1
|
Liu J, Li W, Bian Y, Jiang X, Zhu F, Yin F, Yin L, Song X, Guo H, Liu J. Garlic-derived exosomes regulate PFKFB3 expression to relieve liver dysfunction in high-fat diet-fed mice via macrophage-hepatocyte crosstalk. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154679. [PMID: 36791628 DOI: 10.1016/j.phymed.2023.154679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 01/04/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Although macrophage-mediated low-grade chronic inflammation and liver dysfunction have been found to be associated with the development of non-alcoholic fatty (NAFLD) and widely reported, but strategies and drugs targeting macrophages for the treatment of NAFLD are limited. HYPOTHESIS/PURPOSE Garlic-derived exosomes (GDE) can be useful for NAFLD due to its anti-inflammatory activity. Clarify whether GDE improves liver dysfunction through macrophage-hepatocyte crosstalk. METHODS GDE was isolated with PEG precipitation and ultracentrifuge. Inflammatory cytokines were detected by qRT-PCR and ELISA. Expression of 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) was determined using qRT-PCR and western blot. Crosstalk between macrophages and hepatocytes was identified through a co-culture experiment. Small RNA sequencing and bioinformatic analysis were used to identify the key element of GDE regulating the expression of PFKFB3 gene. RESULTS GDE regulated the expression of PFKFB3 to reduce the inflammatory response in LPS-treated differentiated THP-1 macrophages. Data from small RNA sequencing and bioinformatics analysis reveal that miR-396e, one of the most abundant miRNAs of GDE, is the key component to regulate PFKFB3 expression. Mechanistically, miR-396e-mediating PFKFB3 expression plays a crucial role in GDE inhibiting inflammatory response and enhancing lipid metabolism in hepatocytes via the macrophage-hepatocyte crosstalk. Notably, GDE supplementation reduced the inflammatory response and improved liver dysfunction in high-fat diet-fed mice. CONCLUSION GDE may be useful for improving the symptoms of NAFLD via macrophage-hepatocyte crosstalk and its role in PFKFB3 expression.
Collapse
Affiliation(s)
- Jinfan Liu
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Weizhao Li
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yangping Bian
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiaoqing Jiang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Fuyun Zhu
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Fei Yin
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Li Yin
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiaomei Song
- Department of Gastroenterology, Chongqing General Hospital, University of Chinese Academy of Sciences, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Hong Guo
- Department of Gastroenterology, Chongqing General Hospital, University of Chinese Academy of Sciences, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China.
| | - Jianhui Liu
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
2
|
Sun G, Hou X, Zhang L, Zhang H, Shao C, Li F, Zong C, Li R, Shi J, Yang X, Zhang L. 3,5,3'-Triiodothyronine-Loaded Liposomes Inhibit Hepatocarcinogenesis Via Inflammation-Associated Macrophages. Front Oncol 2022; 12:877982. [PMID: 35646705 PMCID: PMC9135096 DOI: 10.3389/fonc.2022.877982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is inflammation-related cancer. Persistent inflammatory injury of the liver is an important factor mediating the occurrence and development of liver cancer. Hepatic macrophages play an important role in the inflammatory microenvironment, which mediates tumor immune escape, tumor growth, and metastasis. Previous studies have suggested that L-3,5,3-triiodothyronine (T3) can regulate inflammation; however, its use is associated with serious cardiac side effects, and its role in hepatocarcinogenesis remains unclear. In this study, we aimed to develop an effective T3 delivery system with reduced cardiac toxicity and to explore its effects on HCC occurrence. Methods T3 liposomes (T3-lipo) were prepared using the thin-film hydration method, and their characteristics, including particle size, polydispersity index, zeta potential, encapsulation efficiency, drug loading, drug release, and stability, were evaluated in vitro. We assessed the effect of T3-lipo on hepatocarcinogenesis in diethylnitrosamine (DEN)–induced primary HCC in rats and examined the biodistribution of T3 and T3-lipo by high-performance liquid chromatography–mass spectrometry. Furthermore, we explored the potential molecular mechanism of T3-lipo in hepatocarcinogenesis by immunohistochemistry and immunofluorescence analyses, Bio-Plex assays, real-time polymerase chain reaction analysis, and Western blotting assays. Results Compared with T3, T3-lipo had an enhanced inhibitory effect on hepatocarcinogenesis and reduced cardiac side effects in DEN-induced primary HCC in rats. Mechanistically, T3-lipo were absorbed by hepatic macrophages and regulated the secretion of inflammatory cytokines in macrophages by inhibiting inflammatory signaling pathways. Conclusions T3-lipo may suppress hepatocarcinogenesis by regulating the inflammatory microenvironment in the liver and reduce the cardiac side effects meanwhile.
Collapse
Affiliation(s)
- Gangqi Sun
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.,Department of Phase I Clinical Trial, Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaojuan Hou
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China.,Department of Tumor Immunity and Metabolism,The National Center for Liver Cancer, Shanghai, China
| | - Luyao Zhang
- Department of Phase I Clinical Trial, Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China.,School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hengyan Zhang
- Department of Phase I Clinical Trial, Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Changchun Shao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fengwei Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Chen Zong
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China.,Department of Tumor Immunity and Metabolism,The National Center for Liver Cancer, Shanghai, China
| | - Rong Li
- Laboratory Zone, Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Junxia Shi
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China.,Department of Tumor Immunity and Metabolism,The National Center for Liver Cancer, Shanghai, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China.,Department of Tumor Immunity and Metabolism,The National Center for Liver Cancer, Shanghai, China
| | - Li Zhang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.,Department of Phase I Clinical Trial, Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Li X, Hollingshead N, Lampert S, Truong CD, Li W, Niu J, Crispe IN, Soysa R. A conserved pathway of transdifferentiation in murine Kupffer cells. Eur J Immunol 2021; 51:2452-2463. [PMID: 34324208 DOI: 10.1002/eji.202049124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/07/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022]
Abstract
Abundant long-lived liver-resident macrophages, termed Kupffer cells, are activated during chronic liver injury. They secrete both pro-inflammatory and pro-fibrotic cytokines, which act on hepatic stellate cells causing their transdifferentiation into myofibroblasts that deposit collagen. In other tissues, wound-associated macrophages go further, and transdifferentiate into fibrocytes, secreting collagen themselves. We tested Kupffer cells for this property in two experimental models: mixed non-parenchymal cell culture, and precision-cut liver slice culture. Using the Emr1-Cre transgene as a driver and the RiboTag transgene as a reporter, we found that Kupffer cells undergo transdifferentiation under these circumstances. Over time, they lose the expression of both Kupffer cell-specific and macrophage-specific genes and the transcription factors that control their expression, and they begin to express multiple genes and proteins characteristic of either myofibroblasts or tissue fibroblasts. These effects were strongly conserved between non-parenchymal cell culture and liver tissue slice culture, arguing that such transdifferentiation is a conserved function of Kupffer cells. We conclude that in addition to supporting fibrosis through an action on stellate cells, Kupffer cells also participate in liver fibrosis through transdifferentiation into fibrocytes.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Nicole Hollingshead
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Sarah Lampert
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Camtu D Truong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Wanyu Li
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ian N Crispe
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA.,Department of Immunology, University of Washington, Seattle, USA
| | - Radika Soysa
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| |
Collapse
|
4
|
Gou W, Wang J, Song L, Kim DS, Cui W, Strange C, Wang H. Alpha-1 antitrypsin suppresses macrophage activation and promotes islet graft survival after intrahepatic islet transplantation. Am J Transplant 2021; 21:1713-1724. [PMID: 33047509 PMCID: PMC8082666 DOI: 10.1111/ajt.16342] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 01/25/2023]
Abstract
Alpha-1 antitrypsin (AAT) has protective functions in animal islet transplantation models. While the therapeutic effect of AAT therapy is currently being tested in clinical trials, we investigated the mechanism of AAT protection in a clinically relevant marginal intrahepatic human islet transplantation model. In recipients receiving islets and AAT, 68.9% (20/29) reached normoglycemia, compared to 35.7% (10/28) in those receiving islets only, at 60 days posttransplant (PT). AAT-treated mice had lower serum levels of inflammatory cytokines immediately PT. Reduced M1 macrophages were observed in livers of AAT-treated recipients compared to controls as evidenced by flow cytometry and RNA-seq transcriptional profiling analysis. In vitro AAT suppressed IFN-γ-induced M1 macrophage activation/polarization via suppression of STAT1 phosphorylation and iNOS production. AAT inhibits macrophage activation induced by cytokines or dying islets, and consequently leads to islet cell survival. In a macrophage depletion mouse model, the presence of M1 macrophages in the liver contributed to graft death. AAT, through suppressing macrophage activation, protected transplanted islets from death and dysfunction in the human islet and NOD-SCID mouse model. The protective effect of AAT was confirmed in a major mismatch allogeneic islet transplantation model. Taken together, AAT suppresses liver macrophage activation that contributes to graft survival after transplantation.
Collapse
Affiliation(s)
- Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Jingjing Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Lili Song
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Do-Sung Kim
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Wanxing Cui
- MedStar Georgetown University, Washington, District of Columbia
| | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
5
|
Li W, He F. Infusion of Kupffer Cells Expanded in Vitro Ameliorated Liver Fibrosis in a Murine Model of Liver Injury. Cell Transplant 2021; 30:9636897211004090. [PMID: 33784833 PMCID: PMC8020097 DOI: 10.1177/09636897211004090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transfer of exogenous macrophages represents an alternative technique to treat
liver fibrosis. At present, bone marrow-derived monocytes and stem cells are the
main sources for exogenous macrophages. Kupffer cells (KCs) are the resident
macrophages in the liver and play a critical role in the liver homeostasis and
diseases. It is unclear whether infusion of KCs can treat liver fibrosis. In
this study, we observed that granulocyte-macrophage colony stimulating factor
(GM-CSF) could improve the purity of cultured KCs and significantly up-regulate
the expression of Cluster of Differentiation 11b (CD11b). The most important
point is that GM-CSF could significantly promote the proliferation of KCs
in vitro. KCs expanded in vitro still had
the potential of M1/M2 polarization and phagocytosis. Furthermore, infusion of
these KCs could ameliorate liver fibrosis induced by carbon tetrachloride
(CCl4) in mice. Together, our results suggest that KCs are likely
to be another source for macrophage therapy.
Collapse
Affiliation(s)
- Weina Li
- School of Basic Medicine, 12644Fourth Military Medical University, Xi'an, China
| | - Fei He
- School of Medicine, Faculty of Life Science and Medicine, 12657Northwest University, Xi'an, China
| |
Collapse
|
6
|
Pridans C, Irvine KM, Davis GM, Lefevre L, Bush SJ, Hume DA. Transcriptomic Analysis of Rat Macrophages. Front Immunol 2021; 11:594594. [PMID: 33633725 PMCID: PMC7902030 DOI: 10.3389/fimmu.2020.594594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat is widely used as a model for human diseases. Many of these diseases involve monocytes and tissue macrophages in different states of activation. Whilst methods for in vitro differentiation of mouse macrophages from embryonic stem cells (ESC) and bone marrow (BM) are well established, these are lacking for the rat. The gene expression profiles of rat macrophages have also not been characterised to the same extent as mouse. We have established the methodology for production of rat ESC-derived macrophages and compared their gene expression profiles to macrophages obtained from the lung and peritoneal cavity and those differentiated from BM and blood monocytes. We determined the gene signature of Kupffer cells in the liver using rats deficient in macrophage colony stimulating factor receptor (CSF1R). We also examined the response of BM-derived macrophages to lipopolysaccharide (LPS). The results indicate that many, but not all, tissue-specific adaptations observed in mice are conserved in the rat. Importantly, we show that unlike mice, rat macrophages express the CSF1R ligand, colony stimulating factor 1 (CSF1).
Collapse
Affiliation(s)
- Clare Pridans
- Centre for Inflammation Research, University of Edinburgh Centre for Inflammation Research, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M. Irvine
- Mater Research Institute Mater Research Institute – University of Queensland, Brisbane, QLD, Australia
| | - Gemma M. Davis
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Lucas Lefevre
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, University of Oxford, Headington, United Kingdom
| | - David A. Hume
- Mater Research Institute Mater Research Institute – University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Qian J, Jiao Y, Wang G, Liu H, Cao X, Yang H. Mechanism of TGF-β1 inhibiting Kupffer cell immune responses in cholestatic cirrhosis. Exp Ther Med 2020; 20:1541-1549. [PMID: 32742385 PMCID: PMC7388376 DOI: 10.3892/etm.2020.8826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Effect of exogenous transforming growth factor-β1 (TGF-β1) on cholestatic mice by inhibiting Kupffer cell immune responses in liver was investigated. To induce cholestasis, BALB/c mice received a sham operation (Mock group), or underwent a bile duct ligation (BDL group) and then were subcutaneously injected with TGF-β1 at multiple sites (TGF group). Liver functions were evaluated according to the levels of alanine aminotransferase (ALT), aspartate aminotransferase AST and γ-glutamyltranspeptidase (γ-GT) in serum samples. Expression of nuclear factor-κB (NF-κB), interleukin-6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α) was detected. Expression of inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1) in Kupffer cells (KCs) of the liver was detected. The isolated KCs were divided into control group, LPS group, TGF group and Galunisertib group and western blot analysis was used to detect the expression of NF-κB, IL-6, IL-1β, TNF-α, iNOS and Arg-1. The percentage of CD40, CD86, CD204 and CD206 as macrophage cell surface antigens were measured by flow cytometry. The indexes of liver function and liver fibrosis of the mice in the TGF group were significantly lower than those in the BDL group (P<0.05). The levels of IL-1β, IL-6 and TNF-α in the liver were lower than those in the BDL group, while the level of IL-10 was significantly increased (P<0.05). M2-type transformation occurred in liver Kupffer cells of mice in the TGF group. In cell experiments, TGF treatment downregulated the expression of IL-1β, IL-6, TNF-α and NF-κB, increased the expression of IL-10, and induced M2-type transformation in macrophages (P<0.05). In conclusion, TGF-ß1 diminished the progression of cholestasis in mice by inhibiting the inflammatory response of KCs and regulating KC polarization.
Collapse
Affiliation(s)
- Jun Qian
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yuwen Jiao
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Guangyao Wang
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Hanyang Liu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Xiang Cao
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Haojun Yang
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
8
|
Souza CO, Teixeira AAS, Biondo LA, Silveira LS, de Souza Breda CN, Braga TT, Camara NOS, Belchior T, Festuccia WT, Diniz TA, Ferreira GM, Hirata MH, Chaves-Filho AB, Yoshinaga MY, Miyamoto S, Calder PC, Sethi JK, Rosa Neto JC. Palmitoleic acid reduces high fat diet-induced liver inflammation by promoting PPAR-γ-independent M2a polarization of myeloid cells. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158776. [PMID: 32738301 PMCID: PMC7487782 DOI: 10.1016/j.bbalip.2020.158776] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/08/2020] [Accepted: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Palmitoleic acid (POA, 16:1n-7) is a lipokine that has potential nutraceutical use to treat non-alcoholic fatty liver disease. We tested the effects of POA supplementation (daily oral gavage, 300 mg/Kg, 15 days) on murine liver inflammation induced by a high fat diet (HFD, 59% fat, 12 weeks). In HFD-fed mice, POA supplementation reduced serum insulin and improved insulin tolerance compared with oleic acid (OA, 300 mg/Kg). The livers of POA-treated mice exhibited less steatosis and inflammation than those of OA-treated mice with lower inflammatory cytokine levels and reduced toll-like receptor 4 protein content. The anti-inflammatory effects of POA in the liver were accompanied by a reduction in liver macrophages (LM, CD11c+; F4/80+; CD86+), an effect that could be triggered by peroxisome proliferator activated receptor (PPAR)-γ, a lipogenic transcription factor upregulated in livers of POA-treated mice. We also used HFD-fed mice with selective deletion of PPAR-γ in myeloid cells (PPAR-γ KOLyzCre+) to test whether the beneficial anti-inflammatory effects of POA are dependent on macrophages PPAR-γ. POA-mediated improvement of insulin tolerance was tightly dependent on myeloid PPAR-γ, while POA anti-inflammatory actions including the reduction in liver inflammatory cytokines were preserved in mice bearing myeloid cells deficient in PPAR-γ. This overlapped with increased CD206+ (M2a) cells and downregulation of CD86+ and CD11c+ liver macrophages. Moreover, POA supplementation increased hepatic AMPK activity and decreased expression of the fatty acid binding scavenger receptor, CD36. We conclude that POA controls liver inflammation triggered by fat accumulation through induction of M2a macrophages independently of myeloid cell PPAR-γ. Palmitoleic acid (POA) supplementation reduced serum insulin and improved insulin tolerance; Livers of POA-treated mice exhibited less steatosis and inflammation; POA lowered the liver M1 macrophages population and the expression of inflammation-related immune-cell markers; POA increased PPAR-γ, a transcription factor that regulates anti-inflammatory effects in macrophages; However, POA reduced liver inflammation even in mice that lack PPAR-γ expression in myeloid cells; POA controls liver inflammation through induction of M2a macrophages independently of PPAR-γ in myeloid cells.
Collapse
Affiliation(s)
- Camila O Souza
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alexandre A S Teixeira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luana Amorim Biondo
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Loreana Sanches Silveira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Cristiane N de Souza Breda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tarcio T Braga
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Niels O S Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thiago Belchior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tiego A Diniz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Glaucio Monteiro Ferreira
- Laboratory of Molecular Biology applied to Diagnosis (LBMAD), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mario Hiroyuki Hirata
- Laboratory of Molecular Biology applied to Diagnosis (LBMAD), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Adriano B Chaves-Filho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcos Y Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jaswinder K Sethi
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - José C Rosa Neto
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Ou Z, Zhong H, Zhang L, Deng M, Zhang W, Wang J, Feng H, Gong J, Miao C, Yi Z. Macrophage Membrane-Coated Nanoparticles Alleviate Hepatic Ischemia-Reperfusion Injury Caused by Orthotopic Liver Transplantation by Neutralizing Endotoxin. Int J Nanomedicine 2020; 15:4125-4138. [PMID: 32606668 PMCID: PMC7296981 DOI: 10.2147/ijn.s253125] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose To investigate the effect and mechanism of macrophage membrane-coated nanoparticles (M-NPs) on hepatic ischemia-reperfusion injury (I/RI) caused by orthotopic liver transplantation. In addition, the advantages of TLR4+/M-NPs compared to M-NPs are discussed. Materials and Methods We prepared biomimetic M-NPs and identified their characteristics. M-NPs were injected into an SD rat model of orthotopic liver transplantation, and the anti-inflammatory and anti-I/RI activities of M-NPs were studied in vivo and in vitro. In addition, we overexpressed macrophage membrane Toll-like receptor 4 (TLR4) in vitro and prepared TLR4+/M-NPs. Then, we assessed the characteristics and advantages of TLR4+/M-NPs. Results The M-NPs neutralized endotoxin, inhibited the overactivation of Kupffer cells (KCs) and suppressed the secretion of inflammatory factors by inhibiting the endotoxin-mediated TLR4/MyD88/IRAK1/NF-κB signaling pathway. In an orthotopic liver transplantation model in SD rats, M-NPs showed significant therapeutic efficacy by neutralizing endotoxin and suppressing the secretion of inflammatory factors. Moreover, overexpression of TLR4 on the macrophage membrane by using a TLR4+-plasmid in vitro effectively reduced the amount of M-NPs needed to neutralize an equivalent dose of endotoxin, reducing the potential risks of NP overuse. Conclusion This study indicates that M-NPs can effectively alleviate I/RI induced by liver transplantation.
Collapse
Affiliation(s)
- Zhibing Ou
- Department of Hepatobiliary Surgery, Chenzhou No.1 People's Hospital, Chenzhou, Hunan 410000, People's Republic of China
| | - Hua Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 40000, People's Republic of China
| | - Liang Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 40000, People's Republic of China.,Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 40000, People's Republic of China
| | - Minghua Deng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 40000, People's Republic of China
| | - Wenfeng Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 40000, People's Republic of China
| | - Jingyuan Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 40000, People's Republic of China
| | - Huaguo Feng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 40000, People's Republic of China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 40000, People's Republic of China
| | - Chunmu Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 40000, People's Republic of China
| | - Zhujun Yi
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 40000, People's Republic of China
| |
Collapse
|
10
|
Wang J, Deng M, Wu H, Wang M, Gong J, Bai H, Wu Y, Pan J, Chen Y, Li S. Suberoylanilide hydroxamic acid alleviates orthotopic liver transplantation‑induced hepatic ischemia‑reperfusion injury by regulating the AKT/GSK3β/NF‑κB and AKT/mTOR pathways in rat Kupffer cells. Int J Mol Med 2020; 45:1875-1887. [PMID: 32236599 PMCID: PMC7169828 DOI: 10.3892/ijmm.2020.4551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/06/2020] [Indexed: 12/26/2022] Open
Abstract
Multiple mechanisms are involved in regulating hepatic ischemia-reperfusion injury (IRI), in which Kupffer cells (KCs), which are liver-resident macrophages, play critical roles by regulating inflammation and the immune response. Suberoylanilide hydroxamic acid (SAHA), a pan-histone deacetylase inhibitor, has anti-inflammatory effects and induces autophagy. To investigate whether SAHA ameliorates IRI and the mechanisms by which SAHA exerts its effects, an orthotopic liver transplantation (OLT) rat model was established after treatment with SAHA. The results showed that SAHA effectively ameliorated OLT-induced IRI by reducing M1 polarization of KCs through inhibition of the AKT/glycogen synthase kinase (GSK)3β/NF-κB signaling pathway. Furthermore, the present study found that SAHA upregulates autophagy 5 protein (ATG5)/LC3B in KCs through the AKT/mTOR signaling pathway and inhibition of autophagy by knockdown of ATG5 in KCs partly impaired the protective effect of SAHA on IR-injured liver. Therefore, the current study demonstrated that SAHA reduces M1 polarization of KCs by inhibiting the AKT/GSK3β/NF-κB pathway and upregulates autophagy in KCs through the AKT/mTOR signaling pathway, which both alleviate OLT-induced IRI. The present study revealed that SAHA may be a novel treatment for the amelioration of OLT-induced IRI.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Minghua Deng
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hao Wu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Menghao Wang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - He Bai
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yakun Wu
- Department of Hepatobiliary Surgery, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| | - Junjiang Pan
- Department of General Surgery, Second People's Hospital of Yibin City, Yibin, Sichuan 644000, P.R. China
| | - Yong Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Shengwei Li
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
11
|
Bo N, Yilin H, Haiyang Y, Yuan Y. Acrylamide induced the activation of NLRP3 inflammasome via ROS-MAPKs pathways in Kupffer cells. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1696284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Nan Bo
- College of Food Science and Engineering, Jilin University, Changchun, People’s Republic of China
| | - Hong Yilin
- College of Food Science and Engineering, Jilin University, Changchun, People’s Republic of China
| | - Yan Haiyang
- College of Food Science and Engineering, Jilin University, Changchun, People’s Republic of China
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
12
|
Tan HY, Li PZ, Gong JP, Yang K. Shenfu Injection Attenuates Bile Duct Injury in Rats with Acute Obstructive Cholangitis. Surg Infect (Larchmt) 2019; 20:424-430. [PMID: 30925118 DOI: 10.1089/sur.2018.304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: We investigated the effect of Shenfu injection (SFI) in Wistar rats with acute obstructive cholangitis (AOC) and considered the possible molecular mechanisms of the effects. Methods: The 96 rats were divided randomly into three groups. In one group, the common bile duct was subjected to ligation (BDL), and 0.2 mL of saline was injected into the proximal bile ducts. To create AOC, again, the common bile duct was ligated, and 0.2 mL of lipopolysaccharide (LPS)) (2 mg/mL) was injected into the proximal ducts. In the Shenfu injection (SFI) group, the material (10 mg/kg) was injected into the tail vein 2 hours before induction of AOC. The hepatic histopathologic changes were observed under a light microscope. The endotoxin, tumor necrosis factor-α (TNF-α), alanine transaminase (ALT), and total bilirubin (TB) concentrations in the serum were measured at different time points (0, 4, 8, and 16 hours) after ligation. The expression of nuclear transcription factor-κB (NF-κB) and CD14 in Kupffer cells also was analyzed at different times by Western blotting. Results: The TNF-α, ALT, and TB concentrations in the serum and the expression of CD14 and NF-κB in Kupffer cells were significantly higher in the SFI group than in the BDL group, but all were significantly lower than in the AOC group. Compared with the AOC group, the edema of cholangiocytes was alleviated in the SFI group, and the infiltration of inflammatory cells around cholangiocytes was reduced. Conclusion: Shenfu injection significantly alleviated bile duct injury. The potential mechanism may be associated with inhibition of CD14 expression and prevention of NF-κB activation in Kupffer cells.
Collapse
Affiliation(s)
- Hao-Yang Tan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Pei-Zhi Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Kang Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
13
|
Akateh C, Beal EW, Kim JL, Reader BF, Maynard K, Zweier JL, Whitson BA, Black SM. Intrahepatic Delivery of Pegylated Catalase Is Protective in a Rat Ischemia/Reperfusion Injury Model. J Surg Res 2019; 238:152-163. [PMID: 30771685 DOI: 10.1016/j.jss.2019.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/27/2018] [Accepted: 01/10/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ischemia/reperfusion injury (IRI) can occur during liver surgery. Endogenous catalase is important to cellular antioxidant defenses and is critical to IRI prevention. Pegylation of catalase (PEG-CAT) improves its therapeutic potential by extending plasma half-life, but systemic administration of exogenous PEG-CAT has been only mildly therapeutic for hepatic IRI. Here, we investigated the protective effects of direct intrahepatic delivery of PEG-CAT during IRI using a rat hilar clamp model. MATERIALS AND METHODS PEG-CAT was tested in vitro and in vivo. In vitro, enriched rat liver cell populations were subjected to oxidative stress injury (H2O2), and measures of cell health and viability were assessed. In vivo, rats underwent segmental (70%) hepatic warm ischemia for 1 h, followed by 6 h of reperfusion, and plasma alanine aminotransferase and aspartate aminotransferase, tissue malondialdehyde, adenosine triphosphate, and GSH, and histology were assessed. RESULTS In vitro, PEG-CAT pretreatment of liver cells showed substantial uptake and protection against oxidative stress injury. In vivo, direct intrahepatic, but not systemic, delivery of PEG-CAT during IRI significantly reduced alanine aminotransferase and aspartate aminotransferase in a time-dependent manner (P < 0.01, P < 0.0001, respectively, for all time points) compared to control. Similarly, tissue malondialdehyde (P = 0.0048), adenosine triphosphate (P = 0.019), and GSH (P = 0.0015), and the degree of centrilobular necrosis, were improved by intrahepatic compared to systemic PEG-CAT delivery. CONCLUSIONS Direct intrahepatic administration of PEG-CAT achieved significant protection against IRI by reducing the volume distribution and taking advantage of the substantial hepatic first-pass uptake of this molecule. The mode of delivery was an important factor for protection against hepatic IRI by PEG-CAT.
Collapse
Affiliation(s)
- Clifford Akateh
- The COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, Ohio; Comprehensive Transplant Center, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Eliza W Beal
- The COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, Ohio; Comprehensive Transplant Center, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jung-Lye Kim
- The COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Brenda F Reader
- The COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, Ohio; Comprehensive Transplant Center, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Katelyn Maynard
- The COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jay L Zweier
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Bryan A Whitson
- The COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, Ohio; Comprehensive Transplant Center, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sylvester M Black
- The COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, Ohio; Comprehensive Transplant Center, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
14
|
Cheng MX, Cao D, Chen Y, Li JZ, Tu B, Gong JP. α-ketoglutarate attenuates ischemia-reperfusion injury of liver graft in rats. Biomed Pharmacother 2019; 111:1141-1146. [PMID: 30841427 DOI: 10.1016/j.biopha.2018.12.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/31/2018] [Accepted: 12/31/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The α-ketoglutarate (αKG), a metabolite of glutaminolysis, is reported to orchestrate macrophages activation. This study aims to clarify whether the αKG / glutaminolysis metabolism can suppress Kupffer cells (KCs) activation during liver transplantation and attenuate hepatic ischemia-reperfusion injury (IRI). METHODS Donor livers were perfused with DM-αKG (a cell-permeable analog of αKG) or BPTES (an inhibitor of glutaminase 1) via portal vein during cold preservation, and controls were perfused with UW solution. Then, a rat model of liver transplantation was performed. Serum levels of alanine transaminase (ALT), total bilirubin (TBIL) and inflammatory cytokines, as well as histology, were analyzed after 24 h. KCs were isolated from grafts. RT-PCR and immunofluorescence were used to evaluate polarization-specific marker genes. Western bolt was employed to assess the expression of phosphorylation of glycogen synthase kinase 3β (p-GSK3β) and suppressor of cytokine signaling 1 (SOCS1). EMSA was utilized to quantify the NF-κB transcriptional activity. RESULTS Compared with controls, DM-αKG perfusion decreased ALT and TBIL levels, alleviated liver damage, and reduced apoptosis, while BPTES group showed higher ALT and TBIL levels, severe damage and more apoptosis. Furthermore, DM-αKG perfusion suppressed NF-κB activity, up-regulated the expression of p-GSK3β and SOCS1 in KCs, and shifted the M1/M2 balance toward an anti-inflammatory profile. Besides, DM-αKG suppressed serum pro-inflammatory cytokines secretion and increased IL-10. CONCLUSIONS αKG produced by glutaminolysis protects liver graft from IRI by regulating the inflammatory response and modifying the polarization of KCs.
Collapse
Affiliation(s)
- Ming-Xiang Cheng
- Chongqing Key Laboratory of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ding Cao
- Chongqing Key Laboratory of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin-Zheng Li
- Chongqing Key Laboratory of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bing Tu
- Chongqing Key Laboratory of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jian-Ping Gong
- Chongqing Key Laboratory of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Lokhonina A, Elchaninov A, Fatkhudinov T, Makarov A, Arutyunyan I, Grinberg M, Glinkina V, Surovtsev V, Bolshakova G, Goldshtein D, Sukhikh G. Activated Macrophages of Monocytic Origin Predominantly Express Proinflammatory Cytokine Genes, Whereas Kupffer Cells Predominantly Express Anti-Inflammatory Cytokine Genes. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3912142. [PMID: 30949499 PMCID: PMC6425426 DOI: 10.1155/2019/3912142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
In the central nervous system and in the liver, the macrophage populations are represented exclusively by descendants of the hematopoietic progenitor cells of the yolk sac. The reasons for such differential distribution of macrophages are not fully understood. We found that, as can be judged by corresponding changes in the expression of CD86 and CD163 markers, the transient macrophages of monocytic lineage are more sensitive to activating stimuli. The two macrophage populations have distinct patterns of gene expression, which is particularly noticeable for M1- and M2-associated genes. For instance, Kupffer cells more readily develop and longer maintain the elevated expression levels of Il4, Il10, and Il13 upon the activation; by contrast, the macrophages of monocytic lineage express Il1b, Il12a, and Tnfα upon the activation. The obtained results allow us to conclude that the in vitro activated Kupffer cells of the liver are committed to M2 phenotype, whereas the in vitro activated monocyte-derived macrophages show a typical M1 behavior. These observations are likely to reflect the situation in the in vivo microenvironments.
Collapse
Affiliation(s)
- Anastasia Lokhonina
- 1National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia
| | - Andrey Elchaninov
- 1National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- 2Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Timur Fatkhudinov
- 1National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- 3Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Andrey Makarov
- 1National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- 2Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Irina Arutyunyan
- 1National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- 4Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| | - Maria Grinberg
- 3Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Valeria Glinkina
- 2Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Viktor Surovtsev
- 3Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Galina Bolshakova
- 4Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| | - Dmitry Goldshtein
- 5Research Centre of Medical Genetics, 1 Moscvorechie, 115478 Moscow, Russia
| | - Gennady Sukhikh
- 1National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia
| |
Collapse
|
16
|
Faure-Dupuy S, Durantel D, Lucifora J. Liver macrophages: Friend or foe during hepatitis B infection? Liver Int 2018; 38:1718-1729. [PMID: 29772112 DOI: 10.1111/liv.13884] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Abstract
The Hepatitis B virus chronically infects the liver of 250 million people worldwide. Over the past decades, major advances have been made in the understanding of Hepatitis B virus life cycle in hepatocytes. Beside these parenchymal cells, the liver also contains resident and infiltrating myeloid cells involved in immune responses to pathogens and much less is known about their interplay with Hepatitis B virus. In this review, we summarized and discussed the current knowledge of the role of liver macrophages (including Kupffer cells and liver monocyte-derived macrophages), in HBV infection. While it is still unclear if liver macrophages play a role in the establishment and persistence of HBV infection, several studies disclosed data suggesting that HBV would favour liver macrophage anti-inflammatory phenotypes and thereby increase liver tolerance. In addition, alternatively activated liver macrophages might also play in the long term a key role in hepatitis B-associated pathogenesis, especially through the activation of hepatic stellate cells. Therapies aiming at a transient activation of pro-inflammatory liver macrophages should therefore be considered for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Suzanne Faure-Dupuy
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,University of Lyon, University Claude-Bernard (UCBL), Lyon, France
| | - David Durantel
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,University of Lyon, University Claude-Bernard (UCBL), Lyon, France.,Laboratoire d'excellence (LabEx), DEVweCAN, Lyon, France
| | - Julie Lucifora
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,University of Lyon, University Claude-Bernard (UCBL), Lyon, France
| |
Collapse
|
17
|
Lai C, Li C, Luo X, Liu M, Liu X, Hu L, Kang L, Qiu Q, Deng Y, Song Y. Use of Dual-Ligand Modification in Kupffer Cell-Targeted Liposomes To Examine the Contribution of Kupffer Cells to Accelerated Blood Clearance Phenomenon. Mol Pharm 2018; 15:2548-2558. [PMID: 29768009 DOI: 10.1021/acs.molpharmaceut.8b00042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The "accelerated blood clearance (ABC) phenomenon" is known to be involved in the adaptive immune system. Regretfully, the relationship between the ABC phenomenon and innate immune system, especially with respect to Kupffer cells (KCs) has been largely unexplored. In this study, the contribution of KCs to ABC was examined using the 4-aminophenyl-α-d-mannopyranoside (APM) lipid derivative DSPE-PEG2000-APM (DPM) and the 4-aminophenyl-β-l-fucopyranoside (APF) lipid derivative DSPE-PEG2000-APF (DPF) as ligands for mannose/fucose receptors on KCs, which were synthesized and modified on the surface of liposomes. The results of cellular liposome uptake in vitro and biodistribution in vivo indicated that DPM and DPF comodified liposomes (MFPL5-5) present the strongest capability of KC-targeting among all preparations tested. In rats pretreated with MFPL5-5 instead of PEGylated liposomes (PL), the ABC phenomenon was significantly enhanced and the distribution of liposomes in the liver was increased. Cellular uptake of the second injection of PL in vivo demonstrated that KCs was responsible for the uptake. Furthermore, compared to pretreatment with PL, the uptake of second injection of PL was more enhanced when pretreated with MFPL5-5. These findings suggest that KCs, which are considered traditional members of the innate immune system, play a crucial role in the ABC phenomenon and act as a supplement to the phenomenon.
Collapse
Affiliation(s)
- Chaoyang Lai
- College of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , China
| | - Cong Li
- College of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , China
| | - Xiang Luo
- College of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , China
| | - Mengyang Liu
- College of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , China
| | - Xinrong Liu
- College of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , China
| | - Ling Hu
- College of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , China
| | - Le Kang
- College of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , China
| | - Qiujun Qiu
- College of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , China
| | - Yihui Deng
- College of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , China
| | - Yanzhi Song
- College of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , China
| |
Collapse
|
18
|
Tang H, Chen H, Jia Y, Liu X, Han Z, Wang A, Liu Q, Li X, Feng X. Effect of inhibitors of endocytosis and NF-kB signal pathway on folate-conjugated nanoparticle endocytosis by rat Kupffer cells. Int J Nanomedicine 2017; 12:6937-6947. [PMID: 29075112 PMCID: PMC5609780 DOI: 10.2147/ijn.s141407] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The regular accumulation of nanoparticles in the liver makes them hepatotoxic and decreases the circulation time, thus reducing their therapeutic effect. Resolving this problem will be significant in improving bioavailability and reducing side effects. In this study, we reduced the phagocytosis of epirubicin (EPI)-loaded folic acid-conjugated pullulan acetate (FPA/EPI) nanoparticles by Kupffer cells (KCs) through internalization and nuclear factor kappa B (NF-kB) signal pathway inhibitors, thus allowing development of FPA/EPI nanoparticles as a nanodrug delivery system (NDDS) based on our previous study. FPA/EPI nanoparticles were prepared by the dialysis method. Rat KCs were preincubated with the following individual or compound inhibitors: chlorpromazine (CPZ), nystatin (NY), colchicine (Col), amiloride (AMR), and pyrrolidine dithiocarbamate (PDTC). Dose- and time-dependent cellular uptake effects of inhibitors on FPA/EPI nanoparticles were determined through fluorometry. The cytokine levels of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 were tested in culture supernatants by bead-based multiplex flow cytometry. The uptake study demonstrated that inhibitors had an obvious inhibitory effect (P<0.05 or P<0.01), with NY, AMR and Col all showing time-dependent inhibitory effects. PDTC + NY had the strongest inhibitory effect, with an uptake rate of 14.62%. The levels of the three proinflammatory cytokines were changed significantly by the compound inhibitors. TNF-α was significantly inhibited (P<0.05 or P<0.01), but IL-1β and IL-6 showed smaller decreases. These results suggested that clathrin- and caveolae-mediated endocytosis were the main routes via which nanoparticles entered KCs and that the NF-kB signal pathway was very important too. In summary, multiple mechanisms, including clathrin- and caveolae-mediated endocytosis, contribute to cytokine production in macrophages following exposure to folic acid-conjugated pullulan acetate nanoparticles. Thus, the endocytosis inhibition strategy has great potential for improving therapy and reducing toxicity of an NDDS in the treatment of cancer.
Collapse
Affiliation(s)
- Hongbo Tang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Hongli Chen
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Yajing Jia
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Xiaoyan Liu
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Zhaohong Han
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Aihua Wang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Qi Liu
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Xinlei Li
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| | - Xin Feng
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing
| |
Collapse
|
19
|
Stradiot L, Verhulst S, Roosens T, Øie C, Moya I, Halder G, Mannaerts I, van Grunsven L. Functionality based method for simultaneous isolation of rodent hepatic sinusoidal cells. Biomaterials 2017; 139:91-101. [DOI: 10.1016/j.biomaterials.2017.05.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 01/20/2023]
|
20
|
Song KH, Jung SY, Kho SH, Hwang SG, Ha H, Nam SY, Song JY. Effects of low-dose irradiation on mice with Escherichia coli-induced sepsis. Toxicol Appl Pharmacol 2017; 333:17-25. [PMID: 28818514 DOI: 10.1016/j.taap.2017.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 11/19/2022]
Abstract
Although favorable immune responses to low-dose irradiation (LDI) have been observed in normal mice, i.e., a hormesis effect, little is known about the effects of LDI in infectious diseases. In this study, we examined the effects of LDI on mice with sepsis, a severe and often lethal hyperinflammatory response to bacteria. Female C57BL/6 mice were whole-body irradiated with 10cGy 48h before Escherichia coli infection, and survival, bacterial clearance, cytokines, and antioxidants were quantified. LDI pretreatment significantly increased survival from 46.7% in control mice to 75% in mice with sepsis. The bacterial burden was significantly lower in the blood, spleen, and kidney of LDI-treated mice than in those of control septic mice. The levels of pro-inflammatory cytokines, e.g., IL-1β and IL-6, as well as anti-inflammatory IL-10 were markedly reduced in pre-LDI septic mice. Nitric oxide production by peritoneal macrophages was also reduced in pre-LDI septic mice. Immune cells in the spleen increased and Nrf2 and HO-1 were induced in pre-LDI septic mice. LDI stimulates the immune response and minimizes lethality in septic mice via enhanced bacterial clearance and reduced initial proinflammatory responses.
Collapse
Affiliation(s)
- Kyung-Hee Song
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seung-Youn Jung
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Seong-Ho Kho
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Sang-Gu Hwang
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seon Young Nam
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co., Ltd., Seoul 01450, Republic of Korea
| | - Jie-Young Song
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea.
| |
Collapse
|
21
|
Ge L, Hu Q, Chen J, Shi M, Yang H, Zhu G. Inhibition of TNF-α sepsis of lipopolysaccharide induction using nano cerium oxide system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:405-410. [DOI: 10.1016/j.msec.2017.03.207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 11/30/2022]
|
22
|
Braet F, Taatjes DJ, Wisse E. Probing the unseen structure and function of liver cells through atomic force microscopy. Semin Cell Dev Biol 2017; 73:13-30. [PMID: 28688930 DOI: 10.1016/j.semcdb.2017.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 01/02/2023]
Abstract
With the arrival of atomic force microscopy (AFM) about thirty years ago, this new imaging tool opened up a new area for the exploration of biological samples, ranging from the tissue and cellular level down to the supramolecular scale. Commercial instruments of this new imaging technique began to appear in the five years following its discovery in 1986 by Binnig, Quate & Gerber. From that point onwards the AFM has attracted many liver biologists, and the number of publications describing structure-function relationships on the diverse set of liver cells has grown steadily ever since. It is therefore timely to reflect on the achievements of AFM in disclosing the cellular architecture of hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, stellate cells and liver-associated natural killer cells. In this thematic paper, we present new data and provide an in-depth overview of the current AFM literature on liver cell biology. We furthermore include a future outlook on how this scanning probe imaging tool and its latest developments can contribute to clarify various structural and functional aspects of cells in liver health and disease.
Collapse
Affiliation(s)
- Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology)-The Bosch Institute, The University of Sydney, NSW 2006, Australia; Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia; Charles Perkins Centre (Cellular Imaging Facility), The University of Sydney, NSW 2006, Australia.
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA; Microscopy Imaging Center, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Eddie Wisse
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, University of Maastricht, The Netherlands; Department of Internal Medicine, University of Maastricht, 6200, MD, Maastricht, The Netherlands
| |
Collapse
|
23
|
Minutti CM, Jackson-Jones LH, García-Fojeda B, Knipper JA, Sutherland TE, Logan N, Ringqvist E, Guillamat-Prats R, Ferenbach DA, Artigas A, Stamme C, Chroneos ZC, Zaiss DM, Casals C, Allen JE. Local amplifiers of IL-4Rα-mediated macrophage activation promote repair in lung and liver. Science 2017; 356:1076-1080. [PMID: 28495878 DOI: 10.1126/science.aaj2067] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/11/2017] [Accepted: 04/27/2017] [Indexed: 12/28/2022]
Abstract
The type 2 immune response controls helminth infection and maintains tissue homeostasis but can lead to allergy and fibrosis if not adequately regulated. We have discovered local tissue-specific amplifiers of type 2-mediated macrophage activation. In the lung, surfactant protein A (SP-A) enhanced interleukin-4 (IL-4)-dependent macrophage proliferation and activation, accelerating parasite clearance and reducing pulmonary injury after infection with a lung-migrating helminth. In the peritoneal cavity and liver, C1q enhancement of type 2 macrophage activation was required for liver repair after bacterial infection, but resulted in fibrosis after peritoneal dialysis. IL-4 drives production of these structurally related defense collagens, SP-A and C1q, and the expression of their receptor, myosin 18A. These findings reveal the existence within different tissues of an amplification system needed for local type 2 responses.
Collapse
Affiliation(s)
- Carlos M Minutti
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, 28040-Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029-Madrid, Spain.,School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Lucy H Jackson-Jones
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Belén García-Fojeda
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, 28040-Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029-Madrid, Spain
| | - Johanna A Knipper
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Tara E Sutherland
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK
| | - Nicola Logan
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Emma Ringqvist
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Raquel Guillamat-Prats
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029-Madrid, Spain.,Critical Care Centre, Corporació Sanitària Universitària Parc Taulí, Universitat Autònoma de Barcelona Parc Taulí 1, 08208-Sabadell, Spain
| | - David A Ferenbach
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Antonio Artigas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029-Madrid, Spain.,Critical Care Centre, Corporació Sanitària Universitària Parc Taulí, Universitat Autònoma de Barcelona Parc Taulí 1, 08208-Sabadell, Spain
| | - Cordula Stamme
- Division of Cellular Pneumology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23845 Borstel, and Department of Anesthesiology and Intensive Care, University of Lübeck, 23538 Lübeck, Germany
| | - Zissis C Chroneos
- Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, and Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey PA 17033, USA
| | - Dietmar M Zaiss
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, 28040-Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029-Madrid, Spain
| | - Judith E Allen
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.,Faculty of Biology, Medicine and Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
24
|
Li X, Wu Y, Zhang W, Gong J, Cheng Y. Pre-conditioning with tanshinone IIA attenuates the ischemia/reperfusion injury caused by liver grafts via regulation of HMGB1 in rat Kupffer cells. Biomed Pharmacother 2017; 89:1392-1400. [PMID: 28320107 DOI: 10.1016/j.biopha.2017.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE We have evaluated the protective mechanism of tanshinone IIA in ischemia/reperfusion injury (IRI) induced by liver grafts, revealing novel supplementary immunotherapy for liver transplantation. METHODS The tanshinone IIA preconditioning group (TP group) was pretreated with tanshinone IIA via intraperitoneal injection for 1 week before receiving orthotopic liver transplantation with hepatic arterial ischemia for 30min. The sham-operation group (SO group), control graft group (CG group) and IRI group were pretreated with an equivalent volume of normal saline. The IRI group and CG group received orthotopic liver transplantation with or without hepatic arterial ischemia. Rats were sacrificed at each time point, serum was collected for ELISA detection, and Kupffer cells (KCs) were isolated to extract total protein and RNA for western blotting and real-time PCR, respectively. RESULTS The levels of TNF-α and IL-4 in the TP group were significantly lower than those of in the IRI group; meanwhile the IL-10 and TGF-β levels were significantly higher than in the IRI group. The protein and mRNA expression levels of HMGB1 were significantly lower in TP group than in the IRI group at each time point. The TLR-4, Myd88, NLRP3 and p-NF-κb p65 expression levels in the TP groups were significantly lower than those in the IRI group, while the PTEN, PI3K and AKT phosphorylation levels in the TP groups were significantly higher than those in the IRI group. CONCLUSIONS Tanshinone IIA attenuates IRI caused by liver grafts via down-regulation of the HMGB1-TLR-4/NF-κb pathway in KCs and activation of PTEN/PI3K/AKT pathway, suggesting a potential role for prevention of liver cell IRI during liver transplantation.
Collapse
Affiliation(s)
- Xuanfei Li
- Department of Hepatobiliary Surgery and Chongqing Key Laboratory of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yakun Wu
- Department of Hepatobiliary Surgery, Suining Central Hospital, Suining, Sichuan, 629000, PR China
| | - Wenfeng Zhang
- Department of Hepatobiliary Surgery and Chongqing Key Laboratory of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Jianping Gong
- Department of Hepatobiliary Surgery and Chongqing Key Laboratory of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| | - Yao Cheng
- Department of Hepatobiliary Surgery and Chongqing Key Laboratory of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
25
|
Li P, He K, Li J, Liu Z, Gong J. The role of Kupffer cells in hepatic diseases. Mol Immunol 2017; 85:222-229. [PMID: 28314211 DOI: 10.1016/j.molimm.2017.02.018] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
Abstract
Kupffer cells (KCs) constitute 80-90% of the tissue macrophages present in the body. Essential to innate and adaptive immunity, KCs are responsible for the swift containment and clearance of exogenous particulates and immunoreactive materials which are perceived as foreign and harmful to the body. Similar to other macrophages, KCs also sense endogenous molecular signals that may result from perturbed homeostasis of the host. KCs have been implicated in host defense and the pathogenesis of various hepatic diseases, including endotoxin tolerance, liver transplantation, nonalcoholic fatty liver disease, and alcoholic liver disease. In this review, we summarized some novel findings associated with the role of KCs in hepatic diseases, such as the origin and mechanisms KCs polarization, molecular basis for caspase-1 activation called "non-canonical inflammasome pathway" involving the cleavage of Gsdmd by caspase-11, the important role of microRNA in liver transplantation, and so on. A better understanding of KCs biological characteristics and immunologic function in liver homeostasis and pathology may pave the way to investigate new diagnostic and therapeutic approaches for hepatic diseases.
Collapse
Affiliation(s)
- Peizhi Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun He
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzheng Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zuojin Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jianping Gong
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
26
|
Wen J, Wu Y, Wei W, Li Z, Wang P, Zhu S, Dong W. Protective effects of recombinant human cytoglobin against chronic alcohol-induced liver disease in vivo and in vitro. Sci Rep 2017; 7:41647. [PMID: 28128325 PMCID: PMC5269723 DOI: 10.1038/srep41647] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is an important worldwide public health issue with no satisfying treatment available since now. Here we explore the effects of recombinant human cytoglobin (rhCygb) on chronic alcohol-induced liver injury and the underlying mechanisms. In vivo studies showed that rhCygb was able to ameliorate alcohol-induced liver injury, significantly reversed increased serum index (ALT, AST, TG, TC and LDL-C) and decreased serum HDL-C. Histopathology observation of the liver of rats treated with rhCygb confirmed the biochemical data. Furthermore, rhCygb significantly inhibited Kupffer cells (KCs) proliferation and TNF-α expression in LPS-induced KCs. rhCygb also inhibited LPS-induced NADPH oxidase activity and ROS, NO and O2•- generation. These results collectively indicate that rhCygb exert the protective effect on chronic alcohol-induced liver injury through suppression of KC activation and oxidative stress. In view of its anti-oxidative stress and anti-inflammatory features, rhCygb might be a promising candidate for development as a therapeutic agent against ALD.
Collapse
Affiliation(s)
- Jian Wen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong Province 510515, P.R. China.,Department of Hematology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region 541002, P.R. China
| | - Yongbin Wu
- Department of Clinical Laboratory, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region 541002, P.R. China
| | - Wei Wei
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong Province 510515, P.R. China
| | - Zhen Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong Province 510515, P.R. China
| | - Ping Wang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong Province 510515, P.R. China
| | - Shiwei Zhu
- Department of Hematology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region 541002, P.R. China
| | - Wenqi Dong
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong Province 510515, P.R. China
| |
Collapse
|
27
|
López ML, Uribe-Cruz C, Osvaldt A, Kieling CO, Simon L, Tobar S, Andrades M, Matte U. Encapsulated platelets modulate kupffer cell activation and reduce oxidative stress in a model of acute liver failure. Liver Transpl 2016; 22:1562-1572. [PMID: 27509591 DOI: 10.1002/lt.24524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 07/23/2016] [Indexed: 12/13/2022]
Abstract
Acute liver failure (ALF) is characterized by massive hepatocyte cell death. Kupffer cells (KC) are the first cells to be activated after liver injury. They secrete cytokines and produce reactive oxygen species, leading to apoptosis of hepatocytes. In a previous study, we showed that encapsulated platelets (PLTs) increase survival in a model of ALF. Here, we investigate how PLTs exert their beneficial effect. Wistar rats submitted to 90% hepatectomy were treated with PLTs encapsulated in sodium alginate or empty capsules. Animals were euthanized at 6, 12, 24, 48, and 72 hours after hepatectomy, and livers were collected to assess oxidative stress, caspase activity, and gene expression related to oxidative stress or liver function. The number of KCs in the remnant liver was evaluated. Interaction of encapsulated PLTs and KCs was investigated using a coculture system. PLTs increase superoxide dismutase and catalase activity and reduce lipid peroxidation. In addition, caspase 3 activity was reduced in animals receiving encapsulated PLTs at 48 and 72 hours. Gene expression of endothelial nitric oxide synthase and nuclear factor kappa B were elevated in the PLT group at each time point analyzed. Gene expression of albumin and factor V also increased in the PLT group. The number of KCs in the PLT group returned to normal levels at 12 hours but remained elevated in the control group until 72 hours. Finally, PLTs modulate interleukin (IL) 6 and IL10 expression in KCs after 24 hours of coculture. In conclusion, these results indicate that PLTs interact with KCs in this model and exert their beneficial effect through reduction of oxidative stress that results in healthier hepatocytes and decreased apoptosis. Liver Transplantation 22 1562-1572 2016 AASLD.
Collapse
Affiliation(s)
- Mónica Luján López
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Brazil.,Post-Graduation Program on Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina Uribe-Cruz
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Brazil.,Post-Graduation Program on Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alessandro Osvaldt
- Post-Graduation Program in Surgery, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Oscar Kieling
- Experimental Hepatology Laboratory, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Brazil
| | - Laura Simon
- Post-Graduation Program on Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Santiago Tobar
- Cardiovascular Laboratory, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Brazil
| | - Michael Andrades
- Molecular and Protein Analysis Unit, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Brazil. .,Post-Graduation Program on Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
28
|
Yuan G, Yu Y, Ji L, Jie X, Yue L, Kang Y, Jianping G, Zuojin L. Down-Regulated Receptor Interacting Protein 140 Is Involved in Lipopolysaccharide-Preconditioning-Induced Inactivation of Kupffer Cells and Attenuation of Hepatic Ischemia Reperfusion Injury. PLoS One 2016; 11:e0164217. [PMID: 27723769 PMCID: PMC5056758 DOI: 10.1371/journal.pone.0164217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/07/2016] [Indexed: 01/03/2023] Open
Abstract
Background Lipopolysaccharide (LPS) preconditioning is known to attenuate hepatic ischemia/reperfusion injury (I/RI); however, the precise mechanism remains unclear. This study investigated the role of receptor-interacting protein 140 (RIP140) on the protective effect of LPS preconditioning in hepatic I/RI involving Kupffer cells (KCs). Methods Sprague—Dawley rats underwent 70% hepatic ischemia for 90 minutes. LPS (100 μg/kg) was injected intraperitoneally 24 hours before ischemia. Hepatic injury was observed using serum and liver samples. The LPS/NF-κB (nuclear factor-κB) pathway and hepatic RIP140 expression in isolated KCs were investigated. Results LPS preconditioning significantly inhibited hepatic RIP140 expression, NF-κB activation, and serum proinflammatory cytokine expression after I/RI, with an observation of remarkably reduced serum enzyme levels and histopathologic scores. Our experiments showed that protection effects could be effectively induced in KCs by LPS preconditioning, but couldn’t when RIP140 was overexpressed in KCs. Conversely, even without LPS preconditioning, protective effects were found in KCs if RIP140 expression was suppressed with siRNA. Conclusions Down-regulated RIP140 is involved in LPS-induced inactivation of KCs and hepatic I/RI attenuation.
Collapse
Affiliation(s)
- Guo Yuan
- Department of Infection, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - You Yu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Li Ji
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xu Jie
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Li Yue
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yang Kang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Gong Jianping
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Liu Zuojin
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- * E-mail:
| |
Collapse
|
29
|
Down-Regulation of Donor Kupffer Cell B7 Expression Reduced Recipient Lymphocyte Activation and Secretion of Interleukin-2 In Vitro. Transplant Proc 2016; 47:2985-90. [PMID: 26707326 DOI: 10.1016/j.transproceed.2015.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/01/2015] [Accepted: 10/20/2015] [Indexed: 01/29/2023]
Abstract
BACKGROUND Kupffer cell (KC), a kind of important antigen-presenting cell in liver, play an important role in the process of acute rejection after liver transplantation. The aim of this study was to investigate effect of suppression of donor KC B7 expression on recipient lymphocyte activation and secretion of interleukin-2 (IL-2) in vitro. METHODS Liver ex vivo perfusion with collagenase IV and density-gradient centrifugation were used to isolate donor Lewis rat KCs. The interference fragments of the B7 molecule were designed to construct RNA interference vector pSilencer 3.1H1-Neo-B7 that was transfected into KCs of donor rat. Reverse-transcription polymerase chain reaction was used to detect the changes in the expression of B7 molecules in KCs. The transfected KCs were divided into 3 groups: A, control group; B, empty vector group; and C, RNA interference group. The lymphocytes of recipient Brown Norway (BN) rats were isolated and cocultured with the cells in the 3 groups. Enzyme-linked immunosorbent assay was used to detect the content of IL-2 in the culture supernate. Methylthiazolyl tetrazolium assay was used to detect the proliferation of lymphocytes. RESULTS The yield rate of KCs was 5 × 10(7), and the cell viability was >98%. RNA interference vector had been successfully constructed and identified by means of enzyme digestion and sequencing. The expression of B7 in KCs decreased by 22% after RNA interference (P < .01). After coculturing with lymphocytes of BN rats, compared with the control group, the decreased expression of B7 significantly inhibited the activation and proliferation of lymphocytes as well as the secretion of IL-2 by lymphocytes. The proliferation of lymphocytes in recipient BN rats decreased by 49% (P < .01), and the secretion of IL-2 in the culture supernate decreased by 67% (P < .01). CONCLUSIONS This study successfully constructed a B7 RNA interference vector, and applied it to assessing reduction of B7 expression in donor KCs. RNA interference significantly suppressed the activation of recipient T lymphocytes and secretion of IL-2 via the CD28/B7 costimulatory pathway and may induce immune tolerance in liver transplants.
Collapse
|
30
|
Salama SM, Gwaram NS, AlRashdi AS, Khalifa SAM, Abdulla MA, Ali HM, El-Seedi HR. A Zinc Morpholine Complex Prevents HCl/Ethanol-Induced Gastric Ulcers in a Rat Model. Sci Rep 2016; 6:29646. [PMID: 27460157 PMCID: PMC4962080 DOI: 10.1038/srep29646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 06/08/2016] [Indexed: 12/15/2022] Open
Abstract
Zinc is a naturally occurring element with roles in wound healing and rescuing tissue integrity, particularly in the gastrointestinal system, where it can be detected in the mucosal and submucosal layers. Zinc chelates are known to have beneficial effects on the gastrointestinal mucosa and in cases of gastric ulcer. We synthesized complexes of zinc featuring a heterocyclic amine binding amino acids then investigated their ability to enhance the gastric self-repair. Zinc-morpholine complex, Zn(L)SCN, namely showed strong free-radical scavenging, promotion of the DNA and RNA polymerases reconstruction and suppression of cell damage. The complex's mode of action is proposed to involve hydrogen bond formation via its bis(thiocyanato-k)zinc moiety. Zn(L)SCN complex had potent effects on gastric enzymatic activity both in vitro and in vivo. The complex disrupted the ulcerative process as demonstrated by changes in the intermediate metabolites of the oxidative pathway - specifically, reduction in the MDA levels and elevation of reduced glutathione together with an attenuation of oxidative DNA damage. Additionally, Zn(L)SCN restored the gastric mucosa, inhibited the production of pro-inflammatory cytokines (IL-6, TNF and the caspases), and preserved the gastric mucous balance. Zn(L)SCN thus exhibited anti-oxidative, anti-inflammatory and anti-apoptotic activities, all of which have cytoprotective effects on the gastric lining.
Collapse
Affiliation(s)
- Suzy M. Salama
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nura Suleiman Gwaram
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ahmed S. AlRashdi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shaden A. M. Khalifa
- Department of Experimental Hematology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
- Department of Otolaryngology-Head and Neck Surgery Kumamoto University 1-1-1 Honjo, Kumamoto, Japan
| | - Mahmood A. Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hapipah M. Ali
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Experimental Hematology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123, Uppsala, Sweden
| |
Collapse
|
31
|
Liu Z, Niu D, Zhang J, Zhang W, Yao Y, Li P, Gong J. Amphiphilic core-shell nanoparticles containing dense polyethyleneimine shells for efficient delivery of microRNA to Kupffer cells. Int J Nanomedicine 2016; 11:2785-97. [PMID: 27366061 PMCID: PMC4913979 DOI: 10.2147/ijn.s101251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Efficient and targeted delivery approach to transfer exogenous genes into macrophages is still a great challenge. Current gene delivery methods often result in low cellular uptake efficiency in vivo in some types of cells, especially for the Kupffer cells (KCs). In this article, we demonstrate that amphiphilic core-shell nanoparticles (NPs) consisting of well-defined hydrophobic poly(methyl methacrylate) (PMMA) cores and branched polyethyleneimine (PEI) shells (denoted as PEI@PMMA NPs) are efficient nanocarriers to deliver microRNA (miRNA)-loaded plasmid to the KCs. Average hydrodynamic diameter of PEI@ PMMA NPs was 279 nm with a narrow size distribution. The NPs also possessed positive surface charges up to +30 mV in water, thus enabling effective condensation of negatively charged plasmid DNA. Gel electrophoresis assay showed that the resultant PEI@PMMA NPs were able to completely condense miRNA plasmid at a weight ratio of 25:1 (N/P ratio equal to 45:1). The Cell Counting Kit-8 assay and flow cytometry results showed that the PEI@PMMA/miRNA NPs displayed low cytotoxicity and cell apoptosis activity against the KCs. The maximum cell transfection efficiency reached 34.7% after 48 hours, which is much higher than that obtained by using the commercial Lipofectamine™ 2000 (1.7%). Bio-transmission electron microscope observation revealed that the PEI@PMMA NPs were mainly distributed in the cytoplasm of the KCs. Furthermore, when compared to the control groups, the protein expression of target nuclear factor κB P65 was considerably inhibited (P<0.05) both in vitro and in vivo. These results demonstrate that the PEI@PMMA NPs with a unique amphiphilic core-shell nanostructure are promising nanocarriers for delivering miRNA plasmid to KCs.
Collapse
Affiliation(s)
- Zuojin Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dechao Niu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China; Lab of Low-Dimensional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Junyong Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenfeng Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuan Yao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Pei Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
32
|
Zhang Y, Li X, Grailer JJ, Wang N, Wang M, Yao J, Zhong R, Gao GF, Ward PA, Tan DX, Li X. Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. J Pineal Res 2016; 60:405-14. [PMID: 26888116 DOI: 10.1111/jpi.12322] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/12/2016] [Indexed: 12/13/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinically severe respiratory disorders, and there are currently no Food and Drug Administration-approved drug therapies. Melatonin is a well-known anti-inflammatory molecule, which has proven to be effective in ALI induced by many conditions. Emerging studies suggest that the NLRP3 inflammasome plays a critical role during ALI. How melatonin directly blocks activation of the NLRP3 inflammasome in ALI remains unclear. In this study, using an LPS-induced ALI mouse model, we found intratracheal (i.t.) administration of melatonin markedly reduced the pulmonary injury and decreased the infiltration of macrophages and neutrophils into lung. During ALI, the NLRP3 inflammasome is significantly activated with a large amount of IL-1β and the activated caspase-1 occurring in the lung. Melatonin inhibits the activation of the NLRP3 inflammasome by both suppressing the release of extracellular histones and directly blocking histone-induced NLRP3 inflammasome activation. Notably, i.t. route of melatonin administration opens a more efficient therapeutic approach for treating ALI.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of the Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiru Li
- Department of General Surgery, The 301th Hospital of PLA, Beijing, China
| | - Jamison J Grailer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Na Wang
- State Key Laboratory of the Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mingming Wang
- State Key Laboratory of the Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jianfei Yao
- State Key Laboratory of the Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rui Zhong
- State Key Laboratory of the Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dun-Xian Tan
- The University of Texas Health Science Center at San Antonio Department of Cellular and Structural Biology, San Antonio, TX, USA
| | - Xiangdong Li
- State Key Laboratory of the Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Kegel V, Deharde D, Pfeiffer E, Zeilinger K, Seehofer D, Damm G. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells. J Vis Exp 2016:e53069. [PMID: 27077489 DOI: 10.3791/53069] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine(1). Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models.
Collapse
Affiliation(s)
- Victoria Kegel
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin
| | - Daniela Deharde
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin
| | - Elisa Pfeiffer
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin
| | - Katrin Zeilinger
- Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin
| | - Daniel Seehofer
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin;
| |
Collapse
|
34
|
You Y, Zhang J, Gong J, Chen Y, Li Y, Yang K, Liu Z. Mesenchymal stromal cell-dependent reprogramming of Kupffer cells is mediated by TNF-α and PGE2 and is crucial for liver transplant tolerance. Immunol Res 2016; 62:292-305. [PMID: 25982496 DOI: 10.1007/s12026-015-8660-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The role of mesenchymal stromal cells (MSCs) in the modulation of liver transplant tolerance has attracted significant interest. However, the interaction between MSCs and Kupffer cells (KCs) has received little attention, and the effect of this interaction on liver transplant tolerance remains unclear. KCs were cultured in the presence and absence of MSCs. After 24 h, cells were treated with lipopolysaccharide (LPS), after which the production of cytokines and the expression of surface antigens were measured for cell function identification. Moreover, the effects of the KCs and the prostaglandin E2 (PGE2) levels produced by the MSCs were determined using an experimental rat liver transplantation model. Blood and liver samples were collected at three time points after transplantation for further analysis. After LPS treatment, when compared with the KC single cultures, the expression of pro-inflammatory cytokines (IL-1β, IL-6, MHC-II, CD40, CD80, and CD86) in the coculture system was down-regulated, whereas the expression of anti-inflammatory cytokines (TGF-β, IL-4, PGE2, and IL-10) was markedly increased. These data indicate that MSCs can reprogram the phenotype of KCs. However, KCs treated with miR/TNF-α (tumor necrosis factor) plasmid prior to coculture to inhibit the production of TNF-α resulted in an inhibition of the reprogramming effect of MSCs. Moreover, overexpression of PGE2 in MSCs increased the effect of MSCs on KC reprogramming. After rat liver transplantation, allograft recipients that received MSCs showed better allograft tolerance when compared with rats in which KC function was inhibited. Furthermore, rats treated with MSCs overexpressing PGE2 demonstrated the best liver tolerance of all of the groups tested. MSCs reprogram the phenotype of KCs through TNF-α and PGE2, and this process is crucial for the immunomodulatory function of MSCs in liver transplantation.
Collapse
Affiliation(s)
- Yu You
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | | | | | | | | | | | | |
Collapse
|
35
|
All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells. PLoS One 2015; 10:e0138655. [PMID: 26407160 PMCID: PMC4583235 DOI: 10.1371/journal.pone.0138655] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Background & Aims Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. Methods Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. Results Cell preparation yielded the following cell counts per gram of liver tissue: 2.0±0.4×107 hepatocytes, 1.8±0.5×106 Kupffer cells, 4.3±1.9×105 liver sinusoidal endothelial cells, and 3.2±0.5×105 stellate cells. Hepatocytes were identified by albumin (95.5±1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5±1.2%) and exhibited phagocytic activity, as determined with 1μm latex beads. Endothelial cells were CD146+ (97.8±1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1±1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. Conclusions Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease.
Collapse
|
36
|
Tarasenko TN, Singh LN, Chatterji-Len M, Zerfas PM, Cusmano-Ozog K, McGuire PJ. Kupffer cells modulate hepatic fatty acid oxidation during infection with PR8 influenza. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2391-401. [PMID: 26319418 DOI: 10.1016/j.bbadis.2015.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
In response to infection, patients with inborn errors of metabolism may develop a functional deterioration termed metabolic decompensation. The biochemical hallmarks of this disruption of metabolic homeostasis are disease specific and may include acidosis, hyperammonemia or hypoglycemia. In a model system previously published by our group, we noted that during influenza infection, mice displayed a depression in hepatic mitochondrial enzymes involved in nitrogen metabolism. Based on these findings, we hypothesized that this normal adaptation may extend to other metabolic pathways, and as such, may impact various inborn errors of metabolism. Since the liver is a critical organ in inborn errors of metabolism, we carried out untargeted metabolomic profiling of livers using mass spectrometry in C57Bl/6 mice infected with influenza to characterize metabolic adaptation. Pathway analysis of metabolomic data revealed reductions in CoA synthesis, and long chain fatty acyl CoA and carnitine species. These metabolic adaptations coincided with a depression in hepatic long chain β-oxidation mRNA and protein. To our surprise, the metabolic changes observed occurred in conjunction with a hepatic innate immune response, as demonstrated by transcriptional profiling and flow cytometry. By employing an immunomodulation strategy to deplete Kupffer cells, we were able to improve the expression of multiple genes involved in β-oxidation. Based on these findings, we are the first to suggest that the role of the liver as an immunologic organ is central in the pathophysiology of hepatic metabolic decompensation in inborn errors of metabolism due to respiratory viral infection.
Collapse
Affiliation(s)
- Tatyana N Tarasenko
- Metabolism, Infection and Immunity Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Milani Chatterji-Len
- Metabolism, Infection and Immunity Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patricia M Zerfas
- Office of Research Services, Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | - Kristina Cusmano-Ozog
- Biochemical Genetics and Metabolism Laboratory, Children's National Medical Center, Washington, DC, USA
| | - Peter J McGuire
- Metabolism, Infection and Immunity Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Selvaraj V, Nepal N, Rogers S, Manne NDPK, Arvapalli R, Rice KM, Asano S, Fankhanel E, Ma JJ, Shokuhfar T, Maheshwari M, Blough ER. Inhibition of MAP kinase/NF-kB mediated signaling and attenuation of lipopolysaccharide induced severe sepsis by cerium oxide nanoparticles. Biomaterials 2015; 59:160-71. [PMID: 25968464 DOI: 10.1016/j.biomaterials.2015.04.025] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 01/01/2023]
Abstract
Sepsis is a life threatening disease that is associated with high mortality. Existing treatments have failed to improve survivability in septic patients. The purpose of this present study is to evaluate whether cerium oxide nanoparticles (CeO2NPs) can prevent lipopolysaccharide (LPS) induced severe sepsis mortality by preventing hepatic dysfunction in male Sprague Dawley rats. Administration of a single dose (0.5 mg/kg) of CeO2NPs intravenously to septic rats significantly improved survival rates and functioned to restore body temperature, respiratory rate and blood pressure towards baseline. Treatment-induced increases in animal survivability were associated with decreased hepatic damage along with reductions in serum cytokines/chemokines, and diminished inflammatory related signaling. Kupffer cells and macrophage cells exposed to CeO2NPs exhibited decreases in LPS-induced cytokine release (TNF-α, IL-1β, IL-6, HMGB1) which were associated with diminished cellular ROS, reduced levels of nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and decreased nuclear factor-kappa light chain enhancer of activated B cells (NF-kB) transcriptional activity. The findings of this study indicate that CeO2NPs may be useful as a therapeutic agent for sepsis.
Collapse
Affiliation(s)
| | - Niraj Nepal
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Steven Rogers
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | | | | | - Kevin M Rice
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Shinichi Asano
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Erin Fankhanel
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Jane J Ma
- Health Effects Laboratory Division, NIOSH, Morgantown, WV, USA
| | - Tolou Shokuhfar
- Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI, USA
| | - Mani Maheshwari
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Eric R Blough
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA; Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA; Department of Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA; Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA.
| |
Collapse
|
38
|
Zhu DQ, Li PZ. Role of Kupffer cells in bacterial infectious diseases. Shijie Huaren Xiaohua Zazhi 2015; 23:1776-1783. [DOI: 10.11569/wcjd.v23.i11.1776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kupffer cells (KCs) are also known as liver inherent macrophages, which account for the largest part of human tissue macrophages and participate in the pathogenesis of various liver diseases. In vitro study using primary culture is a valuable tool for the exploration of specific immunological functions of KCs. Obtaining KCs with high purity and activity is the basis for research. A large number of phagocytosable particles and soluble substances can activate KCs by binding to specific receptors on the membrane. The most important molecule that activates KCs is lipopolysaccharide (LPS). A tiny quantity of LPS will drive a Toll-like receptor 4 (TLR4) -dependent proinflammatory response that alerts the host to the presence of infection. Higher quantities of LPS, which reach the cytoplasm, will trigger inflammasome activation, interleukin-1 beta (IL-1β) production and, ultimately, cell death. KCs play an important role in sepsis, endotoxin tolerance and acute pancreatitis. In this review, we describe the role of KCs in these diseases and the underlying molecular mechanisms.
Collapse
|
39
|
Selvaraj V, Manne NDPK, Arvapalli R, Rice KM, Nandyala G, Fankenhanel E, Blough ER. Effect of cerium oxide nanoparticles on sepsis induced mortality and NF-κB signaling in cultured macrophages. Nanomedicine (Lond) 2015; 10:1275-88. [DOI: 10.2217/nnm.14.205] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To investigate whether cerium oxide (CeO2) nanoparticles could be used for the treatment of severe sepsis. Materials & methods: Cecal peritonitis was induced in male Sprague–Dawley rats in the presence and absence of CeO2 nanoparticles. Cultured macrophages (RAW264.7 cells) were challenged with lipopolysaccharide in the absence and presence of CeO2 nanoparticles. The effect of nanoparticles on the growth of Escherichia coli and Staphylococcus aureus was determined in culture. Results: Nanoparticle treatment decreased sepsis-induced mortality, organ damage, serum IL-6, blood urea nitrogen and inflammatory markers. Nanoparticle treatment diminished lipopolysaccharide-induced cytokine release and p65-nuclear factor-KB (NF-KB) activation in cultured RAW264.7 cells. Exposure to CeO2 nanoparticles inhibited E. coli growth. Conclusion: The findings of this study indicate that CeO2 nanoparticles may be useful for the treatment of sepsis.
Collapse
Affiliation(s)
| | - Nandini DPK Manne
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
- Department of Pharmacology, Physiology & Toxicology, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | | | - Kevin M Rice
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Geeta Nandyala
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Erin Fankenhanel
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Eric R Blough
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
- Department of Pharmacology, Physiology & Toxicology, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
- Department of Cardiology, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA
| |
Collapse
|
40
|
Pfeiffer E, Kegel V, Zeilinger K, Hengstler JG, Nüssler AK, Seehofer D, Damm G. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells. Exp Biol Med (Maywood) 2014; 240:645-56. [PMID: 25394621 DOI: 10.1177/1535370214558025] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/18/2014] [Indexed: 02/06/2023] Open
Abstract
Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 10(6) KC, 2.7 × 10(5) LEC and 4.7 × 10(5) HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4-5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor.
Collapse
Affiliation(s)
- Elisa Pfeiffer
- Department for General, Visceral and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Victoria Kegel
- Department for General, Visceral and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Jan G Hengstler
- IfADo - Leibniz Research Centre for Working Environment and Human Factors at Dortmund Technical University, 44139 Dortmund, Germany
| | - Andreas K Nüssler
- Eberhard-Karls University Tübingen, BG Trauma Center, 72076 Tübingen, Germany
| | - Daniel Seehofer
- Department for General, Visceral and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Georg Damm
- Department for General, Visceral and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
41
|
Subanesthetic isoflurane reduces zymosan-induced inflammation in murine Kupffer cells by inhibiting ROS-activated p38 MAPK/NF-κB signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:851692. [PMID: 25147596 PMCID: PMC4134815 DOI: 10.1155/2014/851692] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/30/2014] [Indexed: 01/23/2023]
Abstract
Volatile anesthetic isoflurane (ISO) has immunomodulatory effects. The fungal component zymosan (ZY) induces inflammation through toll-like receptor 2 or dectin-1 signaling. We investigated the molecular actions of subanesthetic (0.7%) ISO against ZY-induced inflammatory activation in murine Kupffer cells (KCs), which are known as the resident macrophages within the liver. We observed that ISO reduced ZY-induced cyclooxygenase 2 upregulation and prostaglandin E2 release, as determined by western blot and radioimmunoassay, respectively. ISO also reduced the production of tumor necrosis factor-α, interleukin-1β, IL-6, high-mobility group box-1, macrophage inflammatory protein-1α, macrophage inflammatory protein-2, and monocyte chemoattractant protein-1 as assessed by enzyme-linked immunosorbent assays. ISO blocked the ZY-induced nuclear translocation and DNA-binding activity of nuclear factor- (NF)-κB p65. Moreover, ISO attenuated ZY-induced p38 mitogen-activated protein kinase (MAPK) activation partly by scavenging reactive oxygen species (ROS); the interregulation that ROS activated p38 MAPK followed by NF-κB activation was crucial for the ZY-induced inflammatory responses in KCs. An in vivo study by peritoneal injection of ZY into BALB/C mice confirmed the anti-inflammatory properties of 0.7% ISO against ZY in KCs. These results suggest that ISO ameliorates ZY-induced inflammatory responses in murine KCs by inhibiting the interconnected ROS/p38 MAPK/NF-κB signaling pathways.
Collapse
|