1
|
Stehlin J, Albert I, Frei T, Frei Haller B, Lardos A. Plants and their uses in dermatological recipes of the Receptarium of Burkhard III von Hallwyl from 16th century Switzerland - Data mining a historical text and preliminary in vitro screening. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118633. [PMID: 39097209 DOI: 10.1016/j.jep.2024.118633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Historical texts on materia medica can be an attractive source of ethnopharmacological information. Various research groups have investigated corresponding resources from Europe and the Mediterranean region, pursuing different objectives. Regardless of the method used, the indexing of textual information and its conversion into data sets useful for further investigations represents a significant challenge. AIM OF THE STUDY First, this study aims to systematically catalogue pharmaco-botanical information in the Receptarium of Burkhard von Hallwyl (RBH) in order to identify candidate plants in a targeted manner. Secondly, the potential of RBH as a resource for pharmacological investigations will be assessed by means of a preliminary in vitro screening. MATERIALS AND METHODS We developed a relational database for the systematic recording of parameters composing the medical recipes contained in the historical text. Focusing on dermatological recipes, we explored the mentioned plants and their uses by drawing on specific literature. The botanical identities (candidate species) suggested in the literature for the historical plant names were rated based on their plausibility of being the correct attribution. The historical uses were interpreted by consulting medical-historical and modern clinical literature. For the subsequent in vitro screening, we selected candidate species used in recipes directed at the treatment of inflammatory or infectious skin disorders and wounds. Plants were collected in Switzerland and their hydroethanolic crude extracts tested for possible cytotoxic effects and for their potential to modulate the release of IL-6 and TNF in PS-stimulated whole blood and PBMCs. RESULTS The historical text analysis points up the challenges associated with the assessment of historical plant names. Often two or more plant species are available as candidates for each of the 161 historical plant names counted in the 200 dermatological recipes in RBH. On the other hand, our method enabled to draw conclusions about the diseases underlying the 56 medical applications mentioned in the text. On this basis, 11 candidate species were selected for in vitro screening, four of which were used in RBH in herbal simple recipes and seven in a herbal compound formulation. None of the extracts tested showed a noteworthy effect on cell viability except for the sample of Sanicula europaea L. Extracts were tested at 50 μg/mL in the whole blood assay, where especially Vincetoxicum hirundinaria Medik. or Solanum nigrum L. showed inhibitory or stimulatory activities. In the PBMC assay, the root of Vincetoxicum hirundinaria revealed a distinct inhibitory effect on IL-6 release (IC50 of 3.6 μg/mL). CONCLUSIONS Using the example of RBH, this study illustrates a possible ethnopharmacological path from unlocking the historical text and its subsequent analysis, through the selection and collection of plant candidates to their in vitro investigation. Fully documenting our approach to the analysis of historical texts, we hope to contribute to the discussion on solutions for the digital indexing of premodern information on the use of plants or other natural products.
Collapse
Affiliation(s)
- Jonas Stehlin
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Natural Product Chemistry and Phytopharmacy Group, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.
| | - Ina Albert
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Pharmaceutical Technology and Pharmacology Group, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.
| | - Thomas Frei
- Pro Thesauro Sanitatis (PTS), c/o Thomas Frei, Kappelen 20, 5706, Boniswil, Switzerland.
| | - Barbara Frei Haller
- Pro Thesauro Sanitatis (PTS), c/o Thomas Frei, Kappelen 20, 5706, Boniswil, Switzerland; ETH Zürich, Institute of Pharmaceutical Sciences (IPW), Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
| | - Andreas Lardos
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Natural Product Chemistry and Phytopharmacy Group, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland; Pro Thesauro Sanitatis (PTS), c/o Thomas Frei, Kappelen 20, 5706, Boniswil, Switzerland.
| |
Collapse
|
2
|
Brook B, Duval V, Barman S, Speciner L, Sweitzer C, Khanmohammed A, Menon M, Foster K, Ghosh P, Abedi K, Koster J, Nanishi E, Baden LR, Levy O, VanCott T, Micol R, Dowling DJ. Adjuvantation of a SARS-CoV-2 mRNA vaccine with controlled tissue-specific expression of an mRNA encoding IL-12p70. Sci Transl Med 2024; 16:eadm8451. [PMID: 39047117 DOI: 10.1126/scitranslmed.adm8451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Messenger RNA (mRNA) vaccines were pivotal in reducing severe acute respiratory syndrome 2 (SARS-CoV-2) infection burden, yet they have not demonstrated robust durability, especially in older adults. Here, we describe a molecular adjuvant comprising a lipid nanoparticle (LNP)-encapsulated mRNA encoding interleukin-12p70 (IL-12p70). The bioactive adjuvant was engineered with a multiorgan protection (MOP) sequence to restrict transcript expression to the intramuscular injection site. Admixing IL-12-MOP (CTX-1796) with the BNT162b2 SARS-CoV-2 vaccine increased spike protein-specific immune responses in mice. Specifically, the benefits of IL-12-MOP adjuvantation included amplified humoral and cellular immunity and increased immune durability for 1 year after vaccination in mice. An additional benefit included the restoration of immunity in aged mice to amounts comparable to those achieved in young adult animals, alongside amplification with a single immunization. Associated enhanced dendritic cell and germinal center responses were observed. Together, these data demonstrate that an LNP-encapsulated IL-12-MOP mRNA-encoded adjuvant can amplify immunogenicity independent of age, demonstrating translational potential to benefit vulnerable populations.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Duval
- Combined Therapeutics Incorporated, Boston, MA 02135, USA
| | - Soumik Barman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Cali Sweitzer
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Manisha Menon
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Pallab Ghosh
- Combined Therapeutics Incorporated, Boston, MA 02135, USA
| | - Kimia Abedi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jacob Koster
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Etsuro Nanishi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsey R Baden
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas VanCott
- Combined Therapeutics Incorporated, Boston, MA 02135, USA
| | - Romain Micol
- Combined Therapeutics Incorporated, Boston, MA 02135, USA
| | - David J Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Rocha S, Silva J, Silva VLM, Silva AMS, Corvo ML, Freitas M, Fernandes E. Pyrazoles have a multifaceted anti-inflammatory effect targeting prostaglandin E 2, cyclooxygenases and leukocytes' oxidative burst. Int J Biochem Cell Biol 2024; 172:106599. [PMID: 38797495 DOI: 10.1016/j.biocel.2024.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Elevated levels of prostaglandin E2 have been implicated in the pathophysiology of various diseases. Anti-inflammatory drugs that act through the inhibition of cyclooxygenase enzymatic activity, thereby leading to the suppression of prostaglandin E2, are often associated with several side effects due to their non-specific inhibition of cyclooxygenase enzymes. Consequently, the targeted suppression of prostaglandin E2 production with innovative molecules and/or mechanisms emerges as a compelling therapeutic strategy for the treatment of inflammatory-related diseases. Therefore, in this study, a systematic analysis of 28 pyrazole derivatives was conducted to explore their potential mechanisms for reducing prostaglandin E2 levels. In this context, the evaluation of these derivatives extended to examining their capacity to reduce prostaglandin E2in vitro in human whole blood, inhibit cyclooxygenase-1 and cyclooxygenase-2 enzymes, modulate cyclooxygenase-2 expression, and suppress oxidative burst in human leukocytes. The results enabled the establishment of significant structure-activity relationships, elucidating key determinants for their activities. In particular, the 4-styryl group on the pyrazole moiety and the presence of chloro substitutions were identified as key determinants. Pyrazole 8 demonstrated the capacity to reduce prostaglandin E2 levels by downregulating cyclooxygenase-2 expression, and pyrazole-1,2,3-triazole 18 emerged as a dual-acting agent, inhibiting human leukocytes' oxidative burst and cyclooxygenase-2 activity. Furthermore, pyrazole 26 demonstrated effective reduction of prostaglandin E2 levels through selective cyclooxygenase-1 inhibition. These results underscore the multifaceted anti-inflammatory potential of pyrazoles, providing new insights into the substitutions and structural frameworks that are beneficial for the studied activity.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Jorge Silva
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Vera L M Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - M Luísa Corvo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon 1649-003, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal.
| |
Collapse
|
4
|
Tong AJ, Leylek R, Herzner AM, Rigas D, Wichner S, Blanchette C, Tahtinen S, Kemball CC, Mellman I, Haley B, Freund EC, Delamarre L. Nucleotide modifications enable rational design of TLR7-selective ligands by blocking RNase cleavage. J Exp Med 2024; 221:e20230341. [PMID: 38095631 PMCID: PMC10720541 DOI: 10.1084/jem.20230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Toll-like receptors 7 (TLR7) and 8 (TLR8) each sense single-stranded RNA (ssRNA), but their activation results in different immune activation profiles. Attempts to selectively target either TLR7 or TLR8 have been hindered by their high degree of homology. However, recent studies revealed that TLR7 and TLR8 bind different ligands resulting from the processing of ssRNA by endolysosomal RNases. We demonstrate that by introducing precise 2' sugar-modified bases into oligoribonucleotides (ORNs) containing known TLR7 and TLR8 binding motifs, we could prevent RNase-mediated degradation into the monomeric uridine required for TLR8 activation while preserving TLR7 activation. Furthermore, a novel, optimized protocol for CRISPR-Cas9 knockout in primary human plasmacytoid dendritic cells showed that TLR7 activation is dependent on RNase processing of ORNs and revealed a previously undescribed role for RNase 6 in degrading ORNs into TLR ligands. Finally, 2' sugar-modified ORNs demonstrated robust innate immune activation in mice. Altogether, we identified a strategy for creating tunable TLR7-selective agonists.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ira Mellman
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | | |
Collapse
|
5
|
Buys W, Bick A, Madel RJ, Westendorf AM, Buer J, Herbstreit F, Kirschning CJ, Peters J. Substantial heterogeneity of inflammatory cytokine production and its inhibition by a triple cocktail of toll-like receptor blockers in early sepsis. Front Immunol 2023; 14:1277033. [PMID: 37869001 PMCID: PMC10588698 DOI: 10.3389/fimmu.2023.1277033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Early sepsis is a life-threatening immune dysregulation believed to feature a "cytokine storm" due to activation of pattern recognition receptors by pathogen and danger associated molecular patterns. However, treatments with single toll-like receptor (TLR) blockers have shown no clinical benefit. We speculated that sepsis patients at the time of diagnosis are heterogeneous in relation to their cytokine production and its potential inhibition by a triple cocktail of TLR blockers. Accordingly, we analyzed inflammatory cytokine production in whole blood assays from early sepsis patients and determined the effects of triple TLR-blockade. Methods Whole blood of 51 intensive care patients sampled within 24h of meeting Sepsis-3 criteria was incubated for 6h without or with specific TLR2, 4, and 7/8 stimuli or suspensions of heat-killed S. aureus or E. coli bacteria as pan-TLR challenges, and also with a combination of monoclonal antibodies against TLR2 and 4 and chloroquine (endosomal TLR inhibition), subsequent to dose optimization. Concentrations of tumor necrosis factor (TNF), Interleukin(IL)-6, IL-8, IL-10, IL-1α and IL-1β were measured (multiplex ELISA) before and after incubation. Samples from 11 sex and age-matched healthy volunteers served as controls and for dose-finding studies. Results Only a fraction of sepsis patient samples revealed ongoing cytokine production ex vivo despite sampling within 24 h of first meeting Sepsis-3 criteria. In dose finding studies, inhibition of TLR2, 4 and endosomal TLRs reliably suppressed cytokine production to specific TLR agonists and added bacteria. However, inflammatory cytokine production ex vivo was only suppressed in the high cytokine producing samples but not in the majority. The suppressive response to TLR-blockade correlated both with intraassay inflammatory cytokine production (r=0.29-0.68; p<0.0001-0.04) and cytokine baseline concentrations (r=0.55; p<0.0001). Discussion Upon meeting Sepsis-3 criteria for less than 24 h, a mere quarter of patient samples exhibits a strong inflammatory phenotype, as characterized by increased baseline inflammatory cytokine concentrations and a stark TLR-dependent increase upon further ex vivo incubation. Thus, early sepsis patient cohorts as defined by Sepsis-3 criteria are very heterogeneous in regard to inflammation. Accordingly, proper ex vivo assays may be useful in septic individuals before embarking on immunomodulatory treatments.
Collapse
Affiliation(s)
| | - Alexandra Bick
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | | | - Astrid M. Westendorf
- Institut für Medizinische Mikrobiologie, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Jan Buer
- Institut für Medizinische Mikrobiologie, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Frank Herbstreit
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Carsten J. Kirschning
- Institut für Medizinische Mikrobiologie, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
6
|
Shah D, Soper B, Shopland L. Cytokine release syndrome and cancer immunotherapies - historical challenges and promising futures. Front Immunol 2023; 14:1190379. [PMID: 37304291 PMCID: PMC10248525 DOI: 10.3389/fimmu.2023.1190379] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Cancer is the leading cause of death worldwide. Cancer immunotherapy involves reinvigorating the patient's own immune system to fight against cancer. While novel approaches like Chimeric Antigen Receptor (CAR) T cells, bispecific T cell engagers, and immune checkpoint inhibitors have shown promising efficacy, Cytokine Release Syndrome (CRS) is a serious adverse effect and remains a major concern. CRS is a phenomenon of immune hyperactivation that results in excessive cytokine secretion, and if left unchecked, it may lead to multi-organ failure and death. Here we review the pathophysiology of CRS, its occurrence and management in the context of cancer immunotherapy, and the screening approaches that can be used to assess CRS and de-risk drug discovery earlier in the clinical setting with more predictive pre-clinical data. Furthermore, the review also sheds light on the potential immunotherapeutic approaches that can be used to overcome CRS associated with T cell activation.
Collapse
Affiliation(s)
- Deep Shah
- In vivo Services, The Jackson Laboratory, Sacramento, CA, United States
| | - Brian Soper
- Technical Information Services, The Jackson Laboratory, Bar Harbor, ME, United States
| | - Lindsay Shopland
- In vivo Services, The Jackson Laboratory, Sacramento, CA, United States
| |
Collapse
|
7
|
Goyenvalle A, Jimenez-Mallebrera C, van Roon W, Sewing S, Krieg AM, Arechavala-Gomeza V, Andersson P. Considerations in the Preclinical Assessment of the Safety of Antisense Oligonucleotides. Nucleic Acid Ther 2023; 33:1-16. [PMID: 36579950 PMCID: PMC9940817 DOI: 10.1089/nat.2022.0061] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleic acid therapeutics field has made tremendous progress in the past decades. Continuous advances in chemistry and design have led to many successful clinical applications, eliciting even more interest from researchers including both academic groups and drug development companies. Many preclinical studies in the field focus on improving the delivery of antisense oligonucleotide drugs (ONDs) and/or assessing their efficacy in target tissues, often neglecting the evaluation of toxicity, at least in early phases of development. A series of consensus recommendations regarding regulatory considerations and expectations have been generated by the Oligonucleotide Safety Working Group and the Japanese Research Working Group for the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use S6 and Related Issues (WGS6) in several white papers. However, safety aspects should also be kept in sight in earlier phases while screening and designing OND to avoid subsequent failure in the development phase. Experts and members of the network "DARTER," a COST Action funded by the Cooperation in Science and Technology of the EU, have utilized their collective experience working with OND, as well as their insights into OND-mediated toxicities, to generate a series of consensus recommendations to assess OND toxicity in early stages of preclinical research. In the past few years, several publications have described predictive assays, which can be used to assess OND-mediated toxicity in vitro or ex vivo to filter out potential toxic candidates before moving to in vivo phases of preclinical development, that is, animal toxicity studies. These assays also have the potential to provide translational insight since they allow a safety evaluation in human in vitro systems. Yet, small preliminary in vivo studies should also be considered to complement this early assessment. In this study, we summarize the state of the art and provide guidelines and recommendations on the different tests available for these early stage preclinical assessments.
Collapse
Affiliation(s)
- Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France.,Address correspondence to: Aurélie Goyenvalle, PhD, Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles 78000, France
| | - Cecilia Jimenez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Departamento de Genética, Microbiología y Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Willeke van Roon
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabine Sewing
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Arthur M. Krieg
- RNA Therapeutics Institute, University of Massachusetts, Worcester, Massachusetts, USA
| | - Virginia Arechavala-Gomeza
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Patrik Andersson
- Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.,Address correspondence to: Patrik Andersson, PhD, Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal, Gothenburg 431 83, Sweden
| |
Collapse
|
8
|
Freund EC, Haag SM, Haley B, Murthy A. Optimized Nonviral Gene Disruption in Primary Murine and Human Myeloid Cells. Methods Mol Biol 2023; 2618:201-217. [PMID: 36905519 DOI: 10.1007/978-1-0716-2938-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Genetically engineered myeloid cells such as monocytes, macrophages, and dendritic cells have broad applications in basic and translational research. Their central roles in innate and adaptive immunity make them attractive as putative therapeutic cell products. However, efficient gene editing of primary myeloid cells presents unique challenges owing to their sensitivity to foreign nucleic acids and poor editing efficiencies using current methodologies (Hornung et al., Science 314:994-997, 2006; Coch et al., PLoS One 8:e71057, 2013; Bartok and Hartmann, Immunity 53:54-77, 2020; Hartmann, Adv Immunol 133:121-169, 2017; Bobadilla et al., Gene Ther 20:514-520, 2013; Schlee and Hartmann, Nat Rev Immunol 16:566-580, 2016; Leyva et al., BMC Biotechnol 11:13, 2011). This chapter describes nonviral CRISPR-mediated gene knockout in primary human and murine monocytes as well as monocyte-derived or bone marrow-derived macrophages and dendritic cells. Electroporation-mediated delivery of recombinant Cas9 complexed with synthetic guide RNAs can be applied for population-level disruption of single or multiple gene targets.
Collapse
Affiliation(s)
- Emily C Freund
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA.
| | - Simone M Haag
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Aditya Murthy
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA. .,Gilead Sciences, Foster City, CA, USA.
| |
Collapse
|
9
|
Bick A, Buys W, Engler A, Madel R, Atia M, Faro F, Westendorf AM, Limmer A, Buer J, Herbstreit F, Kirschning CJ, Peters J. Immune hyporeactivity to bacteria and multiple TLR-ligands, yet no response to checkpoint inhibition in patients just after meeting Sepsis-3 criteria. PLoS One 2022; 17:e0273247. [PMID: 35981050 PMCID: PMC9387870 DOI: 10.1371/journal.pone.0273247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Rationale
The immune profile of sepsis patients is incompletely understood and hyperinflammation and hypoinflammation may occur concurrently or sequentially. Immune checkpoint inhibition (ICI) may counter hypoinflammation but effects are uncertain. We tested the reactivity of septic whole blood to bacteria, Toll-like receptor (TLR) ligands and to ICI.
Methods
Whole blood assays of 61 patients’ samples within 24h of meeting sepsis-3 criteria and 12 age and sex-matched healthy volunteers. Measurements included pattern/danger-associated molecular pattern (P/DAMP), cytokine concentrations at baseline and in response to TLR 2, 4, and 7/8 ligands, heat-inactivated Staphylococcus aureus or Escherichia coli, E.coli lipopolysaccharide (LPS), concentration of soluble and cellular immune checkpoint molecules, and cytokine concentrations in response to ICI directed against programmed-death receptor 1 (PD1), PD1-ligand 1, or cytotoxic T-lymphocyte antigen 4, both in the absence and presence of LPS.
Main results
In sepsis, concentrations of P/DAMPs and inflammatory cytokines were increased and the latter increased further upon incubation ex vivo. However, cytokine responses to TLR 2, 4, and 7/8 ligands, heat-inactivated S. aureus or E. coli, and E. coli LPS were all depressed. Depression of the response to LPS was associated with increased in-hospital mortality. Despite increased PD-1 expression on monocytes and T-cells, and monocyte CTLA-4 expression, however, addition of corresponding checkpoint inhibitors to assays failed to increase inflammatory cytokine concentrations in the absence and presence of LPS.
Conclusion
Patients first meeting Sepsis-3 criteria reveal 1) depressed responses to multiple TLR-ligands, bacteria, and bacterial LPS, despite concomitant inflammation, but 2) no response to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Alexandra Bick
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Willem Buys
- Universität Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Andrea Engler
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | | | - Mazen Atia
- Universität Duisburg-Essen, Essen, Germany
| | | | - Astrid M. Westendorf
- Institut für Medizinische Mikrobiologie, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Andreas Limmer
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Jan Buer
- Institut für Medizinische Mikrobiologie, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Frank Herbstreit
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Carsten J. Kirschning
- Institut für Medizinische Mikrobiologie, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
10
|
Sampson O, Lim N, White J, Vieira V, Kløverpris H, Adland E, Conlon C, Skelly D, Jones L, Stafford L, Jamsen A, Barnes E, Dunachie S, Frater J, Klenerman P, Altfeld M, Goulder P. A simple, robust flow cytometry-based whole blood assay for investigating sex differential interferon alpha production by plasmacytoid dendritic cells. J Immunol Methods 2022; 504:113263. [PMID: 35341760 PMCID: PMC9741558 DOI: 10.1016/j.jim.2022.113263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022]
Abstract
Central to sex differences observed in outcome from infection and vaccination is the innate immune response, and specifically production of type I interferons by plasmacytoid dendtiric cells (pDCs), the main producers of IFN-α. Evaluation of IFN-α production by pDCs is therefore critical for studies of innate immune function. However, reliable measurement of pDC IFN-α is hampered by reduced cell yields and cytokine production after cryopreservation or after even short delays in stimulating freshly isolated cells. We here describe a simple yet robust method for measuring IFN-α production in pDCs that preserves cell activation and cytokine production through immediate stimulation of whole blood and subsequent maintenance at 37 °C.
Collapse
Affiliation(s)
- Oliver Sampson
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, England, UK.
| | - Nicholas Lim
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, England, UK.
| | - Jemima White
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, England, UK.
| | - Vinicius Vieira
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, England, UK.
| | - Henrik Kløverpris
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, K-RITH Tower Building, Umbilo Road, Durban, South Africa.
| | - Emily Adland
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, England, UK.
| | - Chris Conlon
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, OX3 9DU, England, UK.
| | - Donal Skelly
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, England, UK; Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, OX3 9DU, England, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, England, UK.
| | - Lucy Jones
- Department of Integrated Sexual Health, Cwm Taf Morgannwg University Health Board, Pontypridd, CF37 1LB, Wales, UK.
| | - Lizzie Stafford
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, OX3 9DU, England, UK.
| | - Anni Jamsen
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, OX3 9DU, England, UK.
| | - Ellie Barnes
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, England, UK; Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, OX3 9DU, England, UK.
| | - Susie Dunachie
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, England, UK; Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, OX3 9DU, England, UK.
| | - John Frater
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, England, UK; Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, OX3 9DU, England, UK.
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, England, UK; Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, OX3 9DU, England, UK.
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany.
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, England, UK.
| |
Collapse
|
11
|
Grinstein L, Winkler S. Analysis of Activity and Expression of the NLRP3, AIM2, and NLRC4 Inflammasome in Whole Blood. Methods Mol Biol 2022; 2459:105-116. [PMID: 35212959 DOI: 10.1007/978-1-0716-2144-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pro-inflammatory caspase-1 is a key player in innate immunity. Following activation in heterogenic protein complexes called the inflammasome , caspase-1 processes IL-1β and IL-18 to their mature forms and triggers pyroptosis. Here, we describe a small-volume whole blood assay facilitating the measurement of caspase-1 activity and inflammasome-related gene expression following specific stimulation of either the NLRP3, NLRC4, or AIM2 inflammasome .
Collapse
Affiliation(s)
- Lev Grinstein
- Department of Pediatrics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Winkler
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
12
|
Hieronymus K, Dorschner B, Schulze F, Vora NL, Parker JS, Winkler JL, Rösen-Wolff A, Winkler S. Validation of reference genes for whole blood gene expression analysis in cord blood of preterm and full-term neonates and peripheral blood of healthy adults. BMC Genomics 2021; 22:489. [PMID: 34193041 PMCID: PMC8244134 DOI: 10.1186/s12864-021-07801-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/13/2021] [Indexed: 11/16/2022] Open
Abstract
Background Preterm birth is the leading cause of neonatal morbidity and mortality, but research efforts in neonatology are complicated due to the unavailability of large volume blood samples. Whole blood assays can be used to overcome this problem by performing both functional and gene expression studies using small amounts of blood. Gene expression studies using RT-qPCR estimate mRNA-levels of target genes normalized to reference genes. The goal of this study was to identify and validate stable reference genes applicable to cord blood samples obtained from developing neonates of different gestational age groups as well as to adult peripheral blood samples. Eight reference gene candidates (ACTB, B2M, GAPDH, GUSB, HPRT, PPIB, RPLP0, RPL13) were analyzed using the three published software algorithms Bestkeeper, GeNorm and NormFinder. Results A normalization factor consisting of ACTB and PPIB allows for comparative expression analyses of neonatal samples from different gestational age groups. Normalization factors consisting of GAPDH and PPIB or ACTB and GAPDH are suitable when samples from preterm and full-term neonates and adults are compared. However, all candidate reference genes except RPLP0 exhibited significant intergroup gene expression variance and a higher gene expression towards an older age which resulted in a small but statistically significant systematic bias. Systematic analysis of RNA-seq data revealed new reference gene candidates with potentially superior stability. Conclusions The current study identified suitable normalization factors and proposed the use of the additional single gene RPLP0 to avoid systematic bias. This combination will enable comparative analyses not only between neonates of different gestational ages, but also between neonates and adults, as it facilitates more detailed investigations of developmental gene expression changes. The use of software algorithms did not prevent unintended systematic bias. This generally highlights the need for careful validation of such results to prevent false interpretation of potential age-dependent changes in gene expression. To identify the most stable reference genes in the future, RNA-seq based global approaches are recommended. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07801-0.
Collapse
Affiliation(s)
- Kristin Hieronymus
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Benjamin Dorschner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Felix Schulze
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Neeta L Vora
- Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Joel S Parker
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jennifer Lucia Winkler
- Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Stefan Winkler
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
13
|
Freund EC, Lock JY, Oh J, Maculins T, Delamarre L, Bohlen CJ, Haley B, Murthy A. Efficient gene knockout in primary human and murine myeloid cells by non-viral delivery of CRISPR-Cas9. J Exp Med 2020; 217:e20191692. [PMID: 32357367 PMCID: PMC7336301 DOI: 10.1084/jem.20191692] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/17/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Myeloid cells play critical and diverse roles in mammalian physiology, including tissue development and repair, innate defense against pathogens, and generation of adaptive immunity. As cells that show prolonged recruitment to sites of injury or pathology, myeloid cells represent therapeutic targets for a broad range of diseases. However, few approaches have been developed for gene editing of these cell types, likely owing to their sensitivity to foreign genetic material or virus-based manipulation. Here we describe optimized strategies for gene disruption in primary myeloid cells of human and murine origin. Using nucleofection-based delivery of Cas9-ribonuclear proteins (RNPs), we achieved near population-level genetic knockout of single and multiple targets in a range of cell types without selection or enrichment. Importantly, we show that cellular fitness and response to immunological stimuli is not significantly impacted by the gene editing process. This provides a significant advance in the study of myeloid cell biology, thus enabling pathway discovery and drug target validation across species in the field of innate immunity.
Collapse
Affiliation(s)
- Emily C. Freund
- Department of Molecular Biology, Genentech, South San Francisco, CA
| | - Jaclyn Y. Lock
- Department of Cancer Immunology, Genentech, South San Francisco, CA
| | - Jaehak Oh
- Department of Cancer Immunology, Genentech, South San Francisco, CA
| | - Timurs Maculins
- Department of Cancer Immunology, Genentech, South San Francisco, CA
| | - Lelia Delamarre
- Department of Cancer Immunology, Genentech, South San Francisco, CA
| | | | - Benjamin Haley
- Department of Molecular Biology, Genentech, South San Francisco, CA
| | - Aditya Murthy
- Department of Cancer Immunology, Genentech, South San Francisco, CA
| |
Collapse
|
14
|
Ribeiro JM, Bandeira CC, de Faria BG, Alves MLR, Vieira FO, Giunchetti RC, Uzonna JE, Teixeira-Carvalho A, Peruhype-Magalhães V, Souza-Fagundes EM. An ex vivo multiparametric flow cytometry assay using human whole blood to simultaneously measure cytotoxicity and leishmanicidal activities. Exp Parasitol 2020; 216:107940. [PMID: 32562606 DOI: 10.1016/j.exppara.2020.107940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/28/2020] [Accepted: 06/13/2020] [Indexed: 01/17/2023]
Abstract
Therapeutic options for the treatment of leishmaniasis are insufficient and need improvements owing to their low efficiency and high toxicity as well as the emergence of resistant strains. The limited number of new drugs for neglected diseases and lack of innovation in your development are still challenges. In this context, the process of discovery and development of biological assays play a pivotal role for the identification of bioactive compounds. The assays currently used for screening of drugs with cytotoxic activity against Leishmania parasites, include different processes that utilize intact parasite (free or intracellular) or specific enzymes of metabolism as a target cell. These assays allow the screening of large numbers of samples followed by more detailed secondary confirmatory assays to confirm the observed activity and assess their toxicity. In the present study, we described the development of a new functional and more complete assay that enables simultaneous assessment of potential anti-Leishmania compounds through evaluation of internalization of fluorescein-labeled L. braziliensis promastigotes by human peripheral blood monocytes and their cytotoxicity by flow cytometry. We standardized the conditions for parasite labeling to achieve better phagocytosis analysis by setting the ratio of number of parasites per cell as 1 to 2, at incubation time of 6h. The cytotoxicity assessment was performed by the quantification of cells undergoing early/late apoptosis and necrosis using a double labelling platform employing 7AAD for late apoptosis and necrosis analysis and Annexin-V for early apoptosis evaluation. Hemolysis analysis was an additional parameter to test cytotoxicity. Two drugs used on clinic (Amphotericin B and Glucantime®) were used to validate the proposed methodology, and the assay was able to detect their known leishmanicidal activity and immunotoxicity properties. This new predictive assay will contribute to the development of translational medicine strategies in drug discovery for neglected diseases such as leishmaniasis.
Collapse
Affiliation(s)
- Juliana M Ribeiro
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Cristiano C Bandeira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno G de Faria
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Marina L R Alves
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Francisco O Vieira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Rodolfo C Giunchetti
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Jude E Uzonna
- Department of Immunology, College of Medicine, University of Manitoba, R3T 0T5, Winnipeg, Manitoba, Canada
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Peruhype-Magalhães
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine M Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Li Y, Mooney EC, Xia XJ, Gupta N, Sahingur SE. A20 Restricts Inflammatory Response and Desensitizes Gingival Keratinocytes to Apoptosis. Front Immunol 2020; 11:365. [PMID: 32218782 PMCID: PMC7078700 DOI: 10.3389/fimmu.2020.00365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
The pathophysiology of periodontal disease involves a perturbed immune system to a dysbiotic microflora leading to unrestrained inflammation, collateral tissue damage, and various systemic complications. Gingival epithelial cells function as an important part of immunity to restrict microbial invasion and orchestrate the subsequent innate responses. A20 (TNFAIP3), an ubiquitin-editing enzyme, is one of the key regulators of inflammation and cell death in numerous tissues including gastrointestinal tract, skin, and lungs. Emerging evidence indicates A20 as an essential molecule in the oral mucosa as well. In this study, we characterized the role of A20 in human telomerase immortalized gingival keratinocytes (TIGKs) through loss and gain of function assays in preclinical models of periodontitis. Depletion of A20 through gene editing in TIGKs significantly increased IL-6 and IL-8 secretion in response to Porphyromonas gingivalis infection while A20 over-expression dampened the cytokine production compared to A20 competent cells through modulating NF-κB signaling pathway. In the subsequent experiments which assessed apoptosis, A20 depleted TIGKs displayed increased levels of cleaved caspase 3 and DNA fragmentation following P. gingivalis infection and TNF/CHX challenge compared to A20 competent cells. Consistently, there was reduced apoptosis in the cells overexpressing A20 compared to the control cells expressing GFP further substantiating the role of A20 in regulating gingival epithelial cell fate in response to exogenous insult. Collectively, our findings reveal first systematic evidence and demonstrate that A20 acts as a regulator of inflammatory response in gingival keratinocytes through its effect on NF-κB signaling and desensitizes cells to bacteria and cytokine induced apoptosis in the oral mucosa. As altered A20 levels can have profound effect on different cellular responses, future studies will determine whether A20-targeted therapies can be exploited to restrain periodontal inflammation and maintain oral mucosa tissue homeostasis.
Collapse
Affiliation(s)
- Yajie Li
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erin C Mooney
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Xia-Juan Xia
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nitika Gupta
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sinem Esra Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
Anti-Niemann Pick C1 Single-Stranded Oligonucleotides with Locked Nucleic Acids Potently Reduce Ebola Virus Infection In Vitro. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:686-697. [PMID: 31125846 PMCID: PMC6529764 DOI: 10.1016/j.omtn.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/12/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Ebola virus is the causative agent of Ebola virus disease, a severe, often fatal illness in humans. So far, there are no US Food and Drug Administration (FDA)-approved therapeutics directed against Ebola virus. Here, we selected the host factor Niemann-Pick C1 (NPC1), which has been shown to be essential for Ebola virus entry into host cytoplasm, as a therapeutic target for suppression by locked nucleic acid-modified antisense oligonucleotides. Screening of antisense oligonucleotides in human and murine cell lines led to identification of candidates with up to 94% knockdown efficiency and 50% inhibitory concentration (IC50) values in the submicromolar range. Selected candidate oligonucleotides led to efficient NPC1 protein knockdown in vitro without alteration of cell viability. Furthermore, they did not have immune stimulatory activity in cell-based assays. Treatment of Ebola-virus-infected HeLa cells with the most promising candidates resulted in significant (>99%) virus titer reduction, indicating that antisense oligonucleotides against NPC1 are a promising therapeutic approach for treatment of Ebola virus infection.
Collapse
|
17
|
Gardet A, Pellerin A, McCarl CA, Diwanji R, Wang W, Donaldson D, Franchimont N, Werth VP, Rabah D. Effect of in vivo Hydroxychloroquine and ex vivo Anti-BDCA2 mAb Treatment on pDC IFNα Production From Patients Affected With Cutaneous Lupus Erythematosus. Front Immunol 2019; 10:275. [PMID: 30846987 PMCID: PMC6394354 DOI: 10.3389/fimmu.2019.00275] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: Plasmacytoid dendritic cells (pDCs) are a major source of Type-I Interferon (IFN-I), a key driver in cutaneous lupus erythematosus (CLE). Currently evaluated in Phase II clinical trial, 24F4A (BIIB059) is an antibody targeting BDCA2, an inhibitory receptor expressed on pDCs. Given that Hydroxychloroquine (HCQ), a widely-used CLE therapy, and 24F4A are both able to inhibit pDC-derived IFN-I production; this study aimed to determine whether 24F4A would show an additional inhibitory effect on pDC response after ex vivo or in vivo treatment with HCQ. Methods: The effect of 24F4A on pDC-derived IFNα was measured from peripheral blood mononuclear cells (PBMC) either from healthy donors in presence or absence of HCQ or from CLE patients clinically exposed to various levels of HCQ. TLR7, TLR7/8, and TLR9 agonists (ssRNA, R848, and CpG-A) were used for pDC stimulation. Results: PDCs were the only producers of IFNα in response to CpG-A, R848, and ssRNA stimulation in PBMC cultures. CLE patients with higher levels of blood HCQ showed lower ex vivo pDC responses to CpG-A, but not R848 or ssRNA. In contrast, 24F4A reduced the amount of IFNα produced by pDCs from CLE patients in response to all TLR agonists, irrespective of the blood HCQ level. Conclusion: Our findings reveal that clinically-relevant HCQ concentrations partially inhibit the pDC response to TLR9 and weakly affect the response to TLR7/8 stimulation. 24F4A robustly inhibits pDC responses even in the presence of HCQ, highlighting its unique potential to disrupt pDC disease relevant biology, which could provide additional therapeutic benefit for CLE patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Victoria P Werth
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Corporal Michael J. Crescenz VAMC, Philadelphia, PA, United States
| | | |
Collapse
|
18
|
Haque AKMA, Dewerth A, Antony JS, Riethmüller J, Schweizer GR, Weinmann P, Latifi N, Yasar H, Pedemonte N, Sondo E, Weidensee B, Ralhan A, Laval J, Schlegel P, Seitz C, Loretz B, Lehr CM, Handgretinger R, Kormann MSD. Chemically modified hCFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis. Sci Rep 2018; 8:16776. [PMID: 30425265 PMCID: PMC6233194 DOI: 10.1038/s41598-018-34960-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022] Open
Abstract
Gene therapy has always been a promising therapeutic approach for Cystic Fibrosis (CF). However, numerous trials using DNA or viral vectors encoding the correct protein resulted in a general low efficacy. In the last years, chemically modified messenger RNA (cmRNA) has been proven to be a highly potent, pulmonary drug. Consequently, we first explored the expression, function and immunogenicity of human (h)CFTR encoded by cmRNAhCFTR in vitro and ex vivo, quantified the expression by flow cytometry, determined its function using a YFP based assay and checked the immune response in human whole blood. Similarly, we examined the function of cmRNAhCFTR in vivo after intratracheal (i.t.) or intravenous (i.v.) injection of the assembled cmRNAhCFTR together with Chitosan-coated PLGA (poly-D, L-lactide-co-glycolide 75:25 (Resomer RG 752 H)) nanoparticles (NPs) by FlexiVent. The amount of expression of human hCFTR encoded by cmRNAhCFTR was quantified by hCFTR ELISA, and cmRNAhCFTR values were assessed by RT-qPCR. Thereby, we observed a significant improvement of lung function, especially in regards to FEV0.1, suggesting NP-cmRNAhCFTR as promising therapeutic option for CF patients independent of their CFTR genotype.
Collapse
Affiliation(s)
- A K M Ashiqul Haque
- Department of Pediatrics I - Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tuebingen, Tuebingen, Germany
| | - Alexander Dewerth
- Department of Pediatrics I - Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tuebingen, Tuebingen, Germany
| | - Justin S Antony
- Department of Pediatrics I - Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tuebingen, Tuebingen, Germany.,Department of Hematology, Oncology, Clinical Immunology, University of Tuebingen, Tuebingen, Germany
| | | | - Georg R Schweizer
- Department of Pediatrics I - Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tuebingen, Tuebingen, Germany
| | - Petra Weinmann
- Department of Pediatrics I - Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tuebingen, Tuebingen, Germany
| | - Ngadhnjim Latifi
- Department of Pediatrics I - Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tuebingen, Tuebingen, Germany
| | - Hanzey Yasar
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarbruecken, Germany
| | | | - Elvira Sondo
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, Italy
| | - Brian Weidensee
- Department of Pediatrics I - Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tuebingen, Tuebingen, Germany
| | - Anjali Ralhan
- Department of Pediatrics I - Immunology and Pneumology/Cystic fibrosis, Department of Pediatrics I, University of Tuebingen, Tuebingen, Germany
| | - Julie Laval
- Department of Pediatrics I - Immunology and Pneumology/Cystic fibrosis, Department of Pediatrics I, University of Tuebingen, Tuebingen, Germany
| | - Patrick Schlegel
- Department of Pediatrics I - Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tuebingen, Tuebingen, Germany
| | - Christian Seitz
- Department of Pediatrics I - Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tuebingen, Tuebingen, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarbruecken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarbruecken, Germany.,Department of Pharmacy, Saarland University, Saarbruecken, Germany
| | - Rupert Handgretinger
- Department of Pediatrics I - Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tuebingen, Tuebingen, Germany.,Department of Hematology, Oncology, Clinical Immunology, University of Tuebingen, Tuebingen, Germany
| | - Michael S D Kormann
- Department of Pediatrics I - Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
19
|
Schubert MS, Cedrone E, Neun B, Behlke MA, Dobrovolskaia MA. Chemical Modification of CRISPR gRNAs Eliminate type I Interferon Responses in Human Peripheral Blood Mononuclear Cells. JOURNAL OF CYTOKINE BIOLOGY 2018; 3:121. [PMID: 30225466 PMCID: PMC6138052 DOI: 10.4172/2576-3881.1000121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES CRISPR/Cas9 is currently the primary tool used for genome editing in mammalian cells. To cleave and alter genomic DNA, both the Cas9 nuclease and a guide RNA (gRNA) must be present in the nucleus. One preferred method of introducing these reagents is direct transfection of a recombinant Cas9 protein complexed with a synthetic gRNA as a ribonucleoprotein (RNP) complex. It is well established from prior work in RNA interference that synthetic RNAs can induce a type I interferon (IFN) response that can limit the application of such methods both in vitro and in vivo. While the immunological properties of short siRNAs are well understood, little is known about the immune recognition of longer CRISPR gRNAs. The objective of our in vitro study was to investigate how the composition of the gRNA influences its recognition by human immune cells. METHODS The study was performed in vitro in human peripheral blood mononuclear cells (PBMCs). The PBMCs from healthy donor volunteers were treated with gRNA for 24 h, and the levels of type I IFNs in culture supernatants were measured by a multiplex enzyme-linked immunosorbent chemiluminescent assay. Prior to the analysis in PBMCs, the physicochemical parameters and functionality of all nucleic acid constructs were confirmed by electrospray-ionization mass spectrometry and CRISPR/Cas9 gene editing assessment in HEK293-Cas9 cells, respectively. RESULTS We found that unmodified synthetic CRISPR gRNAs triggered a strong IFN response in PBMC cultures in vitro that could be prevented with chemical modification. Likewise, in vitro-transcribed single-guide RNAs (sgRNAs) also triggered a strong IFN response that could only be partially suppressed by phosphatase removal of the 5'-triphosphate group. However, the process by which the gRNA is prepared (i.e., chemically synthesized as a two-part crRNA:tracrRNA complex or in vitro-transcribed as an sgRNA) does not directly influence the immune response to an unmodified gRNA. When experiments were performed in the HEK293 cells, only in vitro-transcribed sgRNA containing 5'-triphosphate induced IFN secretion. CONCLUSION The results of our structure-activity relationship study, therefore, suggest that chemical modifications commonly used to reduce the immunostimulation of traditional RNA therapeutics can also be used as effective tools to eliminate undesirable IFN responses to gRNAs.
Collapse
Affiliation(s)
- Mollie S. Schubert
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA 52241, USA
| | - Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barry Neun
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mark A. Behlke
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA 52241, USA
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
20
|
Elisia I, Pae HB, Lam V, Cederberg R, Hofs E, Krystal G. Comparison of RAW264.7, human whole blood and PBMC assays to screen for immunomodulators. J Immunol Methods 2018; 452:26-31. [DOI: 10.1016/j.jim.2017.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/23/2022]
|
21
|
Elisia I, Lam V, Hofs E, Li MY, Hay M, Cho B, Brooks-Wilson A, Rosin M, Bu L, Jia W, Krystal G. Effect of age on chronic inflammation and responsiveness to bacterial and viral challenges. PLoS One 2017; 12:e0188881. [PMID: 29186188 PMCID: PMC5706672 DOI: 10.1371/journal.pone.0188881] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023] Open
Abstract
To identify reliable biomarkers of age-related changes in chronic inflammation and responsiveness to bacterial and viral challenges, we evaluated endogenous and ex vivo stimulated levels of 18 inflammatory markers, using whole blood collected in EDTA and sodium heparin tubes from 41 healthy volunteers, i.e., 11 men + 10 women aged 20–35 and 10 men + 10 women aged 50–77. These studies revealed significant differences in the levels of inflammatory markers when blood was collected in EDTA versus sodium heparin and age related differences in these biomarkers were confirmed with blood collected in EDTA from 120 healthy volunteers in 3 age categories, ie, 20 men + 20 women, aged 20–35, 36–49 and 50–77. Studies with unstimulated blood samples, to measure levels of chronic inflammation, revealed a significant increase with age in IL-12p70, CRP and PGE2, consistent with the concept of “inflammaging”, and a decrease in G-CSF in both men and women. Interestingly, in response to E. coli stimulation, PGE2 levels were markedly reduced in the 50–77 year old cohort while they were increased following Herpes Simplex virus-1 (HSV-1) stimulation, along with IL-8. In addition, unlike E. coli, HSV-1 potently stimulated IFNα production, but levels were dramatically reduced in the older cohort, consistent with a reduced ability to generate an anti-viral response. We also found platelets and CD8+ T cells were reduced with age while CD4+ T cells were significantly increased, resulting in a substantially higher CD4/CD8 ratio in the older cohort. Surprisingly, however, we found that the older cohort exhibited more T cell proliferation and IFNγ production in response to anti-CD3+anti-CD28 stimulation. Importantly, there was considerable person-to-person variation in these inflammatory markers in all age groups, making possible comparisons between a person’s “inflammage” and chronological age. These assays should help to identify individuals at high risk of autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Vivian Lam
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Elyse Hofs
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Michael Yu Li
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Mariah Hay
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Brandon Cho
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Angela Brooks-Wilson
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Miriam Rosin
- Cancer Control Research, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Luke Bu
- Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - William Jia
- Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
22
|
Grinstein L, Endter K, Hedrich CM, Reinke S, Luksch H, Schulze F, Robertson AAB, Cooper MA, Rösen-Wolff A, Winkler S. An optimized whole blood assay measuring expression and activity of NLRP3, NLRC4 and AIM2 inflammasomes. Clin Immunol 2017; 191:100-109. [PMID: 29183866 DOI: 10.1016/j.clim.2017.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/22/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
Abstract
The proinflammatory protease caspase-1 plays pivotal roles in central pathways of innate immunity, thereby contributing to pathogen clearance. Beside its physiological role, dysregulated activity of caspase-1 is known to contribute to an increasing number of diseases. In this study, we optimized and validated a low-volume human whole blood assay facilitating the measurement of caspase-1 activation and inflammasome-related gene expression upon stimulation of the NLRP3, NLRC4 or AIM2 inflammasome. Using the NLRP3 inflammasome specific inhibitor MCC950, we were able to measure the activity of canonical or alternative NLRP3 pathways, AIM2 and NLRC4 inflammasomes in whole blood. Based on our data we assume a superposition of NLRP3 and NLRC4 inflammasome activities in human whole blood following stimulation with S. typhimurium. The optimized whole blood assay may be suitable for diagnostic and research purposes for pediatric patients who can only donate small amounts of blood.
Collapse
Affiliation(s)
- Lev Grinstein
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Kristin Endter
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Christian M Hedrich
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Sören Reinke
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Hella Luksch
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Felix Schulze
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Avril A B Robertson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Stefan Winkler
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.
| |
Collapse
|
23
|
Sato Y, Matsui H, Yamamoto N, Sato R, Munakata T, Kohara M, Harashima H. Highly specific delivery of siRNA to hepatocytes circumvents endothelial cell-mediated lipid nanoparticle-associated toxicity leading to the safe and efficacious decrease in the hepatitis B virus. J Control Release 2017; 266:216-225. [DOI: 10.1016/j.jconrel.2017.09.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/12/2017] [Accepted: 09/30/2017] [Indexed: 12/12/2022]
|
24
|
Cepika AM, Banchereau R, Segura E, Ohouo M, Cantarel B, Goller K, Cantrell V, Ruchaud E, Gatewood E, Nguyen P, Gu J, Anguiano E, Zurawski S, Baisch JM, Punaro M, Baldwin N, Obermoser G, Palucka K, Banchereau J, Amigorena S, Pascual V. A multidimensional blood stimulation assay reveals immune alterations underlying systemic juvenile idiopathic arthritis. J Exp Med 2017; 214:3449-3466. [PMID: 28935693 PMCID: PMC5679164 DOI: 10.1084/jem.20170412] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/25/2017] [Accepted: 09/08/2017] [Indexed: 12/26/2022] Open
Abstract
The etiology of autoinflammation in systemic juvenile idiopathic arthritis is unclear. Cepika et al. use integrated analysis of multidimensional blood stimulation data, applied to patients while off treatment and in complete remission, to reveal underlying cellular and molecular mechanisms that might predispose to disease. The etiology of sporadic human chronic inflammatory diseases remains mostly unknown. To fill this gap, we developed a strategy that simultaneously integrates blood leukocyte responses to innate stimuli at the transcriptional, cellular, and secreted protein levels. When applied to systemic juvenile idiopathic arthritis (sJIA), an autoinflammatory disease of unknown etiology, this approach identified gene sets associated with specific cytokine environments and activated leukocyte subsets. During disease remission and off treatment, sJIA patients displayed dysregulated responses to TLR4, TLR8, and TLR7 stimulation. Isolated sJIA monocytes underexpressed the IL-1 inhibitor aryl hydrocarbon receptor (AHR) at baseline and accumulated higher levels of intracellular IL-1β after stimulation. Supporting the demonstration that AHR down-regulation skews monocytes toward macrophage differentiation, sJIA monocytes differentiated in vitro toward macrophages, away from the dendritic cell phenotype. This might contribute to the increased incidence of macrophage activation syndrome in these patients. Integrated analysis of high-dimensional data can thus unravel immune alterations predisposing to complex inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Elodie Segura
- Institut National de la Santé et de la Recherche Medicale U932, Institut Curie, PSL Research University, Paris, France
| | - Marina Ohouo
- Baylor Institute for Immunology Research, Dallas, TX
| | | | | | | | - Emily Ruchaud
- Baylor Institute for Immunology Research, Dallas, TX
| | | | - Phuong Nguyen
- Baylor Institute for Immunology Research, Dallas, TX
| | - Jinghua Gu
- Baylor Institute for Immunology Research, Dallas, TX
| | | | | | | | | | | | | | - Karolina Palucka
- Baylor Institute for Immunology Research, Dallas, TX.,The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | | | - Sebastian Amigorena
- Institut National de la Santé et de la Recherche Medicale U932, Institut Curie, PSL Research University, Paris, France
| | - Virginia Pascual
- Baylor Institute for Immunology Research, Dallas, TX .,University of Texas Southwestern Medical Center, Dallas, TX.,Texas Scottish Rite Hospital for Children, Dallas, TX
| |
Collapse
|
25
|
Coch C, Stümpel JP, Lilien-Waldau V, Wohlleber D, Kümmerer BM, Bekeredjian-Ding I, Kochs G, Garbi N, Herberhold S, Schuberth-Wagner C, Ludwig J, Barchet W, Schlee M, Hoerauf A, Bootz F, Staeheli P, Hartmann G, Hartmann E. RIG-I Activation Protects and Rescues from Lethal Influenza Virus Infection and Bacterial Superinfection. Mol Ther 2017; 25:2093-2103. [PMID: 28760668 DOI: 10.1016/j.ymthe.2017.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/02/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022] Open
Abstract
Influenza A virus infection causes substantial morbidity and mortality in seasonal epidemic outbreaks, and more efficient treatments are urgently needed. Innate immune sensing of viral nucleic acids stimulates antiviral immunity, including cell-autonomous antiviral defense mechanisms that restrict viral replication. RNA oligonucleotide ligands that potently activate the cytoplasmic helicase retinoic-acid-inducible gene I (RIG-I) are promising candidates for the development of new antiviral therapies. Here, we demonstrate in an Mx1-expressing mouse model of influenza A virus infection that a single intravenous injection of low-dose RIG-I ligand 5'-triphosphate RNA (3pRNA) completely protected mice from a lethal challenge with influenza A virus for at least 7 days. Furthermore, systemic administration of 3pRNA rescued mice with pre-established fulminant influenza infection and prevented the fatal effects of a streptococcal superinfection. Type I interferon, but not interferon-λ, was required for the therapeutic effect. Our results suggest that the use of RIG-I activating oligonucleotide ligands has the clinical potential to confine influenza epidemics when a strain-specific vaccine is not yet available and to reduce lethality of influenza in severely infected patients.
Collapse
Affiliation(s)
- Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany.
| | - Jan Phillip Stümpel
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Vanessa Lilien-Waldau
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, TU Munich, 81675 Munich, Germany
| | - Beate M Kümmerer
- Institute of Virology, University Hospital Bonn, 53105 Bonn, Germany
| | - Isabelle Bekeredjian-Ding
- Division of Microbiology, Paul-Ehrlich Institute, 63225 Langen, Germany; Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center Freiburg, 79104 Freiburg, Germany
| | - Natalio Garbi
- Institute of Experimental Immunology, University Hospital Bonn, 53127 Bonn, Germany
| | - Stephan Herberhold
- Department of Otolaryngology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christine Schuberth-Wagner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Janos Ludwig
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Winfried Barchet
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Friedrich Bootz
- Department of Otolaryngology, University Hospital Bonn, 53127 Bonn, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center Freiburg, 79104 Freiburg, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Evelyn Hartmann
- Department of Otolaryngology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
26
|
Marlowe JL, Akopian V, Karmali P, Kornbrust D, Lockridge J, Semple S. Recommendations of the Oligonucleotide Safety Working Group's Formulated Oligonucleotide Subcommittee for the Safety Assessment of Formulated Oligonucleotide-Based Therapeutics. Nucleic Acid Ther 2017; 27:183-196. [PMID: 28609186 DOI: 10.1089/nat.2017.0671] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The use of lipid formulations has greatly improved the ability to effectively deliver oligonucleotides and has been instrumental in the rapid expansion of therapeutic development programs using oligonucleotide drugs. However, the development of such complex multicomponent therapeutics requires the implementation of unique, scientifically sound approaches to the nonclinical development of these drugs, based upon a hybrid of knowledge and experiences drawn from small molecule, protein, and oligonucleotide therapeutic drug development. The relative paucity of directly applicable regulatory guidance documents for oligonucleotide therapeutics in general has resulted in the generation of multiple white papers from oligonucleotide drug development experts and members of the Oligonucleotide Safety Working Group (OSWG). The members of the Formulated Oligonucleotide Subcommittee of the OSWG have utilized their collective experience working with a variety of formulations and their associated oligonucleotide payloads, as well as their insights into regulatory considerations and expectations, to generate a series of consensus recommendations for the pharmacokinetic characterization and nonclinical safety assessment of this unique class of therapeutics. It should be noted that the focus of Subcommittee discussions was on lipid nanoparticle and other types of particulate formulations of therapeutic oligonucleotides and not on conjugates or other types of modifications of oligonucleotide structure intended to facilitate delivery.
Collapse
Affiliation(s)
- Jennifer L Marlowe
- 1 Novartis Institutes for Biomedical Research , Cambridge, Massachusetts
| | | | | | | | | | - Sean Semple
- 6 Arbutus Biopharma Corporation , Burnaby, Canada
| |
Collapse
|
27
|
Jain A, Barve A, Zhao Z, Jin W, Cheng K. Comparison of Avidin, Neutravidin, and Streptavidin as Nanocarriers for Efficient siRNA Delivery. Mol Pharm 2017; 14:1517-1527. [PMID: 28026957 PMCID: PMC6628714 DOI: 10.1021/acs.molpharmaceut.6b00933] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-based drug delivery carrier has been one of the most employed modalities in biopharmaceuticals. In this study, we have compared avidin and its two analogues, neutravidin and streptavidin, as nanocarriers for the delivery of biotin-labeled siRNA with the help of biotinylated cholesterol (targeting ligand) and protamine (condensing agent). These proteins have similar binding affinity to biotin but substantial difference in their physical and chemical characteristics. Here, we have shown how these characteristics affect the size, cellular uptake, and activity of the avidin-based siRNA nanocomplex. In contrast to avidin and streptavidin nanocomplexes, neutravidin-based nanocomplex shows very low endosome entrapment and high cytoplasmic localization at extended times. High amount of the siRNA released in the cytoplasm by neutravidin-based nanocomplex at extended times (24 h) results in extensive and sustained PCBP2 gene silencing activity in HSC-T6 rat hepatic stellate cells. Neutravidin-based nanocomplex shows significantly low exocytosis in comparison to the streptavidin-based nanocomplex. Avidin-, neutravidin-, and streptavidin-based nanocomplexes are similar in size and had no significant cytotoxicity in transfected HSC-T6 cells or inflammatory cytokine induction in a whole blood assay. Compared to free siRNA, the neutravidin-based siRNA nanocomplex exhibits higher accumulation at 2 h in the liver of the rats with CCl4-induced liver fibrosis. Neutravidin has therefore been shown to be the most promising avidin analogue for the delivery of siRNA.
Collapse
Affiliation(s)
- Akshay Jain
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Ashutosh Barve
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Zhen Zhao
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Wei Jin
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
28
|
Hakimi J, Aboutorabian S, To F, Ausar SF, Rahman N, Brookes RH. Screening Vaccine Formulations in Fresh Human Whole Blood. Methods Mol Biol 2017; 1494:295-304. [PMID: 27718203 DOI: 10.1007/978-1-4939-6445-1_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Monitoring the immunological functionality of vaccine formulations is critical for vaccine development. While the traditional approach using established animal models has been relatively effective, the use of animals is costly and cumbersome, and animal models are not always reflective of a human response. The development of a human-based approach would be a major step forward in understanding how vaccine formulations might behave in humans. Here, we describe a platform methodology using fresh human whole blood (hWB) to monitor adjuvant-modulated, antigen-specific responses to vaccine formulations, which is amenable to analysis by standard immunoassays as well as a variety of other analytical techniques.
Collapse
Affiliation(s)
- Jalil Hakimi
- Bioprocess Research and Development, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, Canada, M2R 3T4
| | - Sepideh Aboutorabian
- Bioprocess Research and Development, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, Canada, M2R 3T4
| | - Frederick To
- Bioprocess Research and Development, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, Canada, M2R 3T4
| | - Salvador F Ausar
- Bioprocess Research and Development, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, Canada, M2R 3T4
| | - Nausheen Rahman
- Bioprocess Research and Development, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, Canada, M2R 3T4
| | - Roger H Brookes
- Bioprocess Research and Development, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, Canada, M2R 3T4.
| |
Collapse
|
29
|
Cytokine release: A workshop proceedings on the state-of-the-science, current challenges and future directions. Cytokine 2016; 85:101-8. [PMID: 27309676 DOI: 10.1016/j.cyto.2016.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 02/04/2023]
Abstract
In October 2013, the International Life Sciences Institute - Health and Environmental Sciences Institute Immunotoxicology Technical Committee (ILSI-HESI ITC) held a one-day workshop entitled, "Workshop on Cytokine Release: State-of-the-Science, Current Challenges and Future Directions". The workshop brought together scientists from pharmaceutical, academic, health authority, and contract research organizations to discuss novel approaches and current challenges for the use of in vitro cytokine release assays (CRAs) for the identification of cytokine release syndrome (CRS) potential of novel monoclonal antibody (mAb) therapeutics. Topics presented encompassed a regulatory perspective on cytokine release and assessment, case studies regarding the translatability of preclinical cytokine data to the clinic, and the latest state of the science of CRAs, including comparisons between mAb therapeutics within one platform and across several assay platforms, a novel physiological assay platform, and assay optimization approaches such as determination of FcR expression profiles and use of statistical tests. The data and approaches presented confirmed that multiple CRA platforms are in use for identification of CRS potential and that the choice of a particular CRA platform is highly dependent on the availability of resources for individual laboratories (e.g. positive and negative controls, number of human blood donors), the assay through-put required, and the mechanism-of-action of the therapeutic candidate to be tested. Workshop participants agreed that more data on the predictive performance of CRA platforms is needed, and current efforts to compare in vitro assay results with clinical cytokine assessments were discussed. In summary, many laboratories continue to focus research efforts on the improvement of the translatability of current CRA platforms as well explore novel approaches which may lead to more accurate, and potentially patient-specific, CRS prediction in the future.
Collapse
|
30
|
In vitro cytokine induction by TLR-activating vaccine adjuvants in human blood varies by age and adjuvant. Cytokine 2016; 83:99-109. [PMID: 27081760 DOI: 10.1016/j.cyto.2016.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/29/2016] [Accepted: 04/02/2016] [Indexed: 12/24/2022]
Abstract
Most infections occur in early life, prompting development of novel adjuvanted vaccines to protect newborns and infants. Several Toll-like receptor (TLR) agonists (TLRAs) are components of licensed vaccine formulations or are in development as candidate adjuvants. However, the type and magnitude of immune responses to TLRAs may vary with the TLR activated as well as age and geographic location. Most notably, in newborns, as compared to adults, the immune response to TLRAs is polarized with lower Th1 cytokine production and robust Th2 and anti-inflammatory cytokine production. The ontogeny of TLR-mediated cytokine responses in international cohorts has been reported, but no study has compared cytokine responses to TLRAs between U.S. neonates and infants at the age of 6months. Both are critical age groups for the currently pediatric vaccine schedule. In this study, we report quantitative differences in the production of a panel of 14 cytokines and chemokines after in vitro stimulation of newborn cord blood and infant and adult peripheral blood with agonists of TLR4, including monophosphoryl lipid A (MPLA) and glucopyranosyl lipid Adjuvant aqueous formulation (GLA-AF), as well as agonists of TLR7/8 (R848) and TLR9 (CpG). Both TLR4 agonists, MPLA and GLA-AF, induced greater concentrations of Th1 cytokines CXCL10, TNF and Interleukin (IL)-12p70 in infant and adult blood compared to newborn blood. All the tested TLRAs induced greater infant IFN-α2 production compared to newborn and adult blood. In contrast, CpG induced greater IFN-γ, IL-1β, IL-4, IL-12p40, IL-10 and CXCL8 in newborn than in infant and adult blood. Overall, to the extent that these in vitro studies mirror responses in vivo, our study demonstrates distinct age-specific effects of TLRAs that may inform their development as candidate adjuvants for early life vaccines.
Collapse
|
31
|
Khan F, Pharo A, Lindstad JK, Mollnes TE, Tønnessen TI, Pischke SE. Effect of Perfusion Fluids on Recovery of Inflammatory Mediators in Microdialysis. Scand J Immunol 2016; 82:467-75. [PMID: 26099791 DOI: 10.1111/sji.12332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/14/2015] [Indexed: 11/30/2022]
Abstract
Microdialysis is an excellent tool to assess tissue inflammation in patients, but in vitro systems to evaluate recovery of inflammatory mediators have not been standardized. We aimed to develop a reference plasma preparation and evaluate different perfusion fluids with respect to recovery of metabolic and inflammatory markers. The reference preparation was produced by incubation of human blood with lipopolysaccharide and cobra venom factor to generate cytokines and activate complement, respectively. Microdialysis with 100 kDa catheters was performed using different colloid and crystalloid perfusion fluids (hydroxyethyl starch (HES) 130/0.4, HES 200/0.5, hyperosmolar HES 200/0.5, albumin 200 g/l, T1 perfusion fluid and Ringer's acetate) compared to today's recommended dextran 60 solution. Recovery of glucose, glycerol and pyruvate was not significantly different between the perfusion fluids, whereas lactate had lower recovery in HES 200/0.5 and albumin perfusion fluids. Recovery rates for the inflammatory proteins in comparison with the concentration in the reference preparation differed substantially: IL-6 = 9%, IL-1β = 18%, TNF = 0.3%, MCP-1 = 45%, IL-8 = 48%, MIG = 48%, IP-10 = 25%, C3a = 53% and C5a = 12%. IL-10 was not detectable in microdialysis dialysate. HES 130/0.4 and HES 200/0.5 yielded a recovery not significantly different from dextran 60. Hyperosmolar HES 200/0.5 and albumin showed significantly different pattern of recovery with increased concentration of MIG, IP-10, C3a and C5a and decreased concentration of IL-1β, TNF, MCP-1 and IL-8 in comparison with dextran 60. In conclusion, microdialysis perfusion fluid dextran 60 can be replaced by the commonly used HES 130/0.4, whereas albumin might be used if specific immunological variables are in focus. The present reference plasma preparation is suitable for in vitro evaluation of microdialysis systems.
Collapse
Affiliation(s)
- F Khan
- Department of Immunology, Oslo University Hospital, and K.G. Jebsen IRC, University of Oslo, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - A Pharo
- Department of Immunology, Oslo University Hospital, and K.G. Jebsen IRC, University of Oslo, Oslo, Norway
| | - J K Lindstad
- Department of Immunology, Oslo University Hospital, and K.G. Jebsen IRC, University of Oslo, Oslo, Norway
| | - T E Mollnes
- Department of Immunology, Oslo University Hospital, and K.G. Jebsen IRC, University of Oslo, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø and Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - T I Tønnessen
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Clinic for Emergencies and Critical Care, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - S E Pischke
- Department of Immunology, Oslo University Hospital, and K.G. Jebsen IRC, University of Oslo, Oslo, Norway.,Clinic for Emergencies and Critical Care, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
32
|
Krüger A, Oldenburg M, Chebrolu C, Beisser D, Kolter J, Sigmund AM, Steinmann J, Schäfer S, Hochrein H, Rahmann S, Wagner H, Henneke P, Hornung V, Buer J, Kirschning CJ. Human TLR8 senses UR/URR motifs in bacterial and mitochondrial RNA. EMBO Rep 2015; 16:1656-63. [PMID: 26545385 PMCID: PMC4687425 DOI: 10.15252/embr.201540861] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/15/2015] [Indexed: 11/25/2022] Open
Abstract
Toll‐like receptor (TLR) 13 and TLR2 are the major sensors of Gram‐positive bacteria in mice. TLR13 recognizes Sa19, a specific 23S ribosomal (r) RNA‐derived fragment and bacterial modification of Sa19 ablates binding to TLR13, and to antibiotics such as erythromycin. Similarly, RNase A‐treated Staphylococcus aureus activate human peripheral blood mononuclear cells (PBMCs) only via TLR2, implying single‐stranded (ss) RNA as major stimulant. Here, we identify human TLR8 as functional TLR13 equivalent that promiscuously senses ssRNA. Accordingly, Sa19 and mitochondrial (mt) 16S rRNA sequence‐derived oligoribonucleotides (ORNs) stimulate PBMCs in a MyD88‐dependent manner. These ORNs, as well as S. aureus‐, Escherichia coli‐, and mt‐RNA, also activate differentiated human monocytoid THP‐1 cells, provided they express TLR8. Moreover, Unc93b1−/−‐ and Tlr8−/−‐THP‐1 cells are refractory, while endogenous and ectopically expressed TLR8 confers responsiveness in a UR/URR RNA ligand consensus motif‐dependent manner. If TLR8 function is inhibited by suppression of lysosomal function, antibiotic treatment efficiently blocks bacteria‐driven inflammatory responses in infected human whole blood cultures. Sepsis therapy might thus benefit from interfering with TLR8 function.
Collapse
Affiliation(s)
- Anne Krüger
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Marina Oldenburg
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | | | - Daniela Beisser
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany
| | - Julia Kolter
- Centre of Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Anna M Sigmund
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Jörg Steinmann
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Simon Schäfer
- Clinic of Anesthesia, University of Duisburg-Essen, Essen, Germany
| | - Hubertus Hochrein
- Department of Research Immunology, Bavarian Nordic GmbH, Martinsried, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany
| | - Hermann Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Philipp Henneke
- Centre of Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Veit Hornung
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
33
|
Martínez T, Jiménez AI, Pañeda C. Short-interference RNAs: becoming medicines. EXCLI JOURNAL 2015; 14:714-46. [PMID: 26648823 PMCID: PMC4669907 DOI: 10.17179/excli2015-297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/12/2015] [Indexed: 12/30/2022]
Abstract
RNA interference is a cellular mechanism by which small molecules of double stranded RNA modulate gene expression acting on the concentration and/or availability of a given messenger RNA. Almost 10 years after Fire and Mello received the Nobel Prize for the discovery of this mechanism in flat worms, RNA interference is on the edge of becoming a new class of therapeutics. With various phase III studies underway, the following years will determine whether RNAi-therapeutics can rise up to the challenge and become mainstream medicines. The present review gives a thorough overview of the current status of this technology focusing on the path to the clinic of this new class of compounds.
Collapse
Affiliation(s)
- Tamara Martínez
- Sylentis, R&D department c/Santiago Grisolía, Tres Cantos, Madrid, Spain
| | - Ana Isabel Jiménez
- Sylentis, R&D department c/Santiago Grisolía, Tres Cantos, Madrid, Spain
| | - Covadonga Pañeda
- Sylentis, R&D department c/Santiago Grisolía, Tres Cantos, Madrid, Spain
| |
Collapse
|
34
|
Brady JL, Harrison LC, Goodman DJ, Cowan PJ, Hawthorne WJ, O'Connell PJ, Sutherland RM, Lew AM. Preclinical screening for acute toxicity of therapeutic monoclonal antibodies in a hu-SCID model. Clin Transl Immunology 2014; 3:e29. [PMID: 25587392 PMCID: PMC4282178 DOI: 10.1038/cti.2014.28] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/13/2014] [Accepted: 11/16/2014] [Indexed: 01/18/2023] Open
Abstract
Monoclonal antibodies (mAbs) have been a spectacular clinical and commercial success in the treatment of cancer and autoimmune diseases. Many of these mAbs (for example, OKT3, Campath-1H, rituximab and infliximab) are against surface or secreted products of lymphocytes. However, mAbs can have a variety of adverse effects including fever, chills and nausea. This is probably a result of cytokine release, which is most seriously manifested as a ‘cytokine storm' as highlighted by the TGN1412 (anti-CD28) trial. Prediction of adverse effects of mAbs would be clinically advantageous and numerous in vitro assays attempting to predict adverse effects have been reported. Here, we report an in vivo humanized mouse model to detect adverse effects in response to OKT3, Campath-1H or the polyclonal Ab preparation anti-thymocyte globulin. We found that the administration of each of these Abs to humanized mice led to acute clinical symptoms such as piloerection, hypomotility and hypothermia, particularly when delivered via the intravenous route. A cytokine storm occurred in the humanized mice receiving OKT3. This model system is a potentially useful tool to predict adverse effects and select initial doses for first-in-human trials. We would advocate this in vivo model, in addition to current in vitro preclinical testing, as a more representative and robust means of assessing potential adverse effects of mAb before their human use.
Collapse
Affiliation(s)
- Jamie L Brady
- Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria, Australia ; Department of Medical Biology, The University of Melbourne , Parkville, Victoria, Australia
| | - Leonard C Harrison
- Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria, Australia ; Department of Medical Biology, The University of Melbourne , Parkville, Victoria, Australia
| | - David J Goodman
- Department of Nephrology, St Vincent's Hospital , Fitzroy, Victoria, Australia
| | - Peter J Cowan
- Immunology Research Centre, St Vincent's Hospital , Fitzroy, Victoria, Australia ; Department of Medicine, The University of Melbourne , Parkville, Victoria, Australia
| | - Wayne J Hawthorne
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney at Westmead Hospital , Westmead, New South Wales, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney at Westmead Hospital , Westmead, New South Wales, Australia
| | - Robyn M Sutherland
- Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria, Australia ; Department of Medical Biology, The University of Melbourne , Parkville, Victoria, Australia
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria, Australia ; Department of Medical Biology, The University of Melbourne , Parkville, Victoria, Australia
| |
Collapse
|
35
|
Haussecker D. Current issues of RNAi therapeutics delivery and development. J Control Release 2014; 195:49-54. [DOI: 10.1016/j.jconrel.2014.07.056] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/17/2022]
|
36
|
Shielding of Lipid Nanoparticles for siRNA Delivery: Impact on Physicochemical Properties, Cytokine Induction, and Efficacy. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e210. [PMID: 25405467 PMCID: PMC4459547 DOI: 10.1038/mtna.2014.61] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/23/2014] [Indexed: 11/18/2022]
Abstract
Formulation of short interfering RNA (siRNA) into multicomponent lipid nanoparticles (LNP) is an effective strategy for hepatic delivery and therapeutic gene silencing. This study systematically evaluated the effect of polyethylene glycol (PEG) density on LNP physicochemical properties, innate immune response stimulation, and in vivo efficacy. Increased PEG density not only shielded LNP surface charge but also reduced hemolytic activity, suggesting the formation of a steric barrier. In addition, increasing the PEG density reduced LNP immunostimulatory potential as reflected in cytokine induction both in vivo and in vitro. Higher PEG density also hindered in vivo efficacy, presumably due to reduced association with apolipoprotein E (ApoE), a protein which serves as an endogenous targeting ligand to hepatocytes. This effect could be overcome by incorporating an exogenous targeting ligand into the highly shielded LNPs, thereby circumventing the requirement for ApoE association. Therefore, these studies provide useful information for the rational design of LNP-based siRNA delivery systems with an optimal safety and efficacy profile.
Collapse
|
37
|
Carolan LA, Butler J, Rockman S, Guarnaccia T, Hurt AC, Reading P, Kelso A, Barr I, Laurie KL. TaqMan real time RT-PCR assays for detecting ferret innate and adaptive immune responses. J Virol Methods 2014; 205:38-52. [PMID: 24797460 PMCID: PMC7113642 DOI: 10.1016/j.jviromet.2014.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 11/16/2022]
Abstract
The ferret model is used to study human disease and physiology. TaqMan realtime RT-PCR assays for ferret cytokine and chemokine mRNA were developed. Cytokine and chemokine patterns in ferret cells were similar to other mammals. A comprehensive panel of mRNAs can be measured in samples of limited quantity.
The ferret is an excellent model for many human infectious diseases including influenza, SARS-CoV, henipavirus and pneumococcal infections. The ferret is also used to study cystic fibrosis and various cancers, as well as reproductive biology and physiology. However, the range of reagents available to measure the ferret immune response is very limited. To address this deficiency, high-throughput real time RT-PCR TaqMan assays were developed to measure the expression of fifteen immune mediators associated with the innate and adaptive immune responses (IFNα, IFNβ, IFNγ, IL1α, IL1β, IL2, IL4, IL6, IL8, IL10, IL12p40, IL17, Granzyme A, MCP1, TNFα), as well as four endogenous housekeeping genes (ATF4, HPRT, GAPDH, L32). These assays have been optimized to maximize reaction efficiency, reduce the amount of sample required (down to 1 ng RNA per real time RT-PCR reaction) and to select the most appropriate housekeeping genes. Using these assays, the expression of each of the tested genes could be detected in ferret lymph node cells stimulated with mitogens or infected with influenza virus in vitro. These new tools will allow a more comprehensive analysis of the ferret immune responses following infection or in other disease states.
Collapse
Affiliation(s)
- Louise A Carolan
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Jeff Butler
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia; CSIRO Australian Animal Health Laboratory, East Geelong, 3219, Australia
| | - Steve Rockman
- bioCSL Limited, Parkville, 3052, Australia; Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3010, Australia
| | - Teagan Guarnaccia
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia; Monash University Gippsland, Churchill, 3842, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Patrick Reading
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Anne Kelso
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Karen L Laurie
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
38
|
Generation of stable 3'-mRNA cleavage fragments induced by siRNA in cells with high-levels of duck hepatitis B virus replication. Biochem Biophys Res Commun 2014; 443:834-9. [PMID: 24342609 DOI: 10.1016/j.bbrc.2013.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/09/2013] [Indexed: 11/22/2022]
Abstract
Therapeutic small interfering RNAs (siRNAs) have attracted a lot of interest both in basic biomedical sciences as well as in translational medicine. Apart from their therapeutic efficacy adverse effects of siRNAs must be addressed. The generation of stable mRNA cleavage fragments and the translation of N-truncated proteins induced by antisense oligodeoxynucleotides (ASOs) have been reported. Similar to ASOs, siRNAs are considered to function via an antisense mechanism that promotes the cleavage of the target mRNA. To further investigate whether the stable mRNA cleavage fragments also occur in siRNA we constructed a short hairpin RNA (shRNA) expression plasmid, pshRNA794, containing the same sequence reported in experiments using ASOs which directly targeted the overlapping region of the pre-genomic mRNA (pgmRNA) and sub-genomic mRNA (sgmRNA) of duck hepatitis B virus (DHBV). The shRNA resulted in a 70.9% and 69.9% reduction of the DHBV mRNAs in LMH and HuH-7 cells, respectively. In addition a 70% inhibition of the DHBV DNA level was observed. Interestingly, 3'-mRNA cleavage fragments were detected in LMH but not in HuH-7 cells. Taken together, our findings demonstrate that the ASO sequence was also effective in siRNA. Importantly, our results provide direct evidence that stable 3'-mRNA fragments were generated by siRNA in cells with high levels of DHBV replication. Whether these can cause adverse RNAi effects needs to be explored further.
Collapse
|