1
|
Renaud EA, Maupin AJM, Besteiro S. Iron‑sulfur cluster biogenesis and function in Apicomplexa parasites. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119876. [PMID: 39547273 DOI: 10.1016/j.bbamcr.2024.119876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Iron‑sulfur cluster are ubiquitous and ancient protein cofactors that support a wide array of essential cellular functions. In eukaryotes, their assembly requires specific and dedicated machineries in each subcellular compartment. Apicomplexans are parasitic protists that are collectively responsible for a significant burden on the health of humans and other animals, and most of them harbor two organelles of endosymbiotic origin: a mitochondrion, and a plastid of high metabolic importance called the apicoplast. Consequently, apicomplexan parasites have distinct iron‑sulfur cluster assembly machineries located to their endosymbiotic organelles, as well as a cytosolic pathway. Recent findings have not only shown the importance of iron‑sulfur cluster assembly for the fitness of these parasites, but also highlighted parasite-specific features that may be promising for the development of targeted anti-parasitic strategies.
Collapse
|
2
|
Quansah N, Sarah C, Yamaryo-Botté Y, Botté CY. Complex Endosymbiosis II: The Nonphotosynthetic Plastid of Apicomplexa Parasites (The Apicoplast) and Its Integrated Metabolism. Methods Mol Biol 2024; 2776:43-62. [PMID: 38502497 DOI: 10.1007/978-1-0716-3726-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Chloroplasts are essential organelles that are responsible for photosynthesis in a wide range of organisms that have colonized all biotopes on Earth such as plants and unicellular algae. Interestingly, a secondary endosymbiotic event of a red algal ancestor gave rise to a group of organisms that have adopted an obligate parasitic lifestyle named Apicomplexa parasites. Apicomplexa parasites are some of the most widespread and poorly controlled pathogens in the world. These infectious agents are responsible for major human diseases such as toxoplasmosis, caused by Toxoplasma gondii, and malaria, caused by Plasmodium spp. Most of these parasites harbor this relict plastid named the apicoplast, which is essential for parasite survival. The apicoplast has lost photosynthetic capacities but is metabolically similar to plant and algal chloroplasts. The apicoplast is considered a novel and important drug target against Apicomplexa parasites. This chapter focuses on the apicoplast of apicomplexa parasites, its maintenance, and its metabolic pathways.
Collapse
Affiliation(s)
- Nyamekye Quansah
- ApicoLipid Team, Institute for Advanced Biosciences, UMR5309, Centre National de la Recherche Scientifique, Université Grenoble Alpes, U1209, Institut National de la Santé et de la Recherche Médicale, Grenoble, France
| | - Charital Sarah
- ApicoLipid Team, Institute for Advanced Biosciences, UMR5309, Centre National de la Recherche Scientifique, Université Grenoble Alpes, U1209, Institut National de la Santé et de la Recherche Médicale, Grenoble, France
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute for Advanced Biosciences, UMR5309, Centre National de la Recherche Scientifique, Université Grenoble Alpes, U1209, Institut National de la Santé et de la Recherche Médicale, Grenoble, France
| | - Cyrille Y Botté
- ApicoLipid Team, Institute for Advanced Biosciences, UMR5309, Centre National de la Recherche Scientifique, Université Grenoble Alpes, U1209, Institut National de la Santé et de la Recherche Médicale, Grenoble, France.
- Centre National de la Recherche Scientifique, Institute for Advanced Biosciences, UMR5309, Université Grenoble Alpes, INSERM, U1209, Grenoble, France.
| |
Collapse
|
3
|
Swift RP, Elahi R, Rajaram K, Liu HB, Prigge ST. The Plasmodium falciparum apicoplast cysteine desulfurase provides sulfur for both iron-sulfur cluster assembly and tRNA modification. eLife 2023; 12:e84491. [PMID: 37166116 PMCID: PMC10219651 DOI: 10.7554/elife.84491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/10/2023] [Indexed: 05/12/2023] Open
Abstract
Iron-sulfur clusters (FeS) are ancient and ubiquitous protein cofactors that play fundamental roles in many aspects of cell biology. These cofactors cannot be scavenged or trafficked within a cell and thus must be synthesized in any subcellular compartment where they are required. We examined the FeS synthesis proteins found in the relict plastid organelle, called the apicoplast, of the human malaria parasite Plasmodium falciparum. Using a chemical bypass method, we deleted four of the FeS pathway proteins involved in sulfur acquisition and cluster assembly and demonstrated that they are all essential for parasite survival. However, the effect that these deletions had on the apicoplast organelle differed. Deletion of the cysteine desulfurase SufS led to disruption of the apicoplast organelle and loss of the organellar genome, whereas the other deletions did not affect organelle maintenance. Ultimately, we discovered that the requirement of SufS for organelle maintenance is not driven by its role in FeS biosynthesis, but rather, by its function in generating sulfur for use by MnmA, a tRNA modifying enzyme that we localized to the apicoplast. Complementation of MnmA and SufS activity with a bacterial MnmA and its cognate cysteine desulfurase strongly suggests that the parasite SufS provides sulfur for both FeS biosynthesis and tRNA modification in the apicoplast. The dual role of parasite SufS is likely to be found in other plastid-containing organisms and highlights the central role of this enzyme in plastid biology.
Collapse
Affiliation(s)
- Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimoreUnited States
- The Johns Hopkins Malaria Research InstituteBaltimoreUnited States
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimoreUnited States
- The Johns Hopkins Malaria Research InstituteBaltimoreUnited States
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimoreUnited States
- The Johns Hopkins Malaria Research InstituteBaltimoreUnited States
| | - Hans B Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimoreUnited States
- The Johns Hopkins Malaria Research InstituteBaltimoreUnited States
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimoreUnited States
- The Johns Hopkins Malaria Research InstituteBaltimoreUnited States
| |
Collapse
|
4
|
Swift RP, Rajaram K, Elahi R, Liu HB, Prigge ST. Roles of Ferredoxin-Dependent Proteins in the Apicoplast of Plasmodium falciparum Parasites. mBio 2021; 13:e0302321. [PMID: 35164549 PMCID: PMC8844926 DOI: 10.1128/mbio.03023-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form a redox system that is hypothesized to play a central role in the maintenance and function of the apicoplast organelle of malaria parasites. The Fd/FNR system provides reducing power to various iron-sulfur cluster (FeS)-dependent proteins in the apicoplast and is believed to help to maintain redox balance in the organelle. While the Fd/FNR system has been pursued as a target for antimalarial drug discovery, Fd, FNR, and the FeS proteins presumably reliant on their reducing power play an unknown role in parasite survival and apicoplast maintenance. To address these questions, we generated genetic deletions of these proteins in a parasite line containing an apicoplast bypass system. Through these deletions, we discovered that Fd, FNR, and certain FeS proteins are essential for parasite survival but found that none are required for apicoplast maintenance. Additionally, we addressed the question of how Fd and its downstream FeS proteins obtain FeS cofactors by deleting the FeS transfer proteins SufA and NfuApi. While individual deletions of these proteins revealed their dispensability, double deletion resulted in synthetic lethality, demonstrating a redundant role in providing FeS clusters to Fd and other essential FeS proteins. Our data support a model in which the reducing power from the Fd/FNR system to certain downstream FeS proteins is essential for the survival of blood-stage malaria parasites but not for organelle maintenance, while other FeS proteins are dispensable for this stage of parasite development. IMPORTANCE Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form one of the few known redox systems in the apicoplast of malaria parasites and provide reducing power to iron-sulfur (FeS) cluster proteins within the organelle. While the Fd/FNR system has been explored as a drug target, the essentiality and roles of this system and the identity of its downstream FeS proteins have not been determined. To answer these questions, we generated deletions of these proteins in an apicoplast metabolic bypass line (PfMev) and determined the minimal set of proteins required for parasite survival. Moving upstream of this pathway, we also generated individual and dual deletions of the two FeS transfer proteins that deliver FeS clusters to Fd and downstream FeS proteins. We found that both transfer proteins are dispensable, but double deletion displayed a synthetic lethal phenotype, demonstrating their functional redundancy. These findings provide important insights into apicoplast biochemistry and drug development.
Collapse
Affiliation(s)
- Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Aw YTV, Seidi A, Hayward JA, Lee J, Makota FV, Rug M, van Dooren GG. A key cytosolic iron-sulfur cluster synthesis protein localizes to the mitochondrion of Toxoplasma gondii. Mol Microbiol 2020; 115:968-985. [PMID: 33222310 DOI: 10.1111/mmi.14651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups on proteins that function in a range of enzymatic and electron transfer reactions. Fe-S cluster synthesis is essential for the survival of all eukaryotes. Independent Fe-S cluster biosynthesis pathways occur in the mitochondrion, plastid, and cytosolic compartments of eukaryotic cells. Little is known about the cytosolic Fe-S cluster biosynthesis in apicomplexan parasites, the causative agents of diseases such as malaria and toxoplasmosis. NBP35 serves as a key scaffold protein on which cytosolic Fe-S clusters assemble, and has a cytosolic localization in most eukaryotes studied thus far. Unexpectedly, we found that the NBP35 homolog of the apicomplexan Toxoplasma gondii (TgNBP35) localizes to the outer mitochondrial membrane, with mitochondrial targeting mediated by an N-terminal transmembrane domain. We demonstrate that TgNBP35 is critical for parasite proliferation, but that, despite its mitochondrial localization, it is not required for Fe-S cluster synthesis in the mitochondrion. Instead, we establish that TgNBP35 is important for the biogenesis of cytosolic Fe-S proteins. Our data are consistent with TgNBP35 playing a central and specific role in cytosolic Fe-S cluster biosynthesis, and imply that the assembly of cytosolic Fe-S clusters occurs on the cytosolic face of the outer mitochondrial membrane in these parasites.
Collapse
Affiliation(s)
- Yi Tong Vincent Aw
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Azadeh Seidi
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jiwon Lee
- Centre for Advanced Microscopy, Australian National University, Canberra, ACT, Australia
| | - F Victor Makota
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Melanie Rug
- Centre for Advanced Microscopy, Australian National University, Canberra, ACT, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
6
|
Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118863. [PMID: 33007329 DOI: 10.1016/j.bbamcr.2020.118863] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Sven A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
7
|
Pala ZR, Saxena V, Saggu GS, Garg S. Recent Advances in the [Fe-S] Cluster Biogenesis (SUF) Pathway Functional in the Apicoplast of Plasmodium. Trends Parasitol 2018; 34:800-809. [PMID: 30064903 DOI: 10.1016/j.pt.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 10/28/2022]
Abstract
Iron-sulfur [Fe-S] clusters are one of the most ancient, ubiquitous, structurally and functionally versatile natural biosynthetic prosthetic groups required by various proteins involved in important metabolic processes. Genome mining and localization studies in Plasmodium have shown two evolutionarily distinct biogenesis pathways: the ISC pathway in mitochondria and the SUF pathway in the apicoplast. In recent years, the myriad efforts made to elucidate the SUF pathway have deciphered the role of various proteins involved in the pathway and their importance for the parasite life cycle in both asexual and sexual stages. This review aims to discuss recent research in the apicoplast [Fe-S] biogenesis pathway from Plasmodium to enhance our current understanding of parasite biology with an overall aim to identify gaps to strengthen our fight against malaria.
Collapse
Affiliation(s)
- Zarna Rajeshkumar Pala
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India
| | - Vishal Saxena
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India
| | - Gagandeep Singh Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergic and Infectious Diseases, National Institute of Health, Rockville, MD, USA
| | - Shilpi Garg
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India.
| |
Collapse
|
8
|
Botté CY, Yamaryo-Botté Y. Complex Endosymbioses II: The Nonphotosynthetic Plastid of Apicomplexa Parasites (The Apicoplast) and Its Integrated Metabolism. Methods Mol Biol 2018; 1829:37-54. [PMID: 29987713 DOI: 10.1007/978-1-4939-8654-5_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Chloroplasts are essential organelles that are responsible for photosynthesis in a wide range of organisms that have colonized all biotopes on Earth such as plants and unicellular algae. Interestingly, a secondary endosymbiotic event of a red algal ancestor gave rise to a group of organisms that have adopted an obligate parasitic lifestyle named Apicomplexa parasites. Apicomplexa parasites are some of the most widespread and poorly controlled pathogens in the world. These infectious agents are responsible for major human diseases such as toxoplasmosis, caused by Toxoplasma gondii, and malaria caused by Plasmodium spp. Most of these parasites harbor this relict plastid named the apicoplast, which is essential for parasite survival. The apicoplast has lost photosynthetic capacities but are metabolically similar to plant and algal chloroplasts. The apicoplast is considered a novel and important drug target against Apicomplexa parasites. This chapter focuses on the apicoplast of apicomplexa parasites, its maintenance, and its metabolic pathways.
Collapse
Affiliation(s)
- Cyrille Y Botté
- ApicoLipid Team, Centre National de la Recherche Scientifique, Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale, UMR5309, U1209, Université Grenoble Alpes, Grenoble, France
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Centre National de la Recherche Scientifique, Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale, UMR5309, U1209, Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
9
|
Charan M, Choudhary HH, Singh N, Sadik M, Siddiqi MI, Mishra S, Habib S. [Fe-S] cluster assembly in the apicoplast and its indispensability in mosquito stages of the malaria parasite. FEBS J 2017; 284:2629-2648. [DOI: 10.1111/febs.14159] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/14/2017] [Accepted: 07/07/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Manish Charan
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| | | | - Nidhi Singh
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| | - Mohammad Sadik
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| | - Mohammad Imran Siddiqi
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| | - Satish Mishra
- Division of Parasitology; CSIR-Central Drug Research Institute; Lucknow India
| | - Saman Habib
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| |
Collapse
|
10
|
Kreutzfeld O, Müller K, Matuschewski K. Engineering of Genetically Arrested Parasites (GAPs) For a Precision Malaria Vaccine. Front Cell Infect Microbiol 2017; 7:198. [PMID: 28620583 PMCID: PMC5450620 DOI: 10.3389/fcimb.2017.00198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Continuous stage conversion and swift changes in the antigenic repertoire in response to acquired immunity are hallmarks of complex eukaryotic pathogens, including Plasmodium species, the causative agents of malaria. Efficient elimination of Plasmodium liver stages prior to blood infection is one of the most promising malaria vaccine strategies. Here, we describe different genetically arrested parasites (GAPs) that have been engineered in Plasmodium berghei, P. yoelii and P. falciparum and compare their vaccine potential. A better understanding of the immunological mechanisms of prime and boost by arrested sporozoites and experimental strategies to enhance vaccine efficacy by further engineering existing GAPs into a more immunogenic form hold promise for continuous improvements of GAP-based vaccines. A critical hurdle for vaccines that elicit long-lasting protection against malaria, such as GAPs, is safety and efficacy in vulnerable populations. Vaccine research should focus on solutions toward turning malaria into a vaccine-preventable disease, which would offer an exciting new path of malaria control.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Katja Müller
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| |
Collapse
|
11
|
Outten FW. Recent advances in the Suf Fe-S cluster biogenesis pathway: Beyond the Proteobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1464-9. [PMID: 25447545 DOI: 10.1016/j.bbamcr.2014.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 01/21/2023]
Abstract
Fe-S clusters play critical roles in cellular function throughout all three kingdoms of life. Consequently, Fe-S cluster biogenesis systems are present in most organisms. The Suf (sulfur formation) system is the most ancient of the three characterized Fe-S cluster biogenesis pathways, which also include the Isc and Nif systems. Much of the first work on the Suf system took place in Gram-negative Proteobacteria used as model organisms. These early studies led to a wealth of biochemical, genetic, and physiological information on Suf function. From those studies we have learned that SufB functions as an Fe-S scaffold in conjunction with SufC (and in some cases SufD). SufS and SufE together mobilize sulfur for cluster assembly and SufA traffics the complete Fe-S cluster from SufB to target apo-proteins. However, recent progress on the Suf system in other organisms has opened up new avenues of research and new hypotheses about Suf function. This review focuses primarily on the most recent discoveries about the Suf pathway and where those new models may lead the field. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- F Wayne Outten
- University of South Carolina, Department of Chemistry and Biochemistry, 631 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
12
|
Gile GH, Slamovits CH. Transcriptomic analysis reveals evidence for a cryptic plastid in the colpodellid Voromonas pontica, a close relative of chromerids and apicomplexan parasites. PLoS One 2014; 9:e96258. [PMID: 24797661 PMCID: PMC4010437 DOI: 10.1371/journal.pone.0096258] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/06/2014] [Indexed: 12/20/2022] Open
Abstract
Colpodellids are free-living, predatory flagellates, but their close relationship to photosynthetic chromerids and plastid-bearing apicomplexan parasites suggests they were ancestrally photosynthetic. Colpodellids may therefore retain a cryptic plastid, or they may have lost their plastids entirely, like the apicomplexan Cryptosporidium. To find out, we generated transcriptomic data from Voromonas pontica ATCC 50640 and searched for homologs of genes encoding proteins known to function in the apicoplast, the non-photosynthetic plastid of apicomplexans. We found candidate genes from multiple plastid-associated pathways including iron-sulfur cluster assembly, isoprenoid biosynthesis, and tetrapyrrole biosynthesis, along with a plastid-type phosphate transporter gene. Four of these sequences include the 5' end of the coding region and are predicted to encode a signal peptide and a transit peptide-like region. This is highly suggestive of targeting to a cryptic plastid. We also performed a taxon-rich phylogenetic analysis of small subunit ribosomal RNA sequences from colpodellids and their relatives, which suggests that photosynthesis was lost more than once in colpodellids, and independently in V. pontica and apicomplexans. Colpodellids therefore represent a valuable source of comparative data for understanding the process of plastid reduction in humanity's most deadly parasite.
Collapse
Affiliation(s)
- Gillian H. Gile
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claudio H. Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
13
|
Sulfur mobilization for Fe-S cluster assembly by the essential SUF pathway in the Plasmodium falciparum apicoplast and its inhibition. Antimicrob Agents Chemother 2014; 58:3389-98. [PMID: 24709262 DOI: 10.1128/aac.02711-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plastid of the malaria parasite, the apicoplast, is essential for parasite survival. It houses several pathways of bacterial origin that are considered attractive sites for drug intervention. Among these is the sulfur mobilization (SUF) pathway of Fe-S cluster biogenesis. Although the SUF pathway is essential for apicoplast maintenance and parasite survival, there has been limited biochemical investigation of its components and inhibitors of Plasmodium SUFs have not been identified. We report the characterization of two proteins, Plasmodium falciparum SufS (PfSufS) and PfSufE, that mobilize sulfur in the first step of Fe-S cluster assembly and confirm their exclusive localization to the apicoplast. The cysteine desulfurase activity of PfSufS is greatly enhanced by PfSufE, and the PfSufS-PfSufE complex is detected in vivo. Structural modeling of the complex reveals proximal positioning of conserved cysteine residues of the two proteins that would allow sulfide transfer from the PLP (pyridoxal phosphate) cofactor-bound active site of PfSufS. Sulfide release from the l-cysteine substrate catalyzed by PfSufS is inhibited by the PLP inhibitor d-cycloserine, which forms an adduct with PfSufS-bound PLP. d-Cycloserine is also inimical to parasite growth, with a 50% inhibitory concentration close to that reported for Mycobacterium tuberculosis, against which the drug is in clinical use. Our results establish the function of two proteins that mediate sulfur mobilization, the first step in the apicoplast SUF pathway, and provide a rationale for drug design based on inactivation of the PLP cofactor of PfSufS.
Collapse
|
14
|
Haussig JM, Matuschewski K, Kooij TWA. Identification of vital and dispensable sulfur utilization factors in the Plasmodium apicoplast. PLoS One 2014; 9:e89718. [PMID: 24586983 PMCID: PMC3931816 DOI: 10.1371/journal.pone.0089718] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/23/2014] [Indexed: 11/18/2022] Open
Abstract
Iron-sulfur [Fe-S] clusters are ubiquitous and critical cofactors in diverse biochemical processes. They are assembled by distinct [Fe-S] cluster biosynthesis pathways, typically in organelles of endosymbiotic origin. Apicomplexan parasites, including Plasmodium, the causative agent of malaria, harbor two separate [Fe-S] cluster biosynthesis pathways in the their mitochondrion and apicoplast. In this study, we systematically targeted the five nuclear-encoded sulfur utilization factors (SUF) of the apicoplast [Fe-S] cluster biosynthesis pathway by experimental genetics in the murine malaria model parasite Plasmodium berghei. We show that four SUFs, namely SUFC, D, E, and S are refractory to targeted gene deletion, validating them as potential targets for antimalarial drug development. We achieved targeted deletion of SUFA, which encodes a potential [Fe-S] transfer protein, indicative of a dispensable role during asexual blood stage growth in vivo. Furthermore, no abnormalities were observed during Plasmodium life cycle progression in the insect and mammalian hosts. Fusion of a fluorescent tag to the endogenous P. berghei SUFs demonstrated that all loci were accessible to genetic modification and that all five tagged SUFs localize to the apicoplast. Together, our experimental genetics analysis identifies the key components of the SUF [Fe-S] cluster biosynthesis pathway in the apicoplast of a malarial parasite and shows that absence of SUFC, D, E, or S is incompatible with Plasmodium blood infection in vivo.
Collapse
Affiliation(s)
- Joana M. Haussig
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Taco W. A. Kooij
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
15
|
Abstract
Iron is an essential element for all photosynthetic organisms. The biological use of this transition metal is as an enzyme cofactor, predominantly in electron transfer and catalysis. The main forms of iron cofactor are, in order of decreasing abundance, iron-sulfur clusters, heme, and di-iron or mononuclear iron, with a wide functional range. In plants and algae, iron-sulfur cluster assembly pathways of bacterial origin are localized in the mitochondria and plastids, where there is a high demand for these cofactors. A third iron-sulfur cluster assembly pathway is present in the cytosol that depends on the mitochondria but not on plastid assembly proteins. The biosynthesis of heme takes place mainly in the plastids. The importance of iron-sulfur cofactors beyond photosynthesis and respiration has become evident with recent discoveries of novel iron-sulfur proteins involved in epigenetics and DNA metabolism. In addition, increased understanding of intracellular iron trafficking is opening up research into how iron is distributed between iron cofactor assembly pathways and how this distribution is regulated.
Collapse
Affiliation(s)
- Janneke Balk
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| | | |
Collapse
|
16
|
Improved efficacy of fosmidomycin against Plasmodium and Mycobacterium species by combination with the cell-penetrating peptide octaarginine. Antimicrob Agents Chemother 2013; 57:4689-98. [PMID: 23856773 DOI: 10.1128/aac.00427-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cellular drug delivery can improve efficacy and render intracellular pathogens susceptible to compounds that cannot permeate cells. The transport of physiologically active compounds across membranes into target cells can be facilitated by cell-penetrating peptides (CPPs), such as oligoarginines. Here, we investigated whether intracellular delivery of the drug fosmidomycin can be improved by combination with the CPP octaarginine. Fosmidomycin is an antibiotic that inhibits the second reaction in the nonmevalonate pathway of isoprenoid biosynthesis, an essential pathway for many obligate intracellular pathogens, including mycobacteria and apicomplexan parasites. We observed a strict correlation between octaarginine host cell permeability and its ability to improve the efficacy of fosmidomycin. Plasmodium berghei liver-stage parasites were only partially susceptible to an octaarginine-fosmidomycin complex. Similarly, Toxoplasma gondii was only susceptible during the brief extracellular stages. In marked contrast, a salt complex of octaarginine and fosmidomycin greatly enhanced efficacy against blood-stage Plasmodium falciparum. This complex and a covalently linked conjugate of octaarginine and fosmidomycin also reverted resistance of Mycobacteria to fosmidomycin. These findings provide chemical genetic evidence for vital roles of the nonmevalonate pathway of isoprenoid biosynthesis in a number of medically relevant pathogens. Our results warrant further investigation of octaarginine as a delivery vehicle and alternative fosmidomycin formulations for malaria and tuberculosis drug development.
Collapse
|