. These model systems should be carefully engineered and faithfully reproduce the biological system of interest to understand physiological effects, pharmacokinetics, and toxicity to better identify new drug compounds. By relying on microfluidics, microphysiological systems (MPSs) enable the precise control of culturing conditions and connections of advanced in vitro 3D organ models that better reproduce in vivo environments. This review focuses on transferable in vitro organ models and integrated MPSs that host these transferable biological units and enable interactions between different tissue types. Interchangeable and transferrable in vitro organ models allow for independent quality control of the biological model before system assembly and building MPS assays on demand. Due to the complexity and different maturation times of individual in vitro tissues, off-chip production and quality control entail improved stability and reproducibility of the systems and results, which is important for large-scale adoption of the technology. Lastly, the technical and biological challenges and open issues for realizing and implementing integrated MPSs with transferable in vitro organ models are discussed.
Collapse
Affiliation(s)
- Kasper Renggli
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Jadav T, Jain S, Kalia K, Sengupta P. Current Standing and Technical Guidance on Intracellular Drug Quantification: A New Site Specific Bioavailability Prediction Approach. Crit Rev Anal Chem 2019; 50:50-61. [DOI: 10.1080/10408347.2019.1570462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Sonali Jain
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| |
Collapse
|
41
|
A New Genotype of Feline Morbillivirus Infects Primary Cells of the Lung, Kidney, Brain and Peripheral Blood. Viruses 2019; 11:v11020146. [PMID: 30744110 PMCID: PMC6410220 DOI: 10.3390/v11020146] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Paramyxoviruses comprise a large number of diverse viruses which in part give rise to severe diseases in affected hosts. A new genotype of feline morbillivirus, tentatively named feline morbillivirus genotype 2 (FeMV-GT2), was isolated from urine of cats with urinary tract diseases. Whole genome sequencing showed about 78% nucleotide homology to known feline morbilliviruses. The virus was isolated in permanent cell lines of feline and simian origin. To investigate the cell tropism of FeMV-GT2 feline primary epithelial cells from the kidney, the urinary bladder and the lung, peripheral blood mononuclear cells (PBMC), as well as organotypic brain slice cultures were used for infection experiments. We demonstrate that FeMV-GT2 is able to infect renal and pulmonary epithelial cells, primary cells from the cerebrum and cerebellum, as well as immune cells in the blood, especially CD4⁺ T cells, CD20⁺ B cells and monocytes. The cats used for virus isolation shed FeMV-GT2 continuously for several months despite the presence of neutralizing antibodies in the blood. Our results point towards the necessity of increased awareness for this virus when clinical signs of the aforementioned organs are encountered in cats which cannot be explained by other etiologies.
Collapse
|
42
|
Ide N, Ye R, Courbebaisse M, Olauson H, Densmore MJ, Larsson TE, Hanai JI, Lanske B. In vivo evidence for an interplay of FGF23/Klotho/PTH axis on the phosphate handling in renal proximal tubules. Am J Physiol Renal Physiol 2018; 315:F1261-F1270. [PMID: 29993278 PMCID: PMC6293295 DOI: 10.1152/ajprenal.00650.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 02/05/2023] Open
Abstract
Phosphate homeostasis is primarily maintained in the renal proximal tubules, where the expression of sodium/phosphate cotransporters (Npt2a and Npt2c) is modified by the endocrine actions of both fibroblast growth factor 23 (FGF23) and parathyroid hormone (PTH). However, the specific contribution of each regulatory pathway in the proximal tubules has not been fully elucidated in vivo. We have previously demonstrated that proximal tubule-specific deletion of the FGF23 coreceptor Klotho results in mild hyperphosphatemia with little to no change in serum levels of FGF23, 1,25(OH)2D3, and PTH. In the present study, we characterized mice in which the PTH receptor PTH1R was specifically deleted from the proximal tubules, either alone or in combination with Klotho ( PT-PTH1R-/- and PT-PTH1R/KL-/-, respectively). PT-PTH1R-/- mice showed significant increases in serum FGF23 and PTH levels, whereas serum phosphate levels were maintained in the normal range, and Npt2a and Npt2c expression in brush border membrane (BBM) did not change compared with control mice. In contrast, PT-PTH1R/KL-/- mice displayed hyperphosphatemia and an increased abundance of Npt2a and Npt2c in the renal BBM, along with increased circulating FGF23 levels. While serum calcium was normal, 1,25(OH)2D3 levels were significantly decreased, leading to extremely high levels of PTH. Collectively, mice with a deletion of PTH1R alone in proximal tubules results in only minor changes in phosphate regulation, whereas deletion of both PTH1R and Klotho leads to a severe disturbance, including hyperphosphatemia with increased sodium/phosphate cotransporter expression in BBM. These results suggest an important interplay between the PTH/PTH1R and FGF23/Klotho pathways to affect renal phosphate handling in the proximal tubules.
Collapse
MESH Headings
- Animals
- Calcitriol/blood
- Calcium/blood
- Cells, Cultured
- Fibroblast Growth Factor-23
- Fibroblast Growth Factors/blood
- Genetic Predisposition to Disease
- Glucuronidase/deficiency
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Hyperphosphatemia/blood
- Hyperphosphatemia/genetics
- Hyperphosphatemia/physiopathology
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/physiopathology
- Klotho Proteins
- Mice, Inbred C57BL
- Mice, Knockout
- Parathyroid Hormone/blood
- Phenotype
- Phosphates/blood
- Receptor, Parathyroid Hormone, Type 1/deficiency
- Receptor, Parathyroid Hormone, Type 1/genetics
- Renal Reabsorption
- Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism
- Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Noriko Ide
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine , Boston, Massachusetts
| | - Rui Ye
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine , Boston, Massachusetts
- State Key Laboratory of Oral Disease, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University , Chengdu , China
| | - Marie Courbebaisse
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine , Boston, Massachusetts
- Paris Descartes University , Paris , France
| | - Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet , Stockholm , Sweden
| | - Michael J Densmore
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine , Boston, Massachusetts
| | - Tobias E Larsson
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet , Stockholm , Sweden
| | - Jun-Ichi Hanai
- Division of Nephrology, Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Beate Lanske
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine , Boston, Massachusetts
| |
Collapse
|
43
|
Legallais C, Kim D, Mihaila SM, Mihajlovic M, Figliuzzi M, Bonandrini B, Salerno S, Yousef Yengej FA, Rookmaaker MB, Sanchez Romero N, Sainz-Arnal P, Pereira U, Pasqua M, Gerritsen KGF, Verhaar MC, Remuzzi A, Baptista PM, De Bartolo L, Masereeuw R, Stamatialis D. Bioengineering Organs for Blood Detoxification. Adv Healthc Mater 2018; 7:e1800430. [PMID: 30230709 DOI: 10.1002/adhm.201800430] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/23/2018] [Indexed: 12/11/2022]
Abstract
For patients with severe kidney or liver failure the best solution is currently organ transplantation. However, not all patients are eligible for transplantation and due to limited organ availability, most patients are currently treated with therapies using artificial kidney and artificial liver devices. These therapies, despite their relative success in preserving the patients' life, have important limitations since they can only replace part of the natural kidney or liver functions. As blood detoxification (and other functions) in these highly perfused organs is achieved by specialized cells, it seems relevant to review the approaches leading to bioengineered organs fulfilling most of the native organ functions. There, the culture of cells of specific phenotypes on adapted scaffolds that can be perfused takes place. In this review paper, first the functions of kidney and liver organs are briefly described. Then artificial kidney/liver devices, bioartificial kidney devices, and bioartificial liver devices are focused on, as well as biohybrid constructs obtained by decellularization and recellularization of animal organs. For all organs, a thorough overview of the literature is given and the perspectives for their application in the clinic are discussed.
Collapse
Affiliation(s)
- Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Dooli Kim
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Sylvia M. Mihaila
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Marina Figliuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
| | - Barbara Bonandrini
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Simona Salerno
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Fjodor A. Yousef Yengej
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | | | - Pilar Sainz-Arnal
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Instituto Aragonés de Ciencias de la Salud (IACS); 50009 Zaragoza Spain
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Andrea Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd); 28029 Barcelona Spain
- Fundación ARAID; 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; 28040 Madrid Spain. Department of Biomedical and Aerospace Engineering; Universidad Carlos III de Madrid; 28911 Madrid Spain
| | - Loredana De Bartolo
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Rosalinde Masereeuw
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Dimitrios Stamatialis
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
44
|
Popkov VA, Andrianova NV, Manskikh VN, Silachev DN, Pevzner IB, Zorova LD, Sukhikh GT, Plotnikov EY, Zorov DB. Pregnancy protects the kidney from acute ischemic injury. Sci Rep 2018; 8:14534. [PMID: 30266919 PMCID: PMC6162317 DOI: 10.1038/s41598-018-32801-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/14/2018] [Indexed: 01/03/2023] Open
Abstract
A complex analysis of acute kidney injury (AKI) in pregnant women shows that it is caused by the interaction of gestation-associated pathologies and beneficial signaling pathways activated by pregnancy. Studies report an increase in the regeneration of some organs during pregnancy. However, the kidney response to the injury during pregnancy has not been addressed. We investigated the mechanisms of the pregnancy influence on AKI. During pregnancy, the kidneys were shown to be more tolerant to AKI. Pregnant animals showed remarkable preservation of kidney functions after ischemia/reperfusion (I/R) indicated by the decrease of serum creatinine levels. The pregnant rats also demonstrated a significant decrease in kidney injury markers and an increase in protective markers. Two months after the I/R, group of pregnant animals had a decreased level of fibrosis in the kidney tissue. These effects are likely linked to increased cell proliferation after injury: using real-time cell proliferation monitoring we demonstrated that after ischemic injury, cells isolated from pregnant animal kidneys had higher proliferation potential vs. control animals; it was also supported by an increase of proliferation marker PCNA levels in kidneys of pregnant animals. We suggest that these effects are associated with hormonal changes in the maternal organism, since hormonal pseudopregnancy simulated effects of pregnancy.
Collapse
Affiliation(s)
- Vasily A Popkov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Nadezda V Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Vasily N Manskikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Denis N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Irina B Pevzner
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Ljubava D Zorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Gennady T Sukhikh
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia. .,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia. .,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia. .,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia.
| |
Collapse
|
45
|
Lawson JS, Liu HH, Syme HM, Purcell R, Wheeler-Jones CPD, Elliott J. The cat as a naturally occurring model of renal interstitial fibrosis: Characterisation of primary feline proximal tubular epithelial cells and comparative pro-fibrotic effects of TGF-β1. PLoS One 2018; 13:e0202577. [PMID: 30138414 PMCID: PMC6107233 DOI: 10.1371/journal.pone.0202577] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) is common in both geriatric cats and aging humans, and is pathologically characterised by chronic tubulointerstitial inflammation and fibrosis in both species. Cats with CKD may represent a spontaneously occurring, non-rodent animal model of human disease, however little is known of feline renal cell biology. In other species, TGF-β1 signalling in the proximal tubular epithelium is thought to play a key role in the initiation and progression of renal fibrosis. In this study, we first aimed to isolate and characterise feline proximal tubular epithelial cells (FPTEC), comparing them to human primary renal epithelial cells (HREC) and the human proximal tubular cell line HK-2. Secondly, we aimed to examine and compare the effect of human recombinant TGF-β1 on cell proliferation, pro-apoptotic signalling and genes associated with epithelial-to-mesenchymal transition (EMT) in feline and human renal epithelial cells. FPTEC were successfully isolated from cadaverous feline renal tissue, and demonstrated a marker protein expression profile identical to that of HREC and HK-2. Exposure to TGF-β1 (0-10 ng/ml) induced a concentration-dependent loss of epithelial morphology and alterations in gene expression consistent with the occurrence of partial EMT in all cell types. This was associated with transcription of downstream pro-fibrotic mediators, growth arrest in FPTEC and HREC (but not HK-2), and increased apoptotic signalling at high concentrations of TGF- β1. These effects were inhibited by the ALK5 (TGF-β1RI) antagonist SB431542 (5 μM), suggesting they are mediated via the ALK5/TGF-β1RII receptor complex. Taken together, these results suggest that TGF-β1 may be involved in epithelial cell dedifferentiation, growth arrest and apoptosis in feline CKD as in human disease, and that cats may be a useful, naturally occurring model of human CKD.
Collapse
Affiliation(s)
- Jack S. Lawson
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
- * E-mail:
| | - Hui-Hsuan Liu
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Harriet M. Syme
- Clinical Sciences and Services, The Royal Veterinary College, North Mymms, Hatfield, Herts, United Kingdom
| | - Robert Purcell
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | | | - Jonathan Elliott
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| |
Collapse
|
46
|
Przepiorski A, Sander V, Tran T, Hollywood JA, Sorrenson B, Shih JH, Wolvetang EJ, McMahon AP, Holm TM, Davidson AJ. A Simple Bioreactor-Based Method to Generate Kidney Organoids from Pluripotent Stem Cells. Stem Cell Reports 2018; 11:470-484. [PMID: 30033089 PMCID: PMC6092837 DOI: 10.1016/j.stemcr.2018.06.018] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Kidney organoids made from pluripotent stem cells have the potential to revolutionize how kidney development, disease, and injury are studied. Current protocols are technically complex, suffer from poor reproducibility, and have high reagent costs that restrict scalability. To overcome some of these issues, we have established a simple, inexpensive, and robust method to grow kidney organoids in bulk from human induced pluripotent stem cells. Our organoids develop tubular structures by day 8 and show optimal tissue morphology at day 14. A comparison with fetal human kidneys suggests that day-14 organoid tissue most closely resembles late capillary loop stage nephrons. We show that deletion of HNF1B, a transcription factor linked to congenital kidney defects, interferes with tubulogenesis, validating our experimental system for studying renal developmental biology. Taken together, our protocol provides a fast, efficient, and cost-effective method for generating large quantities of human fetal kidney tissue, enabling the study of normal and aberrant kidney development. Technically simple and cost-efficient protocol for kidney organoid generation Tubular organoids are obtained rapidly, with high efficiency, yield, and robustness Organoids contain nephrons that correspond to human fetal nephrons The applicability to model congenital kidney defects is presented
Collapse
Affiliation(s)
- Aneta Przepiorski
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Veronika Sander
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer A Hollywood
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Brie Sorrenson
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Jen-Hsing Shih
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Teresa M Holm
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
47
|
Kim YK, Nam SA, Yang CW. Applications of kidney organoids derived from human pluripotent stem cells. Korean J Intern Med 2018; 33:649-659. [PMID: 29961307 PMCID: PMC6030416 DOI: 10.3904/kjim.2018.198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 12/11/2022] Open
Abstract
The establishment of protocols to differentiate kidney organoids from human pluripotent stem cells provides potential applications of kidney organoids in regenerative medicine. Modeling of renal diseases, drug screening, nephrotoxicity testing of compounds, and regenerative therapy are attractive applications. Although much progress still remains to be made in the development of kidney organoids, recent advances in clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated system 9 (Cas9) genome editing and three-dimensional bioprinting technologies have contributed to the application of kidney organoids in clinical fields. In this section, we review recent advances in the applications of kidney organoids to kidney disease modelling, drug screening, nephrotoxicity testing, and regenerative therapy.
Collapse
Affiliation(s)
- Yong Kyun Kim
- Cell Death Disease Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sun Ah Nam
- Cell Death Disease Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chul Woo Yang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, and Division of Nephrology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Correspondence to Chul Woo Yang, M.D. Convergent Research Consortium for Immunologic Disease and Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6037 Fax: +82-2-22258-6917 E-mail:
| |
Collapse
|
48
|
Ding W, Yousefi K, Shehadeh LA. Isolation, Characterization, And High Throughput Extracellular Flux Analysis of Mouse Primary Renal Tubular Epithelial Cells. J Vis Exp 2018. [PMID: 29985358 PMCID: PMC6101965 DOI: 10.3791/57718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction in the renal tubular epithelial cells (TECs) can lead to renal fibrosis, a major cause of chronic kidney disease (CKD). Therefore, assessing mitochondrial function in primary TECs may provide valuable insight into the bioenergetic status of the cells, providing insight into the pathophysiology of CKD. While there are a number of complex protocols available for the isolation and purification of proximal tubules in different species, the field lacks a cost-effective method optimized for tubular cell isolation without the need for purification. Here, we provide an isolation protocol that allows for studies focusing on both primary mouse proximal and distal renal TECs. In addition to cost-effective reagents and minimal animal procedures required in this protocol, the isolated cells maintain high energy levels after isolation and can be sub-cultured up to four passages, allowing for continuous studies. Furthermore, using a high throughput extracellular flux analyzer, we assess the mitochondrial respiration directly in the isolated TECs in a 96-well plate for which we provide recommendations for the optimization of cell density and compound concentration. These observations suggest that this protocol can be used for renal tubular ex vivo studies with a consistent, well-standardized production of renal TECs. This protocol may have broader future applications to study mitochondrial dysfunction associated with renal disorders for drug discovery or drug characterization purposes.
Collapse
Affiliation(s)
- Wen Ding
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine; Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine
| | - Keyvan Yousefi
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine; Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine
| | - Lina A Shehadeh
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine; Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine; Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine;
| |
Collapse
|
49
|
Feng L, Vujicic S, Dietrich ME, Litbarg N, Setty S, Antoni A, Rauch J, Levine JS. Repeated exposure of epithelial cells to apoptotic cells induces the specific selection of an adaptive phenotype: Implications for tumorigenesis. J Biol Chem 2018; 293:10245-10263. [PMID: 29769319 DOI: 10.1074/jbc.ra117.001290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/08/2018] [Indexed: 11/06/2022] Open
Abstract
The consequences of apoptosis extend beyond the mere death of the cell. We have shown that receptor-mediated recognition of apoptotic target cells by viable kidney proximal tubular epithelial cells (PTECs) inhibits PTEC proliferation, growth, and survival. Here, we tested the hypothesis that continual exposure to apoptotic targets can induce a phenotypic change in responding PTECs, as in other instances of natural selection. In particular, we demonstrate that repeated exposure to apoptotic targets leads to emergence of a PTEC line (denoted BU.MPTSEL) resistant to apoptotic target-induced death. Resistance is exquisitely specific. Not only are BU.MPTSEL responders fully resistant to apoptotic target-induced death (∼85% survival versus <10% survival of nonselected cells) but do so while retaining sensitivity to all other target-induced responses, including inhibition of proliferation and growth. Moreover, the resistance of BU.MPTSEL responders is specific to target-induced apoptosis, as apoptosis in response to other suicidal stimuli occurs normally. Comparison of the signaling events induced by apoptotic target exposure in selected versus nonselected responders indicated that the acquired resistance of BU.MPTSEL cells lies in a regulatory step affecting the generation of the pro-apoptotic protein, truncated BH3 interacting-domain death agonist (tBID), most likely at the level of BID cleavage by caspase-8. This specific adaptation has especial relevance for cancer, in which the prominence and persistence of cell death entail magnification of the post-mortem effects of apoptotic cells. Just as cancer cells acquire specific resistance to chemotherapeutic agents, we propose that cancer cells may also adapt to their ongoing exposure to apoptotic targets.
Collapse
Affiliation(s)
- Lanfei Feng
- From the Section of Nephrology, Department of Medicine, and.,the Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Hospital, Chicago, Illinois 60612
| | - Snezana Vujicic
- From the Section of Nephrology, Department of Medicine, and.,the Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Hospital, Chicago, Illinois 60612
| | | | - Natalia Litbarg
- From the Section of Nephrology, Department of Medicine, and.,the Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Hospital, Chicago, Illinois 60612
| | - Suman Setty
- Department of Pathology, University of Illinois, Chicago, Illinois 60612
| | - Angelika Antoni
- the Department of Biology, Kutztown University of Pennsylvania, Kutztown, Pennsylvania 19530, and
| | - Joyce Rauch
- the Division of Rheumatology, Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Jerrold S Levine
- From the Section of Nephrology, Department of Medicine, and .,the Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Hospital, Chicago, Illinois 60612
| |
Collapse
|
50
|
Drug transporter expression profiling in a three-dimensional kidney proximal tubule in vitro nephrotoxicity model. Pflugers Arch 2018; 470:1311-1323. [DOI: 10.1007/s00424-018-2150-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 01/09/2023]
|