1
|
Wang Z, Garcia F, Ehlers RU, Molina C. Dauer juvenile recovery transcriptome of two contrasting EMS mutants of the entomopathogenic nematode Heterorhabditis bacteriophora. World J Microbiol Biotechnol 2024; 40:128. [PMID: 38451353 DOI: 10.1007/s11274-024-03902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/18/2024] [Indexed: 03/08/2024]
Abstract
The entomopathogenic nematode Heterorhabditis bacteriophora, symbiotically associated with enterobacteria of the genus Photorhabdus, is a biological control agent against many insect pests. Dauer Juveniles (DJ) of this nematode are produced in industrial-scale bioreactors up to 100 m3 in liquid culture processes lasting approximately 11 days. A high DJ yield (> 200,000 DJ·mL-1) determines the success of the process. To start the mass production, a DJ inoculum proceeding from a previous monoxenic culture is added to pre-cultured (24 h) Photorhabdus bacteria. Within minutes after contact with the bacteria, DJ are expected to perceive signals that trigger their further development (DJ recovery) to reproductive hermaphrodites. A rapid, synchronized, and high DJ recovery is a key factor for an efficient culture process. In case of low percentage of DJ recovery, the final DJ yield is drastically reduced, and the amount of non-desired stages (males and non-fertilized females) hinders the DJ harvest. In a preliminary work, a huge DJ recovery phenotypic variability in H. bacteriophora ethyl methanesulphonate (EMS) mutants was determined. In the present study, two EMS-mutant lines (M31 and M88) with high and low recovery phenotypes were analyzed concerning their differences in gene expression during the first hours of contact with Photorhabdus supernatant containing food signals triggering recovery. A snapshot (RNA-seq analysis) of their transcriptome was captured at 0.5, 1, 3 and 6 h after exposure. Transcripts (3060) with significant regulation changes were identified in the two lines. To analyze the RNA-seq data over time, we (1) divided the expression profiles into clusters of similar regulation, (2) identified over and under-represented gene ontology categories for each cluster, (3) identified Caenorhabditis elegans homologous genes with recovery-related function, and (4) combined the information with available single nucleotide polymorphism (SNP) data. We observed that the expression dynamics of the contrasting mutants (M31 and M88) differ the most within the first 3 h after Photorhabdus supernatant exposure, and during this time, genes related to changes in the DJ cuticle and molting are more active in the high-recovery line (M31). Comparing the gene expression of DJ exposed to the insect food signal in the haemolymph, genes related to host immunosuppressive factors were not found in DJ upon bacterial supernatant exposure. No link between the position of SNPs associated with high recovery and changes in gene expression was determined for genes with high differential expression. Concerning specific transcripts, nine H. bacteriophora gene models with differential expression are provided as candidate genes for further studies.
Collapse
Affiliation(s)
- Zhen Wang
- e-nema GmbH, Klausdorfer Str. 28-36, 24223, Schwentinental, Germany
- Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel, Hermann-Rodewald-Str. 4, 24118, Kiel, Germany
| | - Francisco Garcia
- e-nema GmbH, Klausdorfer Str. 28-36, 24223, Schwentinental, Germany
- Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel, Hermann-Rodewald-Str. 4, 24118, Kiel, Germany
| | - Ralf-Udo Ehlers
- Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel, Hermann-Rodewald-Str. 4, 24118, Kiel, Germany
| | - Carlos Molina
- e-nema GmbH, Klausdorfer Str. 28-36, 24223, Schwentinental, Germany.
| |
Collapse
|
2
|
Ogaya C, Huong N, Touceda-González M, Barg M, Dörfler V, Ehlers RU, Molina C. Monitoring the Photorhabdus spp. bacterial load in Heterorhabditis bacteriophora dauer juveniles over different storage times and temperatures: A molecular approach. J Invertebr Pathol 2024; 203:108048. [PMID: 38159796 DOI: 10.1016/j.jip.2023.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Biological control products based on the entomopathogenic nematode Heterorhabditis bacteriophora can vary in virulence (quality). The influence of their symbiotic bacteria Photorhabdus spp. inside the infective dauer juvenile (DJ) on DJ quality has not received much attention in the past. The presence of the bacteria in the DJ is crucial for its biocontrol potential. This investigation provides a method to quantify the bacterial load inside the DJ based on a qPCR technique. Information from the genome of Photorhabdus laumondii strain DE2 was used to identify single copy genes with no homology to any other bacterial accessions. One gene (hereby named CG2) was selected for primers design and for further qPCR experiments. Cross-amplification tests with P. thracensis and P. kayaii, also symbionts of H. bacteriophora, were positive, whereas no amplicons were produced for P. temperata or Xenorhabdus nematophila. We tested our qPCR system in DJ populations carrying defined proportions of bacteria-free (axenic) vs bacteria-carrying nematodes. With an increasing proportion of axenic DJ in a population, virulence declined, and the virulence was proportional to the amount of bacterial DNA detected in the population by qPCR. Along liquid storage over long time, virulence also decreased, and this factor correlated with the reduction of bacterial DNA on the respective DJ population. We observed that stored DJ kept virulent up to 90 days and thereafter the virulence as well as the amount of bacterial DNA drastically decreased. Storage temperature also influenced the bacterial survival. Inside formulated DJ, the loss of bacterial DNA on the DJ population was accelerated under storage temperatures below 7.5 °C, suggesting that reproduction of the bacterial cells takes place when growth temperature is favorable. The role of bacterial survival inside stored DJ can now be adequately addressed using this molecular quality-control technique.
Collapse
Affiliation(s)
- Christopher Ogaya
- Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel, Hermann-Rodewald-Str. 4, 24118 Kiel, Germany; e-nema GmbH, Klausdorfer Str. 28-36, 24223 Schwentinental, Germany
| | - Nontarak Huong
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | - Mike Barg
- e-nema GmbH, Klausdorfer Str. 28-36, 24223 Schwentinental, Germany
| | - Verena Dörfler
- e-nema GmbH, Klausdorfer Str. 28-36, 24223 Schwentinental, Germany
| | - Ralf-Udo Ehlers
- Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel, Hermann-Rodewald-Str. 4, 24118 Kiel, Germany; Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Carlos Molina
- e-nema GmbH, Klausdorfer Str. 28-36, 24223 Schwentinental, Germany.
| |
Collapse
|
3
|
Kgosiemang JL, Ramakuwela T, Figlan S, Cochrane N. Antifungal Effect of Metabolites from Bacterial Symbionts of Entomopathogenic Nematodes on Fusarium Head Blight of Wheat. J Fungi (Basel) 2024; 10:148. [PMID: 38392820 PMCID: PMC10890388 DOI: 10.3390/jof10020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Fungal diseases such as Fusarium head blight (FHB) are significant biotic stressors, negatively affecting wheat production and quality. This study explored the antifungal activity of the metabolites produced by the bacterial symbionts of entomopathogenic nematodes (EPNs) against FHB-causing Fusarium sp. Fusarium graminearum. To achieve this, the symbiotic bacteria of nine EPN isolates from the EPN collection at the Agricultural Research Council-Small Grains (ARC-SG) were isolated from the cadavers of Galleria mellonella (Lepidoptera: Pyralidae) larvae after infection with EPNs. Broth cultures (crude) and their supernatants (filtered and autoclaved) of each bacterial isolate were used as bacterial metabolite treatments to test their inhibitory effect on the mycelial growth and spore germination of F. graminearum. Mycelial growth inhibition rates varied among both bacterial isolates and treatments. Crude metabolite treatments proved to be more effective than filtered and autoclaved metabolite treatments, with an overall inhibition rate of 75.25% compared to 23.93% and 13.32%, respectively. From the crude metabolite treatments, the Xenorhabdus khoisanae SGI 197 bacterial isolate from Steinernema beitlechemi SGI 197 had the highest mean inhibition rate of 96.25%, followed by Photorhabdus luminescens SGI 170 bacteria isolated from Heterorhabditis bacteriophora SGI 170 with a 95.79% mean inhibition rate. The filtered metabolite treatments of all bacterial isolates were tested for their inhibitory activity against Fusarium graminearum spore germination. Mean spore germination inhibition rates from Xenorhabdus spp. bacterial isolates were higher (83.91 to 96.29%) than those from Photorhabdus spp. (6.05 to 14.74%). The results obtained from this study suggest that EPN symbiotic bacterial metabolites have potential use as biological control agents of FHB. Although field efficacy against FHB was not studied, the significant inhibition of mycelial growth and spore germination suggest that the application of these metabolites at the flowering stage may provide protection to plants against infection with or spread of F. graminearum. These metabolites have the potential to be employed as part of integrated pest management (IPM) to inhibit/delay conidia germination until the anthesis (flowering stage) of wheat seedlings has passed.
Collapse
Affiliation(s)
- Julius Leumo Kgosiemang
- Agricultural Research Council-Small Grains, Bethlehem 9701, South Africa
- Department of Agriculture and Animal Health, University of South Africa, Florida 1710, South Africa
| | - Tshimangadzo Ramakuwela
- Agricultural Research Council-Small Grains, Bethlehem 9701, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield 0028, South Africa
| | - Sandiswa Figlan
- Department of Agriculture and Animal Health, University of South Africa, Florida 1710, South Africa
| | | |
Collapse
|
4
|
Bhat AH, Machado RAR, Abolafia J, Ruiz-Cuenca AN, Askary TH, Ameen F, Dass WM. Taxonomic and molecular characterization of a new entomopathogenic nematode species, Heterorhabditis casmirica n. sp., and whole genome sequencing of its associated bacterial symbiont. Parasit Vectors 2023; 16:383. [PMID: 37880744 PMCID: PMC10598981 DOI: 10.1186/s13071-023-05990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Nematodes of the genus Heterorhabditis are important biocontrol agents as they form a lethal combination with their symbiotic Photorhabdus bacteria against agricultural insect pests. This study describes a new species of Heterorhabditis. METHODS Six Heterorhabditis nematode populations were recovered from agricultural soils in Jammu and Kashmir, India. An initial examination using mitochondrial and nuclear genes showed that they belong to a new species. To describe this new species, a variety of analyses were conducted, including reconstructing phylogenetic relationships based on multiple genes, characterizing the nematodes at the morphological and morphometric levels, performing self-crossing and cross-hybridization experiments, and isolating and characterizing their symbiotic bacteria. RESULTS The newly discovered species, Heterorhabditis casmirica n. sp., shares 94% mitochondrial cytochrome C oxidase subunit I gene (COI) sequence identity with Heterorhabditis bacteriophora and Heterorhabditis ruandica, and 93% with Heterorhabditis zacatecana. Morphologically, it differs from H. bacteriophora in its infective juvenile phasmids (present vs. inconspicuous) and bacterial pouch visibility in the ventricular portion of the intestine (invisible vs. visible); genital papilla 1 (GP1) position (at manubrium level vs. more anterior), and in its b ratio (body length/neck length), c ratio (tail length/bulb width), and D% [(excretory pore/neck length) × 100]. Other morphological differences include anterior end to the nerve ring distance (77-100 vs. 121-130 μm), V% [(anterior end of vulva/body length) × 100] (46-57 vs. 41-47) in hermaphroditic females; rectum size (slightly longer than the anal body diameter vs. about three times longer), phasmids (smaller vs. inconspicuous), body length (0.13-2.0 vs. 0.32-0.39 mm), body diameter (73-150 vs. 160-220 μm), anterior end to the excretory pore distance (135-157 vs. 174-214 μm), and demanian ratios in amphimictic females. Morphological differences with H. ruandica and H. zacatecana were also observed. Furthermore, H. casmirica n. sp. did not mate or produce fertile progeny with other Heterorhabditis nematodes reported from India. It was also discovered that H. casmirica n. sp. is associated with Photorhabdus luminescence subsp. clarkei symbiotic bacteria. CONCLUSIONS The discovery of H. casmirica n. sp. provides novel insights into the diversity and evolution of Heterorhabditis nematodes and their symbiotic bacteria. This new species adds to the catalog of entomopathogenic nematodes in India.
Collapse
Affiliation(s)
- Aashaq Hussain Bhat
- Department of Biosciences, University Center for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
- Experimental Biology Research Group, Institute of Biology, Faculty of Sciences, University of Neuchâtel, Neuchâtel, 2000, Switzerland.
| | - Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, Faculty of Sciences, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Joaquín Abolafia
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus 'Las Lagunillas', Jaén, 23071, Spain
| | - Alba N Ruiz-Cuenca
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus 'Las Lagunillas', Jaén, 23071, Spain
| | - Tarique Hassan Askary
- Division of Entomology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Wadura Campus, Sopore, 193201, Jammu and Kashmir, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Wasim Muzamil Dass
- Department of Zoology, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| |
Collapse
|
5
|
Rae R, Sheehy L, McDonald-Howard K. Thirty years of slug control using the parasitic nematode Phasmarhabditis hermaphrodita and beyond. PEST MANAGEMENT SCIENCE 2023; 79:3408-3424. [PMID: 37394691 DOI: 10.1002/ps.7636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Several slug species are highly pestiferous and threaten global sustainable agriculture. Current control methods rely heavily on metaldehyde pellets, which are often ineffective, harm nontarget organisms and have been banned in some countries. A viable alternative is the parasitic nematode Phasmarhabditis hermaphrodita (and recently P. californica), which has been formulated into a biological control agent (Nemaslug®) to control slugs across northern Europe. Nematodes are mixed with water and applied to soil where they seek out slugs, penetrate behind the mantle and kill them in 4-21 days. Phasmarhabditis hermaphrodita has been on the market since 1994 and since then there has been ample research on its use. Here we review the research carried out on P. hermaphrodita over the last 30 years since its development and release as a commercial product. We provide information on life cycle, worldwide distribution, history of commercialisation, gastropod immunity, host range, ecological and environmental factors that affect its success in the field, bacterial relationships, and summarise results of field trials. Finally, we suggest future directions for P. hermaphrodita research (and other Phasmarhabditis species) to enhance its use as a biological control agent to control slugs for the next 30 years. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Robbie Rae
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Laura Sheehy
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Kerry McDonald-Howard
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
6
|
Lee YC, Ke HM, Liu YC, Lee HH, Wang MC, Tseng YC, Kikuchi T, Tsai IJ. Single-worm long-read sequencing reveals genome diversity in free-living nematodes. Nucleic Acids Res 2023; 51:8035-8047. [PMID: 37526286 PMCID: PMC10450198 DOI: 10.1093/nar/gkad647] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
Obtaining sufficient genetic material from a limited biological source is currently the primary operational bottleneck in studies investigating biodiversity and genome evolution. In this study, we employed multiple displacement amplification (MDA) and Smartseq2 to amplify nanograms of genomic DNA and mRNA, respectively, from individual Caenorhabditis elegans. Although reduced genome coverage was observed in repetitive regions, we produced assemblies covering 98% of the reference genome using long-read sequences generated with Oxford Nanopore Technologies (ONT). Annotation with the sequenced transcriptome coupled with the available assembly revealed that gene predictions were more accurate, complete and contained far fewer false positives than de novo transcriptome assembly approaches. We sampled and sequenced the genomes and transcriptomes of 13 nematodes from early-branching species in Chromadoria, Dorylaimia and Enoplia. The basal Chromadoria and Enoplia species had larger genome sizes, ranging from 136.6 to 738.8 Mb, compared with those in the other clades. Nine mitogenomes were fully assembled, and displayed a complete lack of synteny to other species. Phylogenomic analyses based on the new annotations revealed strong support for Enoplia as sister to the rest of Nematoda. Our result demonstrates the robustness of MDA in combination with ONT, paving the way for the study of genome diversity in the phylum Nematoda and beyond.
Collapse
Affiliation(s)
- Yi-Chien Lee
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, 116 Wenshan, Taipei, Taiwan
| | - Huei-Mien Ke
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Min-Chen Wang
- Marine Research Station (MRS), Institute of Cellular and Organismic Biology, Academia Sinica, 262 I-Lan County, Taiwan
| | - Yung-Che Tseng
- Marine Research Station (MRS), Institute of Cellular and Organismic Biology, Academia Sinica, 262 I-Lan County, Taiwan
| | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
7
|
Abd-Elgawad MMM. Optimizing Entomopathogenic Nematode Genetics and Applications for the Integrated Management of Horticultural Pests. HORTICULTURAE 2023; 9:865. [DOI: 10.3390/horticulturae9080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Entomopathogenic nematodes (EPNs) can kill and recycle in their host populations, which bodes well for EPNs’ exploitation in long-term and safe pest management. However, EPNs’ cost and efficacy need transformational technology to supplant less expensive and more effective but toxic/unhealthy pesticides. A technology that allows for the significant uptake of commercial EPNs should both boost their market suitability and provide genetic improvements. This review provides brief overviews of EPNs’ biology and ecology from the standpoint of pest/pathogen management as a prerequisite for EPN improvements. Understanding the biology and ecology of EPNs, particularly their symbiotic relationships with bacteria, is crucial to their effective use in pest management. This review provides relevant insights into EPN-symbiotic bacteria and the EPN–symbiont complex. The symbiotic relationship between EPNs and bacteria plays a key role in IPM, providing unique advantages. Either of them can be included in mechanisms underlying the various positive sides of plant–insect interactions in emerging integrated pest management (IPM) systems. Recent approaches, in which EPNs can act additively or synergistically with other production inputs in IPM programs, are discussed for further expansion. The simultaneous favorable effects of EPNs and/or their mutualistic bacteria on several pest/pathogen species of crops should be identified. Merits, such as the rapid killing of insect pests, ease of EPN/the symbiont’s mass production and a broad host range, are presented in order to widely disseminate the conditions under which EPN usage can offer a cost-effective and/or value-added technique for IPM. To maximize the effectiveness of EPNs in IPM, various genetic improvement techniques are being explored. Such techniques, along with their merits/demerits and related tools, are reviewed to optimize the common biocontrol usage of EPNs. Examples of genetic improvements to EPNs that allow for their use in transformational technology, such as a cost-effective application technique, increased infectivity, and toleration of unfavorable settings, are given. Proper production practices and genetic techniques should be applied carefully to avoid undesirable results; it is suggested that these are considered on a case-by-case basis. This will enable us to optimize EPN performance based on the given variables.
Collapse
Affiliation(s)
- Mahfouz M. M. Abd-Elgawad
- Plant Pathology Department, Agricultural and Biological Research Institute, National Research Centre, El-Behooth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
8
|
Kukhtar D, Fussenegger M. Synthetic biology in multicellular organisms: Opportunities in nematodes. Biotechnol Bioeng 2023. [PMID: 37448225 DOI: 10.1002/bit.28497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/27/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Synthetic biology has mainly focused on introducing new or altered functionality in single cell systems: primarily bacteria, yeast, or mammalian cells. Here, we describe the extension of synthetic biology to nematodes, in particular the well-studied model organism Caenorhabditis elegans, as a convenient platform for developing applications in a multicellular setting. We review transgenesis techniques for nematodes, as well as the application of synthetic biology principles to construct nematode gene switches and genetic devices to control motility. Finally, we discuss potential applications of engineered nematodes.
Collapse
Affiliation(s)
- Dmytro Kukhtar
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Faculty of Life Science, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Maushe D, Ogi V, Divakaran K, Verdecia Mogena AM, Himmighofen PA, Machado RAR, Towbin BD, Ehlers RU, Molina C, Parisod C, Maud Robert CA. Stress tolerance in entomopathogenic nematodes: Engineering superior nematodes for precision agriculture. J Invertebr Pathol 2023:107953. [PMID: 37336478 DOI: 10.1016/j.jip.2023.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Entomopathogenic nematodes (EPNs) are soil-dwelling parasitic roundworms commonly used as biocontrol agents of insect pests in agriculture. EPN dauer juveniles locate and infect a host in which they will grow and multiply until resource depletion. During their free-living stage, EPNs face a series of internal and environmental stresses. Their ability to overcome these challenges is crucial to determine their infection success and survival. In this review, we provide a comprehensive overview of EPN response to stresses associated with starvation, low/elevated temperatures, desiccation, osmotic stress, hypoxia, and ultra-violet light. We further report EPN defense strategies to cope with biotic stressors such as viruses, bacteria, fungi, and predatory insects. By comparing the genetic and biochemical basis of these strategies to the nematode model Caenorhabditis elegans, we provide new avenues and targets to select and engineer precision nematodes adapted to specific field conditions.
Collapse
Affiliation(s)
- Dorothy Maushe
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vera Ogi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Keerthi Divakaran
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | | | - Paul Anton Himmighofen
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Ricardo A R Machado
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Benjamin Daniel Towbin
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Ralf-Udo Ehlers
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Carlos Molina
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Christelle Aurélie Maud Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland.
| |
Collapse
|
10
|
Rastija V, Vrandečić K, Ćosić J, Kanižai Šarić G, Majić I, Agić D, Šubarić D, Karnaš M, Bešlo D, Brahmbhatt H, Komar M. Antifungal Activities of Fluorinated Pyrazole Aldehydes on Phytopathogenic Fungi, and Their Effect on Entomopathogenic Nematodes, and Soil-Beneficial Bacteria. Int J Mol Sci 2023; 24:ijms24119335. [PMID: 37298285 DOI: 10.3390/ijms24119335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Fluoro-substituted pyrazoles have a wide range of biological activities, such as antibacterial, antiviral, and antifungal activities. The aim of this study was to evaluate the antifungal activities of fluorinated 4,5-dihydro-1H-pyrazole derivatives on four phytopathogenic fungi: Sclerotinia sclerotiorum, Macrophomina phaseolina, Fusarium oxysporum f. sp. lycopersici, and F. culmorum. Moreover, they were tested on two soil beneficial bacteria-Bacillus mycoides and Bradyrhizobium japonicum-as well as two entomopathogenic nematodes (EPNs)-Heterorhabditis bacteriophora and Steinernema feltiae. The molecular docking was performed on the three enzymes responsible for fungal growth, the three plant cell wall-degrading enzymes, and acetylcholinesterase (AChE). The most active compounds against fungi S. sclerotiorum were 2-chlorophenyl derivative (H9) (43.07% of inhibition) and 2,5-dimethoxyphenyl derivative (H7) (42.23% of inhibition), as well as H9 against F. culmorum (46.75% of inhibition). Compounds were shown to be safe for beneficial soil bacteria and nematodes, except for compound H9 on EPN H. bacteriophora (18.75% mortality), which also showed the strongest inhibition against AChE (79.50% of inhibition). The molecular docking study revealed that antifungal activity is possible through the inhibition of proteinase K, and nematicidal activity is possible through the inhibition of AChE. The fluorinated pyrazole aldehydes are promising components of future plant protection products that could be environmentally and toxicologically acceptable.
Collapse
Affiliation(s)
- Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Karolina Vrandečić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Jasenka Ćosić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Gabriella Kanižai Šarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Ivana Majić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Domagoj Šubarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Maja Karnaš
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Drago Bešlo
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Harshad Brahmbhatt
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, Franje Kuhača 20, 31000 Osijek, Croatia
| | - Mario Komar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, Franje Kuhača 20, 31000 Osijek, Croatia
| |
Collapse
|
11
|
Bastin A, Eleftherianos I. Heterorhabditis bacteriophora. Trends Parasitol 2023:S1471-4922(23)00098-3. [PMID: 37188598 DOI: 10.1016/j.pt.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Ashley Bastin
- Infection and Innate Immunity Lab, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA.
| |
Collapse
|
12
|
Ozakman Y, Raval D, Eleftherianos I. Drosophila melanogaster Imd signaling interacts with insulin signaling and alters feeding rate upon parasitic nematode infection. Heliyon 2023; 9:e16139. [PMID: 37251825 PMCID: PMC10208921 DOI: 10.1016/j.heliyon.2023.e16139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/15/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Significant progress has been made in recent years on exploring immunometabolism, a field that integrates two processes essential for maintaining tissue and organismal homeostasis, immunity and metabolism. The nematode parasite Heterorhabditis gerrardi, its mutualistic bacteria Photorhabdus asymbiotica, and the fruit fly Drosophila melanogaster constitute a unique system to investigate the molecular basis of host immunometabolic response to nematode-bacterial complexes. In this study, we explored the contribution of the two major immune signaling pathways, Toll and Imd, to sugar metabolism in D. melanogaster larvae during infection with H. gerrardi nematodes. We infected Toll or Imd signaling loss-of-function mutant larvae with H. gerrardi nematodes and assessed larval survival ability, feeding rate, and sugar metabolism. We found no significant differences in the survival ability or levels of sugar metabolites in any of the mutant larvae when responding to H. gerrardi infection. However, we found that the Imd mutant larvae have higher feeding rate than controls during the early stages of infection. In addition, feeding rates are lower in Imd mutants relative to the control larvae as the infection progresses. We further showed that Dilp2 and Dilp3 gene expression increases in Imd mutants compared to controls early in the infection, but their expression levels decrease at later times. These findings indicate that Imd signaling activity regulates the feeding rate and Dilp2 and Dilp3 expression in D. melanogaster larvae infected with H. gerrardi. Results from this study facilitate our understanding of the link between host innate immunity and sugar metabolism in the context of infectious diseases caused by parasitic nematodes.
Collapse
Affiliation(s)
- Yaprak Ozakman
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, 20052, USA
| | - Dhaivat Raval
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, 20052, USA
| |
Collapse
|
13
|
Kundu A, Jaiswal N, Rao U, Somvanshi VS. Stringent in-silico identification of putative G-protein-coupled receptors (GPCRs) of the entomopathogenic nematode Heterorhabditis bacteriophora. J Nematol 2023; 55:20230038. [PMID: 38026552 PMCID: PMC10670001 DOI: 10.2478/jofnem-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 12/01/2023] Open
Abstract
The infective juveniles (IJs) of entomopathogenic nematode (EPN) Heterorhabditis bacteriophora find and infect their host insects in heterogeneous soil ecosystems by sensing a universal host cue (CO2) or insect/plant-derived odorants, which bind to various sensory receptors, including G protein-coupled receptors (GPCRs). Nematode chemosensory GPCRs (NemChRs) bind to a diverse set of ligands, including odor molecules. However, there is a lack of information on the NemChRs in EPNs. Here we identified 21 GPCRs in the H. bacteriophora genome sequence in a triphasic manner, combining various transmembrane detectors and GPCR predictors based on different algorithms, and considering inherent properties of GPCRs. The pipeline was validated by reciprocal BLAST, InterProscan, GPCR-CA, and NCBI CDD search. Functional classification of predicted GPCRs using Pfam revealed the presence of four NemChRs. Additionally, GPCRs were classified into various families based on the reciprocal BLAST approach into a frizzled type, a secretin type, and 19 rhodopsin types of GPCRs. Gi/o is the most abundant kind of G-protein, having a coupling specificity to all the fetched GPCRs. As the 21 GPCRs identified are expected to play a crucial role in the host-seeking behavior, these might be targeted to develop novel insect-pest management strategies by tweaking EPN IJ behavior, or to design novel anthelminthic drugs. Our new and stringent GPCR detection pipeline may also be used to identify GPCRs from the genome sequence of other organisms.
Collapse
Affiliation(s)
- Artha Kundu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi-12, India
| | - Nisha Jaiswal
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi-12, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi-12, India
| | - Vishal Singh Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi-12, India
| |
Collapse
|
14
|
Kim I, Heryanto C, Eleftherianos I. HETERORHABDITIS BACTERIOPHORA NEMATODES ARE SENSITIVE TO THE BACTERIAL PATHOGEN PHOTORHABDUS ASYMBIOTICA. J Parasitol 2023; 109:11-14. [PMID: 36805240 DOI: 10.1645/22-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The entomopathogenic nematode (EPN) Heterorhabditis bacteriophora infects a wide range of insect hosts with the aid of its mutualistic bacteria Photorhabdus luminescens. While the mutualistic relationship between H. bacteriophora and P. luminescens and the infectivity of the nematode-bacteria complex have been characterized, how nematode fitness is affected by entomopathogenic bacteria existing in association with other EPN species remains poorly understood. In this study, the survival of H. bacteriophora infective juveniles containing or lacking P. luminescens was tested against the entomopathogenic bacteria Xenorhabdus nematophila and Photorhabdus asymbiotica as well as the non-pathogenic Escherichia coli. While X. nematophila and E. coli did not significantly affect the survival of H. bacteriophora, P. asymbiotica exerted a significant effect on nematode survival, particularly on those lacking P. luminescens. These results imply that P. asymbiotica encodes factors that are pathogenic to EPNs. Future efforts will focus on the identification of the bacterial molecular components that induce these effects. This study makes an important contribution to a growing body of research aimed at exploiting the full potential of nematode-bacterial complexes for eliminating noxious insect pests and treating infectious diseases caused by parasitic nematodes.
Collapse
Affiliation(s)
- Irene Kim
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 22nd Street NW, Washington, D.C. 20052
| | - Christa Heryanto
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 22nd Street NW, Washington, D.C. 20052
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 22nd Street NW, Washington, D.C. 20052
| |
Collapse
|
15
|
Zhan C, Chen L, Guo D, Sun J, Duan Y, Zhang P, Li P, Ma L, Xu M, Wang Y, Bao H, Gao G, Liu L, Zhang K. An Intestinal Symbiotic Bacterial Strain of Oscheius chongmingensis Modulates Host Viability at Both Global and Post-Transcriptional Levels. Int J Mol Sci 2022; 23:ijms232314692. [PMID: 36499019 PMCID: PMC9739912 DOI: 10.3390/ijms232314692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
A rhabditid entomopathogenic nematode (EPN), Oscheius chongmingensis, has a stable symbiotic relationship with the bacterial strain Serratia nematodiphila S1 harbored in its intestines and drastically reduced viability when associated with a non-native strain (186) of the same bacterial species. This nematode is thus a good model for understanding the molecular mechanisms and interactions involved between a nematode host and a member of its intestinal microbiome. Transcriptome analysis and RNA-seq data indicated that expression levels of the majority (8797, 87.59%) of mRNAs in the non-native combination of O. chongmingensis and S. nematodiphila 186 were downregulated compared with the native combination, including strain S1. Accordingly, 88.84% of the total uniq-sRNAs mapped in the O. chongmingensis transcriptome were specific between the two combinations. Six DEGs, including two transcription factors (oc-daf-16 and oc-goa-1) and four kinases (oc-pdk-1, oc-akt-1, oc-rtk, and oc-fak), as well as an up-regulated micro-RNA, oc-miR-71, were found to demonstrate the regulatory mechanisms underlying diminished host viability induced by a non-native bacterial strain. Oc-rtk and oc-fak play key roles in the viability regulation of O. chongmingensis by positively mediating the expression of oc-daf-16 to indirectly impact its longevity and stress tolerances and by negatively regulating the expression of oc-goa-1 to affect the olfactory chemotaxis and fecundity. In response to the stress of invasion by the non-native strain, the expression of oc-miR-71 in the non-native combination was upregulated to downregulate the expression of its targeting oc-pdk-1, which might improve the localization and activation of the transcription factor DAF-16 in the nucleus to induce longevity extension and stress resistance enhancement to some extent. Our findings provide novel insight into comprehension of how nematodes deal with the stress of encountering novel potential bacterial symbionts at the physiological and molecular genetic levels and contribute to improved understanding of host-symbiont relationships generally.
Collapse
Affiliation(s)
- Chengxiu Zhan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Long Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dandan Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunbin Duan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Panjie Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengpeng Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lijun Ma
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Man Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoran Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guofu Gao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop (East China), Ministry of Agriculture and Rural Affairs, College of Horiticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (L.L.); (K.Z.)
| | - Keyun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (L.L.); (K.Z.)
| |
Collapse
|
16
|
Bhat CG, Budhwar R, Godwin J, Dillman AR, Rao U, Somvanshi VS. RNA-Sequencing of Heterorhabditis nematodes to identify factors involved in symbiosis with Photorhabdus bacteria. BMC Genomics 2022; 23:741. [PMCID: PMC9639317 DOI: 10.1186/s12864-022-08952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
Background Nematodes are a major group of soil inhabiting organisms. Heterorhabditis nematodes are insect-pathogenic nematodes and live in a close symbiotic association with Photorhabdus bacteria. Heterorhabditis-Photorhabdus pair offers a powerful and genetically tractable model to study animal-microbe symbiosis. It is possible to generate symbiont bacteria free (axenic) stages in Heterorhabditis. Here, we compared the transcriptome of symbiotic early-adult stage Heterorhabditis nematodes with axenic early-adult nematodes to determine the nematode genes and pathways involved in symbiosis with Photorhabdus bacteria. Results A de-novo reference transcriptome assembly of 95.7 Mb was created for H. bacteriophora by using all the reads. The assembly contained 46,599 transcripts with N50 value of 2,681 bp and the average transcript length was 2,054 bp. The differentially expressed transcripts were identified by mapping reads from symbiotic and axenic nematodes to the reference assembly. A total of 754 differentially expressed transcripts were identified in symbiotic nematodes as compared to the axenic nematodes. The ribosomal pathway was identified as the most affected among the differentially expressed transcripts. Additionally, 12,151 transcripts were unique to symbiotic nematodes. Endocytosis, cAMP signalling and focal adhesion were the top three enriched pathways in symbiotic nematodes, while a large number of transcripts coding for various responses against bacteria, such as bacterial recognition, canonical immune signalling pathways, and antimicrobial effectors could also be identified. Conclusions The symbiotic Heterorhabditis nematodes respond to the presence of symbiotic bacteria by expressing various transcripts involved in a multi-layered immune response which might represent non-systemic and evolved localized responses to maintain mutualistic bacteria at non-threatening levels. Subject to further functional validation of the identified transcripts, our findings suggest that Heterorhabditis nematode immune system plays a critical role in maintenance of symbiosis with Photorhabdus bacteria. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08952-4.
Collapse
Affiliation(s)
- Chaitra G. Bhat
- grid.418196.30000 0001 2172 0814Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012 India
| | - Roli Budhwar
- Bionivid Technology Private Limited, 209, 4th Cross Rd., B. Channasandra, Kasturi Nagar, Bengaluru, Karnataka 560043 India
| | - Jeffrey Godwin
- Bionivid Technology Private Limited, 209, 4th Cross Rd., B. Channasandra, Kasturi Nagar, Bengaluru, Karnataka 560043 India
| | - Adler R. Dillman
- grid.266097.c0000 0001 2222 1582Department of Nematology, University of California, Riverside, 92521 USA
| | - Uma Rao
- grid.418196.30000 0001 2172 0814Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012 India
| | - Vishal S. Somvanshi
- grid.418196.30000 0001 2172 0814Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012 India
| |
Collapse
|
17
|
Swart Z, Duong TA, Wingfield BD, Postma A, Slippers B. The relevance of studying insect-nematode interactions for human disease. Pathog Glob Health 2022; 116:140-145. [PMID: 34726122 PMCID: PMC9090338 DOI: 10.1080/20477724.2021.1996796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Vertebrate-parasitic nematodes cause debilitating, chronic infections in millions of people worldwide. The burden of these so-called 'neglected tropical diseases' is often carried by poorer socioeconomic communities in part because research on parasitic nematodes and their vertebrate hosts is challenging and costly. However, complex biological and pathological processes can be modeled in simpler organisms. Here, we consider how insight into the interactions between entomopathogenic nematodes (EPN), their insect hosts and bacterial symbionts may reveal novel treatment targets for parasitic nematode infections. We argue that a combination of approaches that target nematodes, as well as the interaction of pathogens with insect vectors and bacterial symbionts, offer potentially effective, but underexplored opportunities.
Collapse
Affiliation(s)
- Zorada Swart
- Department of Biochemistry Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa
| | - Tuan A. Duong
- Department of Biochemistry Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa
| | - Brenda D. Wingfield
- Department of Biochemistry Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa
| | - Alisa Postma
- Department of Biochemistry Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa
| | - Bernard Slippers
- Department of Biochemistry Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa
| |
Collapse
|
18
|
Effects of Coumarinyl Schiff Bases against Phytopathogenic Fungi, the Soil-Beneficial Bacteria and Entomopathogenic Nematodes: Deeper Insight into the Mechanism of Action. Molecules 2022; 27:molecules27072196. [PMID: 35408596 PMCID: PMC9000709 DOI: 10.3390/molecules27072196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022] Open
Abstract
Coumarin derivatives have been reported as strong antifungal agents against various phytopathogenic fungi. In this study, inhibitory effects of nine coumarinyl Schiff bases were evaluated against the plant pathogenic fungi (Fusarium oxysporum f. sp. lycopersici, Fusarium culmorum, Macrophomina phaseolina and Sclerotinia sclerotiourum). The compounds were demonstrated to be efficient antifungal agents against Macrophomina phaseolina. The results of molecular docking on the six enzymes related to the antifungal activity suggested that the tested compounds act against plant pathogenic fungi, inhibiting plant cell-wall-degrading enzymes such as endoglucanase I and pectinase. Neither compound exhibited inhibitory effects against two beneficial bacteria (Bacillus mycoides and Bradyrhizobium japonicum) and two entomopathogenic nematodes. However, compound 9 was lethal (46.25%) for nematode Heterorhabditis bacteriophora and showed an inhibitory effect against acetylcholinesterase (AChE) (31.45%), confirming the relationship between these two activities. Calculated toxicity and the pesticide-likeness study showed that compound 9 was the least lipophilic compound with the highest aquatic toxicity. A molecular docking study showed that compounds 9 and 8 bind directly to the active site of AChE. Coumarinyl Schiff bases are promising active components of plant protection products, safe for the environment, human health, and nontarget organisms.
Collapse
|
19
|
Machado RA, Bhat AH, Abolafia J, Muller A, Bruno P, Fallet P, Arce CC, Turlings TC, Bernal JS, Kajuga J, Waweru B, Toepfer S. Multi-locus phylogenetic analyses uncover species boundaries and reveal the occurrence of two new entomopathogenic nematode species, Heterorhabditis ruandica n. sp. and Heterorhabditis zacatecana n. sp. J Nematol 2021; 53:e2021-89. [PMID: 34790901 PMCID: PMC8588743 DOI: 10.21307/jofnem-2021-089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Species of the nematode genus Heterorhabditis are important biological control agents against agricultural pests. The taxonomy of this group is still unclear as it currently relies on phylogenetic reconstructions based on a few genetic markers with little resolutive power, specially of closely related species. To fill this knowledge gap, we sequenced several phylogenetically relevant genetic loci and used them to reconstruct phylogenetic trees, to calculate sequence similarity scores, and to determine signatures of species- and population-specific genetic polymorphism. In addition, we revisited the current literature related to the description, synonymisation, and declaration as species inquirendae of Heterorhabditis species to compile taxonomically relevant morphological and morphometric characters, characterized new nematode isolates at the morphological and morphometrical level, and conducted self-crossing and cross-hybridization experiments. The results of this study show that the sequences of the mitochondrial cytochrome C oxidase subunit I (COI) gene provide better phylogenetic resolutive power than the sequences of nuclear rRNA genes and that this gene marker can phylogenetically resolve closely related species and even populations of the same species with high precision. Using this gene marker, we found two new species, Heterorhabditis ruandica n. sp. and Heterorhabditis zacatecana n. sp. A detailed characterization of these species at the morphological and morphometric levels and nematode reproduction assays revealed that the threshold for species delimitation in this genus, using COI sequences, is 97% to 98%. Our study illustrates the importance of rigorous morphological and morphometric characterization and multi-locus sequencing for the description of new species within the genus Heterorhabditis, serves to clarify the phylogenetic relationships of this important group of biological control agents, and can inform future species descriptions to advance our efforts towards developing more tools for sustainable and environmentally friendly agriculture.
Collapse
Affiliation(s)
- Ricardo A.R. Machado
- Experimental Biology Research Group. Institute of Biology. Faculty of Sciences. University of Neuchâtel. Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Aashaq Hussain Bhat
- Department of Zoology, Government Degree College. Billawar-184204, Kathua, Jammu, Jammu and Kashmir, India
| | - Joaquín Abolafia
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus ‘Las Lagunillas’ s/n, Edificio B3, 23071 Jaén, Spain
| | - Arthur Muller
- Experimental Biology Research Group. Institute of Biology. Faculty of Sciences. University of Neuchâtel. Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Pamela Bruno
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology. Faculty of Sciences, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Patrick Fallet
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology. Faculty of Sciences, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Carla C.M. Arce
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology. Faculty of Sciences, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Ted C.J. Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology. Faculty of Sciences, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Julio S. Bernal
- Department of Entomology, Texas A&M University, College Station, TX
| | - Joelle Kajuga
- Department of Crop Innovations & Technology Transfer. Rwanda Agriculture and Animal Resources Development Board, 5016 Kigali-Rwanda
| | - Bancy Waweru
- Department of Crop Innovations & Technology Transfer. Rwanda Agriculture and Animal Resources Development Board, 5016 Kigali-Rwanda
| | | |
Collapse
|
20
|
Yuan D, Li S, Shang Z, Wan M, Lin Y, Zhang Y, Feng Y, Xu L, Xiao L. Genus-level evolutionary relationships of FAR proteins reflect the diversity of lifestyles of free-living and parasitic nematodes. BMC Biol 2021; 19:178. [PMID: 34461887 PMCID: PMC8407040 DOI: 10.1186/s12915-021-01111-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/29/2021] [Indexed: 01/16/2023] Open
Abstract
Background Nematodes are a widespread and diverse group comprising free-living and parasitic species, some of which have major detrimental effects on crops, animals, and human health. Genomic comparisons of nematodes may help reveal the genetic bases for the evolution of parasitic lifestyles. Fatty acid and retinol-binding proteins (FARs) are thought to be unique to nematodes and play essential roles in their development, reproduction, infection, and possibly parasitism through promoting the uptake, transport, and distribution of lipid and retinol. However, the evolution of FAR family proteins across the phylum Nematoda remains elusive. Results We report here the evolutionary relationship of the FAR gene family across nematodes. No FAR was found in Trichocephalida species and Romanomermis culicivorax from Clade I, and FAR could be found in species from Clades III, IV, and V. FAR proteins are conserved in Clade III species and separated into three clusters. Tandem duplications and high divergence events lead to variable richness and low homology of FARs in Steinernema of Clade IVa, Strongyloides of Clade IVb, and intestinal parasitic nematodes from Clades Vc and Ve. Moreover, different richness and sequence variations of FARs in pine wood, root-knot, stem, and cyst nematodes might be determined by reproduction mode or parasitism. However, murine lungworm Angiostrongylus and bovine lungworm Dictyocaulus viviparus from Clade Vd have only 3–4 orthologs of FAR. RNA-seq data showed that far genes, especially far-1 and far-2, were highly expressed in most nematodes. Angiostrongylus cantonensis FAR-1 and FAR-3 have low sequence homology and distinct ligand-binding properties, leading to differences in the cavity volume of proteins. These data indicate that FAR proteins diverged early and experienced low selective pressure to form genus-level diversity. The far genes are present in endophyte or root-colonized bacteria of Streptomyces, Kitasatospora sp., Bacillus subtilis, and Lysobacter, suggesting that bacterial far genes might be derived from plant-parasitic nematodes by horizontal gene transfer. Conclusions Data from these comparative analyses have provided insights into genus-level diversity of FAR proteins in the phylum Nematoda. FAR diversification provides a glimpse into the complicated evolution history across free-living and parasitic nematodes. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01111-3.
Collapse
Affiliation(s)
- Dongjuan Yuan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Song Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziyu Shang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Muchun Wan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yu Lin
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yanhua Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
21
|
Biological Activities Related to Plant Protection and Environmental Effects of Coumarin Derivatives: QSAR and Molecular Docking Studies. Int J Mol Sci 2021; 22:ijms22147283. [PMID: 34298898 PMCID: PMC8303553 DOI: 10.3390/ijms22147283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/31/2023] Open
Abstract
The aim was to study the inhibitory effects of coumarin derivatives on the plant pathogenic fungi, as well as beneficial bacteria and nematodes. The antifungal assay was performed on four cultures of phytopathogenic fungi by measuring the radial growth of the fungal colonies. Antibacterial activity was determined by the broth microdilution method performed on two beneficial soil organisms. Nematicidal activity was tested on two entomopathogenic nematodes. The quantitative structure-activity relationship (QSAR) model was generated by genetic algorithm, and toxicity was estimated by T.E.S.T. software. The mode of inhibition of enzymes related to the antifungal activity is elucidated by molecular docking. Coumarin derivatives were most effective against Macrophomina phaseolina and Sclerotinia sclerotiorum, but were not harmful against beneficial nematodes and bacteria. A predictive QSAR model was obtained for the activity against M. phaseolina (R2tr = 0.78; R2ext = 0.67; Q2loo = 0.67). A QSAR study showed that multiple electron-withdrawal groups, especially at position C-3, enhanced activities against M. phaseolina, while the hydrophobic benzoyl group at the pyrone ring, and –Br, –OH, –OCH3, at the benzene ring, may increase inhibition of S. sclerotiourum. Tested compounds possibly act inhibitory against plant wall-degrading enzymes, proteinase K. Coumarin derivatives are the potentially active ingredient of environmentally friendly plant-protection products.
Collapse
|
22
|
Gonzalez de la Rosa PM, Thomson M, Trivedi U, Tracey A, Tandonnet S, Blaxter M. A telomere-to-telomere assembly of Oscheius tipulae and the evolution of rhabditid nematode chromosomes. G3-GENES GENOMES GENETICS 2021; 11:6026964. [PMID: 33561231 PMCID: PMC8022731 DOI: 10.1093/g3journal/jkaa020] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Eukaryotic chromosomes have phylogenetic persistence. In many taxa, each chromosome has a single functional centromere with essential roles in spindle attachment and segregation. Fusion and fission can generate chromosomes with no or multiple centromeres, leading to genome instability. Groups with holocentric chromosomes (where centromeric function is distributed along each chromosome) might be expected to show karyotypic instability. This is generally not the case, and in Caenorhabditis elegans, it has been proposed that the role of maintenance of a stable karyotype has been transferred to the meiotic pairing centers, which are found at one end of each chromosome. Here, we explore the phylogenetic stability of nematode chromosomes using a new telomere-to-telomere assembly of the rhabditine nematode Oscheius tipulae generated from nanopore long reads. The 60-Mb O. tipulae genome is resolved into six chromosomal molecules. We find the evidence of specific chromatin diminution at all telomeres. Comparing this chromosomal O. tipulae assembly with chromosomal assemblies of diverse rhabditid nematodes, we identify seven ancestral chromosomal elements (Nigon elements) and present a model for the evolution of nematode chromosomes through rearrangement and fusion of these elements. We identify frequent fusion events involving NigonX, the element associated with the rhabditid X chromosome, and thus sex chromosome-associated gene sets differ markedly between species. Despite the karyotypic stability, gene order within chromosomes defined by Nigon elements is not conserved. Our model for nematode chromosome evolution provides a platform for investigation of the tensions between local genome rearrangement and karyotypic evolution in generating extant genome architectures.
Collapse
Affiliation(s)
| | - Marian Thomson
- Edinburgh Genomics, School of Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Urmi Trivedi
- Edinburgh Genomics, School of Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Sophie Tandonnet
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, SP 05508-090, Brazil
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
23
|
Ozakman Y, Eleftherianos I. Nematode infection and antinematode immunity in Drosophila. Trends Parasitol 2021; 37:1002-1013. [PMID: 34154933 DOI: 10.1016/j.pt.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
The entomopathogenic nematodes Heterorhabditis and Steinernema form mutualistic complexes with Gram-negative bacteria. These insect parasites have emerged as excellent research tools for studying nematode pathogenicity and elucidating the features that allow them to persist and multiply within the host. A better understanding of the molecular mechanisms of nematode infection and host antinematode processes will lead to the development of novel means for parasitic nematode control. Recent work has demonstrated the power of using the Drosophila infection model to identify novel parasitic nematode infection factors and elucidate the genetic and functional bases of host antinematode defense. Here, we aim to highlight the recent advances and address their contribution to the development of novel means for parasitic nematode control.
Collapse
Affiliation(s)
- Yaprak Ozakman
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA.
| |
Collapse
|
24
|
Lulamba TE, Green E, Serepa-Dlamini MH. Genome assembly and annotation of Photorhabdus heterorhabditis strain ETL reveals genetic features involved in pathogenicity with its associated entomopathogenic nematode and anti-host effectors with biocontrol potential applications. Gene 2021; 795:145780. [PMID: 34147570 DOI: 10.1016/j.gene.2021.145780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
The genome sequences of entomopathogenic nematode (EPN) bacteria and their functional analyses can lead to the genetic engineering of the bacteria for use as biocontrol agents. The bacterial symbiont Photorhabdus heterorhabditis strain ETL isolated from an insect pathogenic nematode, Heterorhabditis zealandica strain ETL, collected in the northernmost region of South Africa was studied to reveal information that can be useful in the design of improvement strategies for both effective and liquid production method of EPN-based pesticides. The strain ETL genome was found closely related to the type strain genome of P. australis DSM 17,609 (~60 to 99.9% CDSs similarity), but closely related to the not yet genome-sequenced type strain, P. heterorhabditis. It has a genome size of 4,866,148 bp and G + C content of 42.4% similar to other Photorhabdus. It contains 4,351 protein coding genes (CDSs) of which, at least 84% are shared with the de facto type strain P. luminescens subsp. laumondii TTO1, and has 318 unknown CDSs and the genome has a higher degree of plasticity allowing it to adapt to different environmental conditions, and to be virulent against various insects; observed through genes acquired through horizontal gene transfer mechanisms, clustered regularly interspaced short palindromic repeats, non-determined polyketide- and non-ribosomal peptide- synthase gene clusters, and many genes associated with uncharacterized proteins; which also justify the strain ETL's genes differences (quantity and quality) compared to P. luminescens subsp. laumondii TTO1. The protein coding sequences contained genes with both bio-engineering and EPNs mass production importance, of which numerous are uncharacterized.
Collapse
Affiliation(s)
- Tshikala Eddie Lulamba
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Ezekiel Green
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa.
| |
Collapse
|
25
|
Rödelsperger C. The community-curated Pristionchus pacificus genome facilitates automated gene annotation improvement in related nematodes. BMC Genomics 2021; 22:216. [PMID: 33765927 PMCID: PMC7992802 DOI: 10.1186/s12864-021-07529-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/12/2021] [Indexed: 01/30/2023] Open
Abstract
Background The nematode Pristionchus pacificus is an established model organism for comparative studies with Caenorhabditis elegans. Over the past years, it developed into an independent animal model organism for elucidating the genetic basis of phenotypic plasticity. Community-based curations were employed recently to improve the quality of gene annotations of P. pacificus and to more easily facilitate reverse genetic studies using candidate genes from C. elegans. Results Here, I demonstrate that the reannotation of phylogenomic data from nine related nematode species using the community-curated P. pacificus gene set as homology data substantially improves the quality of gene annotations. Benchmarking of universal single copy orthologs (BUSCO) estimates a median completeness of 84% which corresponds to a 9% increase over previous annotations. Nevertheless, the ability to infer gene models based on homology already drops beyond the genus level reflecting the rapid evolution of nematode lineages. This also indicates that the highly curated C. elegans genome is not optimally suited for annotating non-Caenorhabditis genomes based on homology. Furthermore, comparative genomic analysis of apparently missing BUSCO genes indicates a failure of ortholog detection by the BUSCO pipeline due to the insufficient sample size and phylogenetic breadth of the underlying OrthoDB data set. As a consequence, the quality of multiple divergent nematode genomes might be underestimated. Conclusions This study highlights the need for optimizing gene annotation protocols and it demonstrates the benefit of a high quality genome for phylogenomic data of related species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07529-x.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany.
| |
Collapse
|
26
|
Chemogenomic approach to identifying nematode chemoreceptor drug targets in the entomopathogenic nematode Heterorhabditis bacteriophora. Comput Biol Chem 2021; 92:107464. [PMID: 33667976 DOI: 10.1016/j.compbiolchem.2021.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
Parasitic nematodes constitute one of the major threats to human health, causing diseases of major socioeconomic importance worldwide. Recent estimates indicate that more than 1 billion people are infected with parasitic nematodes around the world. Current measures to combat parasitic nematode infections include anthelmintic drugs. However, heavy exposure to anthelmintics has selected populations of livestock parasitic nematodes that are no longer susceptible to the drugs, rendering several anthelmintics useless for parasitic nematode control in many areas of the world. The rapidity with which anthelmintic resistance developed in response to these drugs suggests that increasing the selective pressure on human parasitic nematodes will also rapidly generate resistant worm populations. Therefore, development of new anthelmintics is of major importance before resistance becomes widespread in human parasitic nematode populations. G-Protein Coupled Receptors (GPCRs) represent an important target for many pharmacological interventions due to their ubiquitous expression in various cell types. GPCRs contribute to numerous physiological processes, and their ligand binding sites located on cell surfaces make them accessible targets and attractive substrates in terms of druggability. In fact, ∼35 % of Food and Drug Administration (FDA) and European Medicines Agency (EMA) approved drugs target GPCRs and their associated proteins, with over 300 additional drugs targeting GPCRs at the clinical trial stage. Nematode Chemosensory GPCRs (NemChRs) are unique to nematodes, and therefore represent ideal substrates for target-based drug discovery. Here we set out to identify NemChRs that are transcriptionally active inside the host, and to use these NemChRs in a reverse pharmacological screen to impede parasitic development. Our data identified several NemChRs, and we focused on one that was expressed in neuronal cells and exhibited the highest fold change in transcription after host activation. Next, we performed homology modelling and molecular dynamics simulations of this NemChR in order to conduct a virtual screening campaign to identify candidate drug targets which were ranked and selected for experimental testing in bioassays. Taken together, our results identify and characterize a candidate NemChR drug target, and provide a chemogenomic pipeline for identifying nematicide substrates.
Collapse
|
27
|
Kenney E, Yaparla A, Hawdon JM, O' Halloran DM, Grayfer L, Eleftherianos I. A putative lysozyme and serine carboxypeptidase from Heterorhabditis bacteriophora show differential virulence capacities in Drosophila melanogaster. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103820. [PMID: 32791175 DOI: 10.1016/j.dci.2020.103820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Nematode virulence factors are of interest for a variety of applications including biocontrol against insect pests and the alleviation of autoimmune diseases with nematode-derived factors. In silico "omics" techniques have generated a wealth of candidate factors that may be important in the establishment of nematode infections, although the challenge of characterizing these individual factors in vivo remains. Here we provide a fundamental characterization of a putative lysozyme and serine carboxypeptidase from the host-induced transcriptome of Heterorhabditis bacteriophora. Both factors accelerated the mortality rate following Drosophila melanogaster infections with Photorhabdus luminescens, and both factors suppressed phenoloxidase activity in D. melanogaster hemolymph. Furthermore, the serine carboxypeptidase was lethal to a subpopulation of flies and suppressed the upregulation of antimicrobial peptides as well as phagocytosis. Together, our findings suggest that this serine carboxypeptidase possess both toxic and immunomodulatory properties while the lysozyme is likely to confer immunomodulatory, but not toxic effects.
Collapse
Affiliation(s)
- Eric Kenney
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Amulya Yaparla
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA
| | - John M Hawdon
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Damien M O' Halloran
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Leon Grayfer
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
28
|
Bobardt SD, Dillman AR, Nair MG. The Two Faces of Nematode Infection: Virulence and Immunomodulatory Molecules From Nematode Parasites of Mammals, Insects and Plants. Front Microbiol 2020; 11:577846. [PMID: 33343521 PMCID: PMC7738434 DOI: 10.3389/fmicb.2020.577846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Helminths stage a powerful infection that allows the parasite to damage host tissue through migration and feeding while simultaneously evading the host immune system. This feat is accomplished in part through the release of a diverse set of molecules that contribute to pathogenicity and immune suppression. Many of these molecules have been characterized in terms of their ability to influence the infectious capabilities of helminths across the tree of life. These include nematodes that infect insects, known as entomopathogenic nematodes (EPN) and plants with applications in agriculture and medicine. In this review we will first discuss the nematode virulence factors, which aid parasite colonization or tissue invasion, and cause many of the negative symptoms associated with infection. These include enzymes involved in detoxification, factors essential for parasite development and growth, and highly immunogenic ES proteins. We also explore how these parasites use several classes of molecules (proteins, carbohydrates, and nucleic acids) to evade the host's immune defenses. For example, helminths release immunomodulatory molecules in extracellular vesicles that may be protective in allergy and inflammatory disease. Collectively, these nematode-derived molecules allow parasites to persist for months or even years in a host, avoiding being killed or expelled by the immune system. Here, we evaluate these molecules, for their individual and combined potential as vaccine candidates, targets for anthelminthic drugs, and therapeutics for allergy and inflammatory disease. Last, we evaluate shared virulence and immunomodulatory mechanisms between mammalian and non-mammalian plant parasitic nematodes and EPNs, and discuss the utility of EPNs as a cost-effective model for studying nematode-derived molecules. Better knowledge of the virulence and immunomodulatory molecules from both entomopathogenic nematodes and soil-based helminths will allow for their use as beneficial agents in fighting disease and pests, divorced from their pathogenic consequences.
Collapse
Affiliation(s)
- Sarah D. Bobardt
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
29
|
Kundu A, Jaiswal N, Bhat CG, Phani V, Chatterjee M, Dash M, Rao U, Somvanshi VS. Expression of various odorant-response defective (odr) genes in the entomopathogenic nematode Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae). GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Eliáš S, Hurychová J, Toubarro D, Frias J, Kunc M, Dobeš P, Simões N, Hyršl P. Bioactive Excreted/Secreted Products of Entomopathogenic Nematode Heterorhabditis bacteriophora Inhibit the Phenoloxidase Activity during the Infection. INSECTS 2020; 11:insects11060353. [PMID: 32516962 PMCID: PMC7349556 DOI: 10.3390/insects11060353] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Entomopathogenic nematodes (EPNs) are efficient insect parasites, that are known for their mutualistic relationship with entomopathogenic bacteria and their use in biocontrol. EPNs produce bioactive molecules referred to as excreted/secreted products (ESPs), which have come to the forefront in recent years because of their role in the process of host invasion and the modulation of its immune response. In the present study, we confirmed the production of ESPs in the EPN Heterorhabditis bacteriophora, and investigated their role in the modulation of the phenoloxidase cascade, one of the key components of the insect immune system. ESPs were isolated from 14- and 21-day-old infective juveniles of H. bacteriophora, which were found to be more virulent than newly emerged nematodes, as was confirmed by mortality assays using Galleria mellonella larvae. The isolated ESPs were further purified and screened for the phenoloxidase-inhibiting activity. In these products, a 38 kDa fraction of peptides was identified as the main candidate source of phenoloxidase-inhibiting compounds. This fraction was further analyzed by mass spectrometry and the de novo sequencing approach. Six peptide sequences were identified in this active ESP fraction, including proteins involved in ubiquitination and the regulation of a Toll pathway, for which a role in the regulation of insect immune response has been proposed in previous studies.
Collapse
Affiliation(s)
- Sara Eliáš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
| | - Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
| | - Duarte Toubarro
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal; (D.T.); (J.F.); (N.S.)
| | - Jorge Frias
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal; (D.T.); (J.F.); (N.S.)
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
- Correspondence: (P.D.); (P.H.); Tel.: +420-549-49-3419 (P.D.); +420-549-49-4510 (P.H.)
| | - Nelson Simões
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal; (D.T.); (J.F.); (N.S.)
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
- Correspondence: (P.D.); (P.H.); Tel.: +420-549-49-3419 (P.D.); +420-549-49-4510 (P.H.)
| |
Collapse
|
31
|
Abstract
Different model systems have, over the years, contributed to our current understanding of the molecular mechanisms underpinning the various types of interaction between bacteria and their animal hosts. The genus
Photorhabdus
comprises Gram-negative insect pathogenic bacteria that are normally found as symbionts that colonize the gut of the infective juvenile stage of soil-dwelling nematodes from the family Heterorhabditis. The nematodes infect susceptible insects and release the bacteria into the insect haemolymph where the bacteria grow, resulting in the death of the insect. At this stage the nematodes feed on the bacterial biomass and, following several rounds of reproduction, the nematodes develop into infective juveniles that leave the insect cadaver in search of new hosts. Therefore
Photorhabdus
has three distinct and obligate roles to play during this life-cycle: (1)
Photorhabdus
must kill the insect host; (2)
Photorhabdus
must be capable of supporting nematode growth and development; and (3)
Photorhabdus
must be able to colonize the gut of the next generation of infective juveniles before they leave the insect cadaver. In this review I will discuss how genetic analysis has identified key genes involved in mediating, and regulating, the interaction between
Photorhabdus
and each of its invertebrate hosts. These studies have resulted in the characterization of several new families of toxins and a novel inter-kingdom signalling molecule and have also uncovered an important role for phase variation in the regulation of these different roles.
Collapse
Affiliation(s)
- David J Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
High-Resolution Infection Kinetics of Entomopathogenic Nematodes Entering Drosophila melanogaster. INSECTS 2020; 11:insects11010060. [PMID: 31963655 PMCID: PMC7023307 DOI: 10.3390/insects11010060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/26/2022]
Abstract
Entomopathogenic nematodes (EPNs) have been a useful model for studying wound healing in insects due to their natural mechanism of entering an insect host either through the cuticle or an orifice. While many experiments have shed light on nematode and host behavior, as well as the host immune response, details regarding early nematode entry and proliferative events have been limited. Using high-resolution microscopy, we provide data on the early infection kinetics of Heterorhabditis bacteriophora and its symbiotic bacteria, Photorhabdus luminescens. EPNs appendage themselves to the host and enter through the host cuticle with a drill-like mechanism while leaving their outer sheath behind. EPNs immediately release their symbiotic bacteria in the host which leads to changes in host behavior and septicemia within 6 h while EPNs travel through the host in a predictable manner, congregating in the anterior end of the host. This paper sheds light on the entry and proliferative events of EPN infection, which will further aid in our understanding of wound healing and host immune activation at a high spatiotemporal resolution.
Collapse
|
33
|
Abd-Elgawad MMM. Towards optimization of entomopathogenic nematodes for more service in the biological control of insect pests. EGYPTIAN JOURNAL OF BIOLOGICAL PEST CONTROL 2019; 29:77. [DOI: 10.1186/s41938-019-0181-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/14/2019] [Indexed: 09/02/2023]
Abstract
AbstractCost and reliability have hindered entomopathogenic nematodes (EPNs) from realizing their full market size. Research approaches continually evolve in response to these issues. They address EPN basics, but other issues are less recognized among masses working on these biocontrol agents. So, this review emphasizes on the due but less recognized roles to optimize EPN research and get better findings in nematode realm. Being almost impossible for nematologists to act united, they need to use standardized procedures which allow future reviews to be analytical and may build on them. Current atypical sampling procedures of EPNs may lead to erratic results. Comparable sampling may better enable grasping the interaction between EPN distribution and agricultural management to develop more swiftly field application techniques and can introduce EPNs’ populations to a more even distribution designed to enhance their efficacy. Functional sampling should be expanded. Furthermore, EPNs should be included in integrated pest management programs in ways that make them complimentary or superior to chemical pesticides. Further modeling of EPNs’ populations should be tried. The few transgenic methods applied in EPNs should be followed up to address non-stability of selected beneficial traits and markers of beneficial genes. Awareness-raising of more growers, cooperatives, and extensions of EPNs as bio-insecticides for both plant and livestock pests should be attempted in earnest via broad and deep training. We should better communicate and apply the positive trends and standardization in EPNs’ research. Required but less known services to optimize research in the nematode realm should further be addressed.
Collapse
|
34
|
Kenney E, Hawdon JM, O'Halloran D, Eleftherianos I. Heterorhabditis bacteriophora Excreted-Secreted Products Enable Infection by Photorhabdus luminescens Through Suppression of the Imd Pathway. Front Immunol 2019; 10:2372. [PMID: 31636642 PMCID: PMC6787769 DOI: 10.3389/fimmu.2019.02372] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Upon entering the hemocoel of its insect host, the entomopathogenic nematode Heterorhabditis bacteriophora releases its symbiotic bacteria Photorhabdus luminescens, which is also a strong insect pathogen. P. luminescens is known to suppress the insect immune response independently following its release, but the nematode appears to enact its own immunosuppressive mechanisms during the earliest phases of an infection. H. bacteriophora was found to produce a unique set of excreted-secreted proteins in response to host hemolymph, and while basal secretions are immunogenic with regard to Diptericin expression through the Imd pathway, host-induced secretions suppress this expression to a level below that of controls in Drosophila melanogaster. This effect is consistent in adults, larvae, and isolated larval fat bodies, and the magnitude of suppression is dose-dependent. By reducing the expression of Diptericin, an antimicrobial peptide active against Gram-negative bacteria, the activated excreted-secreted products enable a more rapid propagation of P. luminescens that corresponds to more rapid host mortality. The identification and isolation of the specific proteins responsible for this suppression represents an exciting field of study with potential for enhancing the biocontrol of insect pests and treatment of diseases associated with excessive inflammation.
Collapse
Affiliation(s)
- Eric Kenney
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - John M Hawdon
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Damien O'Halloran
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, DC, United States.,Institute for Neuroscience, Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
35
|
Tanaka SE, Dayi M, Maeda Y, Tsai IJ, Tanaka R, Bligh M, Takeuchi-Kaneko Y, Fukuda K, Kanzaki N, Kikuchi T. Stage-specific transcriptome of Bursaphelenchus xylophilus reveals temporal regulation of effector genes and roles of the dauer-like stages in the lifecycle. Sci Rep 2019; 9:6080. [PMID: 30988401 PMCID: PMC6465311 DOI: 10.1038/s41598-019-42570-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
The pine wood nematode Bursaphelenchus xylophilus is the causal agent of pine wilt disease, one of the most devastating forest diseases in East Asian and West European countries. The lifecycle of B. xylophilus includes four propagative larval stages and gonochoristic adults which are involved in the pathogenicity, and two stages of dispersal larvae involved in the spread of the disease. To elucidate the ecological roles of each developmental stage in the pathogenic life cycle, we performed a comprehensive transcriptome analysis using RNA-seq generated from all developmental stages of B. xylophilus and compared transcriptomes between stages. We found more than 9000 genes are differentially expressed in at least one stage of the life cycle including genes involved in general nematode biology such as reproduction and moulting but also effector genes likely to be involved in parasitism. The dispersal-stage transcriptome revealed its analogy to C. elegans dauer and the distinct roles of the two larval stages from each other regarding survival and transmission. This study provides important insights and resources to understand B. xylophilus parasitic biology.
Collapse
Affiliation(s)
- Suguru E Tanaka
- Laboratory of Forest Botany, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Mehmet Dayi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
- Forestry Vocational School, Duzce University, 81620, Duzce, Turkey
| | - Yasunobu Maeda
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ryusei Tanaka
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Mark Bligh
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Yuko Takeuchi-Kaneko
- Laboratory of Terrestrial Microbial Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Fukuda
- Laboratory of Forest Botany, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto, 612-0855, Japan
| | - Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan.
| |
Collapse
|
36
|
McLean F, Berger D, Laetsch DR, Schwartz HT, Blaxter M. Improving the annotation of the Heterorhabditis bacteriophora genome. Gigascience 2018; 7:4958981. [PMID: 29617768 PMCID: PMC5906903 DOI: 10.1093/gigascience/giy034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/23/2018] [Indexed: 12/03/2022] Open
Abstract
Background Genome assembly and annotation remain exacting tasks. As the tools available for these tasks improve, it is useful to return to data produced with earlier techniques to assess their credibility and correctness. The entomopathogenic nematode Heterorhabditis bacteriophora is widely used to control insect pests in horticulture. The genome sequence for this species was reported to encode an unusually high proportion of unique proteins and a paucity of secreted proteins compared to other related nematodes. Findings We revisited the H. bacteriophora genome assembly and gene predictions to determine whether these unusual characteristics were biological or methodological in origin. We mapped an independent resequencing dataset to the genome and used the blobtools pipeline to identify potential contaminants. While present (0.2% of the genome span, 0.4% of predicted proteins), assembly contamination was not significant. Conclusions Re-prediction of the gene set using BRAKER1 and published transcriptome data generated a predicted proteome that was very different from the published one. The new gene set had a much reduced complement of unique proteins, better completeness values that were in line with other related species’ genomes, and an increased number of proteins predicted to be secreted. It is thus likely that methodological issues drove the apparent uniqueness of the initial H. bacteriophora genome annotation and that similar contamination and misannotation issues affect other published genome assemblies.
Collapse
Affiliation(s)
- Florence McLean
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Duncan Berger
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Hillel T Schwartz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
37
|
Expression of Heterorhabditis bacteriophora C-type lectins, Hb-clec-1 and Hb-clec-78, in context of symbiosis with Photorhabdus bacteria. Symbiosis 2018. [DOI: 10.1007/s13199-018-0569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Vadnal J, Granger OG, Ratnappan R, Eleftherianos I, O'Halloran DM, Hawdon JM. Refined ab initio gene predictions of Heterorhabditis bacteriophora using RNA-seq. Int J Parasitol 2018; 48:585-590. [PMID: 29530648 PMCID: PMC6004328 DOI: 10.1016/j.ijpara.2018.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/19/2018] [Accepted: 02/14/2018] [Indexed: 02/04/2023]
Abstract
Interest has recently grown in developing the entomopathogenic nematode Heterorhabditis bacteriophora as a model to genetically dissect the process of parasitic infection. Despite the availability of a full genome assembly, there is substantial variation in gene model accuracy. Here, a methodology is presented for leveraging RNA-seq evidence to generate improved annotations using ab initio gene prediction software. After alignment of reads and subsequent generation of a RNA-seq supported annotation, the new gene prediction models were verified on a selection of genes by comparison with sequenced 5' and 3' rapid amplification of cDNA ends products. By utilising a whole transcriptome for genome annotation, the current reference annotation was enriched, demonstrating the importance of coupling transcriptional data with genome assemblies.
Collapse
Affiliation(s)
- Jonathan Vadnal
- Department of Microbiology Immunology and Tropical Medicine, George Washington University Medical Center, Washington DC 20037, USA
| | - Olivia G Granger
- Department of Microbiology Immunology and Tropical Medicine, George Washington University Medical Center, Washington DC 20037, USA
| | - Ramesh Ratnappan
- Department of Microbiology Immunology and Tropical Medicine, George Washington University Medical Center, Washington DC 20037, USA
| | - Ioannis Eleftherianos
- Department of Biological Sciences, George Washington University, Science and Engineering Hall, Suite 6000, 800 22nd Street NW, Washington DC 20052, USA.
| | - Damien M O'Halloran
- Department of Biological Sciences, George Washington University, Science and Engineering Hall, Suite 6000, 800 22nd Street NW, Washington DC 20052, USA; Institute for Neuroscience, George Washington University, 636A Ross Hall, 2300 I Street NW, Washington DC 20052, USA.
| | - John M Hawdon
- Department of Microbiology Immunology and Tropical Medicine, George Washington University Medical Center, Washington DC 20037, USA.
| |
Collapse
|
39
|
Hoinville ME, Wollenberg AC. Changes in Caenorhabditis elegans gene expression following exposure to Photorhabdus luminescens strain TT01. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:165-176. [PMID: 29203330 DOI: 10.1016/j.dci.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Photorhabdus bacteria enter into a mutualistic symbiosis with Heterorhabditis nematodes to infect insect larvae. However, they rapidly kill the model nematode Caenorhabditis elegans. One hypothesis for these divergent outcomes is that the nematode defense responses differ. To begin testing this hypothesis, we have systematically analyzed available data on the transcriptional response of C. elegans to P. luminescens strain Hb. From a starting pool of over 7000 differentially expressed genes, we carefully chose 21 Heterorhabditis-conserved genes to develop as comparative markers. Using newly designed and validated qRT-PCR primers, we measured expression of these genes in C. elegans exposed to the sequenced TT01 strain of P. luminescens, on two different media types. Almost all (18/21) of the genes showed a significant response to P. luminescens strain TT01. One response is dependent on media type, and a subset of genes may respond differentially to distinct strains. Overall, we have established useful resources and generated new hypotheses regarding how C. elegans responds to P. luminescens infection.
Collapse
Affiliation(s)
- Megan E Hoinville
- Biology Department, Kalamazoo College, 1200 Academy St., Kalamazoo, MI 49006, USA
| | - Amanda C Wollenberg
- Biology Department, Kalamazoo College, 1200 Academy St., Kalamazoo, MI 49006, USA.
| |
Collapse
|
40
|
Morris R, Wilson L, Sturrock M, Warnock ND, Carrizo D, Cox D, Maule AG, Dalzell JJ. A neuropeptide modulates sensory perception in the entomopathogenic nematode Steinernema carpocapsae. PLoS Pathog 2017; 13:e1006185. [PMID: 28253355 PMCID: PMC5333901 DOI: 10.1371/journal.ppat.1006185] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/15/2017] [Indexed: 11/19/2022] Open
Abstract
Entomopathogenic nematodes (EPNs) employ a sophisticated chemosensory apparatus to detect potential hosts. Understanding the molecular basis of relevant host-finding behaviours could facilitate improved EPN biocontrol approaches, and could lend insight to similar behaviours in economically important mammalian parasites. FMRFamide-like peptides are enriched and conserved across the Phylum Nematoda, and have been linked with motor and sensory function, including dispersal and aggregating behaviours in the free living nematode Caenorhabditis elegans. The RNA interference (RNAi) pathway of Steinernema carpocapsae was characterised in silico, and employed to knockdown the expression of the FMRFamide-like peptide 21 (GLGPRPLRFamide) gene (flp-21) in S. carpocapsae infective juveniles; a first instance of RNAi in this genus, and a first in an infective juvenile of any EPN species. Our data show that 5 mg/ml dsRNA and 50 mM serotonin triggers statistically significant flp-21 knockdown (-84%***) over a 48 h timecourse, which inhibits host-finding (chemosensory), dispersal, hyperactive nictation and jumping behaviours. However, whilst 1 mg/ml dsRNA and 50 mM serotonin also triggers statistically significant flp-21 knockdown (-51%**) over a 48 h timecourse, it does not trigger the null sensory phenotypes; statistically significant target knockdown can still lead to false negative results, necessitating appropriate experimental design. SPME GC-MS volatile profiles of two EPN hosts, Galleria mellonella and Tenebrio molitor reveal an array of shared and unique compounds; these differences had no impact on null flp-21 RNAi phenotypes for the behaviours assayed. Localisation of flp-21 / FLP-21 to paired anterior neurons by whole mount in situ hybridisation and immunocytochemistry corroborates the RNAi data, further suggesting a role in sensory modulation. These data can underpin efforts to study these behaviours in other economically important parasites, and could facilitate molecular approaches to EPN strain improvement for biocontrol.
Collapse
Affiliation(s)
- Robert Morris
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Leonie Wilson
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Matthew Sturrock
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Neil D. Warnock
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Daniel Carrizo
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Deborah Cox
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Aaron G. Maule
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Johnathan J. Dalzell
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
41
|
Identification of candidate infection genes from the model entomopathogenic nematode Heterorhabditis bacteriophora. BMC Genomics 2017; 18:8. [PMID: 28049427 PMCID: PMC5209865 DOI: 10.1186/s12864-016-3468-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022] Open
Abstract
Background Despite important progress in the field of innate immunity, our understanding of host immune responses to parasitic nematode infections lags behind that of responses to microbes. A limiting factor has been the obligate requirement for a vertebrate host which has hindered investigation of the parasitic nematode infective process. The nematode parasite Heterorhabditis bacteriophora offers great potential as a model to genetically dissect the process of infection. With its mutualistic Photorhabdus luminescens bacteria, H. bacteriophora invades multiple species of insects, which it kills and exploits as a food source for the development of several nematode generations. The ability to culture the life cycle of H. bacteriophora on plates growing the bacterial symbiont makes it a very exciting model of parasitic infection that can be used to unlock the molecular events occurring during infection of a host that are inaccessible using vertebrate hosts. Results To profile the transcriptional response of an infective nematode during the early stage of infection, we performed next generation RNA sequencing on H. bacteriophora IJs incubated in Manduca sexta hemolymph plasma for 9 h. A subset of up-regulated and down-regulated genes were validated using qRT-PCR. Comparative analysis of the transcriptome with untreated controls found a number of differentially expressed genes (DEGs) which cover a number of different functional categories. A subset of DEGs is conserved across Clade V parasitic nematodes revealing an array of candidate parasitic genes. Conclusions Our analysis reveals transcriptional changes in the regulation of a large number of genes, most of which have not been shown previously to play a role in the process of infection. A significant proportion of these genes are unique to parasitic nematodes, suggesting the identification of a group of parasitism factors within nematodes. Future studies using these candidates may provide functional insight into the process of nematode parasitism and also the molecular evolution of parasitism within nematodes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3468-6) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
R. DENVER DEE, J. RAGSDALE ERIK, THOMAS WKELLEY, A. ZASADA INGA. Introduction to Nematode Genome and Transcriptome Announcements in the Journal of Nematology. J Nematol 2017. [DOI: 10.21307/jofnem-2017-053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
43
|
Abstract
The evolutionary genetic mechanisms that are responsible for the transition of free-living nematodes to parasites are unknown and current nematode models used to study this have limitations. The gastropod parasitePhasmarhabditis hermaphroditacould be used as a new model to dissect the molecular mechanisms involved in the evolution of parasitism.Phasmarhabditis hermaphroditais a facultative parasite of slugs and snails that, likeCaenorhabditis elegansandPristionchus pacificus, can also be maintained easily under laboratory conditions.Phasmarhabditis hermaphroditaandPhasmarhabditisspecies are easy to isolate from the wild and have been found around the world. The phylogenetic position ofPhasmarhabditisis ideal for genomic comparison with other clade 9 species such asC. elegansandP. pacificus, as well as mammalian and insect parasites. These attributes could makeP. hermaphroditaan excellent choice of model to study the evolutionary emergence of parasitism.
Collapse
Affiliation(s)
- Robbie Rae
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
44
|
Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite - a comprehensive resource for helminth genomics. Mol Biochem Parasitol 2016; 215:2-10. [PMID: 27899279 PMCID: PMC5486357 DOI: 10.1016/j.molbiopara.2016.11.005] [Citation(s) in RCA: 412] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 12/02/2022]
Abstract
WormBase ParaSite is a new resource for helminth genomics. The resource provides access to over 100 nematode and platyhelminth genomes. The genomes are consistently annotated, organised and presented. A variety of views and tools for exploring and querying the data are provided.
The number of publicly available parasitic worm genome sequences has increased dramatically in the past three years, and research interest in helminth functional genomics is now quickly gathering pace in response to the foundation that has been laid by these collective efforts. A systematic approach to the organisation, curation, analysis and presentation of these data is clearly vital for maximising the utility of these data to researchers. We have developed a portal called WormBase ParaSite (http://parasite.wormbase.org) for interrogating helminth genomes on a large scale. Data from over 100 nematode and platyhelminth species are integrated, adding value by way of systematic and consistent functional annotation (e.g. protein domains and Gene Ontology terms), gene expression analysis (e.g. alignment of life-stage specific transcriptome data sets), and comparative analysis (e.g. orthologues and paralogues). We provide several ways of exploring the data, including genome browsers, genome and gene summary pages, text search, sequence search, a query wizard, bulk downloads, and programmatic interfaces. In this review, we provide an overview of the back-end infrastructure and analysis behind WormBase ParaSite, and the displays and tools available to users for interrogating helminth genomic data.
Collapse
Affiliation(s)
- Kevin L Howe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - Bruce J Bolt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Myriam Shafie
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Paul Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
45
|
Making sense of genomes of parasitic worms: Tackling bioinformatic challenges. Biotechnol Adv 2016; 34:663-686. [DOI: 10.1016/j.biotechadv.2016.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 01/25/2023]
|
46
|
Lu D, Baiocchi T, Dillman AR. Genomics of Entomopathogenic Nematodes and Implications for Pest Control. Trends Parasitol 2016; 32:588-598. [PMID: 27142565 PMCID: PMC4969101 DOI: 10.1016/j.pt.2016.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 12/28/2022]
Abstract
Entomopathogenic nematodes (EPNs) have been used in biological control but improvement is needed to realize their full potential for broader application in agriculture. Some improvements have been gained through selective breeding and the isolation of additional species and populations. Having genomic sequences for at least six EPNs opens the possibility of genetic improvement, either by facilitating the selection of candidate genes for hypothesis-driven studies of gene-trait relations or by genomics-assisted breeding for desirable traits. However, the genomic data will be of limited use without a more mechanistic understanding of the genes underlying traits that are important for biological control. Additionally, molecular tools are required to fully translate the genomic resources into further functional studies and better biological control.
Collapse
Affiliation(s)
- Dihong Lu
- Department of Nematology, University of California, Riverside, CA 92521, USA
| | - Tiffany Baiocchi
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Adler R Dillman
- Department of Nematology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
47
|
Gilabert A, Curran DM, Harvey SC, Wasmuth JD. Expanding the view on the evolution of the nematode dauer signalling pathways: refinement through gene gain and pathway co-option. BMC Genomics 2016; 17:476. [PMID: 27350342 PMCID: PMC4924289 DOI: 10.1186/s12864-016-2770-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 05/25/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Signalling pathways underlie development, behaviour and pathology. To understand patterns in the evolution of signalling pathways, we undertook a comprehensive investigation of the pathways that control the switch between growth and developmentally quiescent dauer in 24 species of nematodes spanning the phylum. RESULTS Our analysis of 47 genes across these species indicates that the pathways and their interactions are not conserved throughout the Nematoda. For example, the TGF-β pathway was co-opted into dauer control relatively late in a lineage that led to the model species Caenorhabditis elegans. We show molecular adaptations described in C. elegans that are restricted to its genus or even just to the species. Similarly, our analyses both identify species where particular genes have been lost and situations where apparently incorrect orthologues have been identified. CONCLUSIONS Our analysis also highlights the difficulties of working with genome sequences from non-model species as reliance on the published gene models would have significantly restricted our understanding of how signalling pathways evolve. Our approach therefore offers a robust standard operating procedure for genomic comparisons.
Collapse
Affiliation(s)
- Aude Gilabert
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Current address: MIVEGEC (UMR CNRS/IRD/UM 5290), Montpellier, France
| | - David M Curran
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Simon C Harvey
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, UK
| | - James D Wasmuth
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
48
|
Kumar R, Kushwah J, Ganguly S, Garg V, Somvanshi VS. Proteomic Investigation of Photorhabdus Bacteria for Nematode-Host Specificity. Indian J Microbiol 2016; 56:361-367. [PMID: 27407301 DOI: 10.1007/s12088-016-0594-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/05/2016] [Indexed: 01/17/2023] Open
Abstract
Majority of animals form symbiotic relationships with bacteria. Based on the number of bacterial species associating with an animal, these symbiotic associations can be mono-specific, relatively simple (2-25 bacterial species/animal) or highly complex (>10(2)-10(3) bacterial species/animal). Photorhabdus (family-Enterobacteriaceae) forms a mono-specific symbiotic relationship with the entomopathogenic nematode Heterorhabditis. This system provides a tractable genetic model for animal-microbe symbiosis studies. Here, we investigated the bacterial factors that may be responsible for governing host specificity between nematode and their symbiont bacteria using proteomics approach. Total protein profiles of P. luminescens ssp. laumondii (host nematode- H. bacteriophora) and P. luminescens ssp. akhurstii (host nematode- H. indica) were compared using 2-D gel electrophoresis, followed by identification of differentially expressed proteins by MALDI-TOF MS. Thirty-nine unique protein spots were identified - 24 from P. luminescens ssp. laumondii and 15 from P. luminescens ssp. akhurstii. These included proteins that might be involved in determining host specificity directly (for e.g. pilin FimA, outer membrane protein A), indirectly through effect on bacterial secondary metabolism (for e.g. malate dehydrogenase Mdh, Pyruvate formate-lyase PflA, flavo protein WrbA), or in a yet unknown manner (for e.g. hypothetical proteins, transcription regulators). Further functional validation is needed to establish the role of these bacterial proteins in nematode-host specificity.
Collapse
Affiliation(s)
- Ram Kumar
- Division of Nematology, ICAR- Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012 India.,ICAR-National Research Center on Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - Jyoti Kushwah
- Division of Nematology, ICAR- Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012 India
| | - Sudershan Ganguly
- Division of Nematology, ICAR- Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012 India
| | - Veena Garg
- Department of Biotechnology and Biosciences, Banasthali Vidyapeeth, Jaipur, Rajasthan India
| | - Vishal S Somvanshi
- Division of Nematology, ICAR- Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012 India
| |
Collapse
|
49
|
Haemonchus contortus: Genome Structure, Organization and Comparative Genomics. ADVANCES IN PARASITOLOGY 2016; 93:569-98. [PMID: 27238013 DOI: 10.1016/bs.apar.2016.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One of the first genome sequencing projects for a parasitic nematode was that for Haemonchus contortus. The open access data from the Wellcome Trust Sanger Institute provided a valuable early resource for the research community, particularly for the identification of specific genes and genetic markers. Later, a second sequencing project was initiated by the University of Melbourne, and the two draft genome sequences for H. contortus were published back-to-back in 2013. There is a pressing need for long-range genomic information for genetic mapping, population genetics and functional genomic studies, so we are continuing to improve the Wellcome Trust Sanger Institute assembly to provide a finished reference genome for H. contortus. This review describes this process, compares the H. contortus genome assemblies with draft genomes from other members of the strongylid group and discusses future directions for parasite genomics using the H. contortus model.
Collapse
|
50
|
Ratnappan R, Vadnal J, Keaney M, Eleftherianos I, O'Halloran D, Hawdon JM. RNAi-mediated gene knockdown by microinjection in the model entomopathogenic nematode Heterorhabditis bacteriophora. Parasit Vectors 2016; 9:160. [PMID: 26993791 PMCID: PMC4797128 DOI: 10.1186/s13071-016-1442-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/10/2016] [Indexed: 12/21/2022] Open
Abstract
Background Parasitic nematodes threaten the health of humans and livestock and cause a major financial and socioeconomic burden to modern society. Given the widespread distribution of diseases caused by parasitic nematodes there is an urgent need to develop tools that will elucidate the genetic complexity of host-parasite interactions. Heterorhabditis bacteriophora is a parasitic nematode that allows simultaneous monitoring of nematode infection processes and host immune function, and offers potential as a tractable model for parasitic nematode infections. However, molecular tools to investigate these processes are required prior to its widespread acceptance as a robust model organism. In this paper we describe microinjection in adult H. bacteriophora as a suitable means of dsRNA delivery to knockdown gene transcripts. Methods RNA interference was used to knockdown four genes by injecting dsRNA directly into the gonad of adult hermaphrodite nematodes. RNAi phenotypes were scored in the F1 progeny on the fifth day post-injection, and knockdown of gene-specific transcripts was quantified with real-time quantitative RT-PCR (qRT-PCR). Results RNAi injection in adult hermaphrodites significantly decreased the level of target transcripts to varying degrees when compared with controls. The genes targeted by RNAi via injection included cct-2, nol-5, dpy-7, and dpy-13. In each case, RNAi knockdown was confirmed phenotypically by examining the progeny of injected animals, and also confirmed at the transcriptional level by real-time qRT-PCR. Conclusions Here we describe for the first time the successful use of microinjection to knockdown gene transcripts in H. bacteriophora. This technique can be used widely to study the molecular basis of parasitism.
Collapse
Affiliation(s)
- Ramesh Ratnappan
- Department of Microbiology Immunology and Tropical Medicine, George Washington University Medical Center, Washington, DC, 20037, USA
| | - Jonathan Vadnal
- Department of Microbiology Immunology and Tropical Medicine, George Washington University Medical Center, Washington, DC, 20037, USA
| | - Melissa Keaney
- Department of Microbiology Immunology and Tropical Medicine, George Washington University Medical Center, Washington, DC, 20037, USA
| | - Ioannis Eleftherianos
- Department of Biological Sciences, George Washington University, Science and Engineering Hall, suite 6000, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Damien O'Halloran
- Department of Biological Sciences, George Washington University, Science and Engineering Hall, suite 6000, 800 22nd Street NW, Washington, DC, 20052, USA.,Institute for Neuroscience, George Washington University, 636 Ross Hall, 2300 I Street NW, Washington, DC, 20052, USA
| | - John M Hawdon
- Department of Microbiology Immunology and Tropical Medicine, George Washington University Medical Center, Washington, DC, 20037, USA.
| |
Collapse
|