1
|
Zhao X, Xu Q, Wang Q, Liang X, Wang J, Jin H, Man Y, Guo D, Gao F, Tang X. Induced Self-Assembly of Vitamin E-Spermine/siRNA Nanocomplexes via Spermine/Helix Groove-Specific Interaction for Efficient siRNA Delivery and Antitumor Therapy. Adv Healthc Mater 2024; 13:e2303186. [PMID: 38234201 DOI: 10.1002/adhm.202303186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Gene therapy has been one of potential strategies for the treatment of different diseases, where efficient and safe gene delivery systems are also extremely in need. Current lipid nanoparticles (LNP) technology highly depends on the packing and condensation of nucleic acids with amine moieties. Here, an attempt to covalently link two natural compounds, spermine and vitamin E, is made to develop self-assembled nucleic acid delivery systems. Among them, the spermine moieties specifically interact with the major groove of siRNA helix through salt bridge interaction, while vitamin E moieties are located around siRNA duplex. Such amphiphilic vitamin E-spermine/siRNA complexes can further self-assemble into nanocomplexes like multiblade wheels. Further studies indicate that these siRNA nanocomplexes with the neutrally charged surface of vitamin E can enter cells via caveolin/lipid raft mediated endocytosis pathway and bypass lysosome trapping. With these self-assembled delivery systems, efficient siRNA delivery is successfully achieved for Eg5 and Survivin gene silencing as well as DNA plasmid delivery. Further in vivo study indicates that VE-Su-Sper/DSPE-PEG2000/siSurvivin self-assembled nanocomplexes can accumulate in cancer cells and gradually release siRNA in tumor tissues and show significant antitumor effect in vivo. The self-assembled delivery system provides a novel strategy for highly efficient siRNA delivery.
Collapse
Affiliation(s)
- Xiaoran Zhao
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Qi Xu
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Xingxing Liang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Yizhi Man
- School of Chemistry and Materials Science, Anhui Normal University, NO. 189 Jiuhua South Rd., Anhui, Wuhu, 241002, China
| | - Dongyang Guo
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Feng Gao
- School of Chemistry and Materials Science, Anhui Normal University, NO. 189 Jiuhua South Rd., Anhui, Wuhu, 241002, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| |
Collapse
|
2
|
Ortega JA, Sasselli IR, Boccitto M, Fleming AC, Fortuna TR, Li Y, Sato K, Clemons TD, Mckenna ED, Nguyen TP, Anderson EN, Asin J, Ichida JK, Pandey UB, Wolin SL, Stupp SI, Kiskinis E. CLIP-Seq analysis enables the design of protective ribosomal RNA bait oligonucleotides against C9ORF72 ALS/FTD poly-GR pathophysiology. SCIENCE ADVANCES 2023; 9:eadf7997. [PMID: 37948524 PMCID: PMC10637751 DOI: 10.1126/sciadv.adf7997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia patients with a hexanucleotide repeat expansion in C9ORF72 (C9-HRE) accumulate poly-GR and poly-PR aggregates. The pathogenicity of these arginine-rich dipeptide repeats (R-DPRs) is thought to be driven by their propensity to bind low-complexity domains of multivalent proteins. However, the ability of R-DPRs to bind native RNA and the significance of this interaction remain unclear. Here, we used computational and experimental approaches to characterize the physicochemical properties of R-DPRs and their interaction with RNA. We find that poly-GR predominantly binds ribosomal RNA (rRNA) in cells and exhibits an interaction that is predicted to be energetically stronger than that for associated ribosomal proteins. Critically, modified rRNA "bait" oligonucleotides restore poly-GR-associated ribosomal deficits and ameliorate poly-GR toxicity in patient neurons and Drosophila models. Our work strengthens the hypothesis that ribosomal function is impaired by R-DPRs, highlights a role for direct rRNA binding in mediating ribosomal dysfunction, and presents a strategy for protecting against C9-HRE pathophysiological mechanisms.
Collapse
Affiliation(s)
- Juan A. Ortega
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, Barcelona 08907, Spain
| | - Ivan R. Sasselli
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Fisica de Materiales (CFM), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Marco Boccitto
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Andrew C. Fleming
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tyler R. Fortuna
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Yichen Li
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kohei Sato
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Tristan D. Clemons
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth D. Mckenna
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Thao P. Nguyen
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric N. Anderson
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jesus Asin
- Department of Statistical Methods, School of Engineering, University of Zaragoza, Zaragoza 50018, Spain
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Udai B. Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Sandra L. Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Samuel I. Stupp
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Gupta S, Aggarwal S, Munde M. New Insights into the Role of Ligand-Binding Modes in GC-DNA Condensation through Thermodynamic and Spectroscopic Studies. ACS OMEGA 2023; 8:4554-4565. [PMID: 36777612 PMCID: PMC9909821 DOI: 10.1021/acsomega.2c01557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/20/2022] [Indexed: 06/18/2023]
Abstract
In biological systems, the unprompted assembly of DNA molecules by cationic ligands into condensed structures is ubiquitous. The ability of ligands to provoke DNA packaging is crucial to the molecular organization and functional control of DNA, yet their underlined physical roles have remained elusive. Here, we have examined the DNA condensation mechanism of four cationic ligands, including their primary DNA-binding modes through extensive biophysical studies. We observed contrasting changes for these ligands binding to poly[dGdC]:poly[dGdC] (GC-DNA) and poly[dAdT]:poly[dAdT] (AT-DNA). Based on a CD spectroscopic study, it was confirmed that only GC-DNA undergoes B- to Ψ-type DNA transformation in the presence of ligands. In the fluorescence displacement assay (FDA), the ability of ligands to displace GC-DNA-bound EtBr follows the order: protamine21+ > cohex3+ > Ni2+ > spermine4+, which indicates that there is no direct correlation between the ligand charge and its ability to displace the drug from the DNA, indicating that GC-DNA condensation is not just influenced by electrostatic interaction but ligand-specific interactions may also have played a crucial role. Furthermore, the detailed ITC-binding studies suggested that DNA-ligand interactions are generally driven by unfavorable enthalpy and favorable entropy. The correlations from various studies insinuate that cationic ligands show major groove binding as one of the preferred binding modes during GC-DNA condensation.
Collapse
Affiliation(s)
- Sakshi Gupta
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department
of Applied Science, The NorthCap University, Sector 23-A, Gurgaon, Haryana 122017, India
| | - Soumya Aggarwal
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manoj Munde
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
4
|
Drozdzal P, Manszewski T, Gilski M, Brzezinski K, Jaskolski M. Right-handed Z-DNA at ultrahigh resolution: a tale of two hands and the power of the crystallographic method. Acta Crystallogr D Struct Biol 2023; 79:133-139. [PMID: 36762859 PMCID: PMC9912920 DOI: 10.1107/s2059798322011937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 01/21/2023] Open
Abstract
The self-complementary L-d(CGCGCG)2 purine/pyrimidine hexanucleotide was crystallized in complex with the polyamine cadaverine and potassium cations. Since the oligonucleotide contained the enantiomeric 2'-deoxy-L-ribose, the Z-DNA duplex is right-handed, as confirmed by the ultrahigh-resolution crystal structure determined at 0.69 Å resolution. Although the X-ray diffraction data were collected at a very short wavelength (0.7085 Å), where the anomalous signal of the P and K atoms is very weak, the signal was sufficiently outstanding to clearly indicate the wrong hand when the structure was mistakenly solved assuming the presence of 2'-deoxy-D-ribose. The electron density clearly shows the entire cadaverinium dication, which has an occupancy of 0.53 and interacts with one Z-DNA duplex. The K+ cation, with an occupancy of 0.32, has an irregular coordination sphere that is formed by three OP atoms of two symmetry-related Z-DNA duplexes and one O5' hydroxyl O atom, and is completed by three water sites, one of which is twofold disordered. The K+ site is complemented by a partial water molecule, the hydrogen bonds of which have the same lengths as the K-O bonds. The sugar-phosphate backbone assumes two conformations, but the base pairs do not show any sign of disorder.
Collapse
Affiliation(s)
- Pawel Drozdzal
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Manszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Miroslaw Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | | | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
5
|
Khazaal S, Al Safadi R, Osman D, Hiron A, Gilot P. Streptococcus agalactiae imports spermidine by a member of the amino acid/polyamine antiporter family to endure citric acid stress at the vaginal pH. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35920804 DOI: 10.1099/mic.0.001219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polyamines bind to various cellular components, such as nucleic acids, phospholipids, proteins and nucleotides. They are involved in the virulence and protection against physiological stresses of several bacterial species. Streptococcus agalactiae is able to colonize the vaginal tract of asymptomatic pregnant women and to resist, by an as yet poorly characterized mechanism, pH 4.0, the low physiological pH of this environment. We identified a transporter of the amino acid/polyamine antiporter family (SAK_1604 in strain A909) that shares 39.8 % similar amino acids with CadB and 34.7 % with PotE, two transporters implicated in acid resistance in Escherichia coli. We found that sak_1604 is overexpressed in the presence of spermidine and during citric acid stress at the vaginal pH, but not during lactic acid or HCl stresses at the same pH or during a sodium citrate stress at pH 7.4. Dihydrogen citrate is the predominant form of citric acid at pH 4.0. Using a deletion mutant, we proved that SAK_1604 is involved in the survival of S. agalactiae during citric acid stress at pH 4.0 in the presence of spermidine, and we showed by TLC analysis that it is involved in spermidine transport in these conditions. Our data open new perspectives on the comprehension of the molecular mechanisms allowing S. agalactiae to survive at the physiological pH of the vagina and on the unsuspected role of an ionic form of citric acid.
Collapse
Affiliation(s)
- Sarah Khazaal
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, 37032 Tours, France.,LBA3B, AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Rim Al Safadi
- LBA3B, AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Dani Osman
- LBA3B, AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Aurélia Hiron
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, 37032 Tours, France
| | - Philippe Gilot
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, 37032 Tours, France
| |
Collapse
|
6
|
Tachibana A, Fujimura N, Takeuchi M, Watanabe K, Teruuchi Y, Uchiki T. Cationic copolymers that enhance wild-type-specific suppression in BNA-clamp PCR and preferentially increase the Tm of fully matched complementary DNA and BNA strands. BIOLOGY METHODS AND PROTOCOLS 2022; 7:bpac009. [PMID: 35664806 PMCID: PMC9154250 DOI: 10.1093/biomethods/bpac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Mutation detection is of major interest in molecular diagnostics, especially in the field of oncology. However, detection can be challenging as mutant alleles often coexists with excess copies of wild-type alleles. Bridged nucleic acid (BNA)-clamp PCR circumvents this challenge by preferentially suppressing the amplification of wild-type alleles and enriching rare mutant alleles. In this study, we screened cationic copolymers containing nonionic and anionic repeat units for their ability to 1) increase the Tm of double-stranded DNA, 2) avoid PCR inhibition, and 3) enhance the suppression of wild-type amplification in BNA-clamp PCR to detect the KRAS G13D mutation. The selected copolymers that met these criteria consisted of four types of amines and anionic and/or nonionic units. In BNA-clamp PCR, these copolymers increased the threshold cycle (Ct) of the wild-type allele only and enabled mutation detection from templates with a 0.01% mutant-to-wild-type ratio. Melting curve analysis with 11-mer DNA-DNA or BNA-DNA complementary strands showed that these copolymers preferentially increased the Tm of perfectly matched strands over strands containing 1-bp mismatches. These results suggested that these copolymers preferentially stabilize perfectly matched DNA and BNA strands and thereby enhance rare mutant detection in BNA-clamp PCR.
Collapse
Affiliation(s)
- Ami Tachibana
- Nitto Boseki Co. Ltd., Kawasaki, Kanagawa, 210-0821, Japan
| | | | | | - Koji Watanabe
- Nittobo Medical Co. Ltd., Koriyama, Fukushima, 963-8061, Japan
| | - Yoko Teruuchi
- Nittobo Medical Co. Ltd., Koriyama, Fukushima, 963-8061, Japan
| | - Tomoaki Uchiki
- Nitto Boseki Co. Ltd., Kawasaki, Kanagawa, 210-0821, Japan
| |
Collapse
|
7
|
Vasiliu T, Mocci F, Laaksonen A, Engelbrecht LDV, Perepelytsya S. Caging Polycations: Effect of Increasing Confinement on the Modes of Interaction of Spermidine3+ With DNA Double Helices. Front Chem 2022; 10:836994. [PMID: 35281557 PMCID: PMC8915389 DOI: 10.3389/fchem.2022.836994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
Polyamines have important roles in the modulation of the cellular function and are ubiquitous in cells. The polyamines putrescine2+, spermidine3+, and spermine4+ represent the most abundant organic counterions of the negatively charged DNA in the cellular nucleus. These polyamines are known to stabilize the DNA structure and, depending on their concentration and additional salt composition, to induce DNA aggregation, which is often referred to as condensation. However, the modes of interactions of these elongated polycations with DNA and how they promote condensation are still not clear. In the present work, atomistic molecular dynamics (MD) computer simulations of two DNA fragments surrounded by spermidine3+ (Spd3+) cations were performed to study the structuring of Spd3+ “caged” between DNA molecules. Microsecond time scale simulations, in which the parallel DNA fragments were constrained at three different separations, but allowed to rotate axially and move naturally, provided information on the conformations and relative orientations of surrounding Spm3+ cations as a function of DNA-DNA separation. Novel geometric criteria allowed for the classification of DNA-Spd3+ interaction modes, with special attention given to Spd3+ conformational changes in the space between the two DNA molecules (caged Spd3+). This work shows how changes in the accessible space, or confinement, around DNA affect DNA-Spd3+ interactions, information fundamental to understanding the interactions between DNA and its counterions in environments where DNA is compacted, e.g. in the cellular nucleus.
Collapse
Affiliation(s)
- Tudor Vasiliu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | - Francesca Mocci
- Dipartimento di Scienze Chimiche e Geologiche, Cagliari University, Cagliari, Italy
- *Correspondence: Francesca Mocci, ; Aatto Laaksonen, ; Sergiy Perepelytsya,
| | - Aatto Laaksonen
- Centre of Advanced Research in Bionanoconjugates and Biopolymers “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
- Dipartimento di Scienze Chimiche e Geologiche, Cagliari University, Cagliari, Italy
- Division of Energy Science, Energy Engineering, Luleå University of Technology, Luleå, Sweden
- Division of Physical Chemistry, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, China
- *Correspondence: Francesca Mocci, ; Aatto Laaksonen, ; Sergiy Perepelytsya,
| | | | - Sergiy Perepelytsya
- Bogolyubov Institute for Theoretical Physics of the NAS of Ukraine, Kyiv, Ukraine
- *Correspondence: Francesca Mocci, ; Aatto Laaksonen, ; Sergiy Perepelytsya,
| |
Collapse
|
8
|
Akhova A, Nesterova L, Shumkov M, Tkachenko A. Cadaverine biosynthesis contributes to decreased Escherichia coli susceptibility to antibiotics. Res Microbiol 2021; 172:103881. [PMID: 34543694 DOI: 10.1016/j.resmic.2021.103881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Some bacterial stress responses are involved in survival under antibiotic treatment and contribute to less susceptible microbial forms selection. Here, we tested the role of cadaverine, one of the biogenic polyamines considered as universal adaptogens, in the processes. The expression of ldcC and cadA genes, encoding cadaverine-producing lysine decarboxylase, increased in Escherichia coli cells exposed to β-lactams and fluoroquinolones but not aminoglycosides. The transcriptional regulators RpoS and SoxS controlled the expression of ldcC and cadA, respectively, in response to antibiotics. Exogenous cadaverine had little effect on E. coli antibiotic susceptibility, whereas non-antibiotic-induced endogenous cadaverine contributed to its tolerance to β-lactams, fluoroquinolones, and aminoglycosides. Antibiotic-induced cadaverine synthesis promoted bacterial survival under fluoroquinolone exposure, as well as could contribute to low-resistant bacterial forms development. Selection under the fluoroquinolone levofloxacin exposure toward bacteria with an increased ability to synthesize cadaverine and negative correlation between LdcC activity and fluoroquinolone susceptibility in the selected forms were demonstrated. The same correlation in a special group of low-level resistant clinical E. coli isolates was revealed. So, cadaverine biosynthesis appeared to be a significant player in decreased E. coli antibiotic susceptibility development.
Collapse
Affiliation(s)
- Anna Akhova
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Brunch of the Russian Academy of Sciences, 13, Golev st, Perm, 614081, Russia; Perm State University, 15, Bukirev st, 614068, Perm, Russia.
| | - Larisa Nesterova
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Brunch of the Russian Academy of Sciences, 13, Golev st, Perm, 614081, Russia; Perm State University, 15, Bukirev st, 614068, Perm, Russia.
| | - Mikhail Shumkov
- Group of Microbial Genomes Editing, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, Leninsky prospect, 119071, Moscow, Russia.
| | - Alexander Tkachenko
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Brunch of the Russian Academy of Sciences, 13, Golev st, Perm, 614081, Russia; Perm State University, 15, Bukirev st, 614068, Perm, Russia.
| |
Collapse
|
9
|
Sagar NA, Tarafdar S, Agarwal S, Tarafdar A, Sharma S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med Sci (Basel) 2021; 9:44. [PMID: 34207607 PMCID: PMC8293435 DOI: 10.3390/medsci9020044] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Putrescine, spermine, and spermidine are the important polyamines (PAs), found in all living organisms. PAs are formed by the decarboxylation of amino acids, and they facilitate cell growth and development via different cellular responses. PAs are the integrated part of the cellular and genetic metabolism and help in transcription, translation, signaling, and post-translational modifications. At the cellular level, PA concentration may influence the condition of various diseases in the body. For instance, a high PA level is detrimental to patients suffering from aging, cognitive impairment, and cancer. The levels of PAs decline with age in humans, which is associated with different health disorders. On the other hand, PAs reduce the risk of many cardiovascular diseases and increase longevity, when taken in an optimum quantity. Therefore, a controlled diet is an easy way to maintain the level of PAs in the body. Based on the nutritional intake of PAs, healthy cell functioning can be maintained. Moreover, several diseases can also be controlled to a higher extend via maintaining the metabolism of PAs. The present review discusses the types, important functions, and metabolism of PAs in humans. It also highlights the nutritional role of PAs in the prevention of various diseases.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Swarnava Tarafdar
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Science, Rishikesh 249203, Uttarakhand, India;
| | - Surbhi Agarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India;
| | - Sunil Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
| |
Collapse
|
10
|
Fan YR, Wang BJ, Jia DG, Yang XB, Huang Y. Synthesis, electrochemistry, DNA binding and in vitro cytotoxic activity of tripodal ferrocenyl bis-naphthalimide derivatives. J Inorg Biochem 2021; 219:111425. [PMID: 33831713 DOI: 10.1016/j.jinorgbio.2021.111425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 01/16/2023]
Abstract
A series of tripodal ferrocenyl bis-naphthalimide derivatives were synthesized and characterized. All of the bis-naphthalimide derivatives exhibited good DNA binding ability which was confirmed by ethidium bromide (EB) displacement experiment and ultraviolet (UV)-visible absorption titration. And the binding mode of these compounds was proved to be a hybrid binding mode by experiments. The cytotoxicity of synthesized compounds against 4 different human cancer cell lines (EC109, BGC823, SGC7901 and HEPG2) was evaluated by thiazolyl blue tetrazolium bromide (MTT) assay. All of the bis-naphthalimide derivatives exhibited good anticancer activity than the positive control drug (amonafide), which was due to the promotion of reactive oxygen species (ROS) level in test cancer cells by the reversible one-electron redox process of ferrocenyl bis-naphthalimide derivatives. Although there was no obvious relationship between the binding constants and the chain length, the structure cytotoxicity relationship revealed that the linker of n = 3, m = 1 was the best choice for the tested tripodol bis-naphthalimide derivatives. SYNOPSIS: A series of tripodal ferrocenyl bis-naphthalimide derivatives were synthesized to study the DNA binding ability and the cytotoxicity induced by reactive oxygen species. All of the compounds exhibited good DNA binding ability. And the structure cytotoxicity relationship revealed that the structure of 5h was the best choice.
Collapse
Affiliation(s)
- Yan-Ru Fan
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Bo-Jin Wang
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Deng-Guo Jia
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Xin-Bin Yang
- Southwest University, Rongchang Campus, Chongqing 402460, PR China
| | - Yu Huang
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China.
| |
Collapse
|
11
|
Kuba M, Kraus T, Pohl R, Hocek M. Nucleotide-Bearing Benzylidene-Tetrahydroxanthylium Near-IR Fluorophore for Sensing DNA Replication, Secondary Structures and Interactions. Chemistry 2020; 26:11950-11954. [PMID: 32633433 PMCID: PMC7361531 DOI: 10.1002/chem.202003192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Thymidine triphosphate bearing benzylidene-tetrahydroxanthylium near-IR fluorophore linked to the 5-methyl group via triazole was synthesized through the CuAAC reaction and was used for polymerase synthesis of labelled DNA probes. The fluorophore lights up upon incorporation to DNA (up to 348-times) presumably due to interactions in major groove and the fluorescence further increases in the single-stranded oligonucleotide. The labelled dsDNA senses binding of small molecules and proteins by a strong decrease of fluorescence. The nucleotide was used as a light-up building block in real-time PCR for detection of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Miroslav Kuba
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| |
Collapse
|
12
|
Murshid ME, Haque M. Hits and misses of Bangladesh National Health Policy 2011. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:83-93. [PMID: 32742106 PMCID: PMC7373115 DOI: 10.4103/jpbs.jpbs_236_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/05/2019] [Accepted: 11/27/2019] [Indexed: 11/04/2022] Open
Abstract
National Health Policy (NHP) is a guiding principle for a country to identify the priority of health-care needs, resource allocations according to prioritization, and to achieve specific health-care goals. In addition, NHP is usually wide-ranging, all-inclusive plan that pursues each and every population to move on the road to better health. NHP targets to achieve universal health coverage and delivering quality health-care services to all at inexpensive cost, through a preemptive, protective, and prophylactic health-care program in all national and international developmental policy and planning. There are quite a few constituents that are valuable in executing health policy. These elements include novelty, technical compendium, communiqué, conglomerates, administration, supervision, and political awareness and promise. Health policies can be implemented at all levels of the government system. It helps in strengthening the overall health-care system of the country by effective public-private coordination and collaboration. In the year 1990, the Government of Bangladesh (GoB) tried to promulgate an NHP. Unfortunately, the attempt failed. The health-care system of the country operated without a policy until 2011. In the year 2011, the country's first health policy was published by the GoB. Though the country has have achieved excellent progress in providing health care, but yet Bangladesh has a few critical challenges that need immediate attention. In this article, we will try to address the pros and cons of the Bangladesh NHP 1990 and the positive aspects and challenges of NHP 2011.
Collapse
Affiliation(s)
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defense Health, Universiti Pertahanan Nasional Malaysia (National Defense University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Perepelytsya S, Uličný J, Laaksonen A, Mocci F. Pattern preferences of DNA nucleotide motifs by polyamines putrescine2+, spermidine3+ and spermine4. Nucleic Acids Res 2020; 47:6084-6097. [PMID: 31114917 PMCID: PMC6614828 DOI: 10.1093/nar/gkz434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
The interactions of natural polyamines (putrescine2+, spermidine3+ and spermine4+) with DNA double helix are studied to characterize their nucleotide sequence pattern preference. Atomistic Molecular Dynamics simulations have been carried out for three systems consisting of the same DNA fragment d(CGCGAATTCGCGAATTCGCG) with different polyamines. The results show that polyamine molecules are localized with well-recognized patterns along the double helix with different residence times. We observed a clear hierarchy in the residence times of the polyamines, with the longest residence time (ca 100ns) in the minor groove. The analysis of the sequence dependence shows that polyamine molecules prefer the A-tract regions of the minor groove - in its narrowest part. The preferable localization of putrescine2+, spermidine3+ and spermine4+ in the minor groove with A-tract motifs is correlated with modulation of the groove width by a specific nucleotide sequences. We did develop a theoretical model pointing to the electrostatic interactions as the main driving force in this phenomenon, making it even more prominent for polyamines with higher charges. The results of the study explain the specificity of polyamine interactions with A-tract region of the DNA double helix which is also observed in experiments.
Collapse
Affiliation(s)
- Sergiy Perepelytsya
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine.,Department of Theoretical and Mathematical Physics, Kyiv Academic University, 03142 Kyiv, Ukraine
| | - Jozef Uličný
- Department of Biophysics, Institute of Physics, P. J. Šafárik University, 041 54 Košice, Slovakia
| | - Aatto Laaksonen
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China.,Division of Physical Chemistry, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden.,Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, 700487, Romania
| | - Francesca Mocci
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, 700487, Romania.,Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy
| |
Collapse
|
14
|
Burilov VA, Mironova DA, Grygoriev IA, Valiyakhmetova AM, Solovieva SE, Antipin IS. Synthesis of Water-Soluble Polyammonium Thiacalix[4]arene Derivative and Its Interaction with Calf Thymus DNA. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220010156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Rabelo RS, Tavares GM, Prata AS, Hubinger MD. Complexation of chitosan with gum Arabic, sodium alginate and κ-carrageenan: Effects of pH, polymer ratio and salt concentration. Carbohydr Polym 2019; 223:115120. [DOI: 10.1016/j.carbpol.2019.115120] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 12/20/2022]
|
16
|
Mechtaeva E, Zorin I, Gavrilova D, Fetin P, Zorina N, Bilibin A. Polyelectrolyte complexes of polyacrylic acid with oligovalent organic counterions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Nishio T, Yoshikawa Y, Shew CY, Umezawa N, Higuchi T, Yoshikawa K. Specific effects of antitumor active norspermidine on the structure and function of DNA. Sci Rep 2019; 9:14971. [PMID: 31628357 PMCID: PMC6802174 DOI: 10.1038/s41598-019-50943-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023] Open
Abstract
We compared the effects of trivalent polyamines, spermidine (SPD) and norspermidine (NSPD), a chemical homologue of SPD, on the structure of DNA and gene expression. The chemical structures of SPD and NSPD are different only with the number of methylene groups between amine groups, [N-3-N-4-N] and [N-3-N-3-N], respectively. SPD plays vital roles in cell function and survival, including in mammals. On the other hand, NSPD has antitumor activity and is found in some species of plants, bacteria and algae, but not in humans. We found that both polyamines exhibit biphasic effect; enhancement and inhibition on in vitro gene expression, where SPD shows definitely higher potency in enhancement but NSPD causes stronger inhibition. Based on the results of AFM (atomic force microscopy) observations together with single DNA measurements with fluorescence microscopy, it becomes clear that SPD tends to align DNA orientation, whereas NSPD induces shrinkage with a greater potency. The measurement of binding equilibrium by NMR indicates that NSPD shows 4-5 times higher affinity to DNA than SPD. Our theoretical study with Monte Carlo simulation provides the insights into the underlying mechanism of the specific effect of NSPD on DNA.
Collapse
Affiliation(s)
- Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Chwen-Yang Shew
- Doctoral Program in Chemistry, The Graduate Center of the City University of New York, New York, 10016, USA.
- Department of Chemistry, College of Staten Island, Staten Island, New York, 10314, USA.
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan.
| |
Collapse
|
18
|
Chan CH, Monari A, Ravanat JL, Dumont E. Probing interaction of a trilysine peptide with DNA underlying formation of guanine-lysine cross-links: insights from molecular dynamics. Phys Chem Chem Phys 2019; 21:23418-23424. [PMID: 31624816 DOI: 10.1039/c9cp04708e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA-protein cross-links constitute bulky DNA lesions that interfere with the cellular machinery. Amongst these stable covalently tethered adducts, the efficient nucleophilic addition of the free amino group of lysines onto the guanine radical cation has been evidenced. In vitro addition of a trilysine peptide onto a guanine radical cation generated in a TGT oligonucleotide is so efficient that competitive addition of a water molecule, giving rise to 8-oxo-7,8-dihydroguanine, is not observed. This suggests a spatial proximity between guanine and lysine for the stabilization of the prereactive complex. We report all-atom microsecond scale molecular dynamics simulations that probe the structure and interactions of the trilysine peptide (KKK) with two oligonucleotides. Our simulations reveal a strong, electrostatically driven yet dynamic interaction, spanning several association modes. Furthermore, the presence of neighbouring cytosines has been identified as a factor favoring KKK binding. Relying on ab initio molecular dynamics on a model system constituted of guanine and methylammonium, we also corroborate a mechanistic pathway involving fast deprotonation of the guanine radical cation followed by hydrogen transfer from ammonium leaving as a result a nitrogen reactive species that can subsequently cross-link with guanine. Our study sheds new light on a ubiquitous mechanism for DNA-protein cross-links also stressing out possible sequence dependences.
Collapse
Affiliation(s)
- Chen-Hui Chan
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France.
| | | | | | | |
Collapse
|
19
|
Tian H, Duan N, Wu S, Wang Z. Selection and application of ssDNA aptamers against spermine based on Capture-SELEX. Anal Chim Acta 2019; 1081:168-175. [PMID: 31446954 DOI: 10.1016/j.aca.2019.07.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
Abstract
Spermine contamination ranks as one of the food safety issues, it will cause some adverse reactions if the intake of spermine is excessive in human body. So it is of great significance to establish fast and efficient analysis method to detect spermine in foods. In this study, the spermine aptamers with high affinity and specificity were obtained by the capture systematic evolution of ligands by exponential enrichment (Capture-SELEX) technique. Forty-one aptamer sequences were obtained by cloning and sequencing, and were divided into eight families based on homology and secondary structure analysis. The affinity and specificity of candidate aptamers was analyzed by isothermal titration calorimetry (ITC) and fluorescence assay. The aptamers named APJ-6 was picked out as the optimal aptamer that recognizes spermine specifically with the Kd value of 9.648 ± 0.896 nM. In order to verify the practicability of the selected aptamers, the sensitive aptamer-based fluorescene assay was designed. Under optimized conditions, this aptasensor exhibited a low detection limit of 0.052 nM, as well as a linear within the range of 0.1-20 nM. Besides, it has been further applied for the determination of spermine in pork samples and the recoveries ranged from 86.45% to 98.15%, showing its great potential for sensitive analysis in food safety control.
Collapse
Affiliation(s)
- Huili Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Shihezi University, Shihezi, 832000, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
20
|
Prusov AN, Smirnova TA, Kolomijtseva GY. Thermodynamic Study of Interactions of Distamycin A with Chromatin in Rat Liver Nuclei in the Presence of Polyamines. BIOCHEMISTRY (MOSCOW) 2018; 83:1231-1244. [PMID: 30472960 DOI: 10.1134/s0006297918100085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the thermodynamics of melting of isolated rat liver nuclei with different degrees of chromatin condensation determined by the concentration of polyamines (PA) and the solution ionic strength, as well as the effect of the antibiotic distamycin A (DM) on melting. Differential scanning calorimetry (DSC) profiles of nuclear preparations contained three peaks that reflected melting of three main chromatin domains. The number of peaks did not depend on the degree of condensation; however, nuclei with more condensed chromatin had a higher total enthalpy. DM stabilized peaks II and III corresponding to the melting of relaxed and topologically strained DNA, respectively, but destabilized peak I corresponding to the melting of nucleosome core histones. At the saturating concentration (DM/DNA molar ratio = 0.1), DM increased Tm of peaks II and III by ~5°C and decreased Tm of peak I by ~2.5°C. Based on the dependence of ΔH on DM concentration, we established that at low DM/DNA ratio (≤0.03), when DM interacted predominantly with AT-rich DNA regions, the enthalpy of peak II decreased in parallel with the increase in the enthalpy of peak III, which indicated that DM induces structural transitions in the nuclear chromatin associated with the increase in torsional stress in DNA. An increase in free energy under saturation conditions was equal to the change in the free energy of DM interaction with DNA. However, the increase in the enthalpy of melting of the nuclei in the presence of DM was much greater than the enthalpy of titration of nuclei with DM. This indicates a significant increase in the strength of interaction between the two DNA strands apparently due, among other things, to changes in the torsional stress of DNA in the nuclei. Titration of the nuclei with increasing PA concentrations resulted in the decrease in the number of DM-binding sites and the non-monotonous dependence of the enthalpy and entropy contribution to the binding free energy on the PA content. We suggested that the observed differences in the thermodynamic parameters were due to the different width of the minor groove in the nuclear chromatin DNA, which depends on PA concentration.
Collapse
Affiliation(s)
- A N Prusov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - T A Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Agricultural Biotechnology, Moscow, 127550, Russia
| | - G Ya Kolomijtseva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
21
|
Publio B, Moura T, Lima C, Rocha M. Biophysical characterization of the DNA interaction with the biogenic polyamine putrescine: A single molecule study. Int J Biol Macromol 2018; 112:175-178. [DOI: 10.1016/j.ijbiomac.2018.01.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 02/07/2023]
|
22
|
Collapse of DNA in packaging and cellular transport. Int J Biol Macromol 2017; 109:36-48. [PMID: 29247730 DOI: 10.1016/j.ijbiomac.2017.12.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/02/2023]
Abstract
The dawn of molecular biology and recombinant DNA technology arose from our ability to manipulate DNA, including the process of collapse of long extended DNA molecules into nanoparticles of approximately 100 nm diameter. This condensation process is important for the packaging of DNA in the cell and for transporting DNA through the cell membrane for gene therapy. Multivalent cations, such as natural polyamines (spermidine and spermine), were initially recognized for their ability to provoke DNA condensation. Current research is targeted on molecules such as linear and branched polymers, oligopeptides, polypeptides and dendrimers that promote collapse of DNA to nanometric particles for gene therapy and on the energetics of DNA packaging.
Collapse
|
23
|
Serre D, Erbek S, Berthet N, Ronot X, Martel-Frachet V, Thomas F. Copper(II) complexes of N 3O tripodal ligands appended with pyrene and polyamine groups: Anti-proliferative and nuclease activities. J Inorg Biochem 2017; 179:121-134. [PMID: 29222969 DOI: 10.1016/j.jinorgbio.2017.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/28/2017] [Accepted: 11/04/2017] [Indexed: 10/18/2022]
Abstract
A series of tripodal ligands based on the 2-tert-butyl-4-R-6-phenol was synthesized, where R=aldehyde (HL1), R=putrescine-pyrene (HL2) and R=putrescine (HL3). A dinucleating ligand wherein a putrescine group connects two tripodal moieties was also prepared (H2L4). The corresponding copper complexes (1, 2, 3, and 4, respectively) were prepared and characterized. We determined the phenol's pKas in the range 2.47-3.93. The DNA binding constants were determined at 6×106, 5.5×105 and 2.7×106 for 2, 3 and 4, respectively. The complexes display a metal-centered reduction wave at Epc,red=-0.45 to -0.5V vs. saturated calomel electrode, as well as a ligand-centered oxidation wave above 0.57V at pH7. In the presence of ascorbate they promote an efficient cleavage of DNA, with for example a concentration required to cleave 50% of supercoiled DNA of 1.7μM for 2. The nuclease activity is affected by the nature of the R group: putrescine-pyrene≈bis-ligating>putrescine>aldehyde. The species responsible for strand scission is the hydroxyl radical. The cytotoxicity of the complexes was evaluated on bladder cancer cell lines sensitive or resistant to cis-platin. The IC50 of complexes 2 and 4 span over a short range (1.3-2μM) for the two cell lines. They are lower than those of the other complexes (3.1-9.7μM) and cis-platin. The most active compounds block the cell cycle at the G0/1 phase and promote apoptosis.
Collapse
Affiliation(s)
- Doti Serre
- Département de Chimie Moléculaire, Université Grenoble Alpes, UMR-5250 CNRS UGA, CS 40700, 38058 Grenoble Cedex 9, France
| | - Sule Erbek
- EPHE, PSL Research University, IAB, INSERM UGA U1209 - CNRS UMR 5309, 38700 La Tronche, France
| | - Nathalie Berthet
- Département de Chimie Moléculaire, Université Grenoble Alpes, UMR-5250 CNRS UGA, CS 40700, 38058 Grenoble Cedex 9, France
| | - Xavier Ronot
- EPHE, PSL Research University, IAB, INSERM UGA U1209 - CNRS UMR 5309, 38700 La Tronche, France
| | | | - Fabrice Thomas
- Département de Chimie Moléculaire, Université Grenoble Alpes, UMR-5250 CNRS UGA, CS 40700, 38058 Grenoble Cedex 9, France.
| |
Collapse
|
24
|
Abstract
Abstract
Clinical practice and experimental studies have shown the necessity of sufficient quantities of folic acid intake for normal embryogenesis and fetal development in the prevention of neural tube defects (NTDs) and neurological malformations. So, women of childbearing age must be sure to have an adequate folate intake periconceptionally, prior to and during pregnancy. Folic acid fortification of all enriched cereal grain product flour has been implemented in many countries. Thus, hundreds of thousands of people have been exposed to an increased intake of folic acid. Folate plays an essential role in the biosynthesis of methionine. Methionine is the principal aminopropyl donor required for polyamine biosynthesis, which is up-regulated in actively growing cells, including cancer cells. Folates are important in RNA and DNA synthesis, DNA stability and integrity. Clinical and epidemiological evidence links folate deficiency to DNA damage and cancer. On the other hand, long-term folate oversupplementation leads to adverse toxic effects, resulting in the appearance of malignancy. Considering the relationship of polyamines and rapidly proliferating tissues (especially cancers), there is a need for better investigation of the relationship between the ingestion of high amounts of folic acid in food supplementation and polyamine metabolism, related to malignant processes in the human body.
Collapse
|
25
|
Veilleux D, Gopalakrishna Panicker RK, Chevrier A, Biniecki K, Lavertu M, Buschmann MD. Lyophilisation and concentration of chitosan/siRNA polyplexes: Influence of buffer composition, oligonucleotide sequence, and hyaluronic acid coating. J Colloid Interface Sci 2017; 512:335-345. [PMID: 29080529 DOI: 10.1016/j.jcis.2017.09.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022]
Abstract
Chitosan (CS)/siRNA polyplexes have great therapeutic potential for treating multiple diseases by gene silencing. However, clinical application of this technology requires the development of concentrated, hemocompatible, pH neutral formulations for safe and efficient administration. In this study we evaluate physicochemical properties of chitosan polyplexes in various buffers at increasing ionic strengths, to identify conditions for freeze-drying and rehydration at higher doses of uncoated or hyaluronic acid (HA)-coated polyplexes while maintaining physiological compatibility. Optimized formulations are used to evaluate the impact of the siRNA/oligonucleotide sequence on polyplex physicochemical properties, and to measure their in vitro silencing efficiency, cytotoxicity, and hemocompatibility. Specific oligonucleotide sequences influence polyplex physical properties at low N:P ratios, as well as their stability during freeze-drying. Nanoparticles display greater stability for oligodeoxynucleotides ODN vs siRNA; AT-rich vs GC-rich; and overhangs vs blunt ends. Using this knowledge, various CS/siRNA polyplexes are prepared with and without HA coating, freeze-dried and rehydrated at increased concentrations using reduced rehydration volumes. These polyplexes are non-cytotoxic and preserve silencing activity even after rehydration to 20-fold their initial concentration, while HA-coated polyplexes at pH∼7 also displayed increased hemocompatibility. These concentrated formulations represent a critical step towards clinical development of chitosan-based oligonucleotide intravenous delivery systems.
Collapse
Affiliation(s)
- Daniel Veilleux
- Institute of Biomedical Engineering/Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | | | - Anik Chevrier
- Institute of Biomedical Engineering/Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | | | - Marc Lavertu
- Institute of Biomedical Engineering/Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Michael D Buschmann
- Institute of Biomedical Engineering/Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
26
|
Bignon E, Chan CH, Morell C, Monari A, Ravanat JL, Dumont E. Molecular Dynamics Insights into Polyamine-DNA Binding Modes: Implications for Cross-Link Selectivity. Chemistry 2017; 23:12845-12852. [DOI: 10.1002/chem.201702065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Emmanuelle Bignon
- Institut des Sciences Analytiques, UMR 5280; Université de Lyon 1 (UCBL) CNRS, ENS Lyon; Lyon France
- Laboratoire de Chimie; Univ Lyon; Ecole Normale Supérieure de Lyon, CNRS UMR 5182; Université Lyon 1; Laboratoire de Chimie; 46 allée d'Italie 69364 Lyon France
| | - Chen-Hui Chan
- Laboratoire de Chimie; Univ Lyon; Ecole Normale Supérieure de Lyon, CNRS UMR 5182; Université Lyon 1; Laboratoire de Chimie; 46 allée d'Italie 69364 Lyon France
| | - Christophe Morell
- Institut des Sciences Analytiques, UMR 5280; Université de Lyon 1 (UCBL) CNRS, ENS Lyon; Lyon France
| | - Antonio Monari
- Université de Lorraine Nancy; Theory-Modeling-Simulation, SRSMC; 54506 Vandoeuvre-lès-Nancy France
- CNRS; UMR 7565, SRSMC; 54506 Vandoeuvre-lès- Nancy France
| | - Jean-Luc Ravanat
- CEA and Université Grenoble Alpes, INAC-SyMMES; 38000 Grenoble France
| | - Elise Dumont
- Laboratoire de Chimie; Univ Lyon; Ecole Normale Supérieure de Lyon, CNRS UMR 5182; Université Lyon 1; Laboratoire de Chimie; 46 allée d'Italie 69364 Lyon France
| |
Collapse
|
27
|
Metabolic Flexibility Underpins Growth Capabilities of the Fastest Growing Alga. Curr Biol 2017; 27:2559-2567.e3. [PMID: 28803869 DOI: 10.1016/j.cub.2017.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 11/21/2022]
Abstract
The factors rate-limiting growth of photosynthetic organisms under optimal conditions are controversial [1-8]. Adaptation to extreme environments is usually accompanied by reduced performance under optimal conditions [9, 10]. However, the green alga Chlorella ohadii, isolated from a harsh desert biological soil crust [11-17], does not obey this rule. In addition to resistance to photodamage [17, 18], it performs the fastest growth ever reported for photosynthetic eukaryotes. A multiphasic growth pattern (very fast growth [phase I], followed by growth retardation [phase II] and additional fast growth [phase III]) observed under constant illumination and temperature indicates synchronization of the algal population. Large physiological changes at transitions between growth phases suggest metabolic shifts. Indeed, metabolome analyses at points along the growth phases revealed large changes in the levels of many metabolites during growth with an overall rise during phase I and decline in phase II. Multivariate analysis of the metabolome data highlighted growth phase as the main factor contributing to observed metabolite variance. The analyses identified putrescine as the strongest predictive metabolite for growth phase and a putative growth regulator. Indeed, extracellular additions of polyamines strongly affected the growth rate in phase I and the growth arrest in phase II, with a marked effect on O2 exchange. Our data implicate polyamines as the signals harmonizing metabolic shifts and suggest that metabolic flexibility enables the immense growth capabilities of C. ohadii. The data provide a new dimension to current models focusing on growth-limiting processes in photosynthetic organisms where the anabolic and catabolic metabolisms must be strictly regulated.
Collapse
|
28
|
Jiménez-Moreno E, Montalvillo-Jiménez L, Santana AG, Gómez AM, Jiménez-Osés G, Corzana F, Bastida A, Jiménez-Barbero J, Cañada FJ, Gómez-Pinto I, González C, Asensio JL. Finding the Right Candidate for the Right Position: A Fast NMR-Assisted Combinatorial Method for Optimizing Nucleic Acids Binders. J Am Chem Soc 2016; 138:6463-74. [DOI: 10.1021/jacs.6b00328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ester Jiménez-Moreno
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Andrés G. Santana
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ana M. Gómez
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química y Centro de Investigación en
Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
- Institute of Biocomputation and Physics of Complex Systems
(BIFI), University of Zaragoza, BIFI-IQFR (CSIC), 50018 Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química y Centro de Investigación en
Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Agatha Bastida
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Jesús Jiménez-Barbero
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Center for Cooperative Research in Biosciences (CIC-bioGUNE), 48160 Derio, Bizkaia, Spain
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Bizkaia, Spain
| | | | - Irene Gómez-Pinto
- Instituto de Química-Física Rocasolano (IQFR-CSIC), C/ Serrano 119, 28006 Madrid, Spain
| | - Carlos González
- Instituto de Química-Física Rocasolano (IQFR-CSIC), C/ Serrano 119, 28006 Madrid, Spain
| | - Juan Luis Asensio
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
29
|
Thomas TJ, Tajmir-Riahi HA, Thomas T. Polyamine–DNA interactions and development of gene delivery vehicles. Amino Acids 2016; 48:2423-31. [DOI: 10.1007/s00726-016-2246-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
|
30
|
Bagheryan Z, Noori A, Zahra Bathaie S, Yousef-Elahi M, Mousavi MF. Preparation of a new nanobiosensor for the determination of some biogenic polyamines and investigation of their interaction with DNA. Biosens Bioelectron 2016; 77:767-73. [DOI: 10.1016/j.bios.2015.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
|
31
|
Torres-Nuñez A, Faulds K, Graham D, Alvarez-Puebla RA, Guerrini L. Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA. Analyst 2016; 141:5170-80. [DOI: 10.1039/c6an00911e] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Unraveling the role played by the surface chemistry of silver colloids in the direct SERS analysis of DNA.
Collapse
Affiliation(s)
- A. Torres-Nuñez
- Medcom Advance
- 08840 Viladecans
- Spain
- Centro Tecnológico de la Química de Catalunya
- 43007 Tarragona
| | - K. Faulds
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow G1 1RD
- UK
| | - D. Graham
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow G1 1RD
- UK
| | - R. A. Alvarez-Puebla
- Medcom Advance
- 08840 Viladecans
- Spain
- Centro Tecnológico de la Química de Catalunya
- 43007 Tarragona
| | - L. Guerrini
- Medcom Advance
- 08840 Viladecans
- Spain
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
| |
Collapse
|
32
|
Liu J, Zeng C, Hogan V, Zhou S, Monwar MM, Hines JV. Identification of Spermidine Binding Site in T-box Riboswitch Antiterminator RNA. Chem Biol Drug Des 2015; 87:182-9. [PMID: 26348362 DOI: 10.1111/cbdd.12660] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/24/2015] [Accepted: 08/14/2015] [Indexed: 01/08/2023]
Abstract
The T-box transcription antitermination riboswitch controls bacterial gene expression by structurally responding to uncharged, cognate tRNA. Previous studies indicated that cofactors, such as the polyamine spermidine, might serve a specific functional role in enhancing riboswitch efficacy. As riboswitch function depends on key RNA structural changes involving the antiterminator element, the interaction of spermidine with the T-box riboswitch antiterminator element was investigated. Spermidine binds antiterminator model RNA with high affinity (micromolar Kd ) based on isothermal titration calorimetry and fluorescence-monitored binding assays. NMR titration studies, molecular modeling, and inline and enzymatic probing studies indicate that spermidine binds at the 3' portion of the highly conserved seven-nucleotide bulge in the antiterminator. Together, these results support the conclusion that spermidine binds the T-box antiterminator RNA preferentially in a location important for antiterminator function. The implications of these findings are significant both for better understanding of the T-box riboswitch mechanism and for antiterminator-targeted drug discovery efforts.
Collapse
Affiliation(s)
- Jia Liu
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Chunxi Zeng
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Vivian Hogan
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Shu Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Md Masud Monwar
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Jennifer V Hines
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
33
|
Umezawa N, Horai Y, Imamura Y, Kawakubo M, Nakahira M, Kato N, Muramatsu A, Yoshikawa Y, Yoshikawa K, Higuchi T. Structurally Diverse Polyamines: Solid-Phase Synthesis and Interaction with DNA. Chembiochem 2015; 16:1811-9. [DOI: 10.1002/cbic.201500121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 12/17/2022]
|
34
|
Ding Y, Fleming AM, Burrows CJ. α-Hemolysin nanopore studies reveal strong interactions between biogenic polyamines and DNA hairpins. Mikrochim Acta 2015; 183:973-979. [PMID: 27217593 DOI: 10.1007/s00604-015-1516-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The α-hemolysin (α-HL) nanopore analyzes DNA as it is electrophoretically driven through the pore. The respective current vs. time (i-t) traces depends on the DNA sequence, its secondary structures, or on the physical conditions of the analysis. The current study describes analysis of a DNA hairpin with a 5'-extension with the α-HL nanopore in the presence of the polyamines spermine (Spm), spermidine (Spd), and putrescine (Put). These studies identified a new i-t trace characteristic of the DNA-polyamine complex. Voltage-dependent studies determined that the hairpin-Spm complex formed with excess Spm was not unzipped and translocated through the pore even when the voltage was increased to 180 mV. The DNA hairpin sample was titrated with Spm, Spd, or Put that showed a dose-dependent response in the characteristic event patterns for hairpins bound to Spm or Spd, but not for Put. Plots of the event types vs. count were used to calculate binding constants for the Spm or Spd hairpin interactions under these conditions. The titration also demonstrated that the event rate decreased ~10-fold when the Spm or Spd concentration was increased from 0 to 4 mM. These observations impose practical limitations on the ability to use Spm or Spd for DNA studies with the α-HL nanopore.
Collapse
Affiliation(s)
- Yun Ding
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, USA
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
35
|
Kabir A, Kumar GS. Probing the interaction of spermine and 1-naphthyl acetyl spermine with DNA polynucleotides: a comparative biophysical and thermodynamic investigation. MOLECULAR BIOSYSTEMS 2014; 10:1172-83. [PMID: 24643290 DOI: 10.1039/c3mb70616h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interaction of spermine and its analogue, 1-naphthyl acetyl spermine with four double stranded DNA polynucleotides has been studied to understand the structural and thermodynamic basis of the binding. The efficacy and specificity of DNA binding of this analogue has not yet been revealed. The energetics of the interaction was studied by isothermal titration calorimetry and differential scanning calorimetry. Circular dichroism spectroscopy, UV-thermal melting and ethidium bromide displacement assay have been employed to characterize the association. Circular dichroism studies showed that 1-naphthyl acetyl spermine caused a stronger structural perturbation in the polynucleotides. Among the adenine-thymine polynucleotides the alternating polynucleotide was more preferred by naphthyl acetyl spermine compared to the preference of spermine for the homo sequence. The higher melting stabilization revealed by the optical melting and differential scanning calorimetry results suggested that the binding of 1-naphthyl acetyl spermine increased the melting temperature and the total standard molar enthalpy of the transition of adenine-thymine polynucleotides. Microcalorimetry results revealed that unlike spermine the binding of 1-naphthyl acetyl spermine was endothermic. The interaction was characterized by total enthalpy-entropy compensation and high standard molar heat capacity values. There are differences in the mode of association of 1-naphthyl acetyl spermine and spermine. 1-naphthyl acetyl spermine binds with an enhanced affinity with the adenine-thymine hetero polynucleotide. Thus, the result suggests the importance of polyamine analogues and their ability to interfere with normal polyamine interactions.
Collapse
Affiliation(s)
- Ayesha Kabir
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India.
| | | |
Collapse
|
36
|
Malina J, Farrell NP, Brabec V. Substitution-inert trinuclear platinum complexes efficiently condense/aggregate nucleic acids and inhibit enzymatic activity. Angew Chem Int Ed Engl 2014; 53:12812-6. [PMID: 25256921 PMCID: PMC4311996 DOI: 10.1002/anie.201408012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/08/2014] [Indexed: 01/02/2023]
Abstract
The trinuclear platinum complexes (TriplatinNC-A [{Pt(NH3 )3 }2 -μ-{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH2 )2 }](6+) , and TriplatinNC [{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH3 (+) )}2 -μ-{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH2 )2 }](8+) ) are biologically active agents that bind to DNA through noncovalent (hydrogen bonding, electrostatic) interactions. Herein, we show that TriplatinNC condenses DNA with a much higher potency than conventional DNA condensing agents. Both complexes induce aggregation of small transfer RNA molecules, and TriplatinNC in particular completely inhibits DNA transcription at lower concentrations than naturally occurring spermine. Topoisomerase I-mediated relaxation of supercoiled DNA was inhibited by TriplatinNC-A and TriplatinNC at concentrations which were 60 times and 250 times lower than that of spermine. The mechanisms for the biological activity of TriplatinNC-A and TriplatinNC may be associated with their ability to condense/aggregate nucleic acids with consequent inhibitory effects on crucial enzymatic activities.
Collapse
Affiliation(s)
- Jaroslav Malina
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno (Czech Republic)
| | - Nicholas P. Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno (Czech Republic)
| |
Collapse
|
37
|
Malina J, Farrell NP, Brabec V. Substitution-Inert Trinuclear Platinum Complexes Efficiently Condense/Aggregate Nucleic Acids and Inhibit Enzymatic Activity. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Abstract
Recent progress with techniques for monitoring RNA structure in cells such as ‘DMS-Seq’ and ‘Structure-Seq’ suggests that a new era of RNA structure-function exploration is on the horizon. This will also include systematic investigation of the factors required for the structural integrity of RNA. In this context, much evidence accumulated over 50 years suggests that polyamines play important roles as modulators of RNA structure. Here, we summarize and discuss recent literature relating to the roles of these small endogenous molecules in RNA function. We have included studies directed at understanding the binding interactions of polyamines with polynucleotides, tRNA, rRNA, mRNA and ribozymes using chemical, biochemical and spectroscopic tools. In brief, polyamines bind RNA in a sequence-selective fashion and induce changes in RNA structure in context-dependent manners. In some cases the functional consequences of these interactions have been observed in cells. Most notably, polyamine-mediated effects on RNA are frequently distinct from those of divalent cations (i.e. Mg2+) confirming their roles as independent molecular entities which help drive RNA-mediated processes.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, CH-8093, Zürich, Switzerland
| |
Collapse
|
39
|
Kabir A, Suresh Kumar G. Targeting double-stranded RNA with spermine, 1-naphthylacetyl spermine and spermidine: a comparative biophysical investigation. J Phys Chem B 2014; 118:11050-64. [PMID: 25184857 DOI: 10.1021/jp5035294] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA targeting is an evolving new approach to anticancer therapeutics that requires identification of small molecules to selectively target specific RNA structures. In this report, the interaction of biogenic polyamines spermine, spermidine and the synthetic analogue 1-naphthylacetyl spermine with three double-stranded RNA polynucleotides--poly(I)·poly(C), poly(C)·poly(G), and poly(A)·poly(U)--has been described to understand the structural and thermodynamic basis of the binding and the comparative efficacy of the analogue over the natural polyamines. Circular dichroism spectroscopy, thermal melting experiments, and ethidium bromide displacement assay were used to characterize the interaction. Microcalorimetry studies were performed to deduce the energetics of the interaction and atomic force microscopy experiments done to gain insight into the interaction at the molecular level. The experiments demonstrated structural perturbations in the polynucleotides on binding of the polyamines. Thermal melting studies showed enhanced stabilization of RNA-polyamine complexes with increase in the total standard molar enthalpy of transition. The binding affinity was strongest for poly(I)·poly(C) as revealed by microcalorimetry results and varied as poly(I)·poly(C) > poly(C)·poly(G) > poly(A)·poly(U). The order of affinity for the polyamines was spermine >1-naphthylacetyl spermine > spermidine. Total enthalpy-entropy compensation and high standard molar heat capacity values characterized the interactions. The results of the study on the binding of polyamines to dsRNAs presented here have been compared to those reported earlier with dsDNAs. The present findings advance our knowledge on the mechanism of interaction of polyamines with RNA and may help in the search for analogues that can interfere with biogenic polyamine metabolism and function.
Collapse
Affiliation(s)
- Ayesha Kabir
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology , Kolkata 700 032, India
| | | |
Collapse
|
40
|
Wunderlichová L, Buňková L, Koutný M, Jančová P, Buňka F. Formation, Degradation, and Detoxification of Putrescine by Foodborne Bacteria: A Review. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12099] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Leona Wunderlichová
- Dept. of Environmental Protection Engineering; Faculty of Technology; Tomas Bata Univ. in Zlín; nám. T. G. Masaryka 275 76272 Zlín Czech Republic
| | - Leona Buňková
- Dept. of Environmental Protection Engineering; Faculty of Technology; Tomas Bata Univ. in Zlín; nám. T. G. Masaryka 275 76272 Zlín Czech Republic
| | - Marek Koutný
- Dept. of Environmental Protection Engineering; Faculty of Technology; Tomas Bata Univ. in Zlín; nám. T. G. Masaryka 275 76272 Zlín Czech Republic
| | - Petra Jančová
- Dept. of Environmental Protection Engineering; Faculty of Technology; Tomas Bata Univ. in Zlín; nám. T. G. Masaryka 275 76272 Zlín Czech Republic
| | - František Buňka
- Dept. of Food Technology; Faculty of Technology; Tomas Bata Univ. in Zlín; nám. T. G. Masaryka 275 76272 Zlín Czech Republic
| |
Collapse
|
41
|
Wang X, Stearns NA, Li X, Pisetsky DS. The effect of polyamines on the binding of anti-DNA antibodies from patients with SLE and normal human subjects. Clin Immunol 2014; 153:94-103. [PMID: 24732074 DOI: 10.1016/j.clim.2014.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 11/18/2022]
Abstract
Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus (SLE). To elucidate specificity further, the effect of polyamines on the binding of anti-DNA antibodies from patients with lupus was tested by ELISA to calf thymus (CT) DNA; we also assessed the binding of plasmas of patients and normal human subjects (NHS) to Micrococcus luteus (MC) DNA. As these studies showed, spermine can dose-dependently inhibit SLE anti-DNA binding to CT DNA and can promote dissociation of preformed immune complexes. With MC DNA as antigen, spermine failed to inhibit the NHS anti-DNA binding. Studies using plasmas adsorbed to a CT DNA cellulose affinity indicated that SLE plasmas are mixtures of anti-DNA that differ in inhibition by spermine and binding to conserved and non-conserved determinants. Together, these studies demonstrate that spermine can influence the binding of anti-DNA autoantibodies and may contribute to the antigenicity of DNA.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Rheumatology, Qilu Hospital, Shandong University, Jinan, China; Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA
| | - Nancy A Stearns
- Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA; Duke University Medical Center, Durham, NC, USA
| | - Xingfu Li
- Department of Rheumatology, Qilu Hospital, Shandong University, Jinan, China
| | - David S Pisetsky
- Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA; Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|