1
|
Goldman DM, Warbeck CB, Karlsen MC. Protein Requirements for Maximal Muscle Mass and Athletic Performance Are Achieved with Completely Plant-Based Diets Scaled to Meet Energy Needs: A Modeling Study in Professional American Football Players. Nutrients 2024; 16:1903. [PMID: 38931258 PMCID: PMC11206900 DOI: 10.3390/nu16121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
American football players consume large quantities of animal-sourced protein in adherence with traditional recommendations to maximize muscle development and athletic performance. This contrasts with dietary guidelines, which recommend reducing meat intake and increasing consumption of plant-based foods to promote health and reduce the risk of chronic disease. The capacity of completely plant-based diets to meet the nutritional needs of American football players has not been studied. This modeling study scaled dietary data from a large cohort following completely plant-based diets to meet the energy requirements of professional American football players to determine whether protein, leucine, and micronutrient needs for physical performance and health were met. The Cunningham equation was used to estimate calorie requirements. Nutrient intakes from the Adventist Health Study 2 were then scaled to this calorie level. Protein values ranged from 1.6-2.2 g/kg/day and leucine values ranged from 3.8-4.1 g/meal at each of four daily meals, therefore meeting and exceeding levels theorized to maximize muscle mass, muscle strength, and muscle protein synthesis, respectively. Plant-based diets scaled to meet the energy needs of professional American football players satisfied protein, leucine, and micronutrient requirements for muscle development and athletic performance. These findings suggest that completely plant-based diets could bridge the gap between dietary recommendations for chronic disease prevention and athletic performance in American football players.
Collapse
Affiliation(s)
- David M. Goldman
- Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
- Department of Research and Development, Metabite Inc., New York, NY 10036, USA
| | - Cassandra B. Warbeck
- Department of Family Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Micaela C. Karlsen
- Department of Research, American College of Lifestyle Medicine, Chesterfield, MO 63006, USA;
- Departments of Applied Nutrition and Global Public Health, Adjunct Faculty, University of New England, Biddeford, ME 04005, USA
| |
Collapse
|
2
|
Pavis GF, Abdelrahman DR, Murton AJ, Wall BT, Stephens FB, Dirks ML. Nasogastric bolus administration of a protein-rich drink augments insulinaemia and aminoacidaemia but not whole-body protein turnover or muscle protein synthesis versus oral administration. Clin Sci (Lond) 2024; 138:43-60. [PMID: 38112515 DOI: 10.1042/cs20231126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Nasogastric feeding of protein-rich liquids is a nutritional support therapy that attenuates muscle mass loss. However, whether administration via a nasogastric tube per se augments whole-body or muscle protein anabolism compared with oral administration is unknown. Healthy participants were administered a protein-rich drink (225 ml containing 21 g protein) orally (ORAL; n=13; age 21 ± 1 year; BMI 22.2 ± 0.6 kg·m-2) or via a nasogastric tube (NG; n=13; age 21 ± 1 yr; BMI 23.9 ± 0.9 kg·m-2) in a parallel group design, balanced for sex. L-[ring-2H5]-phenylalanine and L-[3,3-2H2]-tyrosine were infused to measure postabsorptive and postprandial whole-body protein turnover. Skeletal muscle biopsies were collected at -120, 0, 120 and 300 min relative to drink administration to quantify temporal myofibrillar fractional synthetic rates (myoFSR). Drink administration increased serum insulin and plasma amino acid concentrations, and to a greater extent and duration in NG versus ORAL (all interactions P<0.05). Drink administration increased whole-body protein synthesis (P<0.01), suppressed protein breakdown (P<0.001), and created positive net protein balance (P<0.001), but to a similar degree in ORAL and NG (interactions P>0.05). Drink administration increased myoFSR from the postabsorptive state (P<0.01), regardless of route of administration in ORAL and in NG (interaction P>0.05). Nasogastric bolus administration of a protein-rich drink induces insulinaemia and aminoacidaemia to a greater extent than oral administration, but the postprandial increase in whole-body protein turnover and muscle protein synthesis was equivalent between administration routes. Nasogastric administration is a potent intervention to increase postprandial amino acid availability. Future work should assess its utility in overcoming impaired sensitivity to protein feeding, such as that seen in ageing, disuse, and critical care.
Collapse
Affiliation(s)
- George F Pavis
- Nutritional Physiology Group, Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, U.K
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, U.S.A
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, U.S.A
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, U.S.A
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, U.S.A
| | - Benjamin T Wall
- Nutritional Physiology Group, Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, U.K
| | - Francis B Stephens
- Nutritional Physiology Group, Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, U.K
| | - Marlou L Dirks
- Nutritional Physiology Group, Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, U.K
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
3
|
Mazzulla M, Hodson N, West DWD, Kumbhare DA, Moore DR. A non-invasive 13CO2 breath test detects differences in anabolic sensitivity with feeding and heavy resistance exercise in healthy young males: a randomized control trial. Appl Physiol Nutr Metab 2022; 47:860-870. [PMID: 35609328 DOI: 10.1139/apnm-2021-0808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There are limited tools to measure anabolic sensitivity non-invasively in response to acute physiological stimuli, which represents a challenge for research in free-living settings and vulnerable populations. We tested the ability of a stable isotope breath test to detect changes in leucine oxidation (OX) and leucine retention (intake - OX) across a range of anabolic sensitivities. Healthy males ingested a beverage containing 0.25 g·kg-1 protein and 0.75 g·kg-1 carbohydrate with the leucine content enriched to 5% with L-[1-13C]leucine at rest (FED) or after a bout of resistance exercise (EXFED), with a parallel group consuming only the tracer (FAST). Concurrent primed-constant infusions of L-[5,5,5-2H3]leucine revealed high peripheral bioavailability for FED (~81%), EXFED (~80%), and FAST (~117%). After beverage ingestion, whole-body protein synthesis was greater in FED and EXFED than FAST. OX was greater in FED and EXFED than FAST, with EXFED lower than FED. Leucine retention demonstrated expected physiological differences in anabolic sensitivity (EXFED > FED > FAST). We demonstrated that a non-invasive breath test based on an amino acid (leucine) that is preferentially metabolized in peripheral (muscle) tissues can detect differences in anabolic sensitivity. Future studies could examine this test within a variety of populations experiencing muscle growth or atrophy. Novelty Bullets • An oral L-[1-13C]leucine breath test can detect greater anabolic sensitivity after feeding and resistance exercise. • This tool may be applied in growing (e.g., children) or wasting (e.g. aging) populations where invasive procedures are not possible.
Collapse
Affiliation(s)
| | - Nathan Hodson
- University of Toronto, 7938, Faculty of Kinesiology and Physical Education, Toronto, Ontario, Canada;
| | - Daniel W D West
- University of Toronto, 7938, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, 7961, Toronto, Ontario, Canada;
| | - Dinesh A Kumbhare
- Toronto Rehabilitation Institute, 7961, Medicine, Toronto, Ontario, Canada.,University of Toronto Faculty of Kinesiology and Physical Education, 177420, Toronto, Ontario, Canada;
| | - Daniel R Moore
- CAN, 7641, Department of Exercise Sciences, Stockholm, Sweden;
| |
Collapse
|
4
|
Zhu Y, Bu D, Ma L. Integration of Multiplied Omics, a Step Forward in Systematic Dairy Research. Metabolites 2022; 12:metabo12030225. [PMID: 35323668 PMCID: PMC8955540 DOI: 10.3390/metabo12030225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Due to their unique multi-gastric digestion system highly adapted for rumination, dairy livestock has complicated physiology different from monogastric animals. However, the microbiome-based mechanism of the digestion system is congenial for biology approaches. Different omics and their integration have been widely applied in the dairy sciences since the previous decade for investigating their physiology, pathology, and the development of feed and management protocols. The rumen microbiome can digest dietary components into utilizable sugars, proteins, and volatile fatty acids, contributing to the energy intake and feed efficiency of dairy animals, which has become one target of the basis for omics applications in dairy science. Rumen, liver, and mammary gland are also frequently targeted in omics because of their crucial impact on dairy animals’ energy metabolism, production performance, and health status. The application of omics has made outstanding contributions to a more profound understanding of the physiology, etiology, and optimizing the management strategy of dairy animals, while the multi-omics method could draw information of different levels and organs together, providing an unprecedented broad scope on traits of dairy animals. This article reviewed recent omics and multi-omics researches on physiology, feeding, and pathology on dairy animals and also performed the potential of multi-omics on systematic dairy research.
Collapse
Affiliation(s)
- Yingkun Zhu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- School of Agriculture & Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR), and World Agroforestry Center (ICRAF), Beijing 100193, China
- Correspondence: (D.B.); (L.M.)
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: (D.B.); (L.M.)
| |
Collapse
|
5
|
Abou Sawan S, Hodson N, Tinline-Goodfellow C, West DWD, Malowany JM, Kumbhare D, Moore DR. Incorporation of Dietary Amino Acids Into Myofibrillar and Sarcoplasmic Proteins in Free-Living Adults Is Influenced by Sex, Resistance Exercise, and Training Status. J Nutr 2021; 151:3350-3360. [PMID: 34486662 DOI: 10.1093/jn/nxab261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Acute exercise increases the incorporation of dietary amino acids into de novo myofibrillar proteins after a single meal in controlled laboratory studies in males. It is unclear whether this extends to free-living settings or is influenced by training or sex. OBJECTIVES We determined the effects of exercise, training status, and sex on 24-hour free-living dietary phenylalanine incorporation into skeletal muscle proteins. METHODS In a parallel group design, recreationally active males (mean ± SD age, 23 ± 3 years; BMI. 23.4 ± 2.9 kg/m2; n = 10) and females (age 24 ± 5 years; BMI, 23.1 ± 3.9 kg/m2; n = 9) underwent 8 weeks of whole-body resistance exercise 3 times a week. Controlled diets containing 1.6 g/kg-1/d-1 (amino acids modelled after egg), enriched to 10% with [13C6] or [2H5]phenylalanine, were consumed before and after an acute bout of resistance exercise. Fasted muscle biopsies were obtained before [untrained, pre-exercise condition (REST ] and 24 hours after an acute bout of resistance exercise in untrained (UT) and trained (T) states to determine dietary phenylalanine incorporation into myofibrillar (ΔMyo) and sarcoplasmic (ΔSarc) proteins, intracellular mechanistic target of rapamycin (mTOR) colocalization with ulex europaeus agglutinin-1 (UEA-1; capillary marker; immunofluorescence), and amino acid transporter expression (Western blotting). RESULTS The ΔMyo values were ∼62% greater (P < 0.01) in females than males at REST. The ΔMyo values increased above REST by ∼51% during UT and ∼30% in T (both P < 0.01) in males, remained unchanged in females during UT, and were ∼33% lower at T when compared to UT (P = 0.013). Irrespective of sex, ΔMyo and ΔSarc were decreased at T compared to UT (P ≤ 0.026). Resistance training increased mTOR colocalization with UEA-1 (P = 0.004), while L amino acid transporter 1, which was greater in males (P < 0.01), and sodium-coupled neutral amino acid transporter 2 protein expression were not affected by acute exercise (P ≥ 0.33) or training (P ≥ 0.45). CONCLUSIONS The exercise-induced incorporation of dietary phenylalanine into myofibrillar and sarcoplasmic proteins is attenuated after training regardless of sex, suggesting a reduced reliance on dietary amino acids for postexercise skeletal muscle remodeling in the T state.
Collapse
Affiliation(s)
- Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, Toronto, Canada
| | - Julia M Malowany
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Weijzen MEG, van Gassel RJJ, Kouw IWK, Trommelen J, Gorissen SHM, van Kranenburg J, Goessens JPB, van de Poll MCG, Verdijk LB, van Loon LJC. Ingestion of Free Amino Acids Compared with an Equivalent Amount of Intact Protein Results in More Rapid Amino Acid Absorption and Greater Postprandial Plasma Amino Acid Availability Without Affecting Muscle Protein Synthesis Rates in Young Adults in a Double-Blind Randomized Trial. J Nutr 2021; 152:59-67. [PMID: 34642762 PMCID: PMC8754581 DOI: 10.1093/jn/nxab305] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The rate of protein digestion and amino acid absorption determines the postprandial rise in circulating amino acids and modulates postprandial muscle protein synthesis rates. OBJECTIVE We sought to compare protein digestion, amino acid absorption kinetics, and the postprandial muscle protein synthetic response following ingestion of intact milk protein or an equivalent amount of free amino acids. METHODS Twenty-four healthy, young participants (mean ± SD age: 22 ± 3 y and BMI 23 ± 2 kg/m2; sex: 12 male and 12 female participants) received a primed continuous infusion of l-[ring-2H5]-phenylalanine and l-[ring-3,5-2H2]-tyrosine, after which they ingested either 30 g intrinsically l-[1-13C]-phenylalanine-labeled milk protein or an equivalent amount of free amino acids labeled with l-[1-13C]-phenylalanine. Blood samples and muscle biopsies were obtained to assess protein digestion and amino acid absorption kinetics (secondary outcome), whole-body protein net balance (secondary outcome), and mixed muscle protein synthesis rates (primary outcome) throughout the 6-h postprandial period. RESULTS Postprandial plasma amino acid concentrations increased after ingestion of intact milk protein and free amino acids (both P < 0.001), with a greater increase following ingestion of the free amino acids than following ingestion of intact milk protein (P-time × treatment < 0.001). Exogenous phenylalanine release into plasma, assessed over the 6-h postprandial period, was greater with free amino acid ingestion (76 ± 9%) than with milk protein treatment (59 ± 10%; P < 0.001). Ingestion of free amino acids and intact milk protein increased mixed muscle protein synthesis rates (P-time < 0.001), with no differences between treatments (from 0.037 ± 0.015%/h to 0.053 ± 0.014%/h and 0.039 ± 0.016%/h to 0.051 ± 0.010%/h, respectively; P-time × treatment = 0.629). CONCLUSIONS Ingestion of a bolus of free amino acids leads to more rapid amino acid absorption and greater postprandial plasma amino acid availability than ingestion of an equivalent amount of intact milk protein. Ingestion of free amino acids may be preferred over ingestion of intact protein in conditions where protein digestion and amino acid absorption are compromised.
Collapse
Affiliation(s)
- Michelle E G Weijzen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Rob J J van Gassel
- Department of Intensive Care Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands,Department of Surgery, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Imre W K Kouw
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jorn Trommelen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Stefan H M Gorissen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Janneau van Kranenburg
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joy P B Goessens
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marcel C G van de Poll
- Department of Intensive Care Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands,Department of Surgery, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | |
Collapse
|
7
|
Hermans WJH, Senden JM, Churchward-Venne TA, Paulussen KJM, Fuchs CJ, Smeets JSJ, van Loon JJA, Verdijk LB, van Loon LJC. Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. Am J Clin Nutr 2021; 114:934-944. [PMID: 34020450 PMCID: PMC8408844 DOI: 10.1093/ajcn/nqab115] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/16/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Insects have recently been identified as a more sustainable protein-dense food source and may represent a viable alternative to conventional animal-derived proteins. OBJECTIVES We aimed to compare the impacts of ingesting lesser mealworm- and milk-derived protein on protein digestion and amino acid absorption kinetics, postprandial skeletal muscle protein synthesis rates, and the incorporation of dietary protein-derived amino acids into de novo muscle protein at rest and during recovery from exercise in vivo in humans. METHODS In this double-blind randomized controlled trial, 24 healthy, young men ingested 30 g specifically produced, intrinsically l-[1-13C]-phenylalanine and l-[1-13C]-leucine labeled lesser mealworm- or milk-derived protein after a unilateral bout of resistance-type exercise. Primed continuous l-[ring-2H5]-phenylalanine, l-[ring-3,5-2H2]-tyrosine, and l-[1-13C]-leucine infusions were applied, with frequent collection of blood and muscle tissue samples. RESULTS A total of 73% ± 7% and 77% ± 7% of the lesser mealworm and milk protein-derived phenylalanine was released into the circulation during the 5 h postprandial period, respectively, with no significant differences between groups (P < 0.05). Muscle protein synthesis rates increased after both lesser mealworm and milk protein concentrate ingestion from 0.025 ± 0.008%/h to 0.045 ± 0.017%/h and 0.028 ± 0.010%/h to 0.056 ± 0.012%/h at rest and from 0.025 ± 0.012%/h to 0.059 ± 0.015%/h and 0.026 ± 0.009%/h to 0.073 ± 0.020%/h after exercise, respectively (all P < 0.05), with no differences between groups (both P > 0.05). Incorporation of mealworm and milk protein-derived l-[1-13C]-phenylalanine into de novo muscle protein was greater after exercise than at rest (P < 0.05), with no differences between groups (P > 0.05). CONCLUSIONS Ingestion of a meal-like amount of lesser mealworm-derived protein is followed by rapid protein digestion and amino acid absorption and increases muscle protein synthesis rates both at rest and during recovery from exercise. The postprandial protein handling of lesser mealworm does not differ from ingesting an equivalent amount of milk protein concentrate in vivo in humans.This trial was registered at www.trialregister.nl as NL6897.
Collapse
Affiliation(s)
- Wesley J H Hermans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tyler A Churchward-Venne
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kevin J M Paulussen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | |
Collapse
|
8
|
Gut amino acid absorption in humans: Concepts and relevance for postprandial metabolism. CLINICAL NUTRITION OPEN SCIENCE 2021. [DOI: 10.1016/j.nutos.2020.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
9
|
Comprehensive assessment of post-prandial protein handling by the application of intrinsically labelled protein in vivo in human subjects. Proc Nutr Soc 2021; 80:221-229. [PMID: 33487181 DOI: 10.1017/s0029665120008034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
All human tissues are in a constant state of remodelling, regulated by the balance between tissue protein synthesis and breakdown rates. It has been well-established that protein ingestion stimulates skeletal muscle and whole-body protein synthesis. Stable isotope-labelled amino acid methodologies are commonly applied to assess the various aspects of protein metabolism in vivo in human subjects. However, to achieve a more comprehensive assessment of post-prandial protein handling in vivo in human subjects, intravenous stable isotope-labelled amino acid infusions can be combined with the ingestion of intrinsically labelled protein and the collection of blood and muscle tissue samples. The combined application of ingesting intrinsically labelled protein with continuous intravenous stable isotope-labelled amino acid infusion allows the simultaneous assessment of protein digestion and amino acid absorption kinetics (e.g. release of dietary protein-derived amino acids into the circulation), whole-body protein metabolism (whole-body protein synthesis, breakdown and oxidation rates and net protein balance) and skeletal muscle metabolism (muscle protein fractional synthesis rates and dietary protein-derived amino acid incorporation into muscle protein). The purpose of this review is to provide an overview of the various aspects of post-prandial protein handling and metabolism with a focus on insights obtained from studies that have applied intrinsically labelled protein under a variety of conditions in different populations.
Collapse
|
10
|
Abstract
All tissues are in a constant state of turnover, with a tightly controlled regulation of protein synthesis and breakdown rates. Due to the relative ease of sampling skeletal muscle tissue, basal muscle protein synthesis rates and the protein synthetic responses to various anabolic stimuli have been well defined in human subjects. In contrast, only limited data are available on tissue protein synthesis rates in other organs. Several organs such as the brain, liver and pancreas, show substantially higher (basal) protein synthesis rates when compared to skeletal muscle tissue. Such data suggest that these tissues may also possess a high level of plasticity. It remains to be determined whether protein synthesis rates in these tissues can be modulated by external stimuli. Whole-body protein synthesis rates are highly responsive to protein intake. As the contribution of muscle protein synthesis rates to whole-body protein synthesis rates is relatively small considering the large amount of muscle mass, this suggests that other organ tissues may also be responsive to (protein) feeding. Whole-body protein synthesis rates in the fasted or fed state can be quantified by measuring plasma amino acid kinetics, although this requires the production of intrinsically labelled protein. Protein intake requirements to maximise whole-body protein synthesis may also be determined by the indicator amino acid oxidation technique, but the technique does not allow the assessment of actual protein synthesis and breakdown rates. Both approaches have several other methodological and inferential limitations that will be discussed in detail in this paper.
Collapse
|
11
|
Case Study: Body Composition Changes Resulting from a Nutritional Intervention on a Professional Vegan Powerlifter. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Powerlifting is a weight-class strength sport where achieving low fat mass (FM) and high fat-free mass (FFM) is desirable to improve performance. Recent studies have evaluated the nutritional considerations of different eating patterns, such as vegan diets (VD), in athlete populations. VD are a challenge for athletes who want to attain body composition changes. The aim of this case study is to report on the body composition changes and subjective feelings of a male professional vegan powerlifter following VD for six weeks. The body mass of the powerlifter decreased from 79.3 to 77.4 kg (2.39%). Along with this, FM decreased from 15.0 to 11.4 kg (24%). Conversely, FFM increased from 64.3 to 66.0 kg (2.64%). Moreover, the powerlifter communicated no subjective feelings of low energy availability during training sessions. The VD might compromise adherence in a nutritional intervention which aims to improve body composition due to the nutritional requirements for fat loss. Therefore, more appropriate health assessments, including blood and psychological tests, are required for professional athletes. This short-term VD intervention was satisfactory for improving body composition and no adverse outcomes were reported.
Collapse
|
12
|
Sun HZ, Zhou M, Wang O, Chen Y, Liu JX, Guan LL. Multi-omics reveals functional genomic and metabolic mechanisms of milk production and quality in dairy cows. Bioinformatics 2020; 36:2530-2537. [PMID: 31873721 DOI: 10.1093/bioinformatics/btz951] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/04/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Enhancing the utilization of human-inedible crop by-products by ruminants to produce high-quality milk for human consumption is an emerging global task. We performed a multi-omics-based study to decipher the regulatory biological processes of milk production when cows fed low-quality crop by-products with the aim to improve their utilization. RESULTS Seven types of different high-throughput omics data were generated across three central organs [rumen, liver and mammary gland (MG)] and biofluids (rumen fluid and blood) that involved in milk production. The integrated multi-omics analysis including metabolomics, metagenomics and transcriptomics showed altered microbiome at compositional and functional levels, microbial metabolites in the rumen, down-regulated genes and associated functions in liver and MG. These changes simultaneously contributed to down-regulated three key metabolic nodes (propionate, glucose and amino acid) across these organs and biofluids that led to lowered milk yield and quality when cows consumed corn stover (CS). Hippuric acid was identified as a biomarker that led to low milk production in CS-fed cows, suggesting a future evaluation parameter related to the metabolic mechanism of low-quality forage utilization. This study unveils the milk production-related biological mechanism across different biofluids and tissues under a low-quality forage diet, which provides a novel understanding and potential improvement strategies for future crop by-products utilization and sustainable ruminant production. AVAILABILITY AND IMPLEMENTATION The raw files of metagenomics, metabolomics, and transcriptomics data can be accessed at NCBI SRA (No. SRR5028206), EMBI-EBI (No. MTBLS411), and GEO (NO. GSE78524) databases respectively. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hui-Zeng Sun
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China.,Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Mi Zhou
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Ou Wang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Yanhong Chen
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Jian-Xin Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Le Luo Guan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
13
|
Gorissen SHM, Trommelen J, Kouw IWK, Holwerda AM, Pennings B, Groen BBL, Wall BT, Churchward-Venne TA, Horstman AMH, Koopman R, Burd NA, Fuchs CJ, Dirks ML, Res PT, Senden JMG, Steijns JMJM, de Groot LCPGM, Verdijk LB, van Loon LJC. Protein Type, Protein Dose, and Age Modulate Dietary Protein Digestion and Phenylalanine Absorption Kinetics and Plasma Phenylalanine Availability in Humans. J Nutr 2020; 150:2041-2050. [PMID: 32069356 PMCID: PMC7398787 DOI: 10.1093/jn/nxaa024] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/16/2019] [Accepted: 01/28/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Dietary protein ingestion stimulates muscle protein synthesis by providing amino acids to the muscle. The magnitude and duration of the postprandial increase in muscle protein synthesis rates are largely determined by dietary protein digestion and amino acid absorption kinetics. OBJECTIVE We assessed the impact of protein type, protein dose, and age on dietary protein digestion and amino acid absorption kinetics in vivo in humans. METHODS We included data from 18 randomized controlled trials with a total of 602 participants [age: 53 ± 23 y; BMI (kg/m2): 24.8 ± 3.3] who consumed various quantities of intrinsically l-[1-13C]-phenylalanine-labeled whey (n = 137), casein (n = 393), or milk (n = 72) protein and received intravenous infusions of l-[ring-2H5]-phenylalanine, which allowed us to assess protein digestion and phenylalanine absorption kinetics and the postprandial release of dietary protein-derived phenylalanine into the circulation. The effect of aging on these processes was assessed in a subset of 82 young (aged 22 ± 3 y) and 83 older (aged 71 ± 5 y) individuals. RESULTS A total of 50% ± 14% of dietary protein-derived phenylalanine appeared in the circulation over a 5-h postprandial period. Casein ingestion resulted in a smaller (45% ± 11%), whey protein ingestion in an intermediate (57% ± 10%), and milk protein ingestion in a greater (65% ± 13%) fraction of dietary protein-derived phenylalanine appearing in the circulation (P < 0.001). The postprandial availability of dietary protein-derived phenylalanine in the circulation increased with the ingestion of greater protein doses (P < 0.05). Protein digestion and phenylalanine absorption kinetics were attenuated in older when compared with young individuals, with 45% ± 10% vs. 51% ± 14% of dietary protein-derived phenylalanine appearing in the circulation, respectively (P = 0.001). CONCLUSIONS Protein type, protein dose, and age modulate dietary protein digestion and amino acid absorption kinetics and subsequent postprandial plasma amino acid availability in vivo in humans. These trials were registered at clinicaltrials.gov as NCT00557388, NCT00936039, NCT00991523, NCT01317511, NCT01473576, NCT01576848, NCT01578590, NCT01615276, NCT01680146, NCT01820975, NCT01986842, and NCT02596542, and at http://www.trialregister.nl as NTR3638, NTR3885, NTR4060, NTR4429, and NTR4492.
Collapse
Affiliation(s)
- Stefan H M Gorissen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Jorn Trommelen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Imre W K Kouw
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Bart Pennings
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Bart B L Groen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Benjamin T Wall
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Tyler A Churchward-Venne
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Astrid M H Horstman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - René Koopman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Nicholas A Burd
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Marlou L Dirks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Peter T Res
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Joan M G Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | | | | | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands,Address correspondence to LJCvL (e-mail: )
| |
Collapse
|
14
|
Reitelseder S, Tranberg B, Agergaard J, Dideriksen K, Højfeldt G, Merry ME, Storm AC, Poulsen KR, Hansen ET, van Hall G, Lund P, Holm L. Phenylalanine stable isotope tracer labeling of cow milk and meat and human experimental applications to study dietary protein-derived amino acid availability. Clin Nutr 2020; 39:3652-3662. [PMID: 32334880 DOI: 10.1016/j.clnu.2020.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 02/25/2020] [Accepted: 03/20/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND & AIMS Availability of dietary protein-derived amino acids (AA) is an important determinant for their utilization in metabolism and for protein synthesis. Intrinsic labeling of protein is the only method to directly trace availability and utilization. The purpose of the present study was to produce labeled milk and meat proteins and investigate how dietary protein-derived AA availability is affected by the protein-meal matrix. METHODS Four lactating cows were infused with L-[ring-d5]phenylalanine and one with L-[15N]phenylalanine for 72 h. Milk was collected, and three of the [d5]phenylalanine cows were subsequently slaughtered. Two human studies were performed to explore plasma AA availability properties utilizing the labeled proteins. One study compared the intake of whey protein either alone or together with carbohydrates-fat food-matrix. The other study compared the intake of meat hydrolysate with minced beef. Cow blood, milk, meat and human blood samples were collected and analyzed by mass spectrometry. RESULTS Whey and caseinate acquired label to 15-20 mol percent excess (MPE), and the meat proteins reached 0.41-0.73 MPE. The [d5]phenylalanine appeared fast in plasma and peaked 30 min after whey protein alone and meat hydrolysate intake, whereas whey protein with a food-matrix and the meat minced beef postponed the [d5]phenylalanine peak until 2 and 1 h, respectively. CONCLUSIONS Phenylalanine stable isotope-labeled milk and meat were produced and proved a valuable tool to investigate AA absorption characteristics. Dietary protein in food-matrices showed delayed postprandial plasma AA availability as compared to whey protein alone and meat hydrolysate.
Collapse
Affiliation(s)
- Søren Reitelseder
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Britt Tranberg
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.
| | - Jakob Agergaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.
| | - Kasper Dideriksen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.
| | - Grith Højfeldt
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.
| | - Marie Emily Merry
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.
| | - Adam C Storm
- Department of Animal Science, Aarhus University Foulum, Aarhus University, Aarhus, Denmark.
| | | | | | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet.
| | - Peter Lund
- Department of Animal Science, Aarhus University Foulum, Aarhus University, Aarhus, Denmark.
| | - Lars Holm
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
15
|
van Vliet S, Beals JW, Holwerda AM, Emmons RS, Goessens JP, Paluska SA, De Lisio M, van Loon LJC, Burd NA. Time-dependent regulation of postprandial muscle protein synthesis rates after milk protein ingestion in young men. J Appl Physiol (1985) 2019; 127:1792-1801. [PMID: 31725358 DOI: 10.1152/japplphysiol.00608.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The anabolic action of "fast" whey protein on the regulation of postprandial muscle protein synthesis has been established to be short-lived in healthy young adults. We assessed the time course of anabolic signaling activation and stimulation of myofibrillar protein synthesis rates (MPS) after ingestion of a food source that represents a more typical meal-induced pattern of aminoacidemia. Seven young men (age: 22 ± 1 y) underwent repeated blood and biopsy sampling during primed, continuous l-[ring-2H5]phenylalanine and l-[1-13C]leucine tracer infusions and ingested 38 g of l-[1-13C]phenylalanine- and l-[1-13C]leucine-labeled milk protein concentrate. A total of ∼27 ± 4 (∼10 g) and ∼31 ± 1% (∼12 g) of dietary protein-derived amino acids were released in circulation between 0 and 120 min and 120-300 min, respectively, of the postprandial period. l-[ring-2H5]phenylalanine-based MPS increased above basal (0.025 ± 0.008%/h) by ∼75% (0.043 ± 0.009%/h; P = 0.05) between 0 and 120 min and by ∼86% (0.046 ± 0.004%/h; P = 0.02) between 120 and 300 min, respectively. l-[1-13C]leucine-based MPS increased above basal (0.027 ± 0.002%/h) by ∼72% (0.051 ± 0.016%/h; P = 0.10) between 0 and 120 min and by ∼62% (0.047 ± 0.004%/h; P = 0.001) between 120 and 300 min, respectively. Myofibrillar protein-bound l-[1-13C]phenylalanine increased over time (P < 0.001) and equaled 0.004 ± 0.001, 0.008 ± 0.002, 0.017 ± 0.004, and 0.020 ± 0.003 mole percent excess at 60, 120, 180, and 300 min, respectively, of the postprandial period. Milk protein ingestion increased mTORC1 phosphorylation at 120, 180, and 300 min of the postprandial period (all P < 0.05). Our results show that ingestion of 38 g of milk protein results in sustained increases in MPS throughout a 5-h postprandial period in healthy young men.NEW & NOTEWORTHY The stimulation of muscle protein synthesis after whey protein ingestion is short-lived due to its transient systemic appearance of amino acids. Our study characterized the muscle anabolic response to a protein source that results in a more gradual release of amino acids into circulation. Our work demonstrates that a sustained increase in postprandial plasma amino acid availability after milk protein ingestion results in a prolonged stimulation of muscle protein synthesis rates in healthy young men.
Collapse
Affiliation(s)
- Stephan van Vliet
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Joseph W Beals
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Andrew M Holwerda
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Russell S Emmons
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Joy P Goessens
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael De Lisio
- School of Human Kinetics and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
16
|
van Dijk DPJ, Horstman AMH, Smeets JSJ, den Dulk M, Grabsch HI, Dejong CHC, Rensen SS, Olde Damink SWM, van Loon LJC. Tumour-specific and organ-specific protein synthesis rates in patients with pancreatic cancer. J Cachexia Sarcopenia Muscle 2019; 10:549-556. [PMID: 30868736 PMCID: PMC6596396 DOI: 10.1002/jcsm.12419] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/27/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Living tissues maintain a fine balance between protein synthesis and protein breakdown rates. Animal studies indicate that protein synthesis rates are higher in organs when compared with skeletal muscle tissue. As such, organ and tumour protein synthesis could have major effects on whole-body protein metabolism in wasting disorders such as cancer cachexia. We aimed to assess protein synthesis rates in pancreatic tumour tissue and healthy pancreas, liver, and skeletal muscle tissue in vivo in humans. METHODS In eight patients with pancreatic cancer undergoing pancreaticoduodenectomy, primed continuous infusions with L-[ring-13 C6 ]phenylalanine and L-[3,5-2 H2 ]tyrosine were started prior to surgery and continued throughout the surgical procedures. During surgery, plasma samples and biopsies from the pancreas, pancreatic tumour, liver, and vastus lateralis muscle were taken. Post-absorptive fractional protein synthesis rates were determined by measuring incorporation of labelled L-[ring-13 C6 ]phenylalanine in tissue protein using the weighed plasma L-[ring-13 C6 ]phenylalanine enrichments as the precursor pool. RESULTS Five male patients and three female patients with a mean age of 67 ± 2 years were included into this study. Plasma L-[ring-13 C6 ]phenylalanine enrichments (6-9 mole per cent excess) did not change during surgery (P = 0.60). Pancreatic tumour protein synthesis rates were 2.6-fold lower than surrounding pancreatic tissue protein synthesis rates (0.268 ± 0.053 vs. 0.694 ± 0.228%/h, respectively; P = 0.028) and 1.7-fold lower than liver protein synthesis rates (0.268 ± 0.053 vs. 0.448 ± 0.043%/h, respectively; P = 0.046). Among healthy organ samples, protein synthesis rates were 20-fold and 13-fold higher in pancreas and liver, respectively, compared with skeletal muscle tissue (0.694 ± 0.228 and 0.448 ± 0.043 vs. 0.035 ± 0.005%/h, respectively; P < 0.05). CONCLUSIONS Liver and pancreas tissue protein synthesis rates are higher when compared with pancreatic tumour and skeletal muscle tissue protein synthesis rates and can, therefore, strongly impact whole-body protein metabolism in vivo in humans.
Collapse
Affiliation(s)
- David P J van Dijk
- Department of Surgery, Maastricht University, Maastricht, The Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Astrid M H Horstman
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Human Biology and Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Joey S J Smeets
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Human Biology and Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Marcel den Dulk
- Department of Surgery, Maastricht University, Maastricht, The Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Heike I Grabsch
- Department of Pathology, Maastricht University, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Pathology and Data Analytics, School of Medicine, University of Leeds, Leeds, UK
| | - Cornelis H C Dejong
- Department of Surgery, Maastricht University, Maastricht, The Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Sander S Rensen
- Department of Surgery, Maastricht University, Maastricht, The Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University, Maastricht, The Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Human Biology and Movement Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
17
|
Horstman AMH, Kouw IWK, van Dijk JW, Hamer HM, Groen BBL, van Kranenburg J, Gorissen SHM, van Loon LJC. The Muscle Protein Synthetic Response to Whey Protein Ingestion Is Greater in Middle-Aged Women Compared With Men. J Clin Endocrinol Metab 2019; 104:994-1004. [PMID: 30423113 DOI: 10.1210/jc.2018-01734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/07/2018] [Indexed: 02/05/2023]
Abstract
RATIONALE Muscle mass maintenance is largely regulated by the postprandial rise in muscle protein synthesis rates. It remains unclear whether postprandial protein handling differs between women and men. METHODS Healthy men (43 ± 3 years; body mass index, 23.4 ± 0.4 kg/m2; n = 12) and women (46 ± 2 years; body mass index, 21.3 ± 0.5 kg/m2; n = 12) received primed continuous infusions of l-[ring-2H5]-phenylalanine and l-[ring-3,5-2H2]-tyrosine and ingested 25 g intrinsically l-[1-13C]-phenylalanine-labeled whey protein. Blood samples and muscle biopsies were collected to assess dietary protein digestion and amino acid absorption kinetics as well as basal and postprandial myofibrillar protein synthesis rates. RESULTS Plasma phenylalanine and leucine concentrations rapidly increased after protein ingestion (both P < 0.001), with no differences between middle-aged women and men (Time × Sex, P = 0.307 and 0.529, respectively). The fraction of dietary protein-derived phenylalanine that appeared in the circulation over the 5-hour postprandial period averaged 56 ± 1% and 53 ± 1% in women and men, respectively (P = 0.145). Myofibrillar protein synthesis rates increased (Time, P = 0.010) from 0.035 ± 0.004%/h and 0.030 ± 0.002%/h in the postabsorptive state (t test, P = 0.319) to 0.045 ± 0.002%/h and 0.034 ± 0.002%/h in the 5-hour postprandial phase in middle-aged women and men, respectively, with higher postprandial myofibrillar protein synthesis rates in women compared with men (t test, P = 0.005). Middle-aged women showed a greater increase in myofibrillar protein synthesis rates during the early (0 to 2 hours) postprandial period compared with men (Time × Sex, P = 0.001). CONCLUSIONS There are no differences in postabsorptive myofibrillar protein synthesis rates between middle-aged women and men. The myofibrillar protein synthetic response to the ingestion of 25 g whey protein is greater in women than in men.
Collapse
Affiliation(s)
- Astrid M H Horstman
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- TIFN Top Institute Food and Nutrition, Wageningen, Netherlands
| | - Imre W K Kouw
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- TIFN Top Institute Food and Nutrition, Wageningen, Netherlands
| | - Jan-Willem van Dijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- TIFN Top Institute Food and Nutrition, Wageningen, Netherlands
| | - Henrike M Hamer
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- TIFN Top Institute Food and Nutrition, Wageningen, Netherlands
| | - Bart B L Groen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- TIFN Top Institute Food and Nutrition, Wageningen, Netherlands
| | - Janneau van Kranenburg
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- TIFN Top Institute Food and Nutrition, Wageningen, Netherlands
| | - Stefan H M Gorissen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- TIFN Top Institute Food and Nutrition, Wageningen, Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- TIFN Top Institute Food and Nutrition, Wageningen, Netherlands
| |
Collapse
|
18
|
The Muscle Protein Synthetic Response to Meal Ingestion Following Resistance-Type Exercise. Sports Med 2019; 49:185-197. [DOI: 10.1007/s40279-019-01053-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Trommelen J, Kouw IWK, Holwerda AM, Snijders T, Halson SL, Rollo I, Verdijk LB, van Loon LJC. Presleep dietary protein-derived amino acids are incorporated in myofibrillar protein during postexercise overnight recovery. Am J Physiol Endocrinol Metab 2018; 314:E457-E467. [PMID: 28536184 DOI: 10.1152/ajpendo.00273.2016] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine the impact of ingesting 30 g casein protein with and without 2 g free leucine before sleep on myofibrillar protein synthesis rates during postexercise overnight recovery. Thirty-six healthy young men performed a single bout of resistance-type exercise in the evening (1945) after a full day of dietary standardization. Thirty minutes before sleep (2330), subjects ingested 30 g intrinsically l-[1-13C]phenylalanine-labeled protein with (PRO+leu, n = 12) or without (PRO, n = 12) 2 g free leucine, or a noncaloric placebo (PLA, n = 12). Continuous intravenous l-[ ring-2H5]phenylalanine, l-[1-13C]leucine, and l-[ ring-2H2]tyrosine infusions were applied. Blood and muscle tissue samples were collected to assess whole body protein net balance, myofibrillar protein synthesis rates, and overnight incorporation of dietary protein-derived amino acids into myofibrillar protein. Protein ingestion before sleep improved overnight whole body protein net balance ( P < 0.001). Myofibrillar protein synthesis rates did not differ significantly between treatments as assessed by l-[ ring-2H5]phenylalanine (0.057 ± 0.002, 0.055 ± 0.002, and 0.055 ± 0.004%/h for PLA, PRO, and PRO+leu, respectively; means ± SE; P = 0.850) or l-[1-13C]leucine (0.080 ± 0.004, 0.073 ± 0.004, and 0.083 ± 0.006%/h, respectively; P = 0.328). Myofibrillar l-[1-13C]phenylalanine enrichments increased following protein ingestion but did not differ between the PRO and PRO+leu treatments. In conclusion, protein ingestion before sleep improves whole body protein net balance and provides amino acids that are incorporated into myofibrillar protein during sleep. However, the ingestion of 30 g casein protein with or without additional free leucine before sleep does not increase muscle protein synthesis rates during postexercise overnight recovery.
Collapse
Affiliation(s)
- Jorn Trommelen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre , Maastricht , The Netherlands
- Top Institute Food and Nutrition , Wageningen , The Netherlands
| | - Imre W K Kouw
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre , Maastricht , The Netherlands
- Top Institute Food and Nutrition , Wageningen , The Netherlands
| | - Andrew M Holwerda
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre , Maastricht , The Netherlands
- Top Institute Food and Nutrition , Wageningen , The Netherlands
| | - Tim Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Shona L Halson
- Department of Physiology, Australian Institute of Sport, Belconnen, ACT, Australia
| | - Ian Rollo
- Top Institute Food and Nutrition , Wageningen , The Netherlands
- Gatorade Sports Science Institute , Leicester , United Kingdom
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre , Maastricht , The Netherlands
- Top Institute Food and Nutrition , Wageningen , The Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre , Maastricht , The Netherlands
- Top Institute Food and Nutrition , Wageningen , The Netherlands
| |
Collapse
|
20
|
Larsen M, Røntved CM, Theil PK, Khatun M, Lauridsen C, Kristensen NB. Effect of experimentally increased protein supply to postpartum dairy cows on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis. J Anim Sci 2017; 95:2097-2110. [PMID: 28727010 DOI: 10.2527/jas.2016.1055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effect of experimentally increasing the postpartum protein supply on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis was studied using 8 periparturient Holstein cows in a complete randomized design. At calving, cows were assigned to abomasal infusion of water (CTRL) or casein (CAS) in addition to a lactation diet. Casein infusion was gradually decreased from 696 ± 1 g/d at +2 d relative to calving (DRTC) to 212 ± 10 g/d at +29 DRTC to avoid excessive supply. Synthesis rate of plasma proteins was measured at -14, +4, +15, and +29 DRTC by measuring [C]Phe isotopic enrichment in arterial plasma free Phe, total plasma proteins, and albumin after 3, 5, and 7 h of jugular ring[C]Phe infusion. Plasma volume was determined at +4 and +29 DRTC by dilution of a [I]BSA dose. Synthesis rate of tissue protein in biopsied rumen papillae was determined by measuring [C]Phe isotopic enrichment, and mRNA expression of selected genes was measured by real-time qPCR. Total and differential leukocyte counts were performed and immune responsiveness of monocytes was evaluated by tumor necrosis factor ɑ (TNFɑ) concentration on ex vivo whole blood stimulation with Escherichia coli lipopolysaccharide (LPS) and responsiveness of T-lymphocytes by interferon γ (IFNγ) concentration on stimulation with Staphylococcus aureus enterotoxin β (SEB). Further, ELISA plasma concentrations of IgM, IgA, and IgG were determined. The DRTC affected the majority of investigated parameters as expected. The CAS treatment increased milk protein yield (P = 0.04), and tended to lower TNFɑ (P = 0.06), and lowered IFNγ (P = 0.03) responsiveness per monocyte and lymphocyte, respectively, compared with CTRL. Further, fractional synthesis rate of albumin was greater at +4 DRTC for CAS compared with CTRL but did not differ by +29 DRTC (interaction: P = 0.01). In rumen papillae, synthesis rate of tissue protein was greater for CAS compared with CTRL (P < 0.01) and mRNA expression of genes for cell proliferation tended to be or were greater for CAS compared with CTRL (P ≤ 0.07). In conclusion, increased postpartum protein supply seem to enhance vital body functions as interpreted from increased liver synthesis of albumin, increased rumen papillae proliferation, and stabilized the ex vivo inflammatory responsiveness of leukocytes. Further studies are needed to enlighten the importance of increased postpartum protein supply in periparturient cows.
Collapse
|
21
|
Trommelen J, Holwerda AM, Kouw IWK, Langer H, Halson SL, Rollo I, Verdijk LB, VAN Loon LJC. Resistance Exercise Augments Postprandial Overnight Muscle Protein Synthesis Rates. Med Sci Sports Exerc 2017; 48:2517-2525. [PMID: 27643743 DOI: 10.1249/mss.0000000000001045] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION We have previously shown that protein ingestion before sleep increases overnight muscle protein synthesis rates. Whether prior exercise further augments the muscle protein synthetic response to presleep protein ingestion remains to be established. OBJECTIVE This study aimed to assess whether resistance-type exercise performed in the evening increases the overnight muscle protein synthetic response to presleep protein ingestion. METHODS Twenty-four healthy young men were randomly assigned to ingest 30 g intrinsically L-[1-C]-phenylalanine and L-[1-C]-leucine-labeled casein protein before going to sleep with (PRO + EX, n = 12) or without (PRO, n = 12) prior resistance-type exercise performed in the evening. Continuous intravenous L-[ring-H5]-phenylalanine, L-[1-C]-leucine, and L-[ring-H2]-tyrosine infusions were applied. Blood and muscle tissue samples were collected to assess whole-body protein balance, myofibrillar protein synthesis rates, and overnight incorporation of dietary protein-derived amino acids into de novo myofibrillar protein. RESULTS A total of 57% ± 1% of the ingested protein-derived phenylalanine appeared in the circulation during overnight sleep. Overnight myofibrillar protein synthesis rates were 37% (0.055%·h ± 0.002%·h vs. 0.040%·h ± 0.003%·h, P < 0.001, based on L-[ring- H5]-phenylalanine) and 31% (0.073%·h ± 0.004%·h vs. 0.055%·h ± 0.006%·h, P = 0.024, based on L-[1-C]-leucine) higher in PRO + EX compared with PRO. Substantially more of the dietary protein-derived amino acids were incorporated into de novo myofibrillar protein during overnight sleep in PRO + EX compared with PRO (0.026 ± 0.003 vs. 0.015 ± 0.003 molar percent excess, P = 0.012). CONCLUSIONS Resistance-type exercise performed in the evening augments the overnight muscle protein synthetic response to presleep protein ingestion and allows more of the ingested protein-derived amino acids to be used for de novo myofibrillar protein synthesis during overnight sleep.
Collapse
Affiliation(s)
- Jorn Trommelen
- 1NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, THE NETHERLANDS; 2Top Institute Food and Nutrition (TIFN), Wageningen, THE NETHERLANDS; 3AIS Physiology, Australian Institute of Sport, Belconnen, AUSTRALIA; and 4Gatorade Sports Science Institute, Leicester, UNITED KINGDOM
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gorissen SH, Burd NA, Kramer IF, van Kranenburg J, Gijsen AP, Rooyackers O, van Loon LJ. Co-ingesting milk fat with micellar casein does not affect postprandial protein handling in healthy older men. Clin Nutr 2017; 36:429-437. [DOI: 10.1016/j.clnu.2015.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 11/06/2015] [Accepted: 12/11/2015] [Indexed: 01/07/2023]
|
23
|
Gorissen SH, Horstman AM, Franssen R, Kouw IW, Wall BT, Burd NA, de Groot LC, van Loon LJ. Habituation to low or high protein intake does not modulate basal or postprandial muscle protein synthesis rates: a randomized trial. Am J Clin Nutr 2017; 105:332-342. [PMID: 27903518 DOI: 10.3945/ajcn.115.129924] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 10/31/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Muscle mass maintenance is largely regulated by basal muscle protein synthesis rates and the ability to increase muscle protein synthesis after protein ingestion. To our knowledge, no previous studies have evaluated the impact of habituation to either low protein intake (LOW PRO) or high protein intake (HIGH PRO) on the postprandial muscle protein synthetic response. OBJECTIVE We assessed the impact of LOW PRO compared with HIGH PRO on basal and postprandial muscle protein synthesis rates after the ingestion of 25 g whey protein. DESIGN Twenty-four healthy, older men [age: 62 ± 1 y; body mass index (in kg/m2): 25.9 ± 0.4 (mean ± SEM)] participated in a parallel-group randomized trial in which they adapted to either a LOW PRO diet (0.7 g · kg-1 · d-1; n = 12) or a HIGH PRO diet (1.5 g · kg-1 · d-1; n = 12) for 14 d. On day 15, participants received primed continuous l-[ring-2H5]-phenylalanine and l-[1-13C]-leucine infusions and ingested 25 g intrinsically l-[1-13C]-phenylalanine- and l-[1-13C]-leucine-labeled whey protein. Muscle biopsies and blood samples were collected to assess muscle protein synthesis rates as well as dietary protein digestion and absorption kinetics. RESULTS Plasma leucine concentrations and exogenous phenylalanine appearance rates increased after protein ingestion (P < 0.01) with no differences between treatments (P > 0.05). Plasma exogenous phenylalanine availability over the 5-h postprandial period was greater after LOW PRO than after HIGH PRO (61% ± 1% compared with 56% ± 2%, respectively; P < 0.05). Muscle protein synthesis rates increased from 0.031% ± 0.004% compared with 0.039% ± 0.007%/h in the fasted state to 0.062% ± 0.005% compared with 0.057% ± 0.005%/h in the postprandial state after LOW PRO compared with HIGH PRO, respectively (P < 0.01), with no differences between treatments (P = 0.25). CONCLUSION Habituation to LOW PRO (0.7 g · kg-1 · d-1) compared with HIGH PRO (1.5 g · kg-1 · d-1) augments the postprandial availability of dietary protein-derived amino acids in the circulation and does not lower basal muscle protein synthesis rates or increase postprandial muscle protein synthesis rates after ingestion of 25 g protein in older men. This trial was registered at clinicaltrials.gov as NCT01986842.
Collapse
Affiliation(s)
- Stefan Hm Gorissen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands.,Top Institute Food & Nutrition, Wageningen, Netherlands; and
| | - Astrid Mh Horstman
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands.,Top Institute Food & Nutrition, Wageningen, Netherlands; and
| | - Rinske Franssen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Imre Wk Kouw
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Benjamin T Wall
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Nicholas A Burd
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands.,Top Institute Food & Nutrition, Wageningen, Netherlands; and
| | - Lisette Cpgm de Groot
- Top Institute Food & Nutrition, Wageningen, Netherlands; and.,Division of Human Nutrition, Wageningen University, Wageningen, Netherlands
| | - Luc Jc van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands; .,Top Institute Food & Nutrition, Wageningen, Netherlands; and
| |
Collapse
|
24
|
Mobley CB, Mumford PW, McCarthy JJ, Miller ME, Young KC, Martin JS, Beck DT, Lockwood CM, Roberts MD. Whey protein-derived exosomes increase protein synthesis and hypertrophy in C 2-C 12 myotubes. J Dairy Sci 2016; 100:48-64. [PMID: 28341051 DOI: 10.3168/jds.2016-11341] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/01/2016] [Indexed: 12/29/2022]
Abstract
We sought to examine potential amino acid independent mechanisms whereby hydrolyzed whey protein (WP) affects muscle protein synthesis (MPS) and anabolism in vitro. Specifically, we tested (1) whether 3-h and 6-h treatments of WP, essential amino acids, or l-leucine (Leu) affected MPS, and whether 6-h treatments with low-, medium-, or high doses of WP versus Leu affected MPS; (2) whether knockdown of the primary Leu transporter affected WP- and Leu-mediated changes in MPS, mammalian target of rapamycin (mTOR) signaling responses, or both, following 6-h treatments; (3) whether exosomes isolated from WP (WP-EXO) affected MPS, mTOR signaling responses, or both, compared with untreated (control) myotubes, following 6-h, 12-h, and 24-h treatments, and whether they affected myotube diameter following 24-h and 48-h treatments. For all treatments, 7-d post-differentiated C2C12 myotubes were examined. In experiment 1, 6-h WP treatments increased MPS compared with control (+46%), Leu (+24%), and essential amino acids (+25%). Moreover, the 6-h low-, medium-, and high WP treatments increased MPS by approximately 40 to 50% more than corresponding Leu treatments. In experiment 2 (LAT short hairpin RNA-transfected myotubes), 6-h WP treatments increased MPS compared with control (+18%) and Leu (+19%). In experiment 3, WP-EXO treatments increased MPS over controls at 12h (+18%) and 24h (+45%), and myotube diameters increased with 24-h (+24%) and 48-h (+40%) WP-EXO treatments compared with controls. The WP-EXO treatments did not appear to operate through mTOR signaling; instead, they increased mRNA and protein levels o eukaryotic initiation factor 4A. Bovine-specific microRNA following 24-h WP-EXO treatments were enriched in myotubes (chiefly miR-149-3p, miR-2881), but were not related to hypertrophic gene targets. To summarize, hydrolyzed WP-EXO increased skeletal MPS and anabolism in vitro, and this may be related to an unknown mechanism that increases translation initiation factors rather than enhancing mTOR signaling or the involvement of bovine-specific microRNA.
Collapse
Affiliation(s)
| | | | - John J McCarthy
- Department of Physiology, University of Kentucky Medical College of Medicine, Lexington 40506
| | - Michael E Miller
- Harrison School of Pharmacy, Auburn University, Auburn, AL 36849
| | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, AL 36849; Department of Cellular Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn Campus, Auburn, AL 36849
| | - Jeffrey S Martin
- School of Kinesiology, Auburn University, Auburn, AL 36849; Department of Cellular Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn Campus, Auburn, AL 36849
| | - Darren T Beck
- School of Kinesiology, Auburn University, Auburn, AL 36849; Department of Cellular Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn Campus, Auburn, AL 36849
| | | | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849; Department of Cellular Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn Campus, Auburn, AL 36849.
| |
Collapse
|
25
|
Burd NA, Tardif N, Rooyackers O, van Loon LJC. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle. Appl Physiol Nutr Metab 2016; 40:1-9. [PMID: 25494678 DOI: 10.1139/apnm-2014-0211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.
Collapse
Affiliation(s)
- Nicholas A Burd
- a Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
26
|
Wall BT, Dirks ML, Snijders T, van Dijk JW, Fritsch M, Verdijk LB, van Loon LJC. Short-term muscle disuse lowers myofibrillar protein synthesis rates and induces anabolic resistance to protein ingestion. Am J Physiol Endocrinol Metab 2016; 310:E137-47. [PMID: 26578714 DOI: 10.1152/ajpendo.00227.2015] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/11/2015] [Indexed: 01/05/2023]
Abstract
Disuse leads to rapid loss of skeletal muscle mass and function. It has been hypothesized that short successive periods of muscle disuse throughout the lifespan play an important role in the development of sarcopenia. The physiological mechanisms underlying short-term muscle disuse atrophy remain to be elucidated. We assessed the impact of 5 days of muscle disuse on postabsorptive and postprandial myofibrillar protein synthesis rates in humans. Twelve healthy young (22 ± 1 yr) men underwent a 5-day period of one-legged knee immobilization (full leg cast). Quadriceps cross-sectional area (CSA) of both legs was assessed before and after immobilization. Continuous infusions of l-[ring-(2)H5]phenylalanine and l-[1-(13)C]leucine were combined with the ingestion of a 25-g bolus of intrinsically l-[1-(13)C]phenylalanine- and l-[1-(13)C]leucine-labeled dietary protein to assess myofibrillar muscle protein fractional synthetic rates in the immobilized and nonimmobilized control leg. Immobilization led to a 3.9 ± 0.6% decrease in quadriceps muscle CSA of the immobilized leg. Based on the l-[ring-(2)H5]phenylalanine tracer, immobilization reduced postabsorptive myofibrillar protein synthesis rates by 41 ± 13% (0.015 ± 0.002 vs. 0.032 ± 0.005%/h, P < 0.01) and postprandial myofibrillar protein synthesis rates by 53 ± 4% (0.020 ± 0.002 vs. 0.044 ± 0.003%/h, P < 0.01). Comparable results were found using the l-[1-(13)C]leucine tracer. Following protein ingestion, myofibrillar protein bound l-[1-(13)C]phenylalanine enrichments were 53 ± 18% lower in the immobilized compared with the control leg (0.007 ± 0.002 and 0.015 ± 0.002 mole% excess, respectively, P < 0.05). We conclude that 5 days of muscle disuse substantially lowers postabsorptive myofibrillar protein synthesis rates and induces anabolic resistance to protein ingestion.
Collapse
Affiliation(s)
- Benjamin T Wall
- Top Institute Food and Nutrition, Wageningen, The Netherlands; NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; and
| | - Marlou L Dirks
- NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; and
| | - Tim Snijders
- NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; and
| | - Jan-Willem van Dijk
- Top Institute Food and Nutrition, Wageningen, The Netherlands; NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; and
| | - Mario Fritsch
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lex B Verdijk
- Top Institute Food and Nutrition, Wageningen, The Netherlands; NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; and
| | - Luc J C van Loon
- Top Institute Food and Nutrition, Wageningen, The Netherlands; NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; and
| |
Collapse
|
27
|
Groen BBL, Horstman AM, Hamer HM, de Haan M, van Kranenburg J, Bierau J, Poeze M, Wodzig WKWH, Rasmussen BB, van Loon LJC. Post-Prandial Protein Handling: You Are What You Just Ate. PLoS One 2015; 10:e0141582. [PMID: 26556791 PMCID: PMC4640549 DOI: 10.1371/journal.pone.0141582] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/08/2015] [Indexed: 01/07/2023] Open
Abstract
Background Protein turnover in skeletal muscle tissue is highly responsive to nutrient intake in healthy adults. Objective To provide a comprehensive overview of post-prandial protein handling, ranging from dietary protein digestion and amino acid absorption, the uptake of dietary protein derived amino acids over the leg, the post-prandial stimulation of muscle protein synthesis rates, to the incorporation of dietary protein derived amino acids in de novo muscle protein. Design 12 healthy young males ingested 20 g intrinsically [1-13C]-phenylalanine labeled protein. In addition, primed continuous L-[ring-2H5]-phenylalanine, L-[ring-2H2]-tyrosine, and L-[1-13C]-leucine infusions were applied, with frequent collection of arterial and venous blood samples, and muscle biopsies throughout a 5 h post-prandial period. Dietary protein digestion, amino acid absorption, splanchnic amino acid extraction, amino acid uptake over the leg, and subsequent muscle protein synthesis were measured within a single in vivo human experiment. Results 55.3±2.7% of the protein-derived phenylalanine was released in the circulation during the 5 h post-prandial period. The post-prandial rise in plasma essential amino acid availability improved leg muscle protein balance (from -291±72 to 103±66 μM·min-1·100 mL leg volume-1; P<0.001). Muscle protein synthesis rates increased significantly following protein ingestion (0.029±0.002 vs 0.044±0.004%·h-1 based upon the muscle protein bound L-[ring-2H5]-phenylalanine enrichments (P<0.01)), with substantial incorporation of dietary protein derived L-[1-13C]-phenylalanine into de novo muscle protein (from 0 to 0.0201±0.0025 MPE). Conclusion Ingestion of a single meal-like amount of protein allows ~55% of the protein derived amino acids to become available in the circulation, thereby improving whole-body and leg protein balance. About 20% of the dietary protein derived amino acids released in the circulation are taken up in skeletal muscle tissue following protein ingestion, thereby stimulating muscle protein synthesis rates and providing precursors for de novo muscle protein synthesis. Trial Registration trialregister.nl 3638
Collapse
Affiliation(s)
- Bart B. L. Groen
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Department of Human Movement Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Astrid M. Horstman
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Department of Human Movement Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Henrike M. Hamer
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Department of Human Movement Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michiel de Haan
- Department of Radiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Janneau van Kranenburg
- Department of Human Movement Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jörgen Bierau
- Laboratory Biochemical Genetics, Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martijn Poeze
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Will K. W. H. Wodzig
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Blake B. Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Luc J. C. van Loon
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Department of Human Movement Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
28
|
Burd NA, Gorissen SH, van Vliet S, Snijders T, van Loon LJ. Differences in postprandial protein handling after beef compared with milk ingestion during postexercise recovery: a randomized controlled trial. Am J Clin Nutr 2015; 102:828-36. [PMID: 26354539 DOI: 10.3945/ajcn.114.103184] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 07/30/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Protein consumed after resistance exercise increases postexercise muscle protein synthesis rates. To date, dairy protein has been studied extensively, with little known about the capacity of other protein-dense foods to augment postexercise muscle protein synthesis rates. OBJECTIVE We aimed to compare protein digestion and absorption kinetics, postprandial amino acid availability, anabolic signaling, and the subsequent myofibrillar protein synthetic response after the ingestion of milk compared with beef during recovery from resistance-type exercise. DESIGN In crossover trials, 12 healthy young men performed a single bout of resistance exercise. Immediately after cessation of exercise, participants ingested 30 g protein by consuming isonitrogenous amounts of intrinsically l-[1-(13)C]phenylalanine-labeled beef or milk. Blood and muscle biopsy samples were collected at rest and after exercise during primed continuous infusions of l-[ring-(2)H5]phenylalanine and l-[ring-3,5-(2)H2]tyrosine to assess protein digestion and absorption kinetics, plasma amino acid availability, anabolic signaling, and subsequent myofibrillar protein synthesis rates in vivo in young men. RESULTS Beef protein-derived phenylalanine appeared more rapidly in circulation compared with milk ingestion (P < 0.001). The availability of phenylalanine during the 5-h postexercise period tended to be higher after beef (64% ± 3%) ingestion than after milk ingestion (57% ± 3%; P = 0.08). Both beef and milk ingestion were followed by an increase in the phosphorylation of mammalian target of rapamycin complex 1 and 70-kDa S6 protein kinase 1 during postexercise recovery. Milk ingestion increased myofibrillar protein synthesis rates to a greater extent than did beef ingestion during the 0- to 2-h postexercise phase (P = 0.013). However, the increase in myofibrillar protein synthesis rates did not differ between milk and beef ingestion during the entire 0- to 5-h postexercise phase (P = 0.114). CONCLUSIONS Both milk and beef ingestion augment the postexercise myofibrillar protein synthetic response in young men, with a stronger stimulation of myofibrillar protein synthesis during the early postprandial stage after milk ingestion. This trial was registered at www.clinicaltrials.gov as NCT01578590.
Collapse
Affiliation(s)
- Nicholas A Burd
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Stefan H Gorissen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Stephan van Vliet
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Tim Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Luc Jc van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
29
|
van Vliet S, Burd NA, van Loon LJC. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. J Nutr 2015; 145:1981-91. [PMID: 26224750 DOI: 10.3945/jn.114.204305] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/30/2015] [Indexed: 12/18/2022] Open
Abstract
Clinical and consumer market interest is increasingly directed toward the use of plant-based proteins as dietary components aimed at preserving or increasing skeletal muscle mass. However, recent evidence suggests that the ingestion of the plant-based proteins in soy and wheat results in a lower muscle protein synthetic response when compared with several animal-based proteins. The possible lower anabolic properties of plant-based protein sources may be attributed to the lower digestibility of plant-based sources, in addition to greater splanchnic extraction and subsequent urea synthesis of plant protein-derived amino acids compared with animal-based proteins. The latter may be related to the relative lack of specific essential amino acids in plant- as opposed to animal-based proteins. Furthermore, most plant proteins have a relatively low leucine content, which may further reduce their anabolic properties when compared with animal proteins. However, few studies have actually assessed the postprandial muscle protein synthetic response to the ingestion of plant proteins, with soy and wheat protein being the primary sources studied. Despite the proposed lower anabolic properties of plant vs. animal proteins, various strategies may be applied to augment the anabolic properties of plant proteins. These may include the following: 1) fortification of plant-based protein sources with the amino acids methionine, lysine, and/or leucine; 2) selective breeding of plant sources to improve amino acid profiles; 3) consumption of greater amounts of plant-based protein sources; or 4) ingesting multiple protein sources to provide a more balanced amino acid profile. However, the efficacy of such dietary strategies on postprandial muscle protein synthesis remains to be studied. Future research comparing the anabolic properties of a variety of plant-based proteins should define the preferred protein sources to be used in nutritional interventions to support skeletal muscle mass gain or maintenance in both healthy and clinical populations.
Collapse
Affiliation(s)
- Stephan van Vliet
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL; and Department of Human Movement Sciences, Faculty of Health, Medicine, and Life Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL; and Department of Human Movement Sciences, Faculty of Health, Medicine, and Life Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Luc J C van Loon
- Department of Human Movement Sciences, Faculty of Health, Medicine, and Life Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
30
|
Burd NA, Cermak NM, Kouw IWK, Gorissen SH, Gijsen AP, van Loon LJC. The use of doubly labeled milk protein to measure postprandial muscle protein synthesis rates in vivo in humans. J Appl Physiol (1985) 2014; 117:1363-70. [PMID: 25277738 DOI: 10.1152/japplphysiol.00411.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We aimed to determine the impact of precursor pool dilution on the assessment of postprandial myofibrillar protein synthesis rates (MPS). A Holstein dairy cow was infused with large amounts of L-[1-(13)C]phenylalanine and L-[1-(13)C]leucine, and the milk was collected and fractionated. The enrichment levels in the casein were 38.7 and 9.3 mole percent excess, respectively. In a subsequent human experiment, 11 older men (age: 71 ± 1 y, body mass index: 26 ± 0.1 kg·m(-2)) received a primed constant infusion of L-[ring-(2)H5]phenylalanine and L-[1-(13)C]leucine. Blood and muscle samples were collected before and after the ingestion of 20-g doubly labeled casein to assess postprandial MPS based on the 1) constant tracer infusion of L-[ring-(2)H5]phenylalanine, 2) ingestion of intrinsically L-[1-(13)C]phenylalanine-labeled casein, and 3) constant infusion of L-[1-(13)C]leucine in combination with the ingestion of intrinsically L-[1-(13)C]leucine-labeled casein. Postprandial MPS was increased (P < 0.05) after protein ingestion (∼70% above postabsorptive values) based on the L-[1-(13)C]leucine tracer. There was no significant stimulation of postprandial MPS (∼27% above postabsorptive values) when the calculated fractional synthesis rate was based on the L-[ring-(2)H5]phenylalanine (P = 0.2). Comparisons of postprandial MPS based on the primed continuous infusion of L-[1-(13)C]leucine or the ingestion of intrinsically L-[1-(13)C]phenylalanine-labeled casein protein demonstrated differences compared with the primed continuous infusion of L-[ring-(2)H5]phenylalanine (P > 0.05). Our findings confirm that the postprandial MPS assessed using the primed continuous tracer infusion approach may differ if tracer steady-state conditions in the precursor pools are perturbed. The use of intrinsically doubly labeled protein provides a method to study the metabolic fate of the ingested protein and the subsequent postprandial MPS response.
Collapse
Affiliation(s)
- Nicholas A Burd
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Naomi M Cermak
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Imre W K Kouw
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Stefan H Gorissen
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Annemie P Gijsen
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Luc J C van Loon
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
31
|
Moore DR, Camera DM, Areta JL, Hawley JA. Beyond muscle hypertrophy: why dietary protein is important for endurance athletes. Appl Physiol Nutr Metab 2014; 39:987-97. [PMID: 24806440 DOI: 10.1139/apnm-2013-0591] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recovery from the demands of daily training is an essential element of a scientifically based periodized program whose twin goals are to maximize training adaptation and enhance performance. Prolonged endurance training sessions induce substantial metabolic perturbations in skeletal muscle, including the depletion of endogenous fuels and damage/disruption to muscle and body proteins. Therefore, increasing nutrient availability (i.e., carbohydrate and protein) in the post-training recovery period is important to replenish substrate stores and facilitate repair and remodelling of skeletal muscle. It is well accepted that protein ingestion following resistance-based exercise increases rates of skeletal muscle protein synthesis and potentiates gains in muscle mass and strength. To date, however, little attention has focused on the ability of dietary protein to enhance skeletal muscle remodelling and stimulate adaptations that promote an endurance phenotype. The purpose of this review is to critically discuss the results of recent studies that have examined the role of dietary protein for the endurance athlete. Our primary aim is to consider the results from contemporary investigations that have advanced our knowledge of how the manipulation of dietary protein (i.e., amount, type, and timing of ingestion) can facilitate muscle remodelling by promoting muscle protein synthesis. We focus on the role of protein in facilitating optimal recovery from, and promoting adaptations to strenuous endurance-based training.
Collapse
Affiliation(s)
- Daniel R Moore
- a Faculty of Kinesiology and Physical Education, University of Toronto, Toronto ON, M5S 2W6, Canada
| | | | | | | |
Collapse
|