1
|
Vitali HE, Kuschel B, Sherpa C, Jones BW, Jacob N, Madiha SA, Elliott S, Dziennik E, Kreun L, Conatser C, Bhetwal BP, Sharma B. Hypoxia regulate developmental coronary angiogenesis potentially through VEGF-R2- and SOX17-mediated signaling. Dev Dyn 2024. [PMID: 39360476 DOI: 10.1002/dvdy.750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The development of coronary vessels in embryonic mouse heart involves various progenitor populations, including sinus venosus (SV), endocardium, and proepicardium. ELA/APJ signaling is known to regulate coronary growth from the SV, whereas VEGF-A/VEGF-R2 signaling controls growth from the endocardium. Previous studies suggest hypoxia might regulate coronary growth, but its specific downstream pathways are unclear. In this study, we further investigated the role of hypoxia and have identified SOX17- and VEGF-R2-mediated signaling as the potential downstream pathways in its regulation of developmental coronary angiogenesis. RESULTS HIF-1α stabilization by knocking out von Hippel Lindau (VHL) protein in the myocardium (cKO) disrupted normal coronary angiogenesis in embryonic mouse hearts, resembling patterns of accelerated coronary growth. VEGF-R2 expression was increased in coronary endothelial cells under hypoxia in vitro and in VHL cKO hearts in vivo. Similarly, SOX17 expression was increased in the VHL cKO hearts, while its knockout in the endocardium disrupted normal coronary growth. CONCLUSION These findings provide further evidence that hypoxia regulates developmental coronary growth potentially through VEGF-R2 and SOX17 pathways, shedding light on mechanisms of coronary vessel development.
Collapse
Affiliation(s)
- Halie E Vitali
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Bryce Kuschel
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Chhiring Sherpa
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Brendan W Jones
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Nisha Jacob
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Syeda A Madiha
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Sam Elliott
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Eddie Dziennik
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Lily Kreun
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Cora Conatser
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Bhupal P Bhetwal
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Bikram Sharma
- Department of Biology, Ball State University, Muncie, Indiana, USA
| |
Collapse
|
2
|
Guadix JA, Ruiz-Villalba A, Pérez-Pomares JM. Congenital Coronary Blood Vessel Anomalies: Animal Models and the Integration of Developmental Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:817-831. [PMID: 38884751 DOI: 10.1007/978-3-031-44087-8_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Coronary blood vessels are in charge of sustaining cardiac homeostasis. It is thus logical that coronary congenital anomalies (CCA) directly or indirectly associate with multiple cardiac conditions, including sudden death. The coronary vascular system is a sophisticated, highly patterned anatomical entity, and therefore a wide range of congenital malformations of the coronary vasculature have been described. Despite the clinical interest of CCA, very few attempts have been made to relate specific embryonic developmental mechanisms to the congenital anomalies of these blood vessels. This is so because developmental data on the morphogenesis of the coronary vascular system derive from complex studies carried out in animals (mostly transgenic mice), and are not often accessible to the clinician, who, in turn, possesses essential information on the significance of CCA. During the last decade, advances in our understanding of normal embryonic development of coronary blood vessels have provided insight into the cellular and molecular mechanisms underlying coronary arteries anomalies. These findings are the base for our attempt to offer plausible embryological explanations to a variety of CCA as based on the analysis of multiple animal models for the study of cardiac embryogenesis, and present them in an organized manner, offering to the reader developmental mechanistic explanations for the pathogenesis of these anomalies.
Collapse
Affiliation(s)
- Juan Antonio Guadix
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - José M Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain.
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
3
|
Vitali HE, Kuschel B, Sherpa C, Jones BW, Jacob N, Madiha SA, Elliott S, Dziennik E, Kreun L, Conatser C, Bhetwal BP, Sharma B. Hypoxia regulate developmental coronary angiogenesis potentially through VEGFR2- and SOX17-mediated signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553531. [PMID: 37645734 PMCID: PMC10462023 DOI: 10.1101/2023.08.16.553531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background Coronary vessels in embryonic mouse heart arises from multiple progenitor population including sinus venosus (SV), endocardium, and proepicardium. ELA/APJ signaling is shown to regulate coronary growth from SV pathway within the subepicardium, whereas VEGF-A/VEGF-R2 pathways is implicated to regulate coronary growth from endocardium pathway. Our previous study show hypoxia as a potential signaling cue to stimulate overall coronary growth and expansion within the myocardium. However, the role of hypoxia and its downstream signaling pathways in the regulation of coronary vessel development is not known. In this study, we investigated the role of hypoxia in coronary vessel development and have identified SOX17- and VEGF-R2-mediated signaling as a potential downstream pathway of hypoxia in the regulation of coronary vessel development. Results We show that hypoxia gain-of-function in the myocardium through upregulation of HIF-1α disrupts the normal pattern of coronary angiogenesis in developing mouse hearts and displays phenotype that is reminiscent of accelerated coronary growth. We show that VEGF-R2 expression is increased in coronary endothelial cells under hypoxia gain-of-function in vivo and in vitro . Furthermore, we show that SOX17 expression is upregulated in developing mouse heart under hypoxia gain-of-function conditions, whereas SOX17 expression is repressed under hypoxia loss-of-function conditions. Furthermore, our results show that SOX17 loss-of-function disrupts normal pattern of coronary growth. Conclusion Collectively, our data provide strong phenotypic evidence to show that hypoxia might regulate coronary growth in the developing mouse heart potentially through VEGF-R2- and SOX17-mediated downstream signaling pathways.
Collapse
|
4
|
Lu P, Wang Y, Liu Y, Wang Y, Wu B, Zheng D, Harvey RP, Zhou B. Perinatal angiogenesis from pre-existing coronary vessels via DLL4-NOTCH1 signalling. Nat Cell Biol 2021; 23:967-977. [PMID: 34497373 DOI: 10.1038/s41556-021-00747-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
New coronary vessels are added to the heart around birth to support postnatal cardiac growth. Here we show that, in late fetal development, the embryonic coronary plexus at the inner myocardium of the ventricles expresses the angiogenic signalling factors VEGFR3 and DLL4 and generates new coronary vessels in neonates. Contrary to a previous model in which the formation of new coronary vessels in neonates from ventricular endocardial cells was proposed, we find that late fetal and neonatal ventricular endocardial cells lack angiogenic potential and do not contribute to new coronary vessels. Instead, we show using lineage-tracing as well as gain- and loss-of-function experiments that the pre-existing embryonic coronary plexus at the inner myocardium undergoes angiogenic expansion through the DLL4-NOTCH1 signalling pathway to vascularize the expanding myocardium. We also show that the pre-existing coronary plexus revascularizes the regenerating neonatal heart through a similar mechanism. These findings provide a different model of neonatal coronary angiogenesis and regeneration, potentially informing cardiovascular medicine.
Collapse
Affiliation(s)
- Pengfei Lu
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Yidong Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Yifeng Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, and School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA.
- Departments of Pediatrics (Pediatric Genetic Medicine) and Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY, USA.
- Wilf Family Cardiovascular Research Institute and Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Coordination of endothelial cell positioning and fate specification by the epicardium. Nat Commun 2021; 12:4155. [PMID: 34230480 PMCID: PMC8260743 DOI: 10.1038/s41467-021-24414-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The organization of an integrated coronary vasculature requires the specification of immature endothelial cells (ECs) into arterial and venous fates based on their localization within the heart. It remains unclear how spatial information controls EC identity and behavior. Here we use single-cell RNA sequencing at key developmental timepoints to interrogate cellular contributions to coronary vessel patterning and maturation. We perform transcriptional profiling to define a heterogenous population of epicardium-derived cells (EPDCs) that express unique chemokine signatures. We identify a population of Slit2+ EPDCs that emerge following epithelial-to-mesenchymal transition (EMT), which we term vascular guidepost cells. We show that the expression of guidepost-derived chemokines such as Slit2 are induced in epicardial cells undergoing EMT, while mesothelium-derived chemokines are silenced. We demonstrate that epicardium-specific deletion of myocardin-related transcription factors in mouse embryos disrupts the expression of key guidance cues and alters EPDC-EC signaling, leading to the persistence of an immature angiogenic EC identity and inappropriate accumulation of ECs on the epicardial surface. Our study suggests that EC pathfinding and fate specification is controlled by a common mechanism and guided by paracrine signaling from EPDCs linking epicardial EMT to EC localization and fate specification in the developing heart. It remains unclear how spatial information controls endothelial cell identity and behavior in the developing heart. Here the authors perform single cell RNA sequencing at key developmental timepoints in mice to interrogate cellular contributions to coronary vessel patterning and maturation in the epicardium.
Collapse
|
6
|
Roy B, Palaniyandi SS. A role for aldehyde dehydrogenase (ALDH) 2 in angiotensin II-mediated decrease in angiogenesis of coronary endothelial cells. Microvasc Res 2021; 135:104133. [PMID: 33428883 DOI: 10.1016/j.mvr.2021.104133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 11/17/2022]
Abstract
Diabetes-induced coronary endothelial cell (CEC) dysfunction contributes to diabetic heart diseases. Angiotensin II (Ang II), a vasoactive hormone, is upregulated in diabetes, and is reported to increase oxidative stress in CECs. 4-hydroxy-2-nonenal (4HNE), a key lipid peroxidation product, causes cellular dysfunction by forming adducts with proteins. By detoxifying 4HNE, aldehyde dehydrogenase (ALDH) 2 reduces 4HNE mediated proteotoxicity and confers cytoprotection. Thus, we hypothesize that ALDH2 improves Ang II-mediated defective CEC angiogenesis by decreasing 4HNE-mediated cytotoxicity. To test our hypothesis, we treated the cultured mouse CECs (MCECs) with Ang II (0.1, 1 and 10 μM) for 2, 4 and 6 h. Next, we treated MCECs with Alda-1 (10 μM), an ALDH2 activator or disulfiram (2.5 μM)/ALDH2 siRNA (1.25 nM), the ALDH2 inhibitors, or blockers of angiotensin II type-1 and 2 receptors i.e. Losartan and PD0123319 respectively before challenging MCECs with 10 μM Ang II. We found that 10 μM Ang II decreased tube formation in MCECs with in vitro angiogenesis assay (P < .0005 vs control). 10 μM Ang II downregulated the levels of vascular endothelial growth factor receptor 1 (VEGFR1) (p < .005 for mRNA and P < .05 for protein) and VEGFR2 (p < .05 for mRNA and P < .005 for protein) as well as upregulated the levels of angiotensin II type-2 receptor (AT2R) (p < .05 for mRNA and P < .005 for protein) and 4HNE-adducts (P < .05 for protein) in cultured MCECs, compared to controls. ALDH2 inhibition with disulfiram/ALDH2 siRNA exacerbated 10 μM Ang II-induced decrease in coronary angiogenesis (P < .005) by decreasing the levels of VEGFR1 (P < .005 for mRNA and P < .05 for protein) and VEGFR2 (P < .05 for both mRNA and protein) and increasing the levels of AT2R (P < .05 for both mRNA and protein) and 4HNE-adducts (P < .05 for protein) relative to Ang II alone. AT2R inhibition per se improved angiogenesis in MCECs. Additionally, enhancing ALDH2 activity with Alda 1 rescued Ang II-induced decrease in angiogenesis by increasing the levels of VEGFR1, VEGFR2 and decreasing the levels of AT2R. In summary, ALDH2 can be an important target in reducing 4HNE-induced proteotoxicity and improving angiogenesis in MCECs. Finally, we conclude ALDH2 activation can be a therapeutic strategy to improve coronary angiogenesis to ameliorate cardiometabolic diseases.
Collapse
Affiliation(s)
- Bipradas Roy
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States of America; Department of Physiology, Wayne State University, Detroit, MI 48202, United States of America
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States of America; Department of Physiology, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
7
|
Räsänen M, Sultan I, Paech J, Hemanthakumar KA, Yu W, He L, Tang J, Sun Y, Hlushchuk R, Huan X, Armstrong E, Khoma OZ, Mervaala E, Djonov V, Betsholtz C, Zhou B, Kivelä R, Alitalo K. VEGF-B Promotes Endocardium-Derived Coronary Vessel Development and Cardiac Regeneration. Circulation 2020; 143:65-77. [PMID: 33203221 DOI: 10.1161/circulationaha.120.050635] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recent discoveries have indicated that, in the developing heart, sinus venosus and endocardium provide major sources of endothelium for coronary vessel growth that supports the expanding myocardium. Here we set out to study the origin of the coronary vessels that develop in response to vascular endothelial growth factor B (VEGF-B) in the heart and the effect of VEGF-B on recovery from myocardial infarction. METHODS We used mice and rats expressing a VEGF-B transgene, VEGF-B-gene-deleted mice and rats, apelin-CreERT, and natriuretic peptide receptor 3-CreERT recombinase-mediated genetic cell lineage tracing and viral vector-mediated VEGF-B gene transfer in adult mice. Left anterior descending coronary vessel ligation was performed, and 5-ethynyl-2'-deoxyuridine-mediated proliferating cell cycle labeling; flow cytometry; histological, immunohistochemical, and biochemical methods; single-cell RNA sequencing and subsequent bioinformatic analysis; microcomputed tomography; and fluorescent- and tracer-mediated vascular perfusion imaging analyses were used to study the development and function of the VEGF-B-induced vessels in the heart. RESULTS We show that cardiomyocyte overexpression of VEGF-B in mice and rats during development promotes the growth of novel vessels that originate directly from the cardiac ventricles and maintain connection with the coronary vessels in subendocardial myocardium. In adult mice, endothelial proliferation induced by VEGF-B gene transfer was located predominantly in the subendocardial coronary vessels. Furthermore, VEGF-B gene transduction before or concomitantly with ligation of the left anterior descending coronary artery promoted endocardium-derived vessel development into the myocardium and improved cardiac tissue remodeling and cardiac function. CONCLUSIONS The myocardial VEGF-B transgene promotes the formation of endocardium-derived coronary vessels during development, endothelial proliferation in subendocardial myocardium in adult mice, and structural and functional rescue of cardiac tissue after myocardial infarction. VEGF-B could provide a new therapeutic strategy for cardiac neovascularization after coronary occlusion to rescue the most vulnerable myocardial tissue.
Collapse
Affiliation(s)
- Markus Räsänen
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | - Ibrahim Sultan
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | - Jennifer Paech
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | - Karthik Amudhala Hemanthakumar
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | - Wei Yu
- The State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (W.Y., J.T., X.H., B.Z.)
| | - Liqun He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, China (L.H.).,Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (L.H., Y.S., C.B.)
| | - Juan Tang
- The State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (W.Y., J.T., X.H., B.Z.)
| | - Ying Sun
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (L.H., Y.S., C.B.)
| | - Ruslan Hlushchuk
- Institute of Anatomy, University of Bern, Switzerland (R.H., O.-Z.K., V.D.)
| | - Xiuzheng Huan
- The State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (W.Y., J.T., X.H., B.Z.)
| | - Emma Armstrong
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | | | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.M.)
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Switzerland (R.H., O.-Z.K., V.D.)
| | - Christer Betsholtz
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden (C.B.)
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (W.Y., J.T., X.H., B.Z.)
| | - Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine (M.R., I.S., J.P., K.A.H., E.A., R.K., K.A.)
| |
Collapse
|
8
|
He L, Lui KO, Zhou B. The Formation of Coronary Vessels in Cardiac Development and Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037168. [PMID: 31636078 DOI: 10.1101/cshperspect.a037168] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding how coronary blood vessels form and regenerate during development and progression of cardiac diseases will shed light on the development of new treatment options targeting coronary artery diseases. Recent studies with the state-of-the-art technologies have identified novel origins of, as well as new, cellular and molecular mechanisms underlying the formation of coronary vessels in the postnatal heart, including collateral artery formation, endocardial-to-endothelial differentiation and mesenchymal-to-endothelial transition. These new mechanisms of coronary vessel formation and regeneration open up new possibilities targeting neovascularization for promoting cardiac repair and regeneration. Here, we highlight some recent studies on cellular mechanisms of coronary vessel formation, and discuss the potential impact and significance of the findings on basic research and clinical application for treating ischemic heart disease.
Collapse
Affiliation(s)
- Lingjuan He
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Kathy O Lui
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR 999077, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Borasch K, Richardson K, Plendl J. Cardiogenesis with a focus on vasculogenesis and angiogenesis. Anat Histol Embryol 2020; 49:643-655. [PMID: 32319704 DOI: 10.1111/ahe.12549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022]
Abstract
The initial intraembryonic vasculogenesis occurs in the cardiogenic mesoderm. Here, a cell population of proendocardial cells detaches from the mesoderm that subsequently generates the single endocardial tube by forming vascular plexuses. In the course of embryogenesis, the endocardium retains vasculogenic, angiogenic and haematopoietic potential. The coronary blood vessels that sustain the rapidly expanding myocardium develop in the course of the formation of the cardiac loop by vasculogenesis and angiogenesis from progenitor cells of the proepicardial serosa at the venous pole of the heart as well as from the endocardium and endothelial cells of the sinus venosus. Prospective coronary endothelial cells and progenitor cells of the coronary blood vessel walls (smooth muscle cells, perivascular cells) originate from different cell populations that are in close spatial as well as regulatory connection with each other. Vasculo- and angiogenesis of the coronary blood vessels are for a large part regulated by the epicardium and epicardium-derived cells. Vasculogenic and angiogenic signalling pathways include the vascular endothelial growth factors, the angiopoietins and the fibroblast growth factors and their receptors.
Collapse
Affiliation(s)
- Katrin Borasch
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| | - Kenneth Richardson
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| |
Collapse
|
10
|
Travisano SI, Oliveira VL, Prados B, Grego-Bessa J, Piñeiro-Sabarís R, Bou V, Gómez MJ, Sánchez-Cabo F, MacGrogan D, de la Pompa JL. Coronary arterial development is regulated by a Dll4-Jag1-EphrinB2 signaling cascade. eLife 2019; 8:49977. [PMID: 31789590 PMCID: PMC6917494 DOI: 10.7554/elife.49977] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/01/2019] [Indexed: 12/29/2022] Open
Abstract
Coronaries are essential for myocardial growth and heart function. Notch is crucial for mouse embryonic angiogenesis, but its role in coronary development remains uncertain. We show Jag1, Dll4 and activated Notch1 receptor expression in sinus venosus (SV) endocardium. Endocardial Jag1 removal blocks SV capillary sprouting, while Dll4 inactivation stimulates excessive capillary growth, suggesting that ligand antagonism regulates coronary primary plexus formation. Later endothelial ligand removal, or forced expression of Dll4 or the glycosyltransferase Mfng, blocks coronary plexus remodeling, arterial differentiation, and perivascular cell maturation. Endocardial deletion of Efnb2 phenocopies the coronary arterial defects of Notch mutants. Angiogenic rescue experiments in ventricular explants, or in primary human endothelial cells, indicate that EphrinB2 is a critical effector of antagonistic Dll4 and Jag1 functions in arterial morphogenesis. Thus, coronary arterial precursors are specified in the SV prior to primary coronary plexus formation and subsequent arterial differentiation depends on a Dll4-Jag1-EphrinB2 signaling cascade.
Collapse
Affiliation(s)
- Stanislao Igor Travisano
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Vera Lucia Oliveira
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Belén Prados
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Joaquim Grego-Bessa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Rebeca Piñeiro-Sabarís
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Vanesa Bou
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Manuel J Gómez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
11
|
Abstract
The leading cause of death worldwide is disease of the coronary arteries, the vessels that nourish the heart muscle. However, mechanisms that control their development and possible regeneration remain unknown. Recent work is challenging current dogma of coronary artery origins and illuminating key programs that govern coronary artery formation.
Collapse
Affiliation(s)
- Shing Hu
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
12
|
Reichman DE, Park L, Man L, Redmond D, Chao K, Harvey RP, Taketo MM, Rosenwaks Z, James D. Wnt inhibition promotes vascular specification of embryonic cardiac progenitors. Development 2018; 145:dev.159905. [PMID: 29217753 PMCID: PMC5825863 DOI: 10.1242/dev.159905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/26/2017] [Indexed: 01/29/2023]
Abstract
Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs.
Collapse
Affiliation(s)
- David E Reichman
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Laura Park
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Limor Man
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - David Redmond
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kenny Chao
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Richard P Harvey
- Developmental and Stem Cell Biology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Kensington 2052, Australia.,School of Biological and Biomolecular Sciences, University of New South Wales, Kensington 2052, Australia
| | - Makoto M Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Zev Rosenwaks
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Daylon James
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA .,Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
13
|
Sharma B, Ho L, Ford GH, Chen HI, Goldstone AB, Woo YJ, Quertermous T, Reversade B, Red-Horse K. Alternative Progenitor Cells Compensate to Rebuild the Coronary Vasculature in Elabela- and Apj-Deficient Hearts. Dev Cell 2017; 42:655-666.e3. [PMID: 28890073 DOI: 10.1016/j.devcel.2017.08.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/05/2017] [Accepted: 08/10/2017] [Indexed: 11/16/2022]
Abstract
Organogenesis during embryonic development occurs through the differentiation of progenitor cells. This process is extraordinarily accurate, but the mechanisms ensuring high fidelity are poorly understood. Coronary vessels of the mouse heart derive from at least two progenitor pools, the sinus venosus and endocardium. We find that the ELABELA (ELA)-APJ signaling axis is only required for sinus venosus-derived progenitors. Because they do not depend on ELA-APJ, endocardial progenitors are able to expand and compensate for faulty sinus venosus development in Apj mutants, leading to normal adult heart function. An upregulation of endocardial SOX17 accompanied compensation in Apj mutants, which was also seen in Ccbe1 knockouts, indicating that the endocardium is activated in multiple cases where sinus venosus angiogenesis is stunted. Our data demonstrate that by diversifying their responsivity to growth cues, distinct coronary progenitor pools are able to compensate for each other during coronary development, thereby providing robustness to organ development.
Collapse
Affiliation(s)
- Bikram Sharma
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lena Ho
- Human Genetics and Embryology Laboratory, Institute of Medical Biology, A(∗)STAR, Singapore 138648, Singapore
| | - Gretchen Hazel Ford
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Heidi I Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew B Goldstone
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Quertermous
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bruno Reversade
- Human Genetics and Embryology Laboratory, Institute of Medical Biology, A(∗)STAR, Singapore 138648, Singapore
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Smart N. Prospects for improving neovascularization of the ischemic heart: Lessons from development. Microcirculation 2017; 24. [DOI: 10.1111/micc.12335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Nicola Smart
- Department of Physiology, Anatomy & Genetics; University of Oxford; Oxford UK
| |
Collapse
|
15
|
Sharma B, Chang A, Red-Horse K. Coronary Artery Development: Progenitor Cells and Differentiation Pathways. Annu Rev Physiol 2016; 79:1-19. [PMID: 27959616 DOI: 10.1146/annurev-physiol-022516-033953] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coronary artery disease (CAD) is the number one cause of death worldwide and involves the accumulation of plaques within the artery wall that can occlude blood flow to the heart and cause myocardial infarction. The high mortality associated with CAD makes the development of medical interventions that repair and replace diseased arteries a high priority for the cardiovascular research community. Advancements in arterial regenerative medicine could benefit from a detailed understanding of coronary artery development during embryogenesis and of how these pathways might be reignited during disease. Recent research has advanced our knowledge on how the coronary vasculature is built and revealed unexpected features of progenitor cell deployment that may have implications for organogenesis in general. Here, we highlight these recent findings and discuss how they set the stage to interrogate developmental pathways during injury and disease.
Collapse
Affiliation(s)
- Bikram Sharma
- Department of Biology, Stanford University, Stanford, California 94305;
| | - Andrew Chang
- Department of Biology, Stanford University, Stanford, California 94305; .,Department of Developmental Biology, Stanford University, Stanford, California 94305
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, California 94305;
| |
Collapse
|
16
|
Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio-venous connections. Proc Natl Acad Sci U S A 2016; 113:656-61. [PMID: 26739565 DOI: 10.1073/pnas.1509834113] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recent reports suggest that mammalian embryonic coronary endothelium (CoE) originates from the sinus venosus and ventricular endocardium. However, the contribution of extracardiac cells to CoE is thought to be minor and nonsignificant for coronary formation. Using classic (Wt1(Cre)) and previously undescribed (G2-Gata4(Cre)) transgenic mouse models for the study of coronary vascular development, we show that extracardiac septum transversum/proepicardium (ST/PE)-derived endothelial cells are required for the formation of ventricular coronary arterio-venous vascular connections. Our results indicate that at least 20% of embryonic coronary arterial and capillary endothelial cells derive from the ST/PE compartment. Moreover, we show that conditional deletion of the ST/PE lineage-specific Wilms' tumor suppressor gene (Wt1) in the ST/PE of G2-Gata4(Cre) mice and in the endothelium of Tie2(Cre) mice disrupts embryonic coronary transmural patterning, leading to embryonic death. Taken together, our results demonstrate that ST/PE-derived endothelial cells contribute significantly to and are required for proper coronary vascular morphogenesis.
Collapse
|
17
|
Rusu MC, Poalelungi CV, Vrapciu AD, Nicolescu MI, Hostiuc S, Mogoanta L, Taranu T. Endocardial tip cells in the human embryo - facts and hypotheses. PLoS One 2015; 10:e0115853. [PMID: 25617624 PMCID: PMC4305311 DOI: 10.1371/journal.pone.0115853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 12/02/2014] [Indexed: 11/28/2022] Open
Abstract
Experimental studies regarding coronary embryogenesis suggest that the endocardium is a source of endothelial cells for the myocardial networks. As this was not previously documented in human embryos, we aimed to study whether or not endothelial tip cells could be correlated with endocardial-dependent mechanisms of sprouting angiogenesis. Six human embryos (43–56 days) were obtained and processed in accordance with ethical regulations; immunohistochemistry was performed for CD105 (endoglin), CD31, CD34, α-smooth muscle actin, desmin and vimentin antibodies. Primitive main vessels were found deriving from both the sinus venosus and aorta, and were sought to be the primordia of the venous and arterial ends of cardiac microcirculation. Subepicardial vessels were found branching into the outer ventricular myocardium, with a pattern of recruiting α-SMA+/desmin+ vascular smooth muscle cells and pericytes. Endothelial sprouts were guided by CD31+/CD34+/CD105+/vimentin+ endothelial tip cells. Within the inner myocardium, we found endothelial networks rooted from endocardium, guided by filopodia-projecting CD31+/CD34+/CD105+/ vimentin+ endocardial tip cells. The myocardial microcirculatory bed in the atria was mostly originated from endocardium, as well. Nevertheless, endocardial tip cells were also found in cardiac cushions, but they were not related to cushion endothelial networks. A general anatomical pattern of cardiac microvascular embryogenesis was thus hypothesized; the arterial and venous ends being linked, respectively, to the aorta and sinus venosus. Further elongation of the vessels may be related to the epicardium and subepicardial stroma and the intramyocardial network, depending on either endothelial and endocardial filopodia-guided tip cells in ventricles, or mostly on endocardium, in atria.
Collapse
Affiliation(s)
- Mugurel C. Rusu
- Division of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- MEDCENTER—Center of Excellence in Laboratory Medicine and Pathology, Bucharest, Romania
| | - Cristian V. Poalelungi
- Department of Obstetrics and Gynaecology “Dr.I.Cantacuzino” Hospital, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Alexandra D. Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihnea I. Nicolescu
- Division of Histology and Cytology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Laboratory of Molecular Medicine, “Victor Babeş” National Institute of Pathology, Bucharest, Romania
- * E-mail:
| | - Sorin Hostiuc
- Division of Legal Medicine and Bioethics, Department 2 Morphological Sciences, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Laurentiu Mogoanta
- Research Center for Microscopic Morphology and Immunology, Department of Morphology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Traian Taranu
- Division of Anatomy, Faculty of Medicine, “Gr.T.Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
18
|
Chamberlain AA, Lin M, Lister RL, Maslov AA, Wang Y, Suzuki M, Wu B, Greally JM, Zheng D, Zhou B. DNA methylation is developmentally regulated for genes essential for cardiogenesis. J Am Heart Assoc 2014; 3:e000976. [PMID: 24947998 PMCID: PMC4309105 DOI: 10.1161/jaha.114.000976] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/11/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND DNA methylation is a major epigenetic mechanism altering gene expression in development and disease. However, its role in the regulation of gene expression during heart development is incompletely understood. The aim of this study is to reveal DNA methylation in mouse embryonic hearts and its role in regulating gene expression during heart development. METHODS AND RESULTS We performed the genome-wide DNA methylation profiling of mouse embryonic hearts using methyl-sensitive, tiny fragment enrichment/massively parallel sequencing to determine methylation levels at ACGT sites. The results showed that while global methylation of 1.64 million ACGT sites in developing hearts remains stable between embryonic day (E) 11.5 and E14.5, a small fraction (2901) of them exhibit differential methylation. Gene Ontology analysis revealed that these sites are enriched at genes involved in heart development. Quantitative real-time PCR analysis of 350 genes with differential DNA methylation showed that the expression of 181 genes is developmentally regulated, and 79 genes have correlative changes between methylation and expression, including hyaluronan synthase 2 (Has2). Required for heart valve formation, Has2 expression in the developing heart valves is downregulated at E14.5, accompanied with increased DNA methylation in its enhancer. Genetic knockout further showed that the downregulation of Has2 expression is dependent on DNA methyltransferase 3b, which is co-expressed with Has2 in the forming heart valve region, indicating that the DNA methylation change may contribute to the Has2 enhancer's regulating function. CONCLUSIONS DNA methylation is developmentally regulated for genes essential to heart development, and abnormal DNA methylation may contribute to congenital heart disease.
Collapse
Affiliation(s)
- Alyssa A. Chamberlain
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - Mingyan Lin
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - Rolanda L. Lister
- Division of Hematology, Department of Obstetrics & Gynecology and Women's Health (Maternal & Fetal Medicine), Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (R.L.L.)
| | - Alex A. Maslov
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - Yidong Wang
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - Masako Suzuki
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - Bingruo Wu
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - John M. Greally
- Division of Hematology, Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (J.M.G.)
- Division of Hematology, Department of Pediatrics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (J.M.G.)
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - Deyou Zheng
- Division of Hematology, Department of Neurology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (D.Z.)
- Division of Hematology, Department of Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (D.Z.)
- Division of Hematology, Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (A.A.C., M.L., A.A.M., Y.W., M.S., B.W., J.M.G., D.Z.)
| | - Bin Zhou
- Division of Cardiology, Departments of Medicine, Pediatrics, and Genetics, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (B.Z.)
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China (B.Z.)
| |
Collapse
|
19
|
Dyer L, Wu Y, Moser M, Patterson C. BMPER-induced BMP signaling promotes coronary artery remodeling. Dev Biol 2014; 386:385-94. [PMID: 24373957 PMCID: PMC4112092 DOI: 10.1016/j.ydbio.2013.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 02/07/2023]
Abstract
The connection of the coronary vasculature to the aorta is one of the last essential steps of cardiac development. However, little is known about the signaling events that promote normal coronary artery formation. The bone morphogenetic protein (BMP) signaling pathway regulates multiple aspects of endothelial cell biology but has not been specifically implicated in coronary vascular development. BMP signaling is tightly regulated by numerous factors, including BMP-binding endothelial cell precursor-derived regulator (BMPER), which can both promote and repress BMP signaling activity. In the embryonic heart, BMPER expression is limited to the endothelial cells and the endothelial-derived cushions, suggesting that BMPER may play a role in coronary vascular development. Histological analysis of BMPER(-/-) embryos at early embryonic stages demonstrates that commencement of coronary plexus differentiation is normal and that endothelial apoptosis and cell proliferation are unaffected in BMPER(-/-) embryos compared with wild-type embryos. However, analysis between embryonic days 15.5-17.5 reveals that, in BMPER(-/-) embryos, coronary arteries are either atretic or connected distal to the semilunar valves. In vitro tubulogenesis assays indicate that isolated BMPER(-/-) endothelial cells have impaired tube formation and migratory ability compared with wild-type endothelial cells, suggesting that these defects may lead to the observed coronary artery anomalies seen in BMPER(-/-) embryos. Additionally, recombinant BMPER promotes wild-type ventricular endothelial migration in a dose-dependent manner, with a low concentration promoting and high concentrations inhibiting migration. Together, these results indicate that BMPER-regulated BMP signaling is critical for coronary plexus remodeling and normal coronary artery development.
Collapse
Affiliation(s)
- Laura Dyer
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yaxu Wu
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martin Moser
- Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, D-79106, Germany
| | - Cam Patterson
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|