1
|
Lee TH, Cota D, Quarta C. Yin-Yang control of energy balance by lipids in the hypothalamus: The endocannabinoids vs bile acids case. Biochimie 2024; 223:188-195. [PMID: 35863558 DOI: 10.1016/j.biochi.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Obesity is a chronic and debilitating disorder that originates from alterations in energy-sensing brain circuits controlling body weight gain and food intake. The dysregulated syntheses and actions of lipid mediators in the hypothalamus induce weight gain and overfeeding, but the molecular and cellular underpinnings of these alterations remain elusive. In response to changes in the nutritional status, different lipid sensing pathways in the hypothalamus direct body energy needs in a Yin-Yang model. Endocannabinoids orchestrate the crosstalk between hypothalamic circuits and the sympathetic nervous system to promote food intake and energy accumulation during fasting, whereas bile acids act on the same top-down axis to reduce energy intake and possibly storage after the meal. In obesity, the bioavailability and downstream cellular actions of endocannabinoids and bile acids are altered in hypothalamic neurons involved in body weight and metabolic control. Thus, the onset and progression of this disease might result from an imbalance in hypothalamic sensing of multiple lipid signals, which are possibly integrated by common molecular nodes. In this viewpoint, we discuss a possible model that explains how bile acids and endocannabinoids may exert their effects on energy balance regulation via interconnected mechanisms at the level of the hypothalamic neuronal circuits. Therefore, we propose a new conceptual framework for understanding and treating central mechanisms of maladaptive lipid action in obesity.
Collapse
Affiliation(s)
- Thomas H Lee
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France.
| |
Collapse
|
2
|
Sharma B, Twelker K, Nguyen C, Ellis S, Bhatia ND, Kuschner Z, Agriantonis A, Agriantonis G, Arnold M, Dave J, Mestre J, Shafaee Z, Arora S, Ghanta H, Whittington J. Bile Acids in Pancreatic Carcinogenesis. Metabolites 2024; 14:348. [PMID: 39057671 PMCID: PMC11278541 DOI: 10.3390/metabo14070348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreatic cancer (PC) is a dangerous digestive tract tumor that is becoming increasingly common and fatal. The most common form of PC is pancreatic ductal adenocarcinoma (PDAC). Bile acids (BAs) are closely linked to the growth and progression of PC. They can change the intestinal flora, increasing intestinal permeability and allowing gut microbes to enter the bloodstream, leading to chronic inflammation. High dietary lipids can increase BA secretion into the duodenum and fecal BA levels. BAs can cause genetic mutations, mitochondrial dysfunction, abnormal activation of intracellular trypsin, cytoskeletal damage, activation of NF-κB, acute pancreatitis, cell injury, and cell necrosis. They can act on different types of pancreatic cells and receptors, altering Ca2+ and iron levels, and related signals. Elevated levels of Ca2+ and iron are associated with cell necrosis and ferroptosis. Bile reflux into the pancreatic ducts can speed up the kinetics of epithelial cells, promoting the development of pancreatic intraductal papillary carcinoma. BAs can cause the enormous secretion of Glucagon-like peptide-1 (GLP-1), leading to the proliferation of pancreatic β-cells. Using Glucagon-like peptide-1 receptor agonist (GLP-1RA) increases the risk of pancreatitis and PC. Therefore, our objective was to explore various studies and thoroughly examine the role of BAs in PC.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Kate Twelker
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Cecilia Nguyen
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Scott Ellis
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Navin D. Bhatia
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Zachary Kuschner
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Andrew Agriantonis
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - George Agriantonis
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Monique Arnold
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Jasmine Dave
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Juan Mestre
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Zahra Shafaee
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Shalini Arora
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Hima Ghanta
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Jennifer Whittington
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| |
Collapse
|
3
|
Huang J, Huang T, Li J. Regulation Mechanism and Potential Value of Active Substances in Spices in Alcohol-Liver-Intestine Axis Health. Int J Mol Sci 2024; 25:3728. [PMID: 38612538 PMCID: PMC11011869 DOI: 10.3390/ijms25073728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Excessive alcohol intake will aggravate the health risk between the liver and intestine and affect the multi-directional information exchange of metabolites between host cells and microbial communities. Because of the side effects of clinical drugs, people tend to explore the intervention value of natural drugs on diseases. As a flavor substance, spices have been proven to have medicinal value, but they are still rare in treating hepatointestinal diseases caused by alcohol. This paper summarized the metabolic transformation of alcohol in the liver and intestine and summarized the potential value of various perfume active substances in improving liver and intestine diseases caused by alcohol. It is also found that bioactive substances in spices can exert antioxidant activity in the liver and intestine environment and reduce the oxidative stress caused by diseases. These substances can interfere with fatty acid synthesis, promote sugar and lipid metabolism, and reduce liver injury caused by steatosis. They can effectively regulate the balance of intestinal flora, promote the production of SCFAs, and restore the intestinal microenvironment.
Collapse
Affiliation(s)
- Jianyu Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| |
Collapse
|
4
|
Dai Z, Gong Z, Wang C, Long W, Liu D, Zhang H, Lei A. The role of hormones in ILC2-driven allergic airway inflammation. Scand J Immunol 2024; 99:e13357. [PMID: 39008023 DOI: 10.1111/sji.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 07/16/2024]
Abstract
Group 2 innate lymphoid cells (ILC2s) are a type of innate immune cells that produce a large amount of IL-5 and IL-13 and two cytokines that are crucial for various processes such as allergic airway inflammation, tissue repair and tissue homeostasis. It is known that damaged epithelial-derived alarmins, such as IL-33, IL-25 and thymic stromal lymphopoietin (TSLP), are the predominant ILC2 activators that mediate the production of type 2 cytokines. In recent years, abundant studies have found that many factors can regulate ILC2 development and function. Hormones synthesized by the body's endocrine glands or cells play an important role in immune response. Notably, ILC2s express hormone receptors and their proliferation and function can be modulated by multiple hormones during allergic airway inflammation. Here, we summarize the effects of multiple hormones on ILC2-driven allergic airway inflammation and discuss the underlying mechanisms and potential therapeutic significance.
Collapse
Affiliation(s)
- Zhongling Dai
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhande Gong
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Cui Wang
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - WeiXiang Long
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Duo Liu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Haijun Zhang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Aihua Lei
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
5
|
Sosnowski K, Przybyłkowski A. Ethanol-induced changes to the gut microbiome compromise the intestinal homeostasis: a review. Gut Microbes 2024; 16:2393272. [PMID: 39224006 PMCID: PMC11376419 DOI: 10.1080/19490976.2024.2393272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The intestine is the largest organ in terms of surface area in the human body. It is responsible not only for absorbing nutrients but also for protection against the external world. The gut microbiota is essential in maintaining a properly functioning intestinal barrier, primarily through producing its metabolites: short-chain fatty acids, bile acids, and tryptophan derivatives. Ethanol overconsumption poses a significant threat to intestinal health. Not only does it damage the intestinal epithelium, but, maybe foremostly, it changes the gut microbiome. Those ethanol-driven changes shift its metabolome, depriving the host of the protective effect the physiological gut microbiota has. This literature review discusses the impact of ethanol consumption on the gut, the gut microbiota, and its metabolome, providing a comprehensive overview of the mechanisms through which ethanol disrupts intestinal homeostasis and discussing potential avenues for new therapeutic intervention.
Collapse
Affiliation(s)
- Konrad Sosnowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Zhang G, Chen H, Ren W, Huang J. Efficacy of bile acid profiles in diagnosing and staging of alcoholic liver disease. Scand J Clin Lab Invest 2023; 83:8-17. [PMID: 36484775 DOI: 10.1080/00365513.2022.2151508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM The diagnosis of alcoholic liver disease (ALD) is still a great challenge. Therefore, the purpose of this study is to identify and characterize new metabolomic biomarkers for the diagnosis and staging of ALD. METHODS A total of 127 patients with early liver injury, 40 patients with alcoholic cirrhosis (ALC) and 40 healthy controls were included in this study. Patients with early liver injury included 45 patients with alcoholic liver disease (ALD), 40 patients with non-alcoholic fatty liver disease (NAFLD) and 40 patients with viral liver disease (VLD). The differential metabolites in serum samples were analyzed using ultra-high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry, and partial metabolites in the differential metabolic pathway were identified by liquid chromatography- tandem mass spectrometry. RESULTS A total of 40 differential metabolites and five differential metabolic pathways in the four groups of patients with early liver disease and healthy controls were found, and the metabolic pathway of primary bile acid (BA) biosynthesis was the pathway that included the most differential metabolites. Therefore, 22 BA profiles were detected. The results revealed that the changes of BA profiles were most pronounced in patients with ALD compared with patients with NAFLD and VLD, in whom 12 differential BAs were diagnostic markers of ALD (AUC = 0.883). The 19 differential BAs in ALC and ALD were diagnostic markers of the stage of alcoholic hepatic fibrosis (AUC = 0.868). CONCLUSION BA profiles are potential indicators in the diagnosis of ALD and evaluation of different stages.
Collapse
Affiliation(s)
- Gaixia Zhang
- Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Haizhen Chen
- Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Wenbo Ren
- Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Jing Huang
- Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Liu Y, Liu T, Zhao X, Gao Y. New insights into the bile acid-based regulatory mechanisms and therapeutic perspectives in alcohol-related liver disease. Cell Mol Life Sci 2022; 79:486. [PMID: 35978227 PMCID: PMC11073206 DOI: 10.1007/s00018-022-04509-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/27/2022]
Abstract
Cholestasis is a key causative factor in alcohol-related liver disease (ALD) and variable degrees of cholestasis occur in all stages of ALD. However, the pathogenetic mechanisms and biomarkers associated with cholestasis are not well characterized. Cholestatic disease is marked by the disruption of bile acids (BA) transport and homeostasis. Consequently, in both human and experimental ALD, the disease shows a direct correlation with an imbalance in BA equilibrium, which in turn may also affect the severity of the disease. Modulation of BA metabolism or signaling pathways is increasingly considered as a potential therapeutic strategy for ALD in humans. In this paper, we highlight the key advances made in the past two decades in characterizing the molecular regulatory mechanisms of BA synthesis, enterohepatic circulation, and BA homeostasis. We summarize recent insights into the nature of the linkage between BA dysregulation and ALD, including the abnormal expression of genes involved in BA metabolism, abnormal changes in receptors that regulate BA metabolism, and disturbance in the gut flora engaged in BA metabolism caused by alcohol consumption. Additionally, we provide novel perspectives on the changes in BAs in various stages of ALD. Finally, we propose potential pharmacological therapies for ALD targeting BA metabolism and signaling.
Collapse
Affiliation(s)
- Yali Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Tao Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Xu Zhao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China.
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Jung JH, Kim SE, Suk KT, Kim DJ. Gut microbiota-modulating agents in alcoholic liver disease: Links between host metabolism and gut microbiota. Front Med (Lausanne) 2022; 9:913842. [PMID: 35935787 PMCID: PMC9354621 DOI: 10.3389/fmed.2022.913842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Alcoholic liver disease (ALD) involves a wide spectrum of diseases, including asymptomatic hepatic steatosis, alcoholic hepatitis, hepatic fibrosis, and cirrhosis, which leads to morbidity and mortality and is responsible for 0.9% of global deaths. Alcohol consumption induces bacterial translocation and alteration of the gut microbiota composition. These changes in gut microbiota aggravate hepatic inflammation and fibrosis. Alteration of the gut microbiota leads to a weakened gut barrier and changes host immunity and metabolic function, especially related to bile acid metabolism. Modulation and treatment for the gut microbiota in ALD has been studied using probiotics, prebiotics, synbiotics, and fecal microbial transplantation with meaningful results. In this review, we focused on the interaction between alcohol and gut dysbiosis in ALD. Additionally, treatment approaches for gut dysbiosis, such as abstinence, diet, pro-, pre-, and synbiotics, antibiotics, and fecal microbial transplantation, are covered here under ALD. However, further research through human clinical trials is warranted to evaluate the appropriate gut microbiota-modulating agents for each condition related to ALD.
Collapse
Affiliation(s)
- Jang Han Jung
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sung-Eun Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
- *Correspondence: Dong Joon Kim,
| |
Collapse
|
9
|
Byrd DA, Sinha R, Weinstein SJ, Albanes D, Freedman ND, Sampson J, Loftfield E. An investigation of cross-sectional associations of a priori-selected dietary components with circulating bile acids. Am J Clin Nutr 2021; 114:1802-1813. [PMID: 34477829 PMCID: PMC8574696 DOI: 10.1093/ajcn/nqab232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A growing body of literature suggests chronically higher bile acid (BA) concentrations may be associated with multiple health conditions. Diet may affect BA metabolism and signaling; however, evidence from human populations is lacking. OBJECTIVES We systematically investigated cross-sectional associations of a priori-selected dietary components (fiber, alcohol, coffee, fat) with circulating BA concentrations. METHODS We used targeted, quantitative LC-MS/MS panels to measure 15 circulating BAs in a subset of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC; n = 2224) and Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO; n = 986) comprising Finnish male smokers and United States men and women, respectively. We used multivariable linear regression to estimate associations of each dietary component with log-transformed BAs; exponentiated coefficients estimate proportional differences. We included the median of the dietary component quartile in linear regression models to test for trend. RESULTS In ATBC, fiber was inversely associated with multiple circulating BAs. The proportional difference was -10.09% (95% CI: -19.29 to 0.16; P-trend = 0.04) when comparing total BAs among those in the highest relative to the lowest fiber quartile. Alcohol, trans fat, and polyunsaturated fat were positively associated with BAs in ATBC. The proportional difference comparing total BAs among those in the highest relative to the lowest alcohol quartile was 8.76% (95% CI: -3.10 to 22.06; P-trend = 0.03). Coffee and monounsaturated fat were inversely associated with BAs. The proportional difference comparing total BAs among those in the highest relative to the lowest coffee quartile was -24.03% (95% CI: -31.57 to -15.66; P-trend < 0.0001). In PLCO, no dietary components were associated with BAs except fiber, which was inversely associated with tauroursodeoxycholic acid. CONCLUSIONS Alcohol, coffee, certain fat subtypes, and fiber were associated with circulating concentrations of multiple BAs among Finnish male smokers. Given the potential role of BAs in disease risk, further investigation of the effects of diet on BAs in humans is warranted.
Collapse
Affiliation(s)
- Doratha A Byrd
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA,Department of Cancer Epidemiology, Division of Population Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Rashmi Sinha
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Sampson
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
10
|
Christidis G, Karatayli E, Hall RA, Weber SN, Reichert MC, Hohl M, Qiao S, Boehm U, Lütjohann D, Lammert F, Karatayli SC. Fibroblast Growth Factor 21 Response in a Preclinical Alcohol Model of Acute-on-Chronic Liver Injury. Int J Mol Sci 2021; 22:7898. [PMID: 34360670 PMCID: PMC8348955 DOI: 10.3390/ijms22157898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND AIMS Fibroblast growth factor (FGF) 21 has recently been shown to play a potential role in bile acid metabolism. We aimed to investigate the FGF21 response in an ethanol-induced acute-on-chronic liver injury (ACLI) model in Abcb4-/- mice with deficiency of the hepatobiliary phospholipid transporter. METHODS Total RNA was extracted from wild-type (WT, C57BL/6J) and Abcb4-/- (KO) mice, which were either fed a control diet (WT-Cont and KO-Cont groups; n = 28/group) or ethanol diet, followed by an acute ethanol binge (WT-EtOH and KO-EtOH groups; n = 28/group). A total of 58 human subjects were recruited into the study, including patients with alcohol-associated liver disease (AALD; n = 31) and healthy controls (n = 27). The hepatic and ileal expressions of genes involved in bile acid metabolism, plasma FGF levels, and bile acid and its precursors 7α- and 27-hydroxycholesterol (7α- and 27-OHC) concentrations were determined. Primary mouse hepatocytes were isolated for cell culture experiments. RESULTS Alcohol feeding significantly induced plasma FGF21 and decreased hepatic Cyp7a1 levels. Hepatic expression levels of Fibroblast growth factor receptor 1 (Fgfr1), Fgfr4, Farnesoid X-activated receptor (Fxr), and Small heterodimer partner (Shp) and plasma FGF15/FGF19 levels did not differ with alcohol challenge. Exogenous FGF21 treatment suppressed Cyp7a1 in a dose-dependent manner in vitro. AALD patients showed markedly higher FGF21 and lower 7α-OHC plasma levels while FGF19 did not differ. CONCLUSIONS The simultaneous upregulation of FGF21 and downregulation of Cyp7a1 expressions upon chronic plus binge alcohol feeding together with the invariant plasma FGF15 and hepatic Shp and Fxr levels suggest the presence of a direct regulatory mechanism of FGF21 on bile acid homeostasis through inhibition of CYP7A1 by an FGF15-independent pathway in this ACLI model. Lay Summary: Alcohol challenge results in the upregulation of FGF21 and repression of Cyp7a1 expressions while circulating FGF15 and hepatic Shp and Fxr levels remain constant both in healthy and pre-injured livers, suggesting the presence of an alternative FGF15-independent regulatory mechanism of FGF21 on bile acid homeostasis through the inhibition of Cyp7a1.
Collapse
Affiliation(s)
- Grigorios Christidis
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (G.C.); (E.K.); (R.A.H.); (S.N.W.); (M.C.R.); (F.L.)
| | - Ersin Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (G.C.); (E.K.); (R.A.H.); (S.N.W.); (M.C.R.); (F.L.)
| | - Rabea A. Hall
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (G.C.); (E.K.); (R.A.H.); (S.N.W.); (M.C.R.); (F.L.)
| | - Susanne N. Weber
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (G.C.); (E.K.); (R.A.H.); (S.N.W.); (M.C.R.); (F.L.)
| | - Matthias C. Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (G.C.); (E.K.); (R.A.H.); (S.N.W.); (M.C.R.); (F.L.)
| | - Mathias Hohl
- Department of Medicine III, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany;
| | - Sen Qiao
- Department of Pharmacology and Toxicology, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (S.Q.); (U.B.)
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (S.Q.); (U.B.)
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (G.C.); (E.K.); (R.A.H.); (S.N.W.); (M.C.R.); (F.L.)
- Hannover Health Sciences Campus, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Senem Ceren Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (G.C.); (E.K.); (R.A.H.); (S.N.W.); (M.C.R.); (F.L.)
| |
Collapse
|
11
|
Wei J, Fang D. Endoplasmic Reticulum Stress Signaling and the Pathogenesis of Hepatocarcinoma. Int J Mol Sci 2021; 22:ijms22041799. [PMID: 33670323 PMCID: PMC7918477 DOI: 10.3390/ijms22041799] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), also known as hepatoma, is a primary malignancy of the liver and the third leading cause of cancer mortality globally. Although much attention has focused on HCC, its pathogenesis remains largely obscure. The endoplasmic reticulum (ER) is a cellular organelle important for regulating protein synthesis, folding, modification and trafficking, and lipid metabolism. ER stress occurs when ER homeostasis is disturbed by numerous environmental, physiological, and pathological challenges. In response to ER stress due to misfolded/unfolded protein accumulation, unfolded protein response (UPR) is activated to maintain ER function for cell survival or, in cases of excessively severe ER stress, initiation of apoptosis. The liver is especially susceptible to ER stress given its protein synthesis and detoxification functions. Experimental data suggest that ER stress and unfolded protein response are involved in HCC development, aggressiveness and response to treatment. Herein, we highlight recent findings and provide an overview of the evidence linking ER stress to the pathogenesis of HCC.
Collapse
|
12
|
Gong X, Zhang Q, Ruan Y, Hu M, Liu Z, Gong L. Chronic Alcohol Consumption Increased Bile Acid Levels in Enterohepatic Circulation and Reduced Efficacy of Irinotecan. Alcohol Alcohol 2021; 55:264-277. [PMID: 32232424 DOI: 10.1093/alcalc/agaa005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS To investigate the effect of ethanol intake on the whole enterohepatic circulation (EHC) of bile acids (BAs) and, more importantly, on pharmacokinetics of irinotecan. METHODS The present study utilized a mouse model administered by gavage with 0 (control), 240 mg/100 g (30%, v/v) and 390 mg/100 g (50%, v/v) ethanol for 6 weeks, followed by BA profiles in the whole EHC (including liver, gallbladder, intestine and plasma) and colon using ultra-high performance liquid chromatography with tandem mass spectrometry analysis. Pharmacokinetic parameters of irinotecan were measured after administration of irinotecan (i.v. 5 mg/kg) on alcohol-treated mice. RESULTS The results showed that compared with the control group, concentrations of most free-BAs, total amount of the three main forms of BAs (free-BA, taurine-BA and glycine-BA) and total BAs (TBAs) in 50% ethanol intake group were significantly increased, which are mostly attributed to the augmentation of free-BAs and taurine-BAs. Additionally, the TBAs in liver and gallbladder and the BA pool were markedly increased in the 30% ethanol intake group. Importantly, ethanol intake upregulated the expression of BA-related enzymes (Cyp7a1, Cyp27a1, Cyp8b1 and Baat) and transporters (Bsep, Mrp2, P-gp and Asbt) and downregulated the expression of transporter Ntcp and nuclear receptor Fxr in the liver and ileum, respectively. Additionally, 50% ethanol intake caused fairly distinct liver injury. Furthermore, the AUC0-24 h of irinotecan and SN38 were significantly reduced but their clearance was significantly increased in the disrupted EHC of BA by 50% ethanol intake. CONCLUSIONS The present study demonstrated that ethanol intake altered the expression of BA-related synthetases and transporters. The BA levels, especially the toxic BAs (chenodeoxycholic acid, deoxycholic acid and lithocholic acid), in the whole EHC were significantly increased by ethanol intake, which may provide a potential explanation to illuminate the pathogenesis of alcoholic liver injury. Most importantly, chronic ethanol consumption had a significant impact on the pharmacokinetics (AUC0-24 h and clearance) of irinotecan and SN38; hence colon cancer patients with chronic alcohol consumption treated with irinotecan deserve our close attention.
Collapse
Affiliation(s)
- Xia Gong
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Qisong Zhang
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Yanjiao Ruan
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Ming Hu
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Huston, 1441 Moursund St., Houston, TX 77030, USA
| | - Zhongqiu Liu
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Lingzhi Gong
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| |
Collapse
|
13
|
Enterohepatic Transcription Factor CREB3L3 Protects Atherosclerosis via SREBP Competitive Inhibition. Cell Mol Gastroenterol Hepatol 2020; 11:949-971. [PMID: 33246135 PMCID: PMC7900604 DOI: 10.1016/j.jcmgh.2020.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS cAMP responsive element-binding protein 3 like 3 (CREB3L3) is a membrane-bound transcription factor involved in the maintenance of lipid metabolism in the liver and small intestine. CREB3L3 controls hepatic triglyceride and glucose metabolism by activating plasma fibroblast growth factor 21 (FGF21) and lipoprotein lipase. In this study, we intended to clarify its effect on atherosclerosis. METHODS CREB3L3-deficifient, liver-specific CREB3L3 knockout, intestine-specific CREB3L3 knockout, both liver- and intestine-specific CREB3L3 knockout, and liver CREB3L3 transgenic mice were crossed with LDLR-/- mice. These mice were fed with a Western diet to develop atherosclerosis. RESULTS CREB3L3 ablation in LDLR-/- mice exacerbated hyperlipidemia with accumulation of remnant APOB-containing lipoprotein. This led to the development of enhanced aortic atheroma formation, the extent of which was additive between liver- and intestine-specific deletion. Conversely, hepatic nuclear CREB3L3 overexpression markedly suppressed atherosclerosis with amelioration of hyperlipidemia. CREB3L3 directly up-regulates anti-atherogenic FGF21 and APOA4. In contrast, it antagonizes hepatic sterol regulatory element-binding protein (SREBP)-mediated lipogenic and cholesterogenic genes and regulates intestinal liver X receptor-regulated genes involved in the transport of cholesterol. CREB3L3 deficiency results in the accumulation of nuclear SREBP proteins. Because both transcriptional factors share the cleavage system for nuclear transactivation, full-length CREB3L3 and SREBPs in the endoplasmic reticulum (ER) functionally inhibit each other. CREB3L3 promotes the formation of the SREBP-insulin induced gene 1 complex to suppress SREBPs for ER-Golgi transport, resulting in ER retention and inhibition of proteolytic activation at the Golgi and vice versa. CONCLUSIONS CREB3L3 has multi-potent protective effects against atherosclerosis owing to new mechanistic interaction between CREB3L3 and SREBPs under atherogenic conditions.
Collapse
|
14
|
Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol 2020; 318:G554-G573. [PMID: 31984784 PMCID: PMC7099488 DOI: 10.1152/ajpgi.00223.2019] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bile acid synthesis is the most significant pathway for catabolism of cholesterol and for maintenance of whole body cholesterol homeostasis. Bile acids are physiological detergents that absorb, distribute, metabolize, and excrete nutrients, drugs, and xenobiotics. Bile acids also are signal molecules and metabolic integrators that activate nuclear farnesoid X receptor (FXR) and membrane Takeda G protein-coupled receptor 5 (TGR5; i.e., G protein-coupled bile acid receptor 1) to regulate glucose, lipid, and energy metabolism. The gut-to-liver axis plays a critical role in the transformation of primary bile acids to secondary bile acids, in the regulation of bile acid synthesis to maintain composition within the bile acid pool, and in the regulation of metabolic homeostasis to prevent hyperglycemia, dyslipidemia, obesity, and diabetes. High-fat and high-calorie diets, dysbiosis, alcohol, drugs, and disruption of sleep and circadian rhythms cause metabolic diseases, including alcoholic and nonalcoholic fatty liver diseases, obesity, diabetes, and cardiovascular disease. Bile acid-based drugs that target bile acid receptors are being developed for the treatment of metabolic diseases of the liver.
Collapse
Affiliation(s)
- John Y. L. Chiang
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jessica M. Ferrell
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
15
|
Emerging role of the orphan nuclear receptor estrogen-related receptor gamma in liver metabolic diseases. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Alcohol Induces More Severe Fatty Liver Disease by Influencing Cholesterol Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7095684. [PMID: 30891077 PMCID: PMC6390266 DOI: 10.1155/2019/7095684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Objectives. Fatty liver disease (FLD) is a major cause of morbidity and mortality worldwide. Dietary cholesterol and alcohol consumption are important risk factors for the progression of FLD, but whether and how alcohol induces more severe FLD with cholesterol ingestion remain unclear. Herein, we mainly used the Lieber-DeCarli diet to establish the FLD mouse model to investigate the synergistic effects of alcohol and cholesterol metabolism on liver damage. The indices of aspartate transaminase (AST), alanine transaminase (ALT), low-density lipoprotein cholesterol (LDL-c), and total cholesterol (TC) levels, inflammation foci, and pathogenesis by hematoxylin and eosin (H&E) and Oil Red O staining revealed that alcohol induces more severe liver damage by influencing cholesterol metabolism, which might be primarily related to the influence of cholesterol absorption, synthesis, and excretion on the liver or small intestine. Moreover, inhibition of absorption of intestinal cholesterol, but not of fat, sucrose, and alcohol, absorption into the body's metabolism by Ezetimibe, significantly improved FLD in rats fed with the high fat-cholesterol-sucrose and alcohol diet. These results showed that alcohol plays an important role in cholesterol metabolism in FLD.
Collapse
|
17
|
Chanda D, Neumann D, Glatz JFC. The endocannabinoid system: Overview of an emerging multi-faceted therapeutic target. Prostaglandins Leukot Essent Fatty Acids 2019; 140:51-56. [PMID: 30553404 DOI: 10.1016/j.plefa.2018.11.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
The endocannabinoids anandamide (AEA) and 2-arachidonoylglyerol (2-AG) are endogenous lipid mediators that exert protective roles in pathophysiological conditions, including cardiovascular diseases. In this brief review, we provide a conceptual framework linking endocannabinoid signaling to the control of the cellular and molecular hallmarks, and categorize the key components of endocannabinoid signaling that may serve as targets for novel therapeutics. The emerging picture not only reinforces endocannabinoids as potent regulators of cellular metabolism but also reveals that endocannabinoid signaling is mechanistically more complex and diverse than originally thought.
Collapse
MESH Headings
- Amidohydrolases/antagonists & inhibitors
- Animals
- Arachidonic Acids/metabolism
- Autocrine Communication
- Cells/metabolism
- Dronabinol/pharmacology
- Endocannabinoids/metabolism
- Glycerides/metabolism
- Humans
- Mice
- Molecular Targeted Therapy
- Paracrine Communication
- Polyunsaturated Alkamides/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Swine
Collapse
Affiliation(s)
- Dipanjan Chanda
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands; Current affiliation: Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Daegu, Republic of Korea
| | - Dietbert Neumann
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands; Current affiliation: Department of Pathology, CARIM, Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
18
|
Endocannabinoids in Body Weight Control. Pharmaceuticals (Basel) 2018; 11:ph11020055. [PMID: 29849009 PMCID: PMC6027162 DOI: 10.3390/ph11020055] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of body weight is fundamental to maintain one's health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands. To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.
Collapse
|
19
|
Vujic N, Korbelius M, Leopold C, Duta-Mare M, Rainer S, Schlager S, Goeritzer M, Kolb D, Eichmann TO, Diwoky C, Zimmer A, Zimmermann R, Lass A, Radovic B, Kratky D. Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE-/- mice. Oncotarget 2018; 8:33122-33136. [PMID: 28380440 PMCID: PMC5464855 DOI: 10.18632/oncotarget.16529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/14/2017] [Indexed: 11/25/2022] Open
Abstract
Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (-/-) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)-/- mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system.
Collapse
Affiliation(s)
- Nemanja Vujic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Melanie Korbelius
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Christina Leopold
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Madalina Duta-Mare
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Silvia Rainer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Stefanie Schlager
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Madeleine Goeritzer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Center for Medical Research, Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Clemens Diwoky
- Institute of Biomedical Engineering, Graz University of Technology, Graz, Austria.,Current address: Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Branislav Radovic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| |
Collapse
|
20
|
Donepudi AC, Ferrell JM, Boehme S, Choi HS, Chiang JYL. Deficiency of cholesterol 7α-hydroxylase in bile acid synthesis exacerbates alcohol-induced liver injury in mice. Hepatol Commun 2017; 2:99-112. [PMID: 29404516 PMCID: PMC5776875 DOI: 10.1002/hep4.1129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022] Open
Abstract
Alcoholic fatty liver disease (AFLD) is a major risk factor for cirrhosis‐associated liver diseases. Studies demonstrate that alcohol increases serum bile acids in humans and rodents. AFLD has been linked to cholestasis, although the physiologic relevance of increased bile acids in AFLD and the underlying mechanism of increasing the bile acid pool by alcohol feeding are still unclear. In this study, we used mouse models either deficient of or overexpressing cholesterol 7α‐hydroxylase (Cyp7a1), the rate‐limiting and key regulatory enzyme in bile acid synthesis, to study the effect of alcohol drinking in liver metabolism and inflammation. Mice were challenged with chronic ethanol feeding (10 days) plus a binge dose of alcohol by oral gavage (5 g/kg body weight). Alcohol feeding reduced bile acid synthesis gene expression but increased the bile acid pool size, hepatic triglycerides and cholesterol, and inflammation and injury in wild‐type mice and aggravated liver inflammation and injury in Cyp7a1‐deficient mice. Interestingly, alcohol‐induced hepatic inflammation and injury were ameliorated in Cyp7a1 transgenic mice. Conclusion: Alcohol feeding alters hepatic bile acid and cholesterol metabolism to cause liver inflammation and injury, while maintenance of bile acid and cholesterol homeostasis protect against alcohol‐induced hepatic inflammation and injury. Our findings indicate that CYP7A1 plays a key role in protection against alcohol‐induced steatohepatitis. (Hepatology Communications 2018;2:99–112)
Collapse
Affiliation(s)
- Ajay C Donepudi
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Jessica M Ferrell
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Shannon Boehme
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| | - Hueng-Sik Choi
- Hormone Research Center, School of Biological Sciences and Technology Chonnam National University Gwangju Republic of Korea
| | - John Y L Chiang
- Department of Integrative Medical Sciences Northeast Ohio Medical University Rootstown OH
| |
Collapse
|
21
|
Bajaj JS, Kakiyama G, Zhao D, Takei H, Fagan A, Hylemon P, Zhou H, Pandak WM, Nittono H, Fiehn O, Salzman N, Holtz M, Simpson P, Gavis EA, Heuman DM, Liu R, Kang DJ, Sikaroodi M, Gillevet PM. Continued Alcohol Misuse in Human Cirrhosis is Associated with an Impaired Gut-Liver Axis. Alcohol Clin Exp Res 2017; 41:1857-1865. [PMID: 28925102 DOI: 10.1111/acer.13498] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cirrhosis and alcohol can independently affect the gut-liver axis with systemic inflammation. However, their concurrent impact in humans is unclear. METHODS Our aim was to determine the effect of continued alcohol misuse on the gut-liver axis in cirrhotic patients. Age- and MELD-balanced cirrhotic patients who were currently drinking (Alc) or abstinent (NAlc) and healthy controls underwent serum and stool collection. A subset underwent upper endoscopy and colonoscopy for biopsies and duodenal fluid collection. The groups were compared regarding (i) inflammation/intestinal barrier: systemic tumor necrosis factor levels, intestinal inflammatory cytokine (duodenum, ileum, sigmoid), and ileal antimicrobial peptide expression; (ii) microbiota composition: 16SrRNA sequencing of duodenal, ileal, and colonic mucosal and fecal microbiota; and (iii) microbial functionality: duodenal fluid and fecal bile acid (BA) profile (conjugation and dehydroxylation status), intestinal BA transporter (ASBT, FXR, FGF-19, SHP) expression, and stool metabolomics using gas chromatography/mass spectrometry. RESULTS Alc patients demonstrated a significant duodenal, ileal, and colonic mucosal and fecal dysbiosis, compared to NAlc and controls with lower autochthonous bacterial taxa. BA profile skewed toward a potentially toxic profile (higher secondary and glycine-conjugated BAs) in duodenal fluid and stool in Alc patients. Duodenal fluid demonstrated conjugated secondary BAs only in the Alc group. There was a greater expression of all ileal BA transporters in Alc patients. This group also showed higher endotoxemia, systemic and ileal inflammatory expression, and lower amino acid and bioenergetic-associated metabolites, without change in antimicrobial peptide expression. CONCLUSIONS Despite cirrhosis, continued alcohol misuse predisposes patients to widespread dysbiosis with alterations in microbial functionality such as a toxic BA profile, which can lead to intestinal and systemic inflammation.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Genta Kakiyama
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Derrick Zhao
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | - Andrew Fagan
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Phillip Hylemon
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Huiping Zhou
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - William M Pandak
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, Davis, California
| | - Nita Salzman
- Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mary Holtz
- Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Edith A Gavis
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Douglas M Heuman
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Runping Liu
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Dae Joong Kang
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | | | | |
Collapse
|
22
|
Di Ciaula A, Wang DQH, Molina-Molina E, Lunardi Baccetto R, Calamita G, Palmieri VO, Portincasa P. Bile Acids and Cancer: Direct and Environmental-Dependent Effects. Ann Hepatol 2017; 16:s87-s105. [PMID: 29080344 DOI: 10.5604/01.3001.0010.5501] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Bile acids (BAs) regulate the absorption of fat-soluble vitamins, cholesterol and lipids but have also a key role as singalling molecules and in the modulation of epithelial cell proliferation, gene expression and metabolism. These homeostatic pathways, when disrupted, are able to promote local inflammation, systemic metabolic disorders and, ultimately, cancer. The effect of hydrophobic BAs, in particular, can be linked with cancer in several digestive (mainly oesophagus, stomach, liver, pancreas, biliary tract, colon) and extra-digestive organs (i.e. prostate, breast) through a complex series of mechanisms including direct oxidative stress with DNA damage, apoptosis, epigenetic factors regulating gene expression, reduced/increased expression of nuclear receptors (mainly farnesoid X receptor, FXR) and altered composition of gut microbiota, also acting as a common interface between environmental factors (including diet, lifestyle, exposure to toxics) and the molecular events promoting cancerogenesis. Primary prevention strategies (i.e. changes in dietary habits and lifestyle, reduced exposure to environmental toxics) mainly able to modulate gut microbiota and the epigenome, and the therapeutic use of hydrophilic BAs to counterbalance the negative effects of the more hydrophobic BAs might be, in the near future, part of useful tools for cancer prevention and management.
Collapse
Affiliation(s)
| | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emilio Molina-Molina
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Raquel Lunardi Baccetto
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari. Italy
| | - Vincenzo O Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari. Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
23
|
Kim YD, Hwang SL, Lee EJ, Kim HM, Chung MJ, Elfadl AK, Lee SE, Nedumaran B, Harris RA, Jeong KS. Melatonin ameliorates alcohol-induced bile acid synthesis by enhancing miR-497 expression. J Pineal Res 2017; 62. [PMID: 28095641 DOI: 10.1111/jpi.12386] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022]
Abstract
Alcoholic liver disease is a major cause of chronic liver disease worldwide, and cannabinoid receptor type 1 (CB1R) is involved in a diverse metabolic diseases. B-cell translocation gene 2 (BTG2) and yin yang 1 (YY1) are a potent regulator of biological conditions. Melatonin plays a crucial role in regulating diverse physiological functions and metabolic homeostasis. MicroRNAs are key regulators of various biological processes. Herein, we demonstrate that melatonin improves bile acid synthesis in the liver of alcohol-fed mice by controlling miR-497 expression. The level of bile acid and the expression of Cb1r, Btg2, Yy1, and bile acid synthetic enzymes were significantly elevated in the livers of Lieber-DeCarli alcohol-fed mice. The overexpression of Btg2 enhanced Yy1 gene expression and bile acid production, whereas disrupting the CB1R-BTG2-YY1 cascade protected against the bile acid synthesis caused by alcohol challenge. We identified an alcohol-mediated YY1 binding site on the cholesterol 7α-hydroxylase (Cyp7a1) gene promoter using promoter deletion analysis and chromatin immunoprecipitation assays. Notably, melatonin attenuated the alcohol-stimulated induction of Btg2, Yy1 mRNA levels and bile acid production by promoting miR-497. Overexpression of a miR-497 mimic dramatically diminished the increase of Btg2 and Yy1 gene expression as well as bile acid production by alcohol, whereas this phenomenon was reversed by miR-497 inhibitor. These results demonstrate that the upregulation of miR-497 by melatonin represses alcohol-induced bile acid synthesis by attenuating the BTG2-YY1 signaling pathway. The melatonin-miR497 signaling network may provide novel therapeutic targets for the treatment of hepatic metabolic dysfunction caused by the alcohol-dependent pathway.
Collapse
Affiliation(s)
- Yong Deuk Kim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Seung-Lark Hwang
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Eun-Joo Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Hyeong-Mi Kim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Myung-Jin Chung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Ahmed K Elfadl
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Balachandar Nedumaran
- Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert A Harris
- Roudebush VA Medical Center and the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
24
|
Kang DJ, Hylemon PB, Gillevet PM, Sartor RB, Betrapally NS, Kakiyama G, Sikaroodi M, Takei H, Nittono H, Zhou H, Pandak WM, Yang J, Jiao C, Li X, Lippman HR, Heuman DM, Bajaj JS. Gut microbial composition can differentially regulate bile acid synthesis in humanized mice. Hepatol Commun 2017; 1:61-70. [PMID: 29404434 PMCID: PMC5747030 DOI: 10.1002/hep4.1020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
We previously reported that alcohol drinkers with and without cirrhosis showed a significant increase in fecal bile acid secretion compared to nondrinkers. We hypothesized this may be due to activation by alcohol of hepatic cyclic adenosine monophosphate responsive element-binding protein 3-like protein 3 (CREBH), which induces cholesterol 7α-hydroxylase (Cyp7a1). Alternatively, the gut microbiota composition in the absence of alcohol might increase bile acid synthesis by up-regulating Cyp7a1. To test this hypothesis, we humanized germ-free (GF) mice with stool from healthy human subjects (Ctrl-Hum), human subjects with cirrhosis (Cirr-Hum), and human subjects with cirrhosis and active alcoholism (Alc-Hum). All animals were fed a normal chow diet, and none demonstrated cirrhosis. Both hepatic Cyp7a1 and sterol 12α-hydroxylase (Cyp8b1) messenger RNA (mRNA) levels were significantly induced in the Alc-Hum and Ctrl-Hum mice but not in the Cirr-Hum mice or GF mice. Liver bile acid concentration was correspondingly increased in the Alc-Hum mice despite fibroblast growth factor 15, fibroblast growth receptor 4, and small heterodimer partner mRNA levels being significantly induced in the large bowel and liver of the Ctrl-Hum mice and Alc-Hum mice but not in the Cirr-Hum mice or GF mice. This suggests that the normal pathways of Cyp7a1 repression were activated in the Alc-Hum mice and Ctrl-Hum mice. CREBH mRNA was significantly induced only in the Ctrl-Hum mice and Alc-Hum mice, possibly indicating that the gut microbiota up-regulate CREBH and induce bile acid synthesis genes. Analysis of stool bile acids showed that the microbiota of the Cirr-Hum and Alc-Hum mice had a greater ability to deconjugate and 7α-dehydroxylate primary bile acids compared to the microbiota of the Cirr-Hum mice. 16S ribosomal RNA gene sequencing of the gut microbiota showed that the relative abundance of taxa that 7-α dehydroxylate primary bile acids was higher in the Ctrl-Hum and Alc-Hum groups. Conclusion: The composition of gut microbiota influences the regulation of the rate-limiting enzymes in bile acid synthesis in the liver. (Hepatology Communications 2017;1:61-70).
Collapse
Affiliation(s)
- Dae Joong Kang
- Division of Gastroenterology, Hepatology, and NutritionVirginia Commonwealth University and McGuire Veterans Administration Medical CenterRichmondVA
| | - Phillip B Hylemon
- Division of Gastroenterology, Hepatology, and NutritionVirginia Commonwealth University and McGuire Veterans Administration Medical CenterRichmondVA
| | | | - R. Balfour Sartor
- Departments of Medicine, Microbiology, and Immunology, National Gnotobiotic Rodent Resource CenterUniversity of North CarolinaChapel HillNC
| | | | - Genta Kakiyama
- Division of Gastroenterology, Hepatology, and NutritionVirginia Commonwealth University and McGuire Veterans Administration Medical CenterRichmondVA
| | | | | | | | - Huiping Zhou
- Division of Gastroenterology, Hepatology, and NutritionVirginia Commonwealth University and McGuire Veterans Administration Medical CenterRichmondVA
| | - William M. Pandak
- Division of Gastroenterology, Hepatology, and NutritionVirginia Commonwealth University and McGuire Veterans Administration Medical CenterRichmondVA
| | - Jing Yang
- Division of Gastroenterology, Hepatology, and NutritionVirginia Commonwealth University and McGuire Veterans Administration Medical CenterRichmondVA
| | - Chunhua Jiao
- Division of Gastroenterology, Hepatology, and NutritionVirginia Commonwealth University and McGuire Veterans Administration Medical CenterRichmondVA
| | - Xiaojiaoyang Li
- Division of Gastroenterology, Hepatology, and NutritionVirginia Commonwealth University and McGuire Veterans Administration Medical CenterRichmondVA
| | - H. Robert Lippman
- Department of PathologyVirginia Commonwealth University and McGuire Veterans Administration Medical CenterRichmondVA
| | - Douglas M. Heuman
- Division of Gastroenterology, Hepatology, and NutritionVirginia Commonwealth University and McGuire Veterans Administration Medical CenterRichmondVA
| | - Jasmohan S. Bajaj
- Division of Gastroenterology, Hepatology, and NutritionVirginia Commonwealth University and McGuire Veterans Administration Medical CenterRichmondVA
| |
Collapse
|
25
|
Feng HY, Chen YC. Role of bile acids in carcinogenesis of pancreatic cancer: An old topic with new perspective. World J Gastroenterol 2016; 22:7463-77. [PMID: 27672269 PMCID: PMC5011662 DOI: 10.3748/wjg.v22.i33.7463] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023] Open
Abstract
The role of bile acids in colorectal cancer has been well documented, but their role in pancreatic cancer remains unclear. In this review, we examined the risk factors of pancreatic cancer. We found that bile acids are associated with most of these factors. Alcohol intake, smoking, and a high-fat diet all lead to high secretion of bile acids, and bile acid metabolic dysfunction is a causal factor of gallstones. An increase in secretion of bile acids, in addition to a long common channel, may result in bile acid reflux into the pancreatic duct and to the epithelial cells or acinar cells, from which pancreatic adenocarcinoma is derived. The final pathophysiological process is pancreatitis, which promotes dedifferentiation of acinar cells into progenitor duct-like cells. Interestingly, bile acids act as regulatory molecules in metabolism, affecting adipose tissue distribution, insulin sensitivity and triglyceride metabolism. As a result, bile acids are associated with three risk factors of pancreatic cancer: obesity, diabetes and hypertriglyceridemia. In the second part of this review, we summarize several studies showing that bile acids act as cancer promoters in gastrointestinal cancer. However, more question are raised than have been solved, and further oncological and physiological experiments are needed to confirm the role of bile acids in pancreatic cancer carcinogenesis.
Collapse
|
26
|
Hu X, Jogasuria A, Wang J, Kim C, Han Y, Shen H, Wu J, You M. MitoNEET Deficiency Alleviates Experimental Alcoholic Steatohepatitis in Mice by Stimulating Endocrine Adiponectin-Fgf15 Axis. J Biol Chem 2016; 291:22482-22495. [PMID: 27573244 DOI: 10.1074/jbc.m116.737015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/25/2016] [Indexed: 12/13/2022] Open
Abstract
MitoNEET (mNT) (CDGSH iron-sulfur domain-containing protein 1 or CISD1) is an outer mitochondrial membrane protein that donates 2Fe-2S clusters to apo-acceptor proteins. In the present study, using a global mNT knock-out (mNTKO) mouse model, we investigated the in vivo functional role of mNT in the development of alcoholic steatohepatitis. Experimental alcoholic steatohepatitis was achieved by pair feeding wild-type (WT) and mNTKO mice with Lieber-DeCarli ethanol-containing diets for 4 weeks. Strikingly, chronically ethanol-fed mNTKO mice were completely resistant to ethanol-induced steatohepatitis as revealed by dramatically reduced hepatic triglycerides, decreased hepatic cholesterol level, diminished liver inflammatory response, and normalized serum ALT levels. Mechanistic studies demonstrated that ethanol administration to mNTKO mice induced two pivotal endocrine hormones, namely, adipose-derived adiponectin and gut-derived fibroblast growth factor 15 (Fgf15). The elevation in circulating levels of adiponectin and Fgf15 led to normalized hepatic and serum levels of bile acids, limited hepatic accumulation of toxic bile, attenuated inflammation, and amelioration of liver injury in the ethanol-fed mNTKO mice. Other potential mechanisms such as reduced oxidative stress, activated Sirt1 signaling, and diminished NF-κB activity also contribute to hepatic improvement in the ethanol-fed mNTKO mice. In conclusion, the present study identified adiponectin and Fgf15 as pivotal adipose-gut-liver metabolic coordinators in mediating the protective action of mNT deficiency against development of alcoholic steatohepatitis in mice. Our findings may help to establish mNT as a novel therapeutic target and pharmacological inhibition of mNT may be beneficial for the prevention and treatment of human alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Xudong Hu
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272.,the Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China, and
| | - Alvin Jogasuria
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Jiayou Wang
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Chunki Kim
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Yoonhee Han
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Hong Shen
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272.,the Department of Liver Diseases, Guangdong Hospital of Traditional Chinese Medicine in Zhuhai, Zhuhai 519015, China
| | - Jiashin Wu
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Min You
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272,
| |
Collapse
|
27
|
WANG MIN, ZHAO SHUIPING, TAN MINGYUE. bZIP transmembrane transcription factor CREBH: Potential role in non-alcoholic fatty liver disease (Review). Mol Med Rep 2015; 13:1455-62. [DOI: 10.3892/mmr.2015.4749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/02/2015] [Indexed: 11/06/2022] Open
|
28
|
Zhang Y, Kim DK, Lee JM, Park SB, Jeong WI, Kim SH, Lee IK, Lee CH, Chiang JYL, Choi HS. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression. Biochem J 2015; 470:181-93. [PMID: 26348907 PMCID: PMC5333639 DOI: 10.1042/bj20141494] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/29/2015] [Indexed: 12/30/2022]
Abstract
Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Cells, Cultured
- Cholesterol 7-alpha-Hydroxylase/biosynthesis
- Cholesterol 7-alpha-Hydroxylase/genetics
- Drug Inverse Agonism
- Ethanol/pharmacology
- Gene Expression
- Glycerides/pharmacology
- HEK293 Cells
- Hepatocytes/metabolism
- Humans
- Liver/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Promoter Regions, Genetic
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Yaochen Zhang
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Ji-Min Lee
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seung Bum Park
- Chemical Biology Laboratory, School of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-338, Republic of Korea
| | - Seong Heon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 701-310, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721, Republic of Korea
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - John Y L Chiang
- Department of Integrative Medical Sciences, Northeastern Ohio University's Colleges of Medicine and Pharmacy, Rootstown, Ohio 44272, U.S.A
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
29
|
Manley S, Ding W. Role of farnesoid X receptor and bile acids in alcoholic liver disease. Acta Pharm Sin B 2015; 5:158-67. [PMID: 26579442 PMCID: PMC4629219 DOI: 10.1016/j.apsb.2014.12.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/20/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is one of the major causes of liver morbidity and mortality worldwide. Chronic alcohol consumption leads to development of liver pathogenesis encompassing steatosis, inflammation, fibrosis, cirrhosis, and in extreme cases, hepatocellular carcinoma. Moreover, ALD may also associate with cholestasis. Emerging evidence now suggests that farnesoid X receptor (FXR) and bile acids also play important roles in ALD. In this review, we discuss the effects of alcohol consumption on FXR, bile acids and gut microbiome as well as their impacts on ALD. Moreover, we summarize the findings on FXR, FoxO3a (forkhead box-containing protein class O3a) and PPARα (peroxisome proliferator-activated receptor alpha) in regulation of autophagy-related gene transcription program and liver injury in response to alcohol exposure.
Collapse
Key Words
- 6ECDCA, 6α-ethyl-chenodeoxycholic acid
- ADH, alcohol dehydrogenase
- AF, activation function
- AKT, protein kinase B
- ALD, alcoholic liver disease
- ALT, alanine aminotransferase
- ASBT, apical sodium dependent bile acid transporter
- Alcoholic liver disease
- Atg, autophagy-related
- Autophagy
- BAAT, bile acid CoA:amino acid N-acyltransferase
- BACS, bile acid CoA synthetase
- BSEP, bile salt export pump
- Bile acids
- CA, cholic acid
- CB1R, cannabinoid receptor type 1
- CDCA, chenodeoxycholic acid
- CREB, cAMP response element-binding protein
- CREBH, cAMP response element-binding protein, hepatocyte specific
- CRTC2, CREB regulated transcription coactivator 2
- CYP, cytochrome P450
- DCA, deoxycholic acid
- DR1, direct repeat 1
- FGF15/19, fibroblast growth factor 15/19
- FGFR4, fibroblast growth factor receptor 4
- FXR, farnesoid X receptor
- Farnesoid X receptor
- FoxO3
- FoxO3a, forkhead box-containing protein class O3a
- GGT, gamma-glutamyltranspeptidase
- HCC, hepatocellular carcinoma
- IR-1, inverted repeat-1
- KO, knockout
- LC3, light chain 3
- LRH-1, liver receptor homolog 1
- LXR, liver X receptor
- MRP4, multidrug resistance protein 4
- NAD+, nicotinamide adenine dinucleotide
- NTCP, sodium taurocholate cotransporting polypeptide
- OSTα/β, organic solute transporter α/β
- PE, phosphatidylethanolamine
- PPARα, peroxisome proliferator-activated receptor alpha
- ROS, reactive oxygen species
- RXRα, retinoid X receptor-alpha
- SHP, small heterodimer partner
- SQSTM, sequestome-1
- SREBP1, sterol regulatory element-binding protein 1
- Sirt1, sirtuin 1
- TCA, taurocholic acid
- TFEB, transcription factor EB
- TLR4, toll-like receptor 4
- TUDCA, tauro-ursodeoxycholic acid
- UDCA, ursodeoxycholic acid
- WAY, WAY-362450
- WT, wild type
Collapse
Affiliation(s)
| | - Wenxing Ding
- Corresponding author. Tel.: +1 913 5889813; fax: +1 913 5887501.
| |
Collapse
|
30
|
Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Gut microbiota, cirrhosis, and alcohol regulate bile acid metabolism in the gut. Dig Dis 2015; 33:338-45. [PMID: 26045267 PMCID: PMC4470395 DOI: 10.1159/000371678] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The understanding of the complex role of the bile acid-gut microbiome axis in health and disease processes is evolving rapidly. Our focus revolves around the interaction of the gut microbiota with liver diseases, especially cirrhosis. The bile acid pool size has recently been shown to be a function of microbial metabolism of bile acid, and regulation of the microbiota by bile acids is important in the development and progression of several liver diseases. Humans produce a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of farnesoid X receptor (FXR) in the intestine and liver. Microbes use bile acids, and via FXR signaling this results in a smaller, unconjugated hydrophobic bile acid pool. This equilibrium is critical to maintain health. The challenge is to examine the manifold functions of gut bile acids as modulators of antibiotic, probiotic, and disease progression in cirrhosis, metabolic syndrome, and alcohol use. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. With advancing liver disease and cirrhosis, there is dysbiosis in the fecal, ileal, and colonic mucosa, in addition to a decrease in bile acid concentration in the intestine due to the liver problems. This results in a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa, and increasing production of deoxycholic acid. Alcohol intake speeds up these processes in the subjects with and without cirrhosis without significant FXR feedback. Taken together, these pathways can impact intestinal and systemic inflammation while worsening dysbiosis. The interaction between bile acids, alcohol, cirrhosis, and dysbiosis is an important relationship that influences intestinal and systemic inflammation, which in turn determines progression of the overall disease process. These interactions and the impact of commonly used therapies for liver disease can provide insight into the pathogenesis of inflammation in humans.
Collapse
Affiliation(s)
- Jason M. Ridlon
- McGuire VA Medical Center, Richmond, VA USA,Department of Microbiology and Immunology, Virginia Commonwealth University; Richmond, VA USA
| | - Dae-Joong Kang
- Division of Gastroenterology, Hepatology and Nutrition; Virginia Commonwealth University, Richmond, VA USA
| | - Phillip B. Hylemon
- McGuire VA Medical Center, Richmond, VA USA,Department of Microbiology and Immunology, Virginia Commonwealth University; Richmond, VA USA
| | - Jasmohan S Bajaj
- McGuire VA Medical Center, Richmond, VA USA,Division of Gastroenterology, Hepatology and Nutrition; Virginia Commonwealth University, Richmond, VA USA,Correspondence to: Jasmohan S. Bajaj, MD, MS, MBBS, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA. Tel.: +1 (804) 675 5802; fax: +1 (804) 675 5816.
| |
Collapse
|
31
|
Kakiyama G, Hylemon PB, Zhou H, Pandak WM, Heuman DM, Kang DJ, Takei H, Nittono H, Ridlon JM, Fuchs M, Gurley EC, Wang Y, Liu R, Sanyal AJ, Gillevet PM, Bajaj JS. Colonic inflammation and secondary bile acids in alcoholic cirrhosis. Am J Physiol Gastrointest Liver Physiol 2014; 306:G929-37. [PMID: 24699327 PMCID: PMC4152166 DOI: 10.1152/ajpgi.00315.2013] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcohol abuse with/without cirrhosis is associated with an impaired gut barrier and inflammation. Gut microbiota can transform primary bile acids (BA) to secondary BAs, which can adversely impact the gut barrier. The purpose of this study was to define the effect of active alcohol intake on fecal BA levels and ileal and colonic inflammation in cirrhosis. Five age-matched groups {two noncirrhotic (control and drinkers) and three cirrhotic [nondrinkers/nonalcoholics (NAlc), abstinent alcoholic for >3 mo (AbsAlc), currently drinking (CurrAlc)]} were included. Fecal and serum BA analysis, serum endotoxin, and stool microbiota using pyrosequencing were performed. A subgroup of controls, NAlc, and CurrAlc underwent ileal and sigmoid colonic biopsies on which mRNA expression of TNF-α, IL-1β, IL-6, and cyclooxygenase-2 (Cox-2) were performed. One hundred three patients (19 healthy, 6 noncirrhotic drinkers, 10 CurrAlc, 38 AbsAlc, and 30 NAlc, age 56 yr, median MELD: 10.5) were included. Five each of healthy, CurrAlc, and NAlc underwent ileal/colonic biopsies. Endotoxin, serum-conjugated DCA and stool total BAs, and secondary-to-primary BA ratios were highest in current drinkers. On biopsies, a significantly higher mRNA expression of TNF-α, IL-1β, IL-6, and Cox-2 in colon but not ileum was seen in CurrAlc compared with NAlc and controls. Active alcohol use in cirrhosis is associated with a significant increase in the secondary BA formation compared with abstinent alcoholic cirrhotics and nonalcoholic cirrhotics. This increase in secondary BAs is associated with a significant increase in expression of inflammatory cytokines in colonic mucosa but not ileal mucosa, which may contribute to alcohol-induced gut barrier injury.
Collapse
Affiliation(s)
- Genta Kakiyama
- 1Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Phillip B. Hylemon
- 2Department of Microbiology, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Huiping Zhou
- 3Department of Immunology, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - William M. Pandak
- 1Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Douglas M. Heuman
- 1Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Dae Joong Kang
- 1Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Hajime Takei
- 4Junshin Clinic Bile Acid Institute, Tokyo, Japan; and
| | | | - Jason M. Ridlon
- 2Department of Microbiology, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Michael Fuchs
- 1Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Emily C. Gurley
- 2Department of Microbiology, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Yun Wang
- 3Department of Immunology, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Runping Liu
- 3Department of Immunology, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | - Arun J. Sanyal
- 1Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| | | | - Jasmohan S. Bajaj
- 1Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia;
| |
Collapse
|
32
|
Misra J, Chanda D, Kim DK, Cho SR, Koo SH, Lee CH, Back SH, Choi HS. Orphan nuclear receptor Errγ induces C-reactive protein gene expression through induction of ER-bound Bzip transmembrane transcription factor CREBH. PLoS One 2014; 9:e86342. [PMID: 24466039 PMCID: PMC3899246 DOI: 10.1371/journal.pone.0086342] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/12/2013] [Indexed: 12/15/2022] Open
Abstract
The orphan nuclear receptor estrogen-related receptor-γ (ERRγ) is a constitutively active transcription factor regulating genes involved in several important cellular processes, including hepatic glucose metabolism, alcohol metabolism, and the endoplasmic reticulum (ER) stress response. cAMP responsive element-binding protein H (CREBH) is an ER-bound bZIP family transcription factor that is activated upon ER stress and regulates genes encoding acute-phase proteins whose expression is increased in response to inflammation. Here, we report that ERRγ directly regulates CREBH gene expression in response to ER stress. ERRγ bound to the ERRγ response element (ERRE) in the CREBH promoter. Overexpression of ERRγ by adenovirus significantly increased expression of CREBH as well as C-reactive protein (CRP), whereas either knockdown of ERRγ or inhibition of ERRγ by ERRγ specific inverse agonist, GSK5182, substantially inhibited ER stress-mediated induction of CREBH and CRP. The transcriptional coactivator PGC1α was required for ERRγ mediated induction of the CREBH gene as demonstrated by the chromatin immunoprecipitation (ChIP) assay showing binding of both ERRγ and PGC1α on the CREBH promoter. The ChIP assay also revealed that histone H3 and H4 acetylation occurred at the ERRγ and PGC1α binding site. Moreover, chronic alcoholic hepatosteatosis, as well as the diabetic obese condition significantly increased CRP gene expression, and this increase was significantly attenuated by GSK5182 treatment. We suggest that orphan nuclear receptor ERRγ directly regulates the ER-bound transcription factor CREBH in response to ER stress and other metabolic conditions.
Collapse
Affiliation(s)
- Jagannath Misra
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Dipanjan Chanda
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Rye Cho
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
- Research Institute of Medical Sciences, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|