1
|
He C, Liang Y, Chen R, Shen Y, Li R, Sun T, Du X, Ni X, Shang J, He Y, Bao M, Luo H, Wang J, Liao P, Kang C, Yuan YW, Ning G. Boosting transcriptional activities by employing repeated activation domains in transcription factors. THE PLANT CELL 2024:koae315. [PMID: 39657052 DOI: 10.1093/plcell/koae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Enhancing the transcriptional activation activity of transcription factors (TFs) has multiple applications in organism improvement, metabolic engineering, and other aspects of plant science, but the approaches remain unclear. Here, we used gene activation assays and genetic transformation to investigate the transcriptional activities of two MYB TFs, PRODUCTION OF ANTHOCYANIN PIGMENT 1 (AtPAP1) from Arabidopsis (Arabidopsis thaliana) and EsMYBA1 from Epimedium (Epimedium sagittatum), and their synthetic variants in a range of plant species from several families. Using anthocyanin biosynthesis as a convenient readout, we discovered that homologous naturally occurring TFs showed differences in the transcriptional activation ability and that similar TFs induced large changes in the genetic program when heterologously expressed in different species. In some cases, shuffling the DNA binding domains and transcriptional activation domains (ADs) between homologous TFs led to synthetic TFs that had stronger activation potency than the original TFs. More importantly, synthetic TFs derived from MYB, NAC, bHLH, and Ethylene-insensitive3-like (EIL) family members containing tandemly repeated ADs had greatly enhanced activity compared to their natural counterparts. These findings enhance our understanding of TF activity and demonstrate that employing tandemly repeated ADs from natural TFs is a simple and widely applicable strategy to enhance the activation potency of synthetic TFs.
Collapse
Affiliation(s)
- Chaochao He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Liang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Runzhou Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxiao Shen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing Du
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaomei Ni
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Junzhong Shang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanhong He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Pan Liao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Lu C, Yan X, Zhang H, Zhong T, Gui A, Liu Y, Pan L, Shao Q. Integrated metabolomic and transcriptomic analysis reveals biosynthesis mechanism of flavone and caffeoylquinic acid in chrysanthemum. BMC Genomics 2024; 25:759. [PMID: 39097683 PMCID: PMC11297764 DOI: 10.1186/s12864-024-10676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Chrysanthemum morifolium 'HangBaiJu', a popular medicinal and edible plant, exerts its biological activities primarily through the presence of flavones and caffeoylquinic acids (CQAs). However, the regulatory mechanism of flavone and CQA biosynthesis in the chrysanthemum capitulum remains unclear. RESULTS In this study, the content of flavones and CQAs during the development of chrysanthemum capitulum was determined by HPLC, revealing an accumulation pattern with higher levels at S1 and S2 and a gradual decrease at S3 to S5. Transcriptomic analysis revealed that CmPAL1/2, CmCHS1/2, CmFNS, CmHQT, and CmHCT were key structural genes in flavones and CQAs biosynthesis. Furthermore, weighted gene co-expression correlation network analysis (WGCNA), k-means clustering, correlation analysis and protein interaction prediction were carried out in this study to identify transcription factors (TFs) associated with flavone and CQA biosynthesis, including MYB, bHLH, AP2/ERF, and MADS-box families. The TFs CmERF/PTI6 and CmCMD77 were proposed to act as upstream regulators of CmMYB3 and CmbHLH143, while CmMYB3 and CmbHLH143 might form a complex to directly regulate the structural genes CmPAL1/2, CmCHS1/2, CmFNS, CmHQT, and CmHCT, thereby controlling flavone and CQA biosynthesis. CONCLUSIONS Overall, these findings provide initial insights into the TF regulatory network underlying flavones and CQAs accumulation in the chrysanthemum capitulum, which laid a theoretical foundation for the quality improvement of C. morifolium 'HangBaiJu' and the high-quality development of the industry.
Collapse
Affiliation(s)
- Chenfei Lu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiaoyun Yan
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haohao Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Taowei Zhong
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Aijun Gui
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yuchen Liu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Lanying Pan
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Qingsong Shao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
3
|
Song G, Yan Y, Guo C, Chen J, Wang Y, Wang Y, Zhang J, Gao C, Lian J, Piao X, Di P. Identification and Expression Analysis of R2R3-MYB Transcription Factors Associated with Flavonoid Biosynthesis in Panax quinquefolius. Int J Mol Sci 2024; 25:3709. [PMID: 38612520 PMCID: PMC11011825 DOI: 10.3390/ijms25073709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Panax quinquefolius L. is an important medicinal plant, and flavonoids are among its main secondary metabolites. The R2R3-MYB transcription factor plays an irreplaceable role in plant growth, development, and secondary metabolism. In our study, we identified 159 R2R3-MYBs and analyzed their physical and chemical properties in P. quinquefolius. The protein length of 159 PqMYBs varied from 107 to 1050 amino acids. The molecular weight ranged from 12.21 to 116.44 kDa. The isoelectric point was between 4.57 and 10.34. We constructed a phylogenetic tree of P. quinquefolius and Arabidopsis thaliana R2R3-MYB family members, and PqMYB members were divided into 33 subgroups. Transcriptome data analysis showed that the expression patterns of PqMYBs in root, leaf, and flower were significantly different. Following the MeJA treatment of seedlings, five candidate PqMYB genes demonstrated a response. A correlation analysis of PqMYBs and candidate flavonoid pathway genes showed that PqMYB2, PqMYB46, and PqMYB72 had correlation coefficients that were higher than 0.8 with PqCHS, PqANS4, and PqCCoAMT10, respectively. Furthermore, a transient expression assay confirmed that the three PqMYBs were localized in the nucleus. We speculated that these three PqMYBs were related to flavonoid biosynthesis in P. quinquefolius. These results provided a theoretical basis and a new perspective for further understanding the R2R3-MYB gene family and the biosynthesis mechanism of secondary metabolites in P. quinquefolius.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiangmin Piao
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China; (G.S.); (Y.Y.); (C.G.); (J.C.); (Y.W.); (Y.W.); (J.Z.); (C.G.); (J.L.)
| | - Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China; (G.S.); (Y.Y.); (C.G.); (J.C.); (Y.W.); (Y.W.); (J.Z.); (C.G.); (J.L.)
| |
Collapse
|
4
|
Chachar Z, Lai R, Ahmed N, Lingling M, Chachar S, Paker NP, Qi Y. Cloned genes and genetic regulation of anthocyanin biosynthesis in maize, a comparative review. FRONTIERS IN PLANT SCIENCE 2024; 15:1310634. [PMID: 38328707 PMCID: PMC10847539 DOI: 10.3389/fpls.2024.1310634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Anthocyanins are plant-based pigments that are primarily present in berries, grapes, purple yam, purple corn and black rice. The research on fruit corn with a high anthocyanin content is not sufficiently extensive. Considering its crucial role in nutrition and health it is vital to conduct further studies on how anthocyanin accumulates in fruit corn and to explore its potential for edible and medicinal purposes. Anthocyanin biosynthesis plays an important role in maize stems (corn). Several beneficial compounds, particularly cyanidin-3-O-glucoside, perlagonidin-3-O-glucoside, peonidin 3-O-glucoside, and their malonylated derivatives have been identified. C1, C2, Pl1, Pl2, Sh2, ZmCOP1 and ZmHY5 harbored functional alleles that played a role in the biosynthesis of anthocyanins in maize. The Sh2 gene in maize regulates sugar-to-starch conversion, thereby influencing kernel quality and nutritional content. ZmCOP1 and ZmHY5 are key regulatory genes in maize that control light responses and photomorphogenesis. This review concludes the molecular identification of all the genes encoding structural enzymes of the anthocyanin pathway in maize by describing the cloning and characterization of these genes. Our study presents important new understandings of the molecular processes behind the manufacture of anthocyanins in maize, which will contribute to the development of genetically modified variants of the crop with increased color and possible health advantages.
Collapse
Affiliation(s)
- Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - RuiQiang Lai
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ma Lingling
- College of Agriculture, Jilin Agricultural University, Changchun, Jilin, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | | | - YongWen Qi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
5
|
Xu C, Liu X, Shen G, Fan X, Zhang Y, Sun C, Suo F, Guo B. Time-series transcriptome provides insights into the gene regulation network involved in the icariin-flavonoid metabolism during the leaf development of Epimedium pubescens. FRONTIERS IN PLANT SCIENCE 2023; 14:1183481. [PMID: 37377796 PMCID: PMC10291196 DOI: 10.3389/fpls.2023.1183481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023]
Abstract
Herba Epimedii (Epimedium) leaves are rich in prenylated flavonol glycosides (PFGs) with high medicinal value. However, the dynamics and regulatory network of PFG biosynthesis remain largely unclear. Here, we combined metabolite profiling (targeted to PFGs) and a high-temporal-resolution transcriptome to elucidate PFGs' regulatory network in Epimedium pubescens and identified key candidate structural genes and transcription factors (TFs) involved in PFG accumulation. Chemical profile analysis revealed that PFG content was quite different between buds and leaves and displayed a continuous decline with leaf development. The structural genes are the determinant reasons, and they are strictly regulated by TFs under temporal cues. We further constructed seven time-ordered gene co-expression networks (TO-GCNs) of PFG biosynthesis genes (including EpPAL2, EpC4H, EpCHS2, EpCHI2, EpF3H, EpFLS3, and EpPT8), and three flavonol biosynthesis routines were then predicted. The TFs involved in TO-GCNs were further confirmed by WGCNA analysis. Fourteen hub genes, comprising 5 MYBs, 1 bHLH, 1 WD40, 2 bZIPs, 1 BES1, 1 C2H2, 1 Trihelix, 1 HD-ZIP, and 1 GATA were identified as candidate key TFs. The results were further validated by TF binding site (TFBS) analysis and qRT-PCR. Overall, these findings provide valuable information for understanding the molecular regulatory mechanism of PFGs biosynthesis, enriching the gene resources, which will guide further research on PFG accumulation in Epimedium.
Collapse
|
6
|
Zhao Y, Liu G, Yang F, Liang Y, Gao Q, Xiang C, Li X, Yang R, Zhang G, Jiang H, Yu L, Yang S. Multilayered regulation of secondary metabolism in medicinal plants. MOLECULAR HORTICULTURE 2023; 3:11. [PMID: 37789448 PMCID: PMC10514987 DOI: 10.1186/s43897-023-00059-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/27/2023] [Indexed: 10/05/2023]
Abstract
Medicinal plants represent a huge reservoir of secondary metabolites (SMs), substances with significant pharmaceutical and industrial potential. However, obtaining secondary metabolites remains a challenge due to their low-yield accumulation in medicinal plants; moreover, these secondary metabolites are produced through tightly coordinated pathways involving many spatiotemporally and environmentally regulated steps. The first regulatory layer involves a complex network of transcription factors; a second, more recently discovered layer of complexity in the regulation of SMs is epigenetic modification, such as DNA methylation, histone modification and small RNA-based mechanisms, which can jointly or separately influence secondary metabolites by regulating gene expression. Here, we summarize the findings in the fields of genetic and epigenetic regulation with a special emphasis on SMs in medicinal plants, providing a new perspective on the multiple layers of regulation of gene expression.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guanze Liu
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
| | - Feng Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Liang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qingqing Gao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunfan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xia Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Run Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guanghui Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Lei Yu
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China.
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China.
| |
Collapse
|
7
|
Mi Y, He R, Wan H, Meng X, Liu D, Huang W, Zhang Y, Yousaf Z, Huang H, Chen S, Wang Y, Sun W. Genetic and molecular analysis of the anthocyanin pigmentation pathway in Epimedium. FRONTIERS IN PLANT SCIENCE 2023; 14:1133616. [PMID: 37063227 PMCID: PMC10090855 DOI: 10.3389/fpls.2023.1133616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Flower color is an ideal trait for studying the molecular basis for phenotypic variations in natural populations of species. Epimedium (Berberidaceae) species exhibit a wide range of flower colors resulting from the varied accumulation of anthocyanins and other pigments in their spur-like petals and petaloid sepals. METHODS In this work, the anthocyanidins of eight different Epimedium species with different floral pigmentation phenotypes were analyzed using HPLC. Twelve genes involved in anthocyanin biosynthesis were cloned and sequenced, and their expression was quantified. RESULTS The expression levels of the catalytic enzyme genes DFR and ANS were significantly decreased in four species showing loss of floral pigmentation. Complementation of EsF3'H and EsDFR in corresponding Arabidopsis mutants together with overexpression of EsF3'5'H in wild type Arabidopsis analysis revealed that these genes were functional at the protein level, based on the accumulation of anthocyanin pigments. DISCUSSION These results strongly suggest that transcriptional regulatory changes determine the loss of anthocyanins to be convergent in the floral tissue of Epimedium species.
Collapse
Affiliation(s)
- Yaolei Mi
- Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruikun He
- By-Health Institute of Nutrition and health. By-health Co., Ltd., Guangzhou, Guangdong, China
| | - Huihua Wan
- Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangxiao Meng
- Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yanjun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zubaida Yousaf
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Hongwen Huang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Shilin Chen
- Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Wang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Wei Sun
- Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Phylogenetic Analysis of R2R3-MYB Family Genes in Tetrastigma hemsleyanum Diels et Gilg and Roles of ThMYB4 and ThMYB7 in Flavonoid Biosynthesis. Biomolecules 2023; 13:biom13030531. [PMID: 36979467 PMCID: PMC10046264 DOI: 10.3390/biom13030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) is an extensively used Chinese folk herb with multiple bioactivities. Among these bioactivities, flavonoids are recognized as the representative active ingredients. We previously found an elevated accumulation of flavonoids in T. hemsleyanum under water stress; however, the mechanism remains unclear. R2R3-MYB transcription factors play vital roles in the plant response to environmental stress and the regulation of secondary metabolites. Herein, a systematic transcriptome identification of R2R3-MYB family genes under water stress in T. hemsleyanum was performed to explore their potential function in the biosynthesis of flavonoids. A total of 26 R2R3-MYB genes were identified, most of which were clustered into functional branches of abiotic stress. ThMYB4 and ThMYB7 were then screened out to be associated with the biosynthesis of flavonoids through a protein-protein interaction prediction. An expression correlation analysis based on RNA-seq further confirmed that ThMYB4 and ThMYB7 were positively related to the flavonoid biosynthetic pathway genes of T. hemsleyanum. In ThMYB4- and ThMYB7-overexpression hairy roots, it was found that the expression of ThCHS and ThCHI was significantly increased, suggesting that ThMYB4 and ThMYB7 may act as regulators in flavonoid biosynthesis. This will shed new light on the promotion of flavonoid production and the medicinal value of T. hemsleyanum by manipulating transcription factors.
Collapse
|
9
|
Thakur S, Vasudev PG. MYB transcription factors and their role in Medicinal plants. Mol Biol Rep 2022; 49:10995-11008. [PMID: 36074230 DOI: 10.1007/s11033-022-07825-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Transcription factors are multi-domain proteins that regulate gene expression in eukaryotic organisms. They are one of the largest families of proteins, which are structurally and functionally diverse. While there are transcription factors that are plant-specific, such as AP2/ERF, B3, NAC, SBP and WRKY, some transcription factors are present in both plants as well as other eukaryotic organisms. MYB transcription factors are widely distributed among all eukaryotes. In plants, the MYB transcription factors are involved in the regulation of numerous functions such as gene regulation in different metabolic pathways especially secondary metabolic pathways, regulation of different signalling pathways of plant hormones, regulation of genes involved in various developmental and morphological processes etc. Out of the thousands of MYB TFs that have been studied in plants, the majority of them have been studied in the model plants like Arabidopsis thaliana, Oryza sativa etc. The study of MYBs in other plants, especially medicinal plants, has been comparatively limited. But the increasing demand for medicinal plants for the production of biopharmaceuticals and important bioactive compounds has also increased the need to explore more number of these multifaceted transcription factors which play a significant role in the regulation of secondary metabolic pathways. These studies will ultimately contribute to medicinal plants' research and increased production of secondary metabolites, either through transgenic plants or through synthetic biology approaches. This review compiles studies on MYB transcription factors that are involved in the regulation of diverse functions in medicinal plants.
Collapse
Affiliation(s)
- Sudipa Thakur
- Plant Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India.
| | - Prema G Vasudev
- Plant Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India
| |
Collapse
|
10
|
Zhang L, Yan L, Zhang C, Kong X, Zheng Y, Dong L. Glucose Supply Induces PsMYB2-Mediated Anthocyanin Accumulation in Paeonia suffruticosa 'Tai Yang' Cut Flower. FRONTIERS IN PLANT SCIENCE 2022; 13:874526. [PMID: 35774824 PMCID: PMC9237572 DOI: 10.3389/fpls.2022.874526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Tree peony (Paeonia suffruticosa) is a well-known Chinese ornamental plant with showy flower color. However, the color fading problem during vase time seriously blocks its development in the cut flower market. In this study, we found that exogenous glucose supply improved the color quality of P. suffruticosa 'Tai Yang' cut flowers with increased total soluble sugar and anthocyanin contents of petals. Besides, the promotion effect of glucose was better than the osmotic control of 3-O-methylglucose (3OMG) treatment and the glucose analog mannose treatment. The structural genes, including PsF3H, PsF3'H, PsDFR, PsAOMT, and PsUF5GT, were remarkably upregulated under glucose treatment. Meanwhile, the regulatory genes, including PsbHLH1, PsbHLH3, PsMYB2, PsWD40-1, and PsWD40-2, also showed a strong response to glucose treatment. Among these five regulatory genes, PsMYB2 showed less response to 3OMG treatment but was highly expressed under glucose and mannose treatments, indicating that PsMYB2 may have an important role in the glucose signal pathway. Ectopic overexpression of PsMYB2 in Nicotiana tabacum resulted in a strong pigmentation in petals and stamens of tobacco flowers accompanied with multiple anthocyanin biosynthetic genes upregulated. More importantly, the overexpression of PsMYB2 enhanced the ability of glucose-induced anthocyanin accumulation in Arabidopsis thaliana seedlings since PsMYB2-overexpressing Arabidopsis showed higher expression levels of AtPAL1, AtCHS, AtF3H, AtF3'H, AtDFR, and AtLDOX than those of wild type under glucose treatment. In summary, we suggested that glucose supply promoted petal coloration of P. suffruticosa 'Tai Yang' cut flower through the signal pathway, and PsMYB2 was a key component in this process. Our research made a further understanding of the mechanism that glucose-induced anthocyanin biosynthesis of P. suffruticosa cut flowers during postharvest development, laying a foundation for color retention technology development of cut flowers.
Collapse
Affiliation(s)
- Lili Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Li Yan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Ningxia State Farm, Yinchuan, China
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xin Kong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yiqing Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Li Dong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
11
|
Li Y, Di P, Tan J, Chen W, Chen J, Chen W. Alternative Splicing Dynamics During the Lifecycle of Salvia miltiorrhiza Root Revealed the Fine Tuning in Root Development and Ingredients Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 12:797697. [PMID: 35126423 PMCID: PMC8813970 DOI: 10.3389/fpls.2021.797697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Alternative splicing (AS) is an essential post-transcriptional process that enhances the coding and regulatory potential of the genome, thereby strongly influencing multiple plant physiology processes, such as metabolic biosynthesis. To explore how AS affects the root development and synthesis of tanshinones and phenolic acid pathways in Salvia miltiorrhiza roots, we investigated the dynamic landscape of AS events in S. miltiorrhiza roots during an annual life history. Temporal profiling represented a distinct temporal variation of AS during the entire development stages, showing the most abundant AS events at the early seedling stage (ES stage) and troughs in 45 days after germination (DAG) and 120 DAG. Gene ontology (GO) analysis indicated that physiological and molecular events, such as lateral root formation, gravity response, RNA splicing regulation, and mitogen-activated protein kinase (MAPK) cascade, were greatly affected by AS at the ES stage. AS events were identified in the tanshinones and phenolic acids pathways as well, especially for the genes for the branch points of the pathways as SmRAS and SmKSL1. Fifteen Ser/Arg-rich (SR) proteins and eight phosphokinases (PKs) were identified with high transcription levels at the ES stage, showing their regulatory roles for the high frequency of AS in this stage. Simultaneously, a co-expression network that includes 521 highly expressed AS genes, SRs, and PKs, provides deeper insight into the mechanism for the variable programming of AS.
Collapse
Affiliation(s)
- Yajing Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jingfu Tan
- Shangyao Huayu (Linyi) Traditional Chinese Resources Co. Ltd., Linyi, China
| | - Weixu Chen
- Shangyao Huayu (Linyi) Traditional Chinese Resources Co. Ltd., Linyi, China
| | - Junfeng Chen
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Lv Y, Tong X, Zhang P, Yu N, Gui S, Han R, Ge D. Comparative Transcriptomic Analysis on White and Blue Flowers of Platycodon grandiflorus to Elucidate Genes Involved in the Biosynthesis of Anthocyanins. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2811. [PMID: 34825015 PMCID: PMC8590723 DOI: 10.30498/ijb.2021.239899.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Platycodon grandiflorus has long been used in Northeast Asia as a food and folk medicine to treat various diseases. The intense blue color of P. grandiflorus corolla is its characteristic feature. OBJECTIVES By comparing deep transcriptomic data of P. grandiflorus and its white cultivar, we intended to elucidate the molecular mechanisms concerning the biosynthesis of anthocyanins in this plant. MATERIAL AND METHODS We sampled blue mature flowers (PgB) and yellow young buds (PgY) of P. grandiflorus. Meanwhile, mature flowers (PgW) of P. grandiflorus white cultivar were also collected for RNA extraction and next-generation sequencing. After high-throughput sequencing, Trinity software was applied for de novo assembly and the resultant 49934 unigenes were subjected for expression analysis and annotation against NR, KEGG, UniProt, and Pfam databases. RESULTS In all, 32.77 Gb raw data were generated and the gene expression profile for the flowers of P. grandiflorus was constructed. Pathway enrichment analysis demonstrated that genes involved in flavone and flavonol biosynthesis were differently expressed. CONCLUSIONS The extremely low expression of flavonoid-3',5'-hydroxylase in PgY and PgW was regarded as the reason for the formation of its white cultivar. Our findings provided useful information for further studies into the biosynthetic mechanism of anthocyanins.
Collapse
Affiliation(s)
- Yanping Lv
- School of Pharmacy, Anhui University of Chinese Medicine; Hefei 230012, China
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine; Hefei 230012, China
| | - Pengfei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine; Hefei 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine; Hefei 230012, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine; Hefei 230012, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine; Hefei 230012, China
| | - Dezhu Ge
- Department of Research and Development, Anhui Jiren Pharmaceutical Company; Bozhou 236800, China
| |
Collapse
|
13
|
Wang M, Qiu X, Pan X, Li C. Transcriptional Factor-Mediated Regulation of Active Component Biosynthesis in Medicinal Plants. Curr Pharm Biotechnol 2021; 22:848-866. [PMID: 32568019 DOI: 10.2174/1389201021666200622121809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/06/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
Plants produce thousands of chemically diverse secondary metabolites, many of which have valuable pharmaceutical properties. There is much interest in the synthesis of these pharmaceuticallyvaluable compounds, including the key enzymes and the transcription factors involved. The function and regulatory mechanism of transcription factors in biotic and abiotic stresses have been studied in depth. However, their regulatory roles in the biosynthesis of bioactive compounds, especially in medicinal plants, have only begun. Here, we review what is currently known about how transcription factors contribute to the synthesis of bioactive compounds (alkaloids, terpenoids, flavonoids, and phenolic acids) in medicinal plants. Recent progress has been made in the cloning and characterization of transcription factors in medicinal plants on the genome scale. So far, several large transcription factors have been identified in MYB, WRKY, bHLH, ZIP, AP2/ERF transcription factors. These transcription factors have been predicted to regulate bioactive compound production. These transcription factors positively or negatively regulate the expression of multiple genes encoding key enzymes, and thereby control the metabolic flow through the biosynthetic pathway. Although the research addressing this niche topic is in its infancy, significant progress has been made, and advances in high-throughput sequencing technology are expected to accelerate the discovery of key regulatory transcription factors in medicinal plants. This review is likely to be useful for those interested in the synthesis of pharmaceutically- valuable plant compounds, especially those aiming to breed or engineer plants that produce greater yields of these compounds.
Collapse
Affiliation(s)
- Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaoxiao Qiu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xian Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
14
|
Zhou W, Shi M, Deng C, Lu S, Huang F, Wang Y, Kai G. The methyl jasmonate-responsive transcription factor SmMYB1 promotes phenolic acid biosynthesis in Salvia miltiorrhiza. HORTICULTURE RESEARCH 2021; 8:10. [PMID: 33384411 DOI: 10.1038/s41438-020-00443-445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/30/2020] [Accepted: 10/17/2020] [Indexed: 05/25/2023]
Abstract
Water-soluble phenolic acids are major bioactive compounds in the medicinal plant species Salvia miltiorrhiza. Phenolic acid biosynthesis is induced by methyl jasmonate (MeJA) in this important Chinese herb. Here, we investigated the mechanism underlying this induction by analyzing a transcriptome library of S. miltiorrhiza in response to MeJA. Global transcriptome analysis identified the MeJA-responsive R2R3-MYB transcription factor-encoding gene SmMYB1. Overexpressing SmMYB1 significantly promoted phenolic acid accumulation and upregulated the expression of genes encoding key enzymes in the phenolic acid biosynthesis pathway, including cytochrome P450-dependent monooxygenase (CYP98A14). Dual-luciferase (dual-LUC) assays and/or an electrophoretic mobility shift assays (EMSAs) indicated that SmMYB1 activated the expression of CYP98A14, as well as the expression of genes encoding anthocyanin biosynthesis pathway enzymes, including chalcone isomerase (CHI) and anthocyanidin synthase (ANS). In addition, SmMYB1 was shown to interact with SmMYC2 to additively promote CYP98A14 expression compared to the action of SmMYB1 alone. Taken together, these results demonstrate that SmMYB1 is an activator that improves the accumulation of phenolic acids and anthocyanins in S. miltiorrhiza. These findings lay the foundation for in-depth studies of the molecular mechanism underlying MeJA-mediated phenolic acid biosynthesis and for the metabolic engineering of bioactive ingredients in S. miltiorrhiza.
Collapse
Affiliation(s)
- Wei Zhou
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Min Shi
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Changping Deng
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Sunjie Lu
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Fenfen Huang
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, 200234, Shanghai, China
| | - Yao Wang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China.
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, 200234, Shanghai, China.
| |
Collapse
|
15
|
Zhou W, Shi M, Deng C, Lu S, Huang F, Wang Y, Kai G. The methyl jasmonate-responsive transcription factor SmMYB1 promotes phenolic acid biosynthesis in Salvia miltiorrhiza. HORTICULTURE RESEARCH 2021; 8:10. [PMID: 33384411 PMCID: PMC7775463 DOI: 10.1038/s41438-020-00443-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/30/2020] [Accepted: 10/17/2020] [Indexed: 05/24/2023]
Abstract
Water-soluble phenolic acids are major bioactive compounds in the medicinal plant species Salvia miltiorrhiza. Phenolic acid biosynthesis is induced by methyl jasmonate (MeJA) in this important Chinese herb. Here, we investigated the mechanism underlying this induction by analyzing a transcriptome library of S. miltiorrhiza in response to MeJA. Global transcriptome analysis identified the MeJA-responsive R2R3-MYB transcription factor-encoding gene SmMYB1. Overexpressing SmMYB1 significantly promoted phenolic acid accumulation and upregulated the expression of genes encoding key enzymes in the phenolic acid biosynthesis pathway, including cytochrome P450-dependent monooxygenase (CYP98A14). Dual-luciferase (dual-LUC) assays and/or an electrophoretic mobility shift assays (EMSAs) indicated that SmMYB1 activated the expression of CYP98A14, as well as the expression of genes encoding anthocyanin biosynthesis pathway enzymes, including chalcone isomerase (CHI) and anthocyanidin synthase (ANS). In addition, SmMYB1 was shown to interact with SmMYC2 to additively promote CYP98A14 expression compared to the action of SmMYB1 alone. Taken together, these results demonstrate that SmMYB1 is an activator that improves the accumulation of phenolic acids and anthocyanins in S. miltiorrhiza. These findings lay the foundation for in-depth studies of the molecular mechanism underlying MeJA-mediated phenolic acid biosynthesis and for the metabolic engineering of bioactive ingredients in S. miltiorrhiza.
Collapse
Grants
- This work was supported by National Key R&G Program of China (2018YFC1706200), National Natural Science Fund (81522049, 31571735, 31270007), the ‘Dawn’ Program of Shanghai Education Commission (16SG38), Shanghai Science and Technology Committee Project (17JC1404300, 15430502700), Zhejiang Provincial Ten Thousands Program for Leading Talents of Science and Technology Innovation (2018R52050), Zhejiang Natural Science Fund (LY20H280008), Zhejiang Provincial Program for the Cultivation of High-level Innovative Health talents, Pre-research Projects of Zhejiang Chinese Medical University (2018ZG30).
Collapse
Affiliation(s)
- Wei Zhou
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Min Shi
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Changping Deng
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Sunjie Lu
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Fenfen Huang
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, 200234, Shanghai, China
| | - Yao Wang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China.
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, 200234, Shanghai, China.
| |
Collapse
|
16
|
Zhang L, Zhang H, Yang S. Cytosolic TaGAPC2 Enhances Tolerance to Drought Stress in Transgenic Arabidopsis Plants. Int J Mol Sci 2020; 21:ijms21207499. [PMID: 33053684 PMCID: PMC7590034 DOI: 10.3390/ijms21207499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 11/16/2022] Open
Abstract
Drought is a major natural disaster that seriously affects agricultural production, especially for winter wheat in boreal China. As functional proteins, the functions and mechanisms of glyceraldehyde-3-phosphate dehydrogenase in cytoplasm (GAPCs) have remained little investigated in wheat subjected to adverse environmental conditions. In this study, we cloned and characterized a GAPC isoform TaGAPC2 in wheat. Over-expression of TaGApC2-6D in Arabidopsis led to enhanced root length, reduced reactive oxygen species (ROS) production, and elevated drought tolerance. In addition, the dual-luciferase assays showed that TaWRKY28/33/40/47 could positively regulate the expression of TaGApC2-6A and TaGApC2-6D. Further results of the yeast two-hybrid system and bimolecular fluorescence complementation assay (BiFC) demonstrate that TaPLDδ, an enzyme producing phosphatidic acid (PA), could interact with TaGAPC2-6D in plants. These results demonstrate that TaGAPC2 regulated by TaWRKY28/33/40/47 plays a crucial role in drought tolerance, which may influence the drought stress conditions via interaction with TaPLDδ. In conclusion, our results establish a new positive regulation mechanism of TaGAPC2 that helps wheat fine-tune its drought response.
Collapse
|
17
|
Zheng T, Zhang Q, Su KX, Liu SM. Transcriptome and metabolome analyses reveal the regulation of peel coloration in green, red Chinese prickly ash ( Zanthoxylum L.). FOOD CHEMISTRY. MOLECULAR SCIENCES 2020; 1:100004. [PMID: 35415618 PMCID: PMC8991852 DOI: 10.1016/j.fochms.2020.100004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 01/08/2023]
Abstract
Peel colour is an important external economic characteristic of Chinese prickly ash cultivars (Zanthoxylum bungeanum Maxim.). To gain insight into their coloration mechanisms, we performed an integrated analysis of green and red peels using combined metabolomic and transcriptomic analyses. Pelargonin-O-hexoside-O-rhamnoside-O-hexoside, pelargonidin 3,5-diglucoside, peonidin O-hexoside, cyanidin O-syringic acid and peonidin 3-O-glucoside were found to be the key anthocyanins. Transcriptome data indicated that the anthocyanidin synthase genes and UDP-glucose flavonoid 3-O-glucosytransferase genes were significantly increased to promote the redness of the peels. In addition, we discussed the role of R2R3-MYB transcription factors in coloration, of which the c80935 and c226097 genes may be the key regulatory factors for anthocyanin biosynthesis. Generally, this is the first study to identify and reveal the main anthocyanins in Chinese prickly ash peels during different developmental periods. The results of this research lay the foundation for understanding the regulation of coloration in Chinese prickly ash peels.
Collapse
Affiliation(s)
- Tao Zheng
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qun Zhang
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ke-Xing Su
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shu-Ming Liu
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
18
|
Zhou GL, Zhu P. De novo transcriptome sequencing of Rhododendron molle and identification of genes involved in the biosynthesis of secondary metabolites. BMC PLANT BIOLOGY 2020; 20:414. [PMID: 32887550 PMCID: PMC7487690 DOI: 10.1186/s12870-020-02586-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/03/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Rhododendron molle (Ericaceae) is a traditional Chinese medicinal plant, its flower and root have been widely used to treat rheumatism and relieve pain for thousands of years in China. Chemical studies have revealed that R. molle contains abundant secondary metabolites such as terpenoinds, flavonoids and lignans, some of which have exhibited various bioactivities including antioxidant, hypotension and analgesic activity. In spite of immense pharmaceutical importance, the mechanism underlying the biosynthesis of secondary metabolites remains unknown and the genomic information is unavailable. RESULTS To gain molecular insight into this plant, especially on the information of pharmaceutically important secondary metabolites including grayanane diterpenoids, we conducted deep transcriptome sequencing for R. molle flower and root using the Illumina Hiseq platform. In total, 100,603 unigenes were generated through de novo assembly with mean length of 778 bp, 57.1% of these unigenes were annotated in public databases and 17,906 of those unigenes showed significant match in the KEGG database. Unigenes involved in the biosynthesis of secondary metabolites were annotated, including the TPSs and CYPs that were potentially responsible for the biosynthesis of grayanoids. Moreover, 3376 transcription factors and 10,828 simple sequence repeats (SSRs) were also identified. Additionally, we further performed differential gene expression (DEG) analysis of the flower and root transcriptome libraries and identified numerous genes that were specifically expressed or up-regulated in flower. CONCLUSIONS To the best of our knowledge, this is the first time to generate and thoroughly analyze the transcriptome data of both R. molle flower and root. This study provided an important genetic resource which will shed light on elucidating various secondary metabolite biosynthetic pathways in R. molle, especially for those with medicinal value and allow for drug development in this plant.
Collapse
Affiliation(s)
- Guo-Lin Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
19
|
Alternative Splicing Regulation of Anthocyanin Biosynthesis in Camellia sinensis var. assamica Unveiled by PacBio Iso-Seq. G3-GENES GENOMES GENETICS 2020; 10:2713-2723. [PMID: 32518082 PMCID: PMC7407465 DOI: 10.1534/g3.120.401451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the pathway and transcription factor regulation of anthocyanin biosynthesis in tea plants [Camellia sinensis (L.) O. Ktze] are known, post-transcriptional regulation mechanisms involved in anthocyanin accumulation have not been comprehensively studied. We obtained the full-length transcriptome of a purple cultivar (‘Zijuan’) and a normal green cultivar (‘Yunkang 10#) of C. sinensis var. asssamica (Masters) showing different accumulation of anthocyanins and catechins through PacBio isoform sequencing (Iso-Seq). In total, 577,557 mapped full-length cDNAs were obtained, and 2,600 average-length gene isoforms were identified in both cultivars. After gene annotations and pathway predictions, we found that 98 key genes in anthocyanin biosynthesis pathways could have undergone alternative splicing (AS) events, and identified a total of 238 isoforms involved in anthocyanin biosynthesis. We verified expression of the C4H, CHS, FLS, CCOM, F3′5’H, LAR, PAL, CCR, CYP73A13, UDP75L12, UDP78A15/UFGT, UDP94P1, GL3, MYB113, ANR, ANS, F3H, 4CL1, CYP98A3/C3H, CHI, DFR genes and their AS transcripts using qRT-PCR. Correlation analysis of anthocyanin biosynthesis and gene expression results revealed that C4H1, FLS1, PAL2, CCR2, UDP75L122 and MYB113-1 are crucial AS transcripts for regulating anthocyanin biosynthesis in C. sinensis var. assamica. Our results reveal post-transcriptional regulation of anthocyanin biosynthesis in tea plants, and provide more new insights into the regulation of secondary metabolism.
Collapse
|
20
|
Qi Y, Gu C, Wang X, Gao S, Li C, Zhao C, Li C, Ma C, Zhang Q. Identification of the Eutrema salsugineum EsMYB90 gene important for anthocyanin biosynthesis. BMC PLANT BIOLOGY 2020; 20:186. [PMID: 32345216 PMCID: PMC7189703 DOI: 10.1186/s12870-020-02391-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/12/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Anthocyanins contribute to coloration and antioxidation effects in different plant tissues. MYB transcription factors have been demonstrated to be a key regulator for anthocyanin synthesis in many plants. However, little information was available about the MYB genes in the halophyte species Eutrema salsugineum. RESULT Here we report the identification of an important anthocyanin biosynthesis regulator EsMYB90 from Eutrema salsugineum, which is a halophyte tolerant to multiple abiotic stresses. Our phylogenetic and localization analyses supported that EsMYB90 is an R2R3 type of MYB transcription factor. Ectopic expression of EsMYB90 in tobacco and Arabidopsis enhanced pigmentation and anthocyanin accumulation in various organs. The transcriptome analysis revealed that 42 genes upregulated by EsMYB90 in 35S:EsMYB90 tobacco transgenic plants are required for anthocyanin biosynthesis. Moreover, our qRT-PCR results showed that EsMYB90 promoted expression of early (PAL, CHS, and CHI) and late (DFR, ANS, and UFGT) anthocyanin biosynthesis genes in stems, leaves, and flowers of 35S:EsMYB90 tobacco transgenic plants. CONCLUSIONS Our results indicated that EsMYB90 is a MYB transcription factor, which regulates anthocyanin biosynthesis genes to control anthocyanin biosynthesis. Our work provides a new tool to enhance anthocyanin production in various plants.
Collapse
Affiliation(s)
- Yuting Qi
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Caihong Gu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Xingjun Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Shiqing Gao
- Beijing Engineering Research Center for Hybrid Wheat, The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Changsheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Chuanzhi Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
21
|
Qi Y, Gu C, Wang X, Gao S, Li C, Zhao C, Li C, Ma C, Zhang Q. Identification of the Eutrema salsugineum EsMYB90 gene important for anthocyanin biosynthesis. BMC PLANT BIOLOGY 2020; 20:186. [PMID: 32345216 DOI: 10.21203/rs.2.18301/v3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/12/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Anthocyanins contribute to coloration and antioxidation effects in different plant tissues. MYB transcription factors have been demonstrated to be a key regulator for anthocyanin synthesis in many plants. However, little information was available about the MYB genes in the halophyte species Eutrema salsugineum. RESULT Here we report the identification of an important anthocyanin biosynthesis regulator EsMYB90 from Eutrema salsugineum, which is a halophyte tolerant to multiple abiotic stresses. Our phylogenetic and localization analyses supported that EsMYB90 is an R2R3 type of MYB transcription factor. Ectopic expression of EsMYB90 in tobacco and Arabidopsis enhanced pigmentation and anthocyanin accumulation in various organs. The transcriptome analysis revealed that 42 genes upregulated by EsMYB90 in 35S:EsMYB90 tobacco transgenic plants are required for anthocyanin biosynthesis. Moreover, our qRT-PCR results showed that EsMYB90 promoted expression of early (PAL, CHS, and CHI) and late (DFR, ANS, and UFGT) anthocyanin biosynthesis genes in stems, leaves, and flowers of 35S:EsMYB90 tobacco transgenic plants. CONCLUSIONS Our results indicated that EsMYB90 is a MYB transcription factor, which regulates anthocyanin biosynthesis genes to control anthocyanin biosynthesis. Our work provides a new tool to enhance anthocyanin production in various plants.
Collapse
Affiliation(s)
- Yuting Qi
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Caihong Gu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Xingjun Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Shiqing Gao
- Beijing Engineering Research Center for Hybrid Wheat, The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Changsheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Chuanzhi Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
22
|
Cao Y, Li K, Li Y, Zhao X, Wang L. MYB Transcription Factors as Regulators of Secondary Metabolism in Plants. BIOLOGY 2020; 9:biology9030061. [PMID: 32213912 PMCID: PMC7150910 DOI: 10.3390/biology9030061] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 11/25/2022]
Abstract
MYB transcription factors (TFs), as one of the largest gene families in plants, play important roles in multiple biological processes, such as plant growth and development, cell morphology and pattern building, physiological activity metabolism, primary and secondary metabolic reactions, and responses to environmental stresses. The function of MYB TFs in crops has been widely studied, but few studies have been done on medicinal plants. In this review, we summarized the MYB TFs that play important roles in secondary metabolism and emphasized the possible mechanisms underlying how MYB TFs are regulated at the protein, posttranscriptional, and transcriptional levels, as well as how they regulate the downstream target gene networks related to secondary metabolism in plants, especially in medicinal plants.
Collapse
Affiliation(s)
- Yunpeng Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (Y.L.)
- Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Kui Li
- Science and Technology Promotion Center, Huaihua Forestry Research Institute, Huaihua 418000, China;
| | - Yanli Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (Y.L.)
- Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaopei Zhao
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
- Correspondence:
| |
Collapse
|
23
|
Accumulation of Anthocyanins through Overexpression of AtPAP1 in Solanum nigrum Lin. (Black Nightshade). Biomolecules 2020; 10:biom10020277. [PMID: 32054115 PMCID: PMC7072430 DOI: 10.3390/biom10020277] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 01/19/2023] Open
Abstract
Black nightshade (Solanum nigrum) belongs to the Solanaceae family and is used as a medicinal herb with health benefits. It has been reported that the black nightshade plant contains various phytochemicals that are associated with antitumor activities. Here we employed a genetic approach to study the effects of overexpression of Arabidopsis thaliana production of anthocyanin pigment 1 (AtPAP1) in black nightshade. Ectopic expression of AtPAP1 resulted in enhanced accumulation of anthocyanin pigments in vegetative and reproductive tissues of the transgenic plants. Analysis of anthocyanin revealed that delphinidin 3-O-rutinoside-5-O-glucoside, delphinidin 3,5-O-diglucoside, delphinidin 3-O-rutinoside, petunidin 3-O-rutinoside (cis-p-coumaroyl)-5-O-glucoside, petunidin 3-(feruloyl)-rutinoside-5-glucoside, and malvidin 3-(feruloyl)-rutinoside-5-glucoside are highly induced in the leaves of AtPAP1 overexpression lines. Furthermore, ectopic expression of AtPAP1 evoked expression of early and late biosynthetic genes of the general phenylpropanoid and flavonoid pathways that include phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate CoA ligase (4CL), chalcone isomerase (CHI), and quinate hydroxycinnamoyl transferase (HCT), which suggests these genes might be transcriptional targets of AtPAP1 in black nightshade. Concomitantly, the total content of anthocyanin in the transgenic black nightshade plants was higher compared to the control plants, which supports phenotypic changes in color. Our data demonstrate that a major anthocyanin biosynthetic regulator, AtPAP1, can induce accumulation of anthocyanins in the heterologous system of black nightshade through the conserved flavonoid biosynthesis pathway in plants.
Collapse
|
24
|
Khan AQ, Li Z, Ahmed MM, Wang P, Zhang X, Tu L. Eriodictyol can modulate cellular auxin gradients to efficiently promote in vitro cotton fibre development. BMC PLANT BIOLOGY 2019; 19:443. [PMID: 31651240 PMCID: PMC6814110 DOI: 10.1186/s12870-019-2054-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/25/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Flavonoids have essential roles in flower pigmentation, fibre development and disease resistance in cotton. Previous studies show that accumulation of naringenin in developing cotton fibres significantly affects fibre growth. This study focused on determining the effects of the flavonoids naringenin, dihydrokaempferol, dihydroquerectin and eriodictyol on fibre development in an in vitro system. RESULTS 20 μM eriodictyol treatment produced a maximum fibre growth, in terms of fibre length and total fibre units. To gain insight into the associated transcriptional regulatory networks, RNA-seq analysis was performed on eriodictyol-treated elongated fibres, and computational analysis of differentially expressed genes revealed that carbohydrate metabolism and phytohormone signaling pathways were differentially modulated. Eriodictyol treatment also promoted the biosynthesis of quercetin and dihydroquerectin in ovules and elongating fibres through enhanced expression of genes encoding chalcone isomerase, chalcone synthase and flavanone 3-hydroxylase. In addition, auxin biosynthesis and signaling pathway genes were differentially expressed in eriodictyol-driven in vitro fibre elongation. In absence of auxin, eriodictyol predominantly enhanced fibre growth when the localized auxin gradient was disrupted by the auxin transport inhibitor, triiodobenzoic acid. CONCLUSION Eriodictyol was found to significantly enhance fibre development through accumulating and maintaining the temporal auxin gradient in developing unicellular cotton fibres.
Collapse
Affiliation(s)
- Anam Qadir Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
| | - Zhonghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
| | - Muhammad Mahmood Ahmed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
- Institute of Plant Breeding & Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
| |
Collapse
|
25
|
Rahim MA, Resentini F, Dalla Vecchia F, Trainotti L. Effects on Plant Growth and Reproduction of a Peach R2R3-MYB Transcription Factor Overexpressed in Tobacco. FRONTIERS IN PLANT SCIENCE 2019; 10:1143. [PMID: 31681342 PMCID: PMC6813659 DOI: 10.3389/fpls.2019.01143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/21/2019] [Indexed: 05/27/2023]
Abstract
In plants, anthocyanin production is controlled by MYB and bHLH transcription factors. In peach, among the members of these families, MYB10.1 and bHLH3 have been shown to be the most important genes for production of these pigments during fruit ripening. Anthocyanins are valuable molecules, and the overexpression of regulatory genes in annual fast-growing plants has been explored for their biotechnological production. The overexpression of peach MYB10.1 in tobacco plants induced anthocyanin pigmentation, which was particularly strong in the reproductive parts. Pigment production was the result of an up-regulation of the expression level of key genes of the flavonoid biosynthetic pathway, such as NtCHS, NtCHI, NtF3H, NtDFR, NtANS, and NtUFGT, as well as of the proanthocyanidin biosynthetic pathway such as NtLAR. Nevertheless, phenotypic alterations in transgenic tobacco lines were not only limited to anthocyanin production. Lines showing a strong phenotype (type I) exhibited irregular leaf shape and size and reduced plant height. Moreover, flowers had reduced length of anther's filament, nondehiscent anthers, reduced pistil length, aborted nectary glands, and impaired capsule development, but the reproductive parts including androecium, gynoecium, and petals were more pigmented that in wild type. Surprisingly, overexpression of peach MYB10.1 led to suppression of NtMYB305, which is required for floral development and, of one of its target genes, NECTARIN1 (NtNCE1), involved in the nectary gland formation. MYB10.1 overexpression up-regulated JA biosynthetic (NtAOS) and signaling (NtJAZd) genes, as well as 1-aminocyclopropane-1-carboxylate oxidase (NtACO) in flowers. The alteration of these hormonal pathways might be among the causes of the observed floral abnormalities with defects in both male and female gametophyte development. In particular, approximately only 30% of pollen grains of type I lines were viable, while during megaspore formation, there was a block during FG1 (St3-II). This block seemed to be associated to an excessive accumulation of callose. It can be concluded that the overexpression of peach MYB10.1 in tobacco not only regulates flavonoid biosynthesis (anthocyanin and proanthocyanidin) in the reproductive parts but also plays a role in other processes such as vegetative and reproductive development.
Collapse
Affiliation(s)
- Md Abdur Rahim
- Department of Biology, University of Padova, Padova, Italy
| | | | - Francesca Dalla Vecchia
- Department of Biology, University of Padova, Padova, Italy
- Orto Botanico, University of Padova, Padova, Italy
| | - Livio Trainotti
- Department of Biology, University of Padova, Padova, Italy
- Orto Botanico, University of Padova, Padova, Italy
| |
Collapse
|
26
|
Cao D, Fan J, Xi X, Zong Y, Wang D, Zhang H, Liu B. Transcriptome Analysis Identifies Key Genes Responsible for Red Coleoptiles in Triticum Monococcum. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24050932. [PMID: 30866466 PMCID: PMC6429503 DOI: 10.3390/molecules24050932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022]
Abstract
Red coleoptiles can help crops to cope with adversity and the key genes that are responsible for this trait have previously been isolated from Triticum aestivum, Triticum urartu, and Aegilops tauschii. This report describes the use of transcriptome analysis to determine the candidate gene that controls the trait for white coleoptiles in T. monococcum by screening three cultivars with white coleoptiles and two with red coleoptiles. Fifteen structural genes and two transcription factors that are involved in anthocyanin biosynthesis were identified from the assembled UniGene database through BLAST analysis and their transcript levels were then compared in white and red coleoptiles. The majority of the structural genes reflected lower transcript levels in the white than in the red coleoptiles, which implied that transcription factors related to anthocyanin biosynthesis could be candidate genes. The transcript levels of MYC transcription factor TmMYC-A1 were not significantly different between the white and red coleoptiles and all of the TmMYC-A1s contained complete functional domains. The deduced amino acid sequence of the MYB transcription factor TmMYB-A1 in red coleoptiles was homologous to TuMYB-A1, TaMYB-A1, TaMYB-B1, and TaMYB-D1, which control coleoptile color in corresponding species and contained the complete R2R3 MYB domain and the transactivation domain. TmMYB-a1 lost its two functional domains in white coleoptiles due to a single nucleotide deletion that caused premature termination at 13 bp after the initiation codon. Therefore, TmMYB-A1 is likely to be the candidate gene for the control of the red coleoptile trait, and its loss-of-function mutation leads to the white phenotype in T. monococcum.
Collapse
Affiliation(s)
- Dong Cao
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, Qinghai, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 800010, Qinghai, China.
| | - Jiequn Fan
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Xingyuan Xi
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, Qinghai, China.
| | - Yuan Zong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 800010, Qinghai, China.
| | - Dongxia Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 800010, Qinghai, China.
| | - Huaigang Zhang
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, Qinghai, China.
| | - Baolong Liu
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, Qinghai, China.
| |
Collapse
|
27
|
Bai Q, Duan B, Ma J, Fen Y, Sun S, Long Q, Lv J, Wan D. Coexpression of PalbHLH1 and PalMYB90 Genes From Populus alba Enhances Pathogen Resistance in Poplar by Increasing the Flavonoid Content. FRONTIERS IN PLANT SCIENCE 2019; 10:1772. [PMID: 32174927 PMCID: PMC7054340 DOI: 10.3389/fpls.2019.01772] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/18/2019] [Indexed: 05/20/2023]
Abstract
Secondary metabolites of the flavonoid pathway participate in plant defense, and bHLH and MYB transcription factors regulate the synthesis of these metabolites. Here, we define the regulatory mechanisms in response to pathogens. Two transcription factors from Populus alba var. pyramidalis, PalbHLH1 and PalMYB90, were overexpressed together in poplar, and transcriptome analysis revealed differences in response to pathogen infection. The transgenic plants showed elevated levels of several key flavonoid pathway components: total phenols, proanthocyanidins (PAs), and anthocyanins and intermediates quercetin and kaempferol. Furthermore, PalbHLH1 and PalMYB90 overexpression in poplar enhanced antioxidase activities and H2O2 release and also increased resistance to Botrytis cinerea and Dothiorella gregaria infection. Gene expression profile analysis showed most genes involved in the flavonoid biosynthesis pathway or antioxidant response to be upregulated in MYB90/bHLH1-OE poplar, but significant differential expression occurred in response to pathogen infection. Specifically, expression of PalF3H (flavanone 3-hydroxylase), PalDFR (dihydroflavonol 4-seductase), PalANS (anthocyanin synthase), and PalANR (anthocyanin reductase), which function in initial, middle, and final steps of anthocyanin and PA biosynthesis, respectively, was significantly upregulated in D. gregaria-infected MYB90/bHLH1-OE poplar. Our results highlight that PalbHLH1 and PalMYB90 function as transcriptional activators of flavonoid pathway secondary-metabolite synthesis genes, with differential mechanisms in response to bacterial or fungal infection.
Collapse
|
28
|
Song C, Liu Y, Song A, Dong G, Zhao H, Sun W, Ramakrishnan S, Wang Y, Wang S, Li T, Niu Y, Jiang J, Dong B, Xia Y, Chen S, Hu Z, Chen F, Chen S. The Chrysanthemum nankingense Genome Provides Insights into the Evolution and Diversification of Chrysanthemum Flowers and Medicinal Traits. MOLECULAR PLANT 2018; 11:1482-1491. [PMID: 30342096 DOI: 10.1016/j.molp.2018.10.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 05/21/2023]
Abstract
The Asteraceae (Compositae), a large plant family of approximately 24 000-35 000 species, accounts for ∼10% of all angiosperm species and contributes a lot to plant diversity. The most representative members of the Asteraceae are the economically important chrysanthemums (Chrysanthemum L.) that diversified through reticulate evolution. Biodiversity is typically created by multiple evolutionary mechanisms such as whole-genome duplication (WGD) or polyploidization and locally repetitive genome expansion. However, the lack of genomic data from chrysanthemum species has prevented an in-depth analysis of the evolutionary mechanisms involved in their diversification. Here, we used Oxford Nanopore long-read technology to sequence the diploid Chrysanthemum nankingense genome, which represents one of the progenitor genomes of domesticated chrysanthemums. Our analysis revealed that the evolution of the C. nankingense genome was driven by bursts of repetitive element expansion and WGD events including a recent WGD that distinguishes chrysanthemum from sunflower, which diverged from chrysanthemum approximately 38.8 million years ago. Variations of ornamental and medicinal traits in chrysanthemums are linked to the expansion of candidate gene families by duplication events including paralogous gene duplication. Collectively, our study of the assembled reference genome offers new knowledge and resources to dissect the history and pattern of evolution and diversification of chrysanthemum plants, and also to accelerate their breeding and improvement.
Collapse
Affiliation(s)
- Chi Song
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing 210095, China
| | | | - Hongbo Zhao
- Department of Ornamental Horticulture, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | | | - Ying Wang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan 430070, China
| | - Shuaibin Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China
| | - Tingzhao Li
- Amway (China) Botanical R&D Center, Wuxi 214115, China
| | - Yan Niu
- Wuhan Benagen Tech Solutions Company Limited, Wuhan 430070, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing 210095, China
| | - Bin Dong
- Department of Ornamental Horticulture, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ye Xia
- Wuhan Benagen Tech Solutions Company Limited, Wuhan 430070, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing 210095, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing 210095, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
29
|
Zhu J, Wang X, Xu Q, Zhao S, Tai Y, Wei C. Global dissection of alternative splicing uncovers transcriptional diversity in tissues and associates with the flavonoid pathway in tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2018; 18:266. [PMID: 30400863 PMCID: PMC6219262 DOI: 10.1186/s12870-018-1497-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/25/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Alternative splicing (AS) regulates mRNA at the post-transcriptional level to change gene function in organisms. However, little is known about the AS and its roles in tea plant (Camellia sinensis), widely cultivated for making a popular beverage tea. RESULTS In our study, the AS landscape and dynamics were characterized in eight tissues (bud, young leaf, summer mature leaf, winter old leaf, stem, root, flower, fruit) of tea plant by Illumina RNA-Seq and confirmed by Iso-Seq. The most abundant AS (~ 20%) was intron retention and involved in RNA processes. The some alternative splicings were found to be tissue specific in stem and root etc. Thirteen co-expressed modules of AS transcripts were identified, which revealed a similar pattern between the bud and young leaves as well as a distinct pattern between seasons. AS events of structural genes including anthocyanidin reductase and MYB transcription factors were involved in biosynthesis of flavonoid, especially in vegetative tissues. The AS isoforms rather than the full-length ones were the major transcripts involved in flavonoid synthesis pathway, and is positively correlated with the catechins content conferring the tea taste. We propose that the AS is an important functional mechanism in regulating flavonoid metabolites. CONCLUSION Our study provides the insight into the AS events underlying tea plant's uniquely different developmental process and highlights the important contribution and efficacy of alternative splicing regulatory function to biosynthesis of flavonoids.
Collapse
Affiliation(s)
- Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Xuewen Wang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
- Department of Genetics, University of Georgia, 120 E Green Street, Athens, GA 30602 USA
| | - Qingshan Xu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Yuling Tai
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| |
Collapse
|
30
|
Naing AH, Kim CK. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants. PLANT MOLECULAR BIOLOGY 2018; 98:1-18. [PMID: 30167900 DOI: 10.1007/s11103-018-0771-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/23/2018] [Indexed: 05/20/2023]
Abstract
This review contains functional roles of MYB transcription factors in the transcriptional regulation of anthocyanin biosynthesis in horticultural plants. This review describes potential uses of MYB TFs as tools for metabolic engineering for anthocyanin production. Anthocyanins (ranging from red to blue) are controlled by specific branches of the anthocyanin biosynthetic pathway and are mostly visible in ornamentals, fruits, and vegetables. In the present review, we describe which R2R3-MYB transcription factors (TFs) control the transcriptional regulation of anthocyanin structural genes involved in the specific branches of the anthocyanin biosynthetic pathway in various horticultural plants (e.g., ornamentals, fruits, and vegetables). In addition, some MYBs responsible for anthocyanin accumulation in specific tissues are described. Moreover, we highlight the phylogenetic relationships of the MYBs that suppress or promote anthocyanin synthesis in horticultural crops. Enhancement of anthocyanin synthesis via metabolic genetic engineering of anthocyanin MYBs, which is described in the review, is indicative of the potential use of the mentioned anthocyanin-related MYBs as tools for anthocyanin production. Therefore, the MYBs would be suitable for metabolic genetic engineering for improvement of flower colors, fruit quality, and vegetable nutrients.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
31
|
Characterization and functional analysis of a MYB gene (GbMYBFL) related to flavonoid accumulation in Ginkgo biloba. Genes Genomics 2017; 40:49-61. [PMID: 29892898 DOI: 10.1007/s13258-017-0609-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Flavonoids are a group of metabolites in Ginkgo biloba thought to provide health benefits. R2R3-MYB transcription factors (TFs) play key roles in the transcriptional regulation of the flavonoid biosynthesis in plants. In this study, an R2R3-MYB transcription factor gene, GbMYBFL, was isolated from G. biloba and characterized. Results of bioinformatic analysis indicated that GbMYBFL is more closely related to the R2R3-MYB involved in flavonoid biosynthesis and displayed high similarity to MYB from other plants. The genmomic sequence of GbMYBFL had three exons and two introns, with its upstream sequence containing cis-acting regulatory elements Myb binding site, Myc recognition sites, and light, SA, MeJA responsive elements. Subcellular localization analysis indicates that GbMYBFL was located in the nucleus. Quantitative real-time PCR revealed that GbMYBFL was expressed in leaves, stems, roots, young fruits, male flower and female flower, and the level of transcription in male flower and leaves were higher than that in female flower, stems, roots, and young fruits. During G. biloba leaf growth, the transcription of GbMYBFL is positively correlated with the flavonoid content, suggesting that the GbMYBFL is involved in the flavonoid biosynthesis. Overexpression of GbMYBFL under the control of the CaMV35S promoter in Ginkgo callus notably enhanced the accumulation of flavonoids and anthocyanin compared with non-transformed callus. This finding suggested that GbMYBFL positively related to flavonoid biosynthesis, and the overexpression of GbMYBFL was sufficient to induce flavonoids and anthocyanin accumulation.
Collapse
|
32
|
Xiao Q, Wang Y, Du J, Li H, Wei B, Wang Y, Li Y, Yu G, Liu H, Zhang J, Liu Y, Hu Y, Huang Y. ZmMYB14 is an important transcription factor involved in the regulation of the activity of theZmBT1 promoter in starch biosynthesis in maize. FEBS J 2017; 284:3079-3099. [DOI: 10.1111/febs.14179] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/03/2017] [Accepted: 07/17/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Qianlin Xiao
- College of Agronomy; Sichuan Agricultural University; Chengdu China
| | - Yayun Wang
- College of Agronomy; Sichuan Agricultural University; Chengdu China
| | - Jia Du
- College of Life Science; Sichuan Agricultural University; Ya'an China
| | - Hui Li
- College of Agronomy; Sichuan Agricultural University; Chengdu China
| | - Bin Wei
- College of Agronomy; Sichuan Agricultural University; Chengdu China
| | - Yongbin Wang
- College of Agronomy; Sichuan Agricultural University; Chengdu China
| | - Yangping Li
- College of Agronomy; Sichuan Agricultural University; Chengdu China
| | - Guowu Yu
- College of Agronomy; Sichuan Agricultural University; Chengdu China
| | - Hanmei Liu
- College of Life Science; Sichuan Agricultural University; Ya'an China
| | - Junjie Zhang
- College of Life Science; Sichuan Agricultural University; Ya'an China
| | - Yinghong Liu
- Maize Research Institute; Sichuan Agricultural University; Chengdu China
| | - Yufeng Hu
- College of Agronomy; Sichuan Agricultural University; Chengdu China
| | - Yubi Huang
- College of Agronomy; Sichuan Agricultural University; Chengdu China
| |
Collapse
|
33
|
Wang L, Ran L, Hou Y, Tian Q, Li C, Liu R, Fan D, Luo K. The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar. THE NEW PHYTOLOGIST 2017; 215:351-367. [PMID: 28444797 DOI: 10.1111/nph.14569] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/06/2017] [Indexed: 05/20/2023]
Abstract
Proanthocyanidins (PAs) are major defense phenolic compounds in the leaves of poplar (Populus spp.) in response to abiotic and biotic stresses. Transcriptional regulation of PA biosynthetic genes by the MYB-basic helix-loop-helix (bHLH)-WD40 complexes in poplar is not still fully understood. Here, an Arabidopsis TT2-like gene MYB115 was isolated from Populus tomentosa and characterized by various molecular, genetic and biochemical approaches. MYB115 restored PA productions in the seed coat of the Arabidopsis tt2 mutant. Overexpression of MYB115 in poplar activated expression of PA biosynthetic genes, resulting in a significant increase in PA concentrations. By contrast, the CRISPR/Cas9-generated myb115 mutant exhibited reduced PA content and decreased expression of PA biosynthetic genes. MYB115 directly activated the promoters of PA-specific structural genes. MYB115 interacted with poplar TT8. Coexpression of MYB115, TT8 and poplar TTG1 significantly enhanced the expression of ANR1 and LAR3. Additionally, transgenic plants overexpressing MYB115 had increased resistance to the fungal pathogen Dothiorella gregaria, whereas myb115 mutant exhibited greater sensitivity compared with wild-type plants. Our data provide insight into the regulatory mechanisms controlling PA biosynthesis by MYB115 in poplar, which could be effectively employed for metabolic engineering of PAs to improve resistance to fungal pathogens.
Collapse
Affiliation(s)
- Lijun Wang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingyu Ran
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yisu Hou
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qiaoyan Tian
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chaofeng Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, China
| | - Rui Liu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Di Fan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
34
|
De novo assembly and annotation of the Zhe-Maidong (Ophiopogon japonicus (L.f.) Ker-Gawl) transcriptome in different growth stages. Sci Rep 2017; 7:3616. [PMID: 28620183 PMCID: PMC5472570 DOI: 10.1038/s41598-017-03937-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/05/2017] [Indexed: 12/28/2022] Open
Abstract
Zhe-Maidong (Ophiopogon japonicus (L.f.) Ker-Gawl) is a traditional medicinal herb in the family Liliaceae that has significant pharmacological effects on immunity and cardiovascular disease. In this study, three different growth stages of Zhe-Maidong were investigated using RNA-seq, and a total of 16.4 Gb of raw data was obtained. After filtering and assembling, 96,738 unigenes with an average length of 605.3 bp were ultimately generated. A total of 77,300 unigenes were annotated using information from five databases, including the NT, NR, SwissProt, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases. Additionally, the mechanisms of flavonoid, saponin and polysaccharide biosynthesis and of accumulation at different stages of tuber development were also characterized. From the first to third years, the contents of flavonoids, saponins and polysaccharides all increased, whereas the expression levels of related genes decreased in the flavonoid and saponin pathways and first increased and then decreased in the polysaccharide pathway. The results of this study provide the most comprehensive expressed sequence resource for Zhe-Maidong and will expand the available O. japonicus gene library and facilitate further genome-wide research and analyses of this species.
Collapse
|
35
|
Dasgupta K, Thilmony R, Stover E, Oliveira ML, Thomson J. Novel R2R3-MYB transcription factors from Prunus americana regulate differential patterns of anthocyanin accumulation in tobacco and citrus. GM CROPS & FOOD 2017; 8:85-105. [PMID: 28051907 PMCID: PMC5443614 DOI: 10.1080/21645698.2016.1267897] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 11/17/2022]
Abstract
The level of anthocyanins in plants vary widely among cultivars, developmental stages and environmental stimuli. Previous studies have reported that the expression of various MYBs regulate anthocyanin pigmentation during growth and development. Here we examine the activity of 3 novel R2R3-MYB transcription factor (TF) genes, PamMybA.1, PamMybA.3 and PamMybA.5 from Prunus americana. The anthocyanin accumulation patterns mediated by CaMV double35S promoter (db35Sp) controlled expression of the TFs in transgenic tobacco were compared with citrus-MoroMybA, Arabidopsis-AtMybA1 and grapevine-VvMybA1 transgenics during their entire growth cycles. The db35Sp-PamMybA.1 and db35Sp-PamMybA.5 constructs induced high levels of anthocyanin accumulation in both transformed tobacco calli and the regenerated plants. The red/purple color pigmentation induced in the PamMybA.1 and PamMybA.5 lines was not uniformly distributed, but appeared as patches in the leaves, whereas the flowers showed intense uniform pigmentation similar to the VvMybA1 expressing lines. MoroMybA and AtMybA1 showed more uniform pink coloration in both vegetative and reproductive tissues. Plant morphology, anthocyanin content, seed viability, and transgene inheritance were examined for the PamMybA.5 transgenic plants and compared with the controls. We conclude that these TFs alone are sufficient for activating anthocyanin production in plants and may be used as visible reporter genes for plant transformation. Evaluating these TFs in a heterologous crop species such as citrus further validated that these genes can be useful for the metabolic engineering of anthocyanin production and cultivar enhancement.
Collapse
Affiliation(s)
- Kasturi Dasgupta
- Department of Plant Sciences, UC Davis, Davis, CA, USA
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Roger Thilmony
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Ed Stover
- USDA-ARS Subtropical Insects and Horticulture Research Unit, Fort Pierce, FL, USA
| | - Maria Luiza Oliveira
- USDA-ARS Subtropical Insects and Horticulture Research Unit, Fort Pierce, FL, USA
| | - James Thomson
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| |
Collapse
|
36
|
Xu ZS, Feng K, Que F, Wang F, Xiong AS. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots. Sci Rep 2017; 7:45324. [PMID: 28345675 PMCID: PMC5366895 DOI: 10.1038/srep45324] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/23/2017] [Indexed: 11/09/2022] Open
Abstract
Carrots are widely grown and enjoyed around the world. Purple carrots accumulate rich anthocyanins in the taproots, while orange, yellow, and red carrots accumulate rich carotenoids in the taproots. Our previous studies indicated that variation in the activity of regulatory genes may be responsible for variations in anthocyanin production among various carrot cultivars. In this study, an R2R3-type MYB gene, designated as DcMYB6, was isolated from a purple carrot cultivar. In a phylogenetic analysis, DcMYB6 was grouped into an anthocyanin biosynthesis-related MYB clade. Sequence analyses revealed that DcMYB6 contained the conserved bHLH-interaction motif and two atypical motifs of anthocyanin regulators. The expression pattern of DcMYB6 was correlated with anthocyanin production. DcMYB6 transcripts were detected at high levels in three purple carrot cultivars but at much lower levels in six non-purple carrot cultivars. Overexpression of DcMYB6 in Arabidopsis led to enhanced anthocyanin accumulation in both vegetative and reproductive tissues and upregulated transcript levels of all seven tested anthocyanin-related structural genes. Together, these results show that DcMYB6 is involved in regulating anthocyanin biosynthesis in purple carrots. Our results provide new insights into the regulation of anthocyanin synthesis in purple carrot cultivars.
Collapse
Affiliation(s)
- Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
37
|
Guo J, Ling H, Ma J, Chen Y, Su Y, Lin Q, Gao S, Wang H, Que Y, Xu L. A sugarcane R2R3-MYB transcription factor gene is alternatively spliced during drought stress. Sci Rep 2017; 7:41922. [PMID: 28167824 PMCID: PMC5294458 DOI: 10.1038/srep41922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/30/2016] [Indexed: 11/28/2022] Open
Abstract
MYB transcription factors of the R2R3-MYB family have been shown to play important roles in many plant processes. A sugarcane R2R3-MYB gene (ScMYB2) and its two alternative forms of transcript (ScMYB2S1 and ScMYB2S2) were identified in this study. The deduced protein of ScMYB2S1 is a typical plant R2R3-MYB protein, while ScMYB2S2 encodes a truncated protein. Real-time qPCR analysis revealed that ScMYB2S1 is suppressed under PEG-simulated drought stress in sugarcane, while ScMYB2S2 is induced at later treatment stage. A senescence symptom was observed when ScMYB2S1 was injected into tobacco leaves mediated by Agrobacterium, but no symptom for ScMYB2S2. Further investigation showed that the expression levels of 4 senescence-associated genes, NtPR-1a, NtNYC1, NtCAT3 and NtABRE, were markedly induced in tobacco leaves after ScMYB2S1-injection, while they were not sensitive to ScMYB2S2-injection. Moreover, MDA and proline were also investigated after injection. Similarly, MDA and proline levels were induced by ABA and ScMYB2S1, while inhibited by ScMYB2S2. We propose that ScMYB2, by alternatively splicing two transcripts (ScMYB2S1 and ScMYB2S2), is involved in an ABA-mediated leaf senescence signaling pathway and play positive role in respond to drought-induced senescence in sugarcane. The results of this study provide information for further research in sugarcane stress processes.
Collapse
Affiliation(s)
- Jinlong Guo
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hui Ling
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jingjing Ma
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yun Chen
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yachun Su
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qingliang Lin
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Shiwu Gao
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hengbo Wang
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Youxiong Que
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Liping Xu
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
38
|
Huang W, Lv H, Wang Y. Functional Characterization of a Novel R2R3-MYB Transcription Factor Modulating the Flavonoid Biosynthetic Pathway from Epimedium sagittatum. FRONTIERS IN PLANT SCIENCE 2017; 8:1274. [PMID: 28769969 PMCID: PMC5515856 DOI: 10.3389/fpls.2017.01274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/06/2017] [Indexed: 05/04/2023]
Abstract
Epimedium species have been widely used both as traditional Chinese medicinal plants and ornamental perennials. Both flavonols, acting as the major bioactive components (BCs) and anthocyanins, predominantly contributing to the color diversity of Epimedium flowers belong to different classes of flavonoids. It is well-acknowledged that flavonoid biosynthetic pathway is predominantly regulated by R2R3-MYB transcription factor (TF) as well as bHLH TF and WD40 protein at the transcriptional level. MYB TFs specifically regulating anthocyanin or flavonol biosynthetic pathway have been already isolated and functionally characterized from Epimedium sagittatum, but a R2R3-MYB TF involved in regulating both these two pathways has not been functionally characterized to date in Epimedium plants. In this study, we report the functional characterization of EsMYB9, a R2R3-MYB TF previously isolated from E. sagittatum. The previous study indicated that EsMYB9 belongs to a small subfamily of R2R3-MYB TFs containing grape VvMYB5a and VvMYB5b TFs, which regulate flavonoid biosynthetic pathway. The present studies show that overexpression of EsMYB9 in tobacco leads to increased transcript levels of flavonoid pathway genes and increased contents of anthocyanins and flavonols. Yeast two-hybrid assay indicates that the C-terminal region of EsMYB9 contributes to the autoactivation activity, and EsMYB9 interacts with EsTT8 or AtTT8 bHLH regulator. Transient reporter assay shows that EsMYB9 slightly activates the expression of EsCHS (chalcone synthase) promoter in transiently transformed leaves of Nicotiana benthamiana, but the addition of AtTT8 or EsTT8 bHLH regulator strongly enhances the transcriptional activation of EsMYB9 against five promoters of the flavonoid pathway genes except EsFLS (flavonol synthase). In addition, co-transformation of EsMYB9 and EsTT8 in transiently transfected tobacco leaves strongly induces the expressions of flavonoid biosynthetic genes. The potential role of EsMYB9 in modulating the biosynthesis and accumulation of sucrose-induced anthocyanin and flavonol-derived BCs is also discussed. These findings suggest that EsMYB9 is a novel R2R3-MYB TF, which regulates the flavonoid biosynthetic pathway in Epimedium, but distinctly different with the anthocyanin or flavonol-specific MYB regulators identified previously in Epimedium plants.
Collapse
Affiliation(s)
- Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Haiyan Lv
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- *Correspondence: Ying Wang,
| |
Collapse
|
39
|
Sheshadri SA, Nishanth MJ, Simon B. Stress-Mediated cis-Element Transcription Factor Interactions Interconnecting Primary and Specialized Metabolism in planta. FRONTIERS IN PLANT SCIENCE 2016; 7:1725. [PMID: 27933071 PMCID: PMC5122738 DOI: 10.3389/fpls.2016.01725] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/02/2016] [Indexed: 05/07/2023]
Abstract
Plant specialized metabolites are being used worldwide as therapeutic agents against several diseases. Since the precursors for specialized metabolites come through primary metabolism, extensive investigations have been carried out to understand the detailed connection between primary and specialized metabolism at various levels. Stress regulates the expression of primary and specialized metabolism genes at the transcriptional level via transcription factors binding to specific cis-elements. The presence of varied cis-element signatures upstream to different stress-responsive genes and their transcription factor binding patterns provide a prospective molecular link among diverse metabolic pathways. The pattern of occurrence of these cis-elements (overrepresentation/common) decipher the mechanism of stress-responsive upregulation of downstream genes, simultaneously forming a molecular bridge between primary and specialized metabolisms. Though many studies have been conducted on the transcriptional regulation of stress-mediated primary or specialized metabolism genes, but not much data is available with regard to cis-element signatures and transcription factors that simultaneously modulate both pathway genes. Hence, our major focus would be to present a comprehensive analysis of the stress-mediated interconnection between primary and specialized metabolism genes via the interaction between different transcription factors and their corresponding cis-elements. In future, this study could be further utilized for the overexpression of the specific transcription factors that upregulate both primary and specialized metabolism, thereby simultaneously improving the yield and therapeutic content of plants.
Collapse
Affiliation(s)
| | | | - Bindu Simon
- School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
40
|
He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M, Ma YZ, Xu ZS. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC PLANT BIOLOGY 2016; 16:116. [PMID: 27215938 PMCID: PMC4877946 DOI: 10.1186/s12870-016-0806-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Drought stress is one of the major causes of crop loss. WRKY transcription factors, as one of the largest transcription factor families, play important roles in regulation of many plant processes, including drought stress response. However, far less information is available on drought-responsive WRKY genes in wheat (Triticum aestivum L.), one of the three staple food crops. RESULTS Forty eight putative drought-induced WRKY genes were identified from a comparison between de novo transcriptome sequencing data of wheat without or with drought treatment. TaWRKY1 and TaWRKY33 from WRKY Groups III and II, respectively, were selected for further investigation. Subcellular localization assays revealed that TaWRKY1 and TaWRKY33 were localized in the nuclei in wheat mesophyll protoplasts. Various abiotic stress-related cis-acting elements were observed in the promoters of TaWRKY1 and TaWRKY33. Quantitative real-time PCR (qRT-PCR) analysis showed that TaWRKY1 was slightly up-regulated by high-temperature and abscisic acid (ABA), and down-regulated by low-temperature. TaWRKY33 was involved in high responses to high-temperature, low-temperature, ABA and jasmonic acid methylester (MeJA). Overexpression of TaWRKY1 and TaWRKY33 activated several stress-related downstream genes, increased germination rates, and promoted root growth in Arabidopsis under various stresses. TaWRKY33 transgenic Arabidopsis lines showed lower rates of water loss than TaWRKY1 transgenic Arabidopsis lines and wild type plants during dehydration. Most importantly, TaWRKY33 transgenic lines exhibited enhanced tolerance to heat stress. CONCLUSIONS The functional roles highlight the importance of WRKYs in stress response.
Collapse
Affiliation(s)
- Guan-Hua He
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Ji-Yuan Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yan-Xia Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, Hebei, 050041, China
| | - Jia-Ming Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Pan-Song Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
41
|
Huang W, Khaldun ABM, Lv H, Du L, Zhang C, Wang Y. Isolation and functional characterization of a R2R3-MYB regulator of the anthocyanin biosynthetic pathway from Epimedium sagittatum. PLANT CELL REPORTS 2016; 35:883-94. [PMID: 26849670 DOI: 10.1007/s00299-015-1929-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/18/2015] [Accepted: 12/29/2015] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE A R2R3-MYB transcription factor EsAN2 was isolated from Epimedium sagittatum and functionally characterized to regulate the anthocyanin biosynthetic pathway. Epimedium plants are used widely both as traditional Chinese medicinal herbs and ornamental perennials. Anthocyanins, acting as major contributors to plant color diversity, their biosynthesis are regulated by a series of transcription factors, including MYB, bHLH and WD40 protein. Previously, a MYB transcription factor involved in regulation of the anthocyanin pathway from Epimedium sagittatum, EsMYBA1 has been isolated, but was found to be expressed mostly in leaves. In this research, another MYB transcription factor, designated as EsAN2, was isolated from flowers by the screening of E. sagittatum EST database. Preferential expression of EsAN2 in flowers and flower buds was found. Ectopic expression of EsAN2 in tobacco significantly enhanced the anthocyanin biosynthesis and accumulation, both in leaves and flowers. Most structural genes of the anthocyanin biosynthetic pathway were strongly upregulated, as well as two bHLH regulators (NtAn1a and NtAn1b) in old leaves of tobacco overexpressing EsAN2, compared to the control plants. While only three structural genes, chalcone synthase (CHS), chalcone isomerase (CHI) and anthocyanidin synthase (ANS), were upregulated by EsAN2 ectopic expression in tobacco flowers. Yeast two-hybrid assay showed that EsAN2 was capable of interacting with four bHLH regulators of the anthocyanin biosynthetic pathway. These results suggest that EsAN2 is involved in regulation of the anthocyanin biosynthesis in Epimedium flowers. Identification and characterization of EsAN2 provide insight into the coloration of Epimedium flowers and a potential candidate gene for metabolic engineering of flavonoids in the future.
Collapse
Affiliation(s)
- Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, Hubei, China
| | - A B M Khaldun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, Hubei, China
| | - Haiyan Lv
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, Hubei, China
| | - Liuwen Du
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, Hubei, China
- University of the Chinese Academy of Sciences, 100039, Beijing, China
| | - Chanjuan Zhang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agriculture Sciences, 430062, Wuhan, Hubei, China
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, Hubei, China.
| |
Collapse
|
42
|
Lim SH, Song JH, Kim DH, Kim JK, Lee JY, Kim YM, Ha SH. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1. PLANT CELL REPORTS 2016; 35:641-53. [PMID: 26703384 DOI: 10.1007/s00299-015-1909-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/04/2015] [Accepted: 11/19/2015] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE RsMYB1, a MYB TF of red radish origin, was characterized as a positive regulator to transcriptionally activate the anthocyanin biosynthetic machinery by itself in Arabidopsis and tobacco plants. Anthocyanins, providing the bright red-orange to blue-violet colors, are flavonoid-derived pigments with strong antioxidant activity that have benefits for human health. We isolated RsMYB1, which encodes an R2R3-MYB transcription factor (TF), from red radish plants (Raphanus sativus L.) that accumulate high levels of anthocyanins. RsMYB1 shows higher expression in red radish than in common white radish, in both leaves and roots, at different growth stages. Consistent with RsMYB1 function as an anthocyanin-promoting TF, red radishes showed higher expression of all six anthocyanin biosynthetic and two anthocyanin regulatory genes. Transient expression of RsMYB1 in tobacco showed that RsMYB1 is a positive regulator of anthocyanin production with better efficiency than the basic helix-loop-helix (bHLH) TF gene B-Peru. Also, the synergistic effect of RsMYB1 with B-Peru was larger than the effect of the MYB TF gene mPAP1D with B-peru. Arabidopsis plants stably expressing RsMYB1 produced red pigmentation throughout the plant, accompanied by up-regulation of the six structural and two regulatory genes for anthocyanin production. This broad transcriptional activation of anthocyanin biosynthetic machinery in Arabidopsis included up-regulation of TRANSPARENT TESTA8, which encodes a bHLH TF. These results suggest that overexpression of RsMYB1 promotes anthocyanin production by triggering the expression of endogenous bHLH genes as potential binding partners for RsMYB1. In addition, RsMYB1-overexpressing Arabidopsis plants had a higher antioxidant capacity than did non-transgenic control plants. Taken together, RsMYB1 is an actively positive regulator for anthocyanins biosynthesis in radish plants and it might be one of the best targets for anthocyanin production by single gene manipulation being applicable in diverse plant species.
Collapse
Affiliation(s)
- Sun-Hyung Lim
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea.
| | - Ji-Hye Song
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Da-Hye Kim
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jong-Yeol Lee
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Young-Mi Kim
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Sun-Hwa Ha
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
43
|
Bose Mazumdar A, Chattopadhyay S. Sequencing, De novo Assembly, Functional Annotation and Analysis of Phyllanthus amarus Leaf Transcriptome Using the Illumina Platform. FRONTIERS IN PLANT SCIENCE 2016; 6:1199. [PMID: 26858723 PMCID: PMC4729934 DOI: 10.3389/fpls.2015.01199] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/14/2015] [Indexed: 05/23/2023]
Abstract
Phyllanthus amarus Schum. and Thonn., a widely distributed annual medicinal herb has a long history of use in the traditional system of medicine for over 2000 years. However, the lack of genomic data for P. amarus, a non-model organism hinders research at the molecular level. In the present study, high-throughput sequencing technology has been employed to enhance better understanding of this herb and provide comprehensive genomic information for future work. Here P. amarus leaf transcriptome was sequenced using the Illumina Miseq platform. We assembled 85,927 non-redundant (nr) "unitranscript" sequences with an average length of 1548 bp, from 18,060,997 raw reads. Sequence similarity analyses and annotation of these unitranscripts were performed against databases like green plants nr protein database, Gene Ontology (GO), Clusters of Orthologous Groups (COG), PlnTFDB, KEGG databases. As a result, 69,394 GO terms, 583 enzyme codes (EC), 134 KEGG maps, and 59 Transcription Factor (TF) families were generated. Functional and comparative analyses of assembled unitranscripts were also performed with the most closely related species like Populus trichocarpa and Ricinus communis using TRAPID. KEGG analysis showed that a number of assembled unitranscripts were involved in secondary metabolites, mainly phenylpropanoid, flavonoid, terpenoids, alkaloids, and lignan biosynthetic pathways that have significant medicinal attributes. Further, Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values of the identified secondary metabolite pathway genes were determined and Reverse Transcription PCR (RT-PCR) of a few of these genes were performed to validate the de novo assembled leaf transcriptome dataset. In addition 65,273 simple sequence repeats (SSRs) were also identified. To the best of our knowledge, this is the first transcriptomic dataset of P. amarus till date. Our study provides the largest genetic resource that will lead to drug development and pave the way in deciphering various secondary metabolite biosynthetic pathways in P. amarus, especially those conferring the medicinal attributes of this potent herb.
Collapse
|
44
|
Huang W, Khaldun ABM, Chen J, Zhang C, Lv H, Yuan L, Wang Y. A R2R3-MYB Transcription Factor Regulates the Flavonol Biosynthetic Pathway in a Traditional Chinese Medicinal Plant, Epimedium sagittatum. FRONTIERS IN PLANT SCIENCE 2016; 7:1089. [PMID: 27493658 PMCID: PMC4954812 DOI: 10.3389/fpls.2016.01089] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/11/2016] [Indexed: 05/02/2023]
Abstract
Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components (BCs) in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from Epimedium sagittatum, but a R2R3-MYB transcription factor regulating the flavonol synthesis has not been functionally characterized so far in Epimedium plants. In this study, we isolated and characterized the R2R3-MYB transcription factor EsMYBF1 involved in regulation of the flavonol biosynthetic pathway from E. sagittatum. Sequence analysis indicated that EsMYBF1 belongs to the subgroup 7 of R2R3-MYB family which contains the flavonol-specific MYB regulators identified to date. Transient reporter assay showed that EsMYBF1 strongly activated the promoters of EsF3H (flavanone 3-hydroxylase) and EsFLS (flavonol synthase), but not the promoters of EsDFRs (dihydroflavonol 4-reductase) and EsANS (anthocyanidin synthase) in transiently transformed Nicotiana benthamiana leaves. Both yeast two-hybrid assay and transient reporter assay validated EsMYBF1 to be independent of EsTT8, or AtTT8 bHLH regulators of the flavonoid pathway as cofactors. Ectopic expression of EsMYBF1 in transgenic tobacco resulted in the increased flavonol content and the decreased anthocyanin content in flowers. Correspondingly, the structural genes involved in flavonol synthesis were upregulated in the EsMYBF1 overexpression lines, including NtCHS (chalcone synthase), NtCHI (chalcone isomerase), NtF3H and NtFLS, whereas the late biosynthetic genes of the anthocyanin pathway (NtDFR and NtANS) were remarkably downregulated, compared to the controls. These results suggest that EsMYBF1 is a flavonol-specific R2R3-MYB regulator, and involved in regulation of the biosynthesis of the flavonol-derived BCs in E. sagittatum. Thus, identification and functional characterization of EsMYBF1 provide insight into understanding the biosynthesis and regulation of the flavonol-derived BCs in Epimedium plants, and also provide an effective tool gene for genetic manipulation to improve the flavonol synthesis.
Collapse
Affiliation(s)
- Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
| | - A. B. M. Khaldun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
| | - Jianjun Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
| | - Chanjuan Zhang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agriculture SciencesWuhan, China
| | - Haiyan Lv
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, USA
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
- *Correspondence: Ying Wang,
| |
Collapse
|
45
|
PyMYB10 and PyMYB10.1 Interact with bHLH to Enhance Anthocyanin Accumulation in Pears. PLoS One 2015; 10:e0142112. [PMID: 26536358 PMCID: PMC4633228 DOI: 10.1371/journal.pone.0142112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/16/2015] [Indexed: 11/23/2022] Open
Abstract
Color is an important agronomic trait of pears, and the anthocyanin content of fruit is immensely significant for pear coloring. In this study, an anthocyanin-activating R2R3-MYB transcription factor gene, PyMYB10.1, was isolated from fruits of red sand pear (Pyrus pyrifolia cv. Aoguan). Alignments of the nucleotide and amino acid sequences suggested that PyMYB10.1 was involved in anthocyanin regulation. Similar to PyMYB10, PyMYB10.1 was predominantly expressed in red tissues, including the skin, leaf and flower, but it was minimally expressed in non-red fruit flesh. The expression of this gene could be induced by light. Dual-luciferase assays indicated that both PyMYB10 and PyMYB10.1 activated the AtDFR promoter. The activation of AtDFR increased to a greater extent when combined with a bHLH co-factor, such as PybHLH, MrbHLH1, MrbHLH2, or AtbHLH2. However, the response of this activation depended on the protein complex formed. PyMYB10-AtbHLH2 activated the AtDFR promoter to a greater extent than other combinations of proteins. PyMYB10-AtbHLH2 also induced the highest anthocyanin accumulation in tobacco transient-expression assays. Moreover, PybHLH interacted with PyMYB10 and PyMYB10.1. These results suggest that both PyMYB10 and PyMYB10.1 are positive anthocyanin biosynthesis regulators in pears that act via the formation of a ternary complex with PybHLH. The functional characterization of PyMYB10 and PyMYB10.1 will aid further understanding of the anthocyanin regulation in pears.
Collapse
|
46
|
Chen J, Xu Y, Wei G, Liao S, Zhang Y, Huang W, Yuan L, Wang Y. Chemotypic and genetic diversity in Epimedium sagittatum from different geographical regions of China. PHYTOCHEMISTRY 2015; 116:180-187. [PMID: 25936868 DOI: 10.1016/j.phytochem.2015.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/25/2015] [Accepted: 04/20/2015] [Indexed: 05/07/2023]
Abstract
Different geographical plant populations within a single species can exhibit variation, in the production of secondary metabolites. Genetic and environmental variations both contribute to differences between populations; however, the relative importance of these factors is unclear. Here, the extent of variation in the production of four flavonoid glycosides (epimedin A, B, C and icariin) were investigated in eleven wild populations of Epimedium sagittatum used in traditional Chinese medicine. Secondary metabolite profiles were classified into five chemotypes. A common garden experiment indicated this chemotype variation has a significant genetic basis. Extensive genetic variation among intraspecific populations was shown using a retrotransposon-based molecular marker system. These results will assist in development of strategies for conservation, utilization and domestication of E. sagittatum.
Collapse
Affiliation(s)
- Jianjun Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Yanqin Xu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Guoyan Wei
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Sihong Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Yanjun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China.
| |
Collapse
|
47
|
Liu J, Osbourn A, Ma P. MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in Plants. MOLECULAR PLANT 2015; 8:689-708. [PMID: 25840349 DOI: 10.1016/j.molp.2015.03.012] [Citation(s) in RCA: 502] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 02/19/2015] [Accepted: 03/24/2015] [Indexed: 05/18/2023]
Abstract
Phenylpropanoid-derived compounds represent a diverse family of secondary metabolites that originate from phenylalanine. These compounds have roles in plant growth and development, and in defense against biotic and abiotic stress. Many of these compounds are also beneficial to human health and welfare. V-myb myeloblastosis viral oncogene homolog (MYB) proteins belong to a large family of transcription factors and are key regulators of the synthesis of phenylpropanoid-derived compounds. This review summarizes the current understanding of MYB proteins and their roles in the regulation of phenylpropanoid metabolism in plants.
Collapse
Affiliation(s)
- Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
48
|
An CH, Lee KW, Lee SH, Jeong YJ, Woo SG, Chun H, Park YI, Kwak SS, Kim CY. Heterologous expression of IbMYB1a by different promoters exhibits different patterns of anthocyanin accumulation in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 89:1-10. [PMID: 25681576 DOI: 10.1016/j.plaphy.2015.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/05/2015] [Indexed: 05/18/2023]
Abstract
We previously reported that the transient and stable expression of IbMYB1a produced anthocyanin pigmentation in tobacco leaves and transgenic Arabidopsis plants, respectively. To further determine the effects of different promoters on the expression of IbMYB1a and anthocyanin production, we generated and characterized stably transformed tobacco (Nicotiana tabacum SR1) plants expressing IbMYB1a under the control of three different promoters. We compared the differences in anthocyanin accumulation patterns and phenotypic features of the leaves of these transgenic tobacco plants during growth. Expression of IbMYB1a under the control of these three different promoters led to a remarkable variation in anthocyanin pigmentation in tobacco leaves. The anthocyanin contents of the leaves of the SPO-IbMYB1a-OX (SPO-M) line were higher than those of the SWPA2-IbMYB1a-OX (SPA-M) and 35S-IbMYB1a-OX (35S-M) lines. High levels of anthocyanin pigments negatively affected plant growth in the SPO-M lines, resulting delayed growth and, occasionally, a stunted phenotype. Furthermore, HPLC analysis revealed that transcriptional regulation of IbMYB1a led to the production of cyanidin-based anthocyanins in the tobacco plants. In addition, RT-PCR analysis revealed that IbMYB1a expression induced the up-regulation of several structural genes in the anthocyanin biosynthetic pathway, including DFR and ANS. Differential expression levels of IbMYB1a under the control of different promoters were highly correlated with the expression levels of the structural genes, thereby affecting anthocyanin production levels. These results indicate that IbMYB1a positively controls the expression of multiple anthocyanin biosynthetic genes and anthocyanin accumulation in heterologous tobacco plants.
Collapse
Affiliation(s)
- Chul Han An
- Eco-friendly Bio-Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 580-185, Republic of Korea; Department of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-806, Republic of Korea
| | - Ki-Won Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 331-801, Republic of Korea
| | - Sang-Hoon Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 331-801, Republic of Korea
| | - Yu Jeong Jeong
- Eco-friendly Bio-Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 580-185, Republic of Korea
| | - Su Gyoung Woo
- Eco-friendly Bio-Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 580-185, Republic of Korea
| | - Hyokon Chun
- Eco-friendly Bio-Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 580-185, Republic of Korea
| | - Youn-Il Park
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-806, Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Cha Young Kim
- Eco-friendly Bio-Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 580-185, Republic of Korea.
| |
Collapse
|
49
|
Huang W, Zeng S, Xiao G, Wei G, Liao S, Chen J, Sun W, Lv H, Wang Y. Elucidating the biosynthetic and regulatory mechanisms of flavonoid-derived bioactive components in Epimedium sagittatum. FRONTIERS IN PLANT SCIENCE 2015; 6:689. [PMID: 26388888 PMCID: PMC4558469 DOI: 10.3389/fpls.2015.00689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/20/2015] [Indexed: 05/08/2023]
Abstract
Herba epimedii (Epimedium), a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. In Epimedium, flavonoids have been demonstrated to be the main bioactive components (BCs). However, the molecular biosynthetic and regulatory mechanisms of flavonoid-derived BCs remain obscure. In this study, we isolated 12 structural genes and two putative transcription factors (TFs) in the flavonoid pathway. Phytochemical analysis showed that the total content of four representative BCs (epimedin A, B, C, and icariin) decreased slightly or dramatically in two lines of Epimedium sagittatum during leaf development. Transcriptional analysis revealed that two R2R3-MYB TFs (EsMYBA1 and EsMYBF1), together with a bHLH TF (EsGL3) and WD40 protein (EsTTG1), were supposed to coordinately regulate the anthocyanin and flavonol-derived BCs biosynthesis in leaves. Overexpression of EsFLS (flavonol synthase) in tobacco resulted in increased flavonols content and decreased anthocyanins content in flowers. Moreover, EsMYB12 negatively correlated with the accumulation of the four BCs, and might act as a transcriptional repressor in the flavonoid pathway. Therefore, the anthocyanin pathway may coordinate with the flavonol-derived BCs pathway in Epimedium leaves. A better understanding of the flavonoid biosynthetic and regulatory mechanisms in E. sagittatum will facilitate functional characterization, metabolic engineering, and molecular breeding studies of Epimedium species.
Collapse
Affiliation(s)
- Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Shaohua Zeng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Gong Xiao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Guoyan Wei
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Sihong Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Jianjun Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Wei Sun
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical ScienceBeijing, China
| | - Haiyan Lv
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- *Correspondence: Ying Wang, Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Botanical Garden Road, Wuhan, Hubei 430074, China
| |
Collapse
|
50
|
Feng ZJ, He GH, Zheng WJ, Lu PP, Chen M, Gong YM, Ma YZ, Xu ZS. Foxtail Millet NF-Y Families: Genome-Wide Survey and Evolution Analyses Identified Two Functional Genes Important in Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:1142. [PMID: 26734043 PMCID: PMC4687410 DOI: 10.3389/fpls.2015.01142] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/01/2015] [Indexed: 05/19/2023]
Abstract
It was reported that Nuclear Factor Y (NF-Y) genes were involved in abiotic stress in plants. Foxtail millet (Setaria italica), an elite stress tolerant crop, provided an impetus for the investigation of the NF-Y families in abiotic responses. In the present study, a total of 39 NF-Y genes were identified in foxtail millet. Synteny analyses suggested that foxtail millet NF-Y genes had experienced rapid expansion and strong purifying selection during the process of plant evolution. De novo transcriptome assembly of foxtail millet revealed 11 drought up-regulated NF-Y genes. SiNF-YA1 and SiNF-YB8 were highly activated in leaves and/or roots by drought and salt stresses. Abscisic acid (ABA) and H2O2 played positive roles in the induction of SiNF-YA1 and SiNF-YB8 under stress treatments. Transient luciferase (LUC) expression assays revealed that SiNF-YA1 and SiNF-YB8 could activate the LUC gene driven by the tobacco (Nicotiana tobacam) NtERD10, NtLEA5, NtCAT, NtSOD, or NtPOD promoter under normal or stress conditions. Overexpression of SiNF-YA1 enhanced drought and salt tolerance by activating stress-related genes NtERD10 and NtCAT1 and by maintaining relatively stable relative water content (RWC) and contents of chlorophyll, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and malondialdehyde (MDA) in transgenic lines under stresses. SiNF-YB8 regulated expression of NtSOD, NtPOD, NtLEA5, and NtERD10 and conferred relatively high RWC and chlorophyll contents and low MDA content, resulting in drought and osmotic tolerance in transgenic lines under stresses. Therefore, SiNF-YA1 and SiNF-YB8 could activate stress-related genes and improve physiological traits, resulting in tolerance to abiotic stresses in plants. All these results will facilitate functional characterization of foxtail millet NF-Ys in future studies.
Collapse
Affiliation(s)
- Zhi-Juan Feng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
- Institute of Vegetables, Zhejiang Academy of AgricultureHangzhou, Zhejiang, China
| | - Guan-Hua He
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F UniversityYangling, Shaanxi, China
| | - Pan-Pan Lu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Ya-Ming Gong
- Institute of Vegetables, Zhejiang Academy of AgricultureHangzhou, Zhejiang, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
- *Correspondence: You-Zhi Ma
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
- Zhao-Shi Xu
| |
Collapse
|