1
|
Schrader M. Origins, Technological Advancement, and Applications of Peptidomics. Methods Mol Biol 2024; 2758:3-47. [PMID: 38549006 DOI: 10.1007/978-1-0716-3646-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Peptidomics is the comprehensive characterization of peptides from biological sources instead of heading for a few single peptides in former peptide research. Mass spectrometry allows to detect a multitude of peptides in complex mixtures and thus enables new strategies leading to peptidomics. The term was established in the year 2001, and up to now, this new field has grown to over 3000 publications. Analytical techniques originally developed for fast and comprehensive analysis of peptides in proteomics were specifically adjusted for peptidomics. Although it is thus closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. Fundamental technological advancements of peptidomics since have occurred in mass spectrometry and data processing, including quantification, and more slightly in separation technology. Different strategies and diverse sources of peptidomes are mentioned by numerous applications, such as discovery of neuropeptides and other bioactive peptides, including the use of biochemical assays. Furthermore, food and plant peptidomics are introduced similarly. Additionally, applications with a clinical focus are included, comprising biomarker discovery as well as immunopeptidomics. This overview extensively reviews recent methods, strategies, and applications including links to all other chapters of this book.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| |
Collapse
|
2
|
Choquet M, Lenner F, Cocco A, Toullec G, Corre E, Toullec JY, Wallberg A. Comparative Population Transcriptomics Provide New Insight into the Evolutionary History and Adaptive Potential of World Ocean Krill. Mol Biol Evol 2023; 40:msad225. [PMID: 37816123 PMCID: PMC10642690 DOI: 10.1093/molbev/msad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Genetic variation is instrumental for adaptation to changing environments but it is unclear how it is structured and contributes to adaptation in pelagic species lacking clear barriers to gene flow. Here, we applied comparative genomics to extensive transcriptome datasets from 20 krill species collected across the Atlantic, Indian, Pacific, and Southern Oceans. We compared genetic variation both within and between species to elucidate their evolutionary history and genomic bases of adaptation. We resolved phylogenetic interrelationships and uncovered genomic evidence to elevate the cryptic Euphausia similis var. armata into species. Levels of genetic variation and rates of adaptive protein evolution vary widely. Species endemic to the cold Southern Ocean, such as the Antarctic krill Euphausia superba, showed less genetic variation and lower evolutionary rates than other species. This could suggest a low adaptive potential to rapid climate change. We uncovered hundreds of candidate genes with signatures of adaptive evolution among Antarctic Euphausia but did not observe strong evidence of adaptive convergence with the predominantly Arctic Thysanoessa. We instead identified candidates for cold-adaptation that have also been detected in Antarctic fish, including genes that govern thermal reception such as TrpA1. Our results suggest parallel genetic responses to similar selection pressures across Antarctic taxa and provide new insights into the adaptive potential of important zooplankton already affected by climate change.
Collapse
Affiliation(s)
- Marvin Choquet
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Felix Lenner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Arianna Cocco
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gaëlle Toullec
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erwan Corre
- CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Yves Toullec
- CNRS, UMR 7144, AD2M, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Möller L, Vainstein Y, Wöhlbrand L, Dörries M, Meyer B, Sohn K, Rabus R. Transcriptome-proteome compendium of the Antarctic krill (Euphausia superba): Metabolic potential and repertoire of hydrolytic enzymes. Proteomics 2022; 22:e2100404. [PMID: 35778945 DOI: 10.1002/pmic.202100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/06/2022]
Abstract
The Antarctic krill (Euphausia superba Dana) is a keystone species in the Southern Ocean that uses an arsenal of hydrolases for biomacromolecule decomposition to effectively digest its omnivorous diet. The present study builds on a hybrid-assembled transcriptome (13,671 ORFs) combined with comprehensive proteome profiling. The analysis of individual krill compartments allowed detection of significantly more different proteins compared to that of the entire animal (1,464 vs. 294 proteins). The nearby krill sampling stations in the Bransfield Strait (Antarctic Peninsula) yielded rather uniform proteome datasets. Proteins related to energy production and lipid degradation were particularly abundant in the abdomen, agreeing with the high energy demand of muscle tissue. A total of 378 different biomacromolecule hydrolysing enzymes were detected, including 250 proteases, 99 CAZymes, 14 nucleases and 15 lipases. The large repertoire in proteases is in accord with the protein-rich diet affiliated with E. superba's omnivorous lifestyle and complex biology. The richness in chitin-degrading enzymes allows not only digestion of zooplankton diet, but also the utilization of the discharged exoskeleton after moulting. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lars Möller
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Yeheven Vainstein
- In-Vitro-Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Marvin Dörries
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Biodiversity Change, Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Bettina Meyer
- Biodiversity and Biological Processes in Polar Oceans, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Ecophysiology of Pelagic Key Species, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,Biodiversity Change, Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Kai Sohn
- In-Vitro-Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Transcriptome Profiling of the Pacific Oyster Crassostrea gigas Visceral Ganglia over a Reproduction Cycle Identifies Novel Regulatory Peptides. Mar Drugs 2021; 19:md19080452. [PMID: 34436291 PMCID: PMC8398477 DOI: 10.3390/md19080452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
The neuropeptides involved in the regulation of reproduction in the Pacific oyster (Crassostrea gigas) are quite diverse. To investigate this diversity, a transcriptomic survey of the visceral ganglia (VG) was carried out over an annual reproductive cycle. RNA-seq data from 26 samples corresponding to VG at different stages of reproduction were de novo assembled to generate a specific reference transcriptome of the oyster nervous system and used to identify differentially expressed transcripts. Transcriptome mining led to the identification of novel neuropeptide precursors (NPPs) related to the bilaterian Eclosion Hormone (EH), crustacean female sex hormone/Interleukin 17, Nesfatin, neuroparsin/IGFBP, prokineticins, and urotensin I; to the protostome GNQQN, pleurin, prohormones 3 and 4, prothoracotropic hormones (PTTH), and QSamide/PXXXamide; to the lophotrochozoan CCWamide, CLCCY, HFAamide, and LXRX; and to the mollusk-specific NPPs CCCGS, clionin, FYFY, GNamide, GRWRN, GSWN, GWE, IWMPxxGYxx, LXRYamide, RTLFamide, SLRFamide, and WGAGamide. Among the complete repertoire of NPPs, no sex-biased expression was observed. However, 25 NPPs displayed reproduction stage-specific expression, supporting their involvement in the control of gametogenesis or associated metabolisms.
Collapse
|
5
|
Réalis-Doyelle E, Schwartz J, Dubos MP, Favrel P. Molecular and physiological characterization of a crustacean cardioactive signaling system in a lophotrochozoan - the Pacific oyster (Crassostrea gigas): a role in reproduction and salinity acclimation. J Exp Biol 2021; 224:268353. [PMID: 34028518 DOI: 10.1242/jeb.241588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
The crustacean cardioactive peptide (CCAP) is an important neuropeptide involved in the regulation of a variety of physiological processes in arthropods. Although this family of peptides has an ancestral origin, its function remains poorly understood among protostome species - apart from arthropods. We functionally characterized three G protein-coupled receptors (GPCRs) in the oyster Crassostrea gigas, phylogenetically related to ecdysozoan CCAP receptors (CCAPRs) and to chordate neuropeptide S receptors (NPSRs). Cragi-CCAPR1 and Cragi-CCAPR2 were specifically activated by the Cragi-CCAP1 and Cragi-CCAP2 peptides, respectively, both derived from the same CCAP precursor. In contrast, Cragi-CCAPR3 was only partially activated by CCAP1 and CCAP2 at high concentrations. The Cragi-CCAPR1 and Cragi-CCAPR2 genes were expressed in various adult tissues. They are both most expressed in the gills, while Cragi-CCAPR3 is mainly expressed in the visceral ganglia (VG). Cragi-CCAP precursor transcripts are higher in the VG, the labial palps and the gills. Receptor and ligand-encoding transcripts are more abundantly expressed in the gonads in the first stages of gametogenesis, while the Cragi-CCAP precursor is upregulated in the VG in the last stages of gametogenesis. This suggests a role of the CCAP signaling system in the regulation of reproductive processes. A role in water and ionic regulation is also supported considering the differential expression of the CCAP signaling components in oysters exposed to brackish water.
Collapse
Affiliation(s)
- Emilie Réalis-Doyelle
- UMR BOREA, Normandie Université, UNICAEN, MNHN, CNRS-8067, IRD-207, Sorbonne Universités, Esplanade de la Paix, 14032 Caen cedex, France
| | - Julie Schwartz
- UMR BOREA, Normandie Université, UNICAEN, MNHN, CNRS-8067, IRD-207, Sorbonne Universités, Esplanade de la Paix, 14032 Caen cedex, France
| | - Marie-Pierre Dubos
- UMR BOREA, Normandie Université, UNICAEN, MNHN, CNRS-8067, IRD-207, Sorbonne Universités, Esplanade de la Paix, 14032 Caen cedex, France
| | - Pascal Favrel
- UMR BOREA, Normandie Université, UNICAEN, MNHN, CNRS-8067, IRD-207, Sorbonne Universités, Esplanade de la Paix, 14032 Caen cedex, France
| |
Collapse
|
6
|
Chen HY, Toullec JY, Lee CY. The Crustacean Hyperglycemic Hormone Superfamily: Progress Made in the Past Decade. Front Endocrinol (Lausanne) 2020; 11:578958. [PMID: 33117290 PMCID: PMC7560641 DOI: 10.3389/fendo.2020.578958] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Early studies recognizing the importance of the decapod eyestalk in the endocrine regulation of crustacean physiology-molting, metabolism, reproduction, osmotic balance, etc.-helped found the field of crustacean endocrinology. Characterization of putative factors in the eyestalk using distinct functional bioassays ultimately led to the discovery of a group of structurally related and functionally diverse neuropeptides, crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), gonad-inhibiting hormone (GIH) or vitellogenesis-inhibiting hormone (VIH), and mandibular organ-inhibiting hormone (MOIH). These peptides, along with the first insect member (ion transport peptide, ITP), constitute the original arthropod members of the crustacean hyperglycemic hormone (CHH) superfamily. The presence of genes encoding the CHH-superfamily peptides across representative ecdysozoan taxa has been established. The objective of this review is to, aside from providing a general framework, highlight the progress made during the past decade or so. The progress includes the widespread identification of the CHH-superfamily peptides, in particular in non-crustaceans, which has reshaped the phylogenetic profile of the superfamily. Novel functions have been attributed to some of the newly identified members, providing exceptional opportunities for understanding the structure-function relationships of these peptides. Functional studies are challenging, especially for the peptides of crustacean and insect species, where they are widely expressed in various tissues and usually pleiotropic. Progress has been made in deciphering the roles of CHH, ITP, and their alternatively spliced counterparts (CHH-L, ITP-L) in the regulation of metabolism and ionic/osmotic hemostasis under (eco)physiological, developmental, or pathological contexts, and of MIH in the stimulation of ovarian maturation, which implicates it as a regulator for coordinating growth (molt) and reproduction. In addition, experimental elucidation of the steric structure and structure-function relationships have given better understanding of the structural basis of the functional diversification and overlapping among these peptides. Finally, an important finding was the first-ever identification of the receptors for this superfamily of peptides, specifically the receptors for ITPs of the silkworm, which will surely give great impetus to the functional study of these peptides for years to come. Studies regarding recent progress are presented and synthesized, and prospective developments remarked upon.
Collapse
Affiliation(s)
- Hsiang-Yin Chen
- Department of Aquaculture, National Penghu University of Science and Technology, Magong, Taiwan
| | - Jean-Yves Toullec
- Sorbonne Université, Faculté des Sciences, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | - Chi-Ying Lee
- Graduate Program of Biotechnology and Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
7
|
Fadda M, Hasakiogullari I, Temmerman L, Beets I, Zels S, Schoofs L. Regulation of Feeding and Metabolism by Neuropeptide F and Short Neuropeptide F in Invertebrates. Front Endocrinol (Lausanne) 2019; 10:64. [PMID: 30837946 PMCID: PMC6389622 DOI: 10.3389/fendo.2019.00064] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Numerous neuropeptide systems have been implicated to coordinately control energy homeostasis, both centrally and peripherally. However, the vertebrate neuropeptide Y (NPY) system has emerged as the best described one regarding this biological process. The protostomian ortholog of NPY is neuropeptide F, characterized by an RXRF(Y)amide carboxyterminal motif. A second neuropeptide system is short NPF, characterized by an M/T/L/FRF(W)amide carboxyterminal motif. Although both short and long NPF neuropeptide systems display carboxyterminal sequence similarities, they are evolutionary distant and likely already arose as separate signaling systems in the common ancestor of deuterostomes and protostomes, indicating the functional importance of both. Both NPF and short-NPF systems seem to have roles in the coordination of feeding across bilaterian species, but during chordate evolution, the short NPF system appears to have been lost or evolved into the prolactin releasing peptide signaling system, which regulates feeding and has been suggested to be orthologous to sNPF. Here we review the roles of both NPF and sNPF systems in the regulation of feeding and metabolism in invertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | - Liliane Schoofs
- Department of Biology, Functional Genomics and Proteomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Dickinson PS, Dickinson ES, Oleisky ER, Rivera CD, Stanhope ME, Stemmler EA, Hull JJ, Christie AE. AMGSEFLamide, a member of a broadly conserved peptide family, modulates multiple neural networks in Homarus americanus. ACTA ACUST UNITED AC 2019; 222:jeb.194092. [PMID: 30464043 DOI: 10.1242/jeb.194092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/15/2018] [Indexed: 01/07/2023]
Abstract
Recent genomic/transcriptomic studies have identified a novel peptide family whose members share the carboxyl terminal sequence -GSEFLamide. However, the presence/identity of the predicted isoforms of this peptide group have yet to be confirmed biochemically, and no physiological function has yet been ascribed to any member of this peptide family. To determine the extent to which GSEFLamides are conserved within the Arthropoda, we searched publicly accessible databases for genomic/transcriptomic evidence of their presence. GSEFLamides appear to be highly conserved within the Arthropoda, with the possible exception of the Insecta, in which sequence evidence was limited to the more basal orders. One crustacean in which GSEFLamides have been predicted using transcriptomics is the lobster, Homarus americanus Expression of the previously published transcriptome-derived sequences was confirmed by reverse transcription (RT)-PCR of brain and eyestalk ganglia cDNAs; mass spectral analyses confirmed the presence of all six of the predicted GSEFLamide isoforms - IGSEFLamide, MGSEFLamide, AMGSEFLamide, VMGSEFLamide, ALGSEFLamide and AVGSEFLamide - in H. americanus brain extracts. AMGSEFLamide, of which there are multiple copies in the cloned transcripts, was the most abundant isoform detected in the brain. Because the GSEFLamides are present in the lobster nervous system, we hypothesized that they might function as neuromodulators, as is common for neuropeptides. We thus asked whether AMGSEFLamide modulates the rhythmic outputs of the cardiac ganglion and the stomatogastric ganglion. Physiological recordings showed that AMGSEFLamide potently modulates the motor patterns produced by both ganglia, suggesting that the GSEFLamides may serve as important and conserved modulators of rhythmic motor activity in arthropods.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine 04011, USA
| | - Evyn S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine 04011, USA
| | - Emily R Oleisky
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine 04011, USA
| | - Cindy D Rivera
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, USA
| | - Meredith E Stanhope
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine 04011, USA
| | - Elizabeth A Stemmler
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, USA
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, Arizona 85138, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii 96822, USA
| |
Collapse
|
9
|
Christie AE, Pascual MG, Yu A. Peptidergic signaling in the tadpole shrimp Triops newberryi: A potential model for investigating the roles played by peptide paracrines/hormones in adaptation to environmental change. Mar Genomics 2018. [DOI: 10.1016/j.margen.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Endress M, Zatylny-Gaudin C, Corre E, Le Corguillé G, Benoist L, Leprince J, Lefranc B, Bernay B, Leduc A, Rangama J, Lafont AG, Bondon A, Henry J. Crustacean cardioactive peptides: Expression, localization, structure, and a possible involvement in regulation of egg-laying in the cuttlefish Sepia officinalis. Gen Comp Endocrinol 2018; 260:67-79. [PMID: 29278693 DOI: 10.1016/j.ygcen.2017.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/26/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
The cuttlefish (Sepia officinalis) is a cephalopod mollusk distributed on the western European coast, in the West African Ocean and in the Mediterranean Sea. On the Normandy coast (France), cuttlefish is a target species of professional fishermen, so its reproduction strategy is of particular interest in the context of stock management. Egg-laying, which is coastal, is controlled by several types of regulators among which neuropeptides. The cuttlefish neuropeptidome was recently identified by Zatylny-Gaudin et al. (2016). Among the 38 neuropeptide families identified, some were significantly overexpressed in egg-laying females as compared to mature males. This study is focused on crustacean cardioactive peptides (CCAPs), a highly expressed neuropeptide family strongly suspected of being involved in the control of egg-laying. We investigated the functional and structural characterization and tissue mapping of CCAPs, as well as the expression patterns of their receptors. CCAPs appeared to be involved in oocyte transport through the oviduct and in mechanical secretion of capsular products. Immunocytochemistry revealed that the neuropeptides were localized throughout the central nervous system (CNS) and in the nerve endings of the glands involved in egg-capsule synthesis and secretion, i.e. the oviduct gland and the main nidamental glands. The CCAP receptor was expressed in these glands and in the subesophageal mass of the CNS. Multiple sequence alignments revealed a high level of conservation of CCAP protein precursors in Sepia officinalis and Loligo pealei, two cephalopod decapods. Primary sequences of CCAPs from the two species were fully conserved, and cryptic peptides detected in the nerve endings were also partially conserved, suggesting biological activity that remains unknown for the time being.
Collapse
Affiliation(s)
- Maxime Endress
- Normandy University, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), F-14032 Caen, France
| | - Céline Zatylny-Gaudin
- Normandy University, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), F-14032 Caen, France
| | - Erwan Corre
- UPMC, CNRS, FR2424, ABiMS, Station Biologique, F-29680 Roscoff, France
| | | | - Louis Benoist
- Normandy University, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), F-14032 Caen, France
| | - Jérôme Leprince
- Normandy University, UNIROUEN, INSERM, U1239, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, F-76000 Rouen, France
| | - Benjamin Lefranc
- Normandy University, UNIROUEN, INSERM, U1239, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, F-76000 Rouen, France
| | - Benoît Bernay
- Normandy University, Post Genomic Platform PROTEOGEN, SF ICORE 4206, F-14032 Caen, France
| | - Alexandre Leduc
- Normandy University, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), F-14032 Caen, France
| | - Jimmy Rangama
- Normandy University, CIMAP, UMP 6252 (CEA/CNRS/ENSICAEN/Normandy University), Caen, France
| | - Anne-Gaëlle Lafont
- Equipe CORINT, UMR CNRS 6226, PRISM, CS 34317, Campus de Villejean, Université de Rennes 1, F-35043 Rennes, France
| | - Arnaud Bondon
- Equipe CORINT, UMR CNRS 6226, PRISM, CS 34317, Campus de Villejean, Université de Rennes 1, F-35043 Rennes, France
| | - Joël Henry
- Normandy University, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), F-14032 Caen, France; Normandy University, Post Genomic Platform PROTEOGEN, SF ICORE 4206, F-14032 Caen, France.
| |
Collapse
|
11
|
Christie AE, Cieslak MC, Roncalli V, Lenz PH, Major KM, Poynton HC. Prediction of a peptidome for the ecotoxicological model Hyalella azteca (Crustacea; Amphipoda) using a de novo assembled transcriptome. Mar Genomics 2018; 38:67-88. [PMID: 29395622 DOI: 10.1016/j.margen.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 02/05/2023]
Abstract
Due to its sensitivity to many environmental and anthropogenic stressors, including a wide range of chemical compounds, Hyalella azteca, a freshwater amphipod, has emerged as one of the most commonly used invertebrates for ecotoxicological assessment.Peptidergic signaling systems are key components in the control of organism-environment interactions, and there is a growing literature suggesting that they are targets of a number of aquatic toxicants.Interestingly, and despite its model species status in the field of ecotoxicology, little is known about the peptide hormones of H. azteca.Here, a transcriptome was produced for this species using the de novo assembler Trinity and mined for sequences encoding putative peptide precursors; the transcriptome was assembled from 460,291,636 raw reads and consists of 133,486 unique transcripts.Seventy-six sequences encoding peptide pre/preprohormones were identified from this transcriptome, allowing for the prediction of 202 distinct peptides, which included members of the allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, ecdysis-triggering hormone, eclosion hormone, elevenin, FMRFamide-like peptide, glycoprotein hormone, GSEFLamide, inotocin, leucokinin, myosuppressin, neuropeptide F, orcokinin, orcomyotropin, pigment dispersing hormone, proctolin, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide, sulfakinin, tachykinin-related peptide and trissin families.These peptides expand the known peptidome for H. azteca approximately nine-fold, forming a strong foundation for future studies of peptidergic control, including disruption by aquatic toxicants, in this important ecotoxicological model.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Matthew C Cieslak
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Petra H Lenz
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Kaley M Major
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA.
| |
Collapse
|
12
|
Christie AE, Miller A, Fernandez R, Dickinson ES, Jordan A, Kohn J, Youn MC, Dickinson PS. Non-amidated and amidated members of the C-type allatostatin (AST-C) family are differentially distributed in the stomatogastric nervous system of the American lobster, Homarus americanus. INVERTEBRATE NEUROSCIENCE : IN 2018; 18:2. [PMID: 29332202 PMCID: PMC5791145 DOI: 10.1007/s10158-018-0206-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/02/2018] [Indexed: 11/27/2022]
Abstract
The crustacean stomatogastric nervous system (STNS) is a well-known model for investigating neuropeptidergic control of rhythmic behavior. Among the peptides known to modulate the STNS are the C-type allatostatins (AST-Cs). In the lobster, Homarus americanus, three AST-Cs are known. Two of these, pQIRYHQCYFNPISCF (AST-C I) and GNGDGRLYWRCYFNAVSCF (AST-C III), have non-amidated C-termini, while the third, SYWKQCAFNAVSCFamide (AST-C II), is C-terminally amidated. Here, antibodies were generated against one of the non-amidated peptides (AST-C I) and against the amidated isoform (AST-C II). Specificity tests show that the AST-C I antibody cross-reacts with both AST-C I and AST-C III, but not AST-C II; the AST-C II antibody does not cross-react with either non-amidated peptide. Wholemount immunohistochemistry shows that both subclasses (non-amidated and amidated) of AST-C are distributed throughout the lobster STNS. Specifically, the antibody that cross-reacts with the two non-amidated peptides labels neuropil in the CoGs and the stomatogastric ganglion (STG), axons in the superior esophageal (son) and stomatogastric (stn) nerves, and ~ 14 somata in each commissural ganglion (CoG). The AST-C II-specific antibody labels neuropil in the CoGs, STG and at the junction of the sons and stn, axons in the sons and stn, ~ 42 somata in each CoG, and two somata in the STG. Double immunolabeling shows that, except for one soma in each CoG, the non-amidated and amidated peptides are present in distinct sets of neuronal profiles. The differential distributions of the two AST-C subclasses suggest that the two peptide groups are likely to serve different modulatory roles in the lobster STNS.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA.
| | - Alexandra Miller
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Rebecca Fernandez
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Evyn S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Audrey Jordan
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Jessica Kohn
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Mina C Youn
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| |
Collapse
|
13
|
Li F, Qiao H, Fu H, Sun S, Zhang W, Jin S, Jiang S, Gong Y, Xiong Y, Wu Y, Hu Y, Shan D. Identification and characterization of opsin gene and its role in ovarian maturation in the oriental river prawn Macrobrachium nipponense. Comp Biochem Physiol B Biochem Mol Biol 2018; 218:1-12. [PMID: 29309912 DOI: 10.1016/j.cbpb.2017.12.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023]
Abstract
Opsins are photoreceptors with important roles in reproductive regulation in birds and fishes. In the present study, we identified an opsin gene from the eyes of the oriental river prawn Macrobrachium nipponense using expressed sequence tag analysis and rapid amplification of cDNA ends. The full-length transcript contained 1382 base pairs, encoding 375 amino acids. It was classified into the long-wavelength opsin group by phylogenetic analysis, and designated Mn-LW. Mn-LW expression demonstrated significant seasonal variation in somatic tissues from both male and female prawns, with the highest expression in the eyes, and expression also shown in the ovary. The expression profiles of Mn-LW in eyes and ovary were positively related to ovarian development. In situ hybridization showed that Mn-LW was present in retinular cells in the eye and oocytes in the ovary. Injection of Mn-LW dsRNA in vivo effectively down-regulated Mn-LW expression levels compared with control levels. Mn-LW dsRNA injection also significantly reduced vitellogenin (Vg) expression, indicating a close relationship between Mn-LW and Vg in ovarian development. These results suggest that Mn-LW may play an important role in Vg synthesis and accumulation during ovarian maturation in M. nipponense.
Collapse
Affiliation(s)
- Fei Li
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Hongtuo Fu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yuning Hu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Dongyan Shan
- Shanghai Ocean University, Shanghai 201306, PR China
| |
Collapse
|
14
|
Abstract
Peptidomics is the comprehensive characterization of peptides from biological sources mainly by HPLC and mass spectrometry. Mass spectrometry allows the detection of a multitude of single peptides in complex mixtures. The term first appeared in full papers in the year 2001, after over 100 years of peptide research with a main focus on one or a few specific peptides. Within the last 15 years, this new field has grown to over 1200 publications. Mass spectrometry techniques, in combination with other analytical methods, were developed for the fast and comprehensive analysis of peptides in proteomics and specifically adjusted to implement peptidomics technologies. Although peptidomics is closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. The development of peptidomics is described, including the most important implementations for its technological basis. Different strategies are covered which are applied to several important applications, such as neuropeptidomics and discovery of bioactive peptides or biomarkers. This overview includes links to all other chapters in the book as well as recent developments of separation, mass spectrometric, and data processing technologies. Additionally, some new applications in food and plant peptidomics as well as immunopeptidomics are introduced.
Collapse
|
15
|
|
16
|
Christie AE. Neuropeptide discovery in Proasellus cavaticus: Prediction of the first large-scale peptidome for a member of the Isopoda using a publicly accessible transcriptome. Peptides 2017; 97:29-45. [PMID: 28893643 DOI: 10.1016/j.peptides.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 11/29/2022]
Abstract
In silico transcriptome mining is one of the most effective methods for neuropeptide discovery in crustaceans, particularly for species that are small, rare or from geographically inaccessible habitats that make obtaining the large pools of tissue needed for other peptide discovery platforms impractical. Via this approach, large peptidomes have recently been described for members of many of the higher crustacean taxa, one notable exception being the Isopoda; no peptidome has been predicted for any member of this malacostracan order. Using a publicly accessible transcriptome for the isopod Proasellus cavaticus, a subcentimeter subterranean ground water dweller, the first in silico-predicted peptidome for a member of the Isopoda is presented here. BLAST searches employing known arthropod neuropeptide pre/preprohormone queries identified 49 transcripts as encoding putative homologs within the P. cavaticus transcriptome. The proteins deduced from these transcripts allowed for the prediction of 171 distinct mature neuropeptides. The P. cavaticus peptidome includes members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, CCHamide, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, diuretic hormone 31, eclosion hormone, elevenin, FMRFamide-like peptide, glycoprotein hormone α2, leucokinin, myosuppressin, neuroparsin, neuropeptide F, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, sulfakinin, tachykinin-related peptide and trissin families, as well as many linker/precursor-related sequences that may or may not represent additional bioactive molecules. Interestingly, many of the predicted P. cavaticus neuropeptides possess structures identical (or nearly so) to those previously described from members of several other malacostracan orders, i.e., the Decapoda, Amphipoda and Euphausiacea, a finding that suggests broad phylogenetic conservation of bioactive peptide structures, and possibly functions, may exist within the Malacostraca.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822 USA, USA.
| |
Collapse
|
17
|
A transcriptomic resource for the northern krill Meganyctiphanes norvegica based on a short-term temperature exposure experiment. Mar Genomics 2017; 38:25-32. [PMID: 28601440 DOI: 10.1016/j.margen.2017.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 10/18/2022]
Abstract
The northern krill, Meganyctiphanes norvegica, is an important component of the pelagic food web across the North Atlantic. Widespread from the Mediterranean to the Subarctic Atlantic, populations appear to be strongly adapted to local temperatures, and seem to have very little plasticity. The goal of this study was to create and annotate a de novo transcriptome assembly to allow for comparative and physiological studies and to explore the gene expression response of M. norvegica from the Gulf of Maine to two different temperature conditions. Our Trinity assembly produced 405,497 transcripts with ~16% annotation success versus nr with a stringent cutoff (>1e-10), and substantial cross-annotation versus FlyBase and other published pelagic crustacean transcriptomes. There were 122 transcripts that were differentially expressed based on our 2-day 9 versus 12°C temperature exposure, and their annotation suggested changes in energetic metabolism and molting. These results generate a useful molecular resource for further more directed studies as well as provide initial insight into the physiological processes that may shape the temperature response of the northern krill.
Collapse
|
18
|
Toullec JY, Corre E, Mandon P, Gonzalez-Aravena M, Ollivaux C, Lee CY. Characterization of the neuropeptidome of a Southern Ocean decapod, the Antarctic shrimp Chorismus antarcticus: Focusing on a new decapod ITP-like peptide belonging to the CHH peptide family. Gen Comp Endocrinol 2017; 252:60-78. [PMID: 28728885 DOI: 10.1016/j.ygcen.2017.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 02/04/2023]
Abstract
As part of the study of the resilience of Antarctic crustaceans to global warming, the shrimp Chorismus antarcticus was subjected to an analysis of global approach using the Next Generation Sequencing Illumina Hi-Seq platform. With this data a detailed study into the principal neuropeptides and neurohormones of this species have been undertaken. Total RNAs from whole animals were enriched with eyestalk extracts to ensure maximum sequencing depth of the different neurohormones and neuropeptides mainly expressed into the X organ-sinus gland complex, which is a major endocrine organ of their synthesis. Apart from the information that can provide the availability of the transcriptome of a polar crustacean, the study of neuropeptides of a caridean shrimp will partially fill the limited data available for this taxon. Illumina sequencing was used to produce a transcriptome of the polar shrimp. Analysis of the Trinity assembled contigs produced 55 pre-pro-peptides, coding for 111 neuropeptides belonging to the following families: adipokinetic-corazonin-like peptide, Allatostatins (A, B et C), Bursicon (α), CCHamide, Crustacean Hyperglycemic Hormones (CHH), Crustacean Cardioactive Peptide (CCAP), Corazonin, Crustacean Female Sex Hormone (CSFH), Diuretic Hormones 31 and 45 (DH), Eclosion Hormone (EH), FLRFamide, GSEFLamide, Intocin, Ion Transport Peptide-like (ITP-like), Leucokinin, Molt-inhibiting Hormone, Myosuppresin, Neuroparsin, Neuropeptide F (NPF), Orcokinin, Orcomyotropin, Pigment Dispersing Hormone (PDH), Pyrokinin, Red Pigment Concentrating Hormone (RPCH), SIFamide, small Neuropeptide F (sNPF), Sulfakinin and finally Tachykinin Related peptides. Among the new peptides highlighted in this study, the focus was placed on the peptides of the CHH family and more particularly on a new ITP-like in order to confirm its belonging to a new group of peptides of the family. A phylogeny made from more than 200 sequences of peptides, included new sequences from new species besides Chorismus antarcticus, confirms the peculiarity of this new set of peptides gathered under the name ITP-like.
Collapse
Affiliation(s)
- Jean-Yves Toullec
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, 29682 Roscoff, France.
| | - Erwan Corre
- Sorbonne Universités, UPMC Université Paris 06, FR 2424 CNRS, ABiMS, Station Biologique de Roscoff, Roscoff, France
| | - Perrine Mandon
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, 29682 Roscoff, France; Muséum National d'Histoire Naturelle, Sorbonne Universités, Institut de Systématique, Evolution, Biodiversité, (ISYEB - UMR 7205 - CNRS, MNHN, UPMC-Paris 06, EPHE), 57 rue Cuvier, CP26, 75005 Paris, France
| | - Marcelo Gonzalez-Aravena
- Laboratorio de Biorecursos Antárticos, Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - Céline Ollivaux
- Sorbonne Universités, UPMC Université Paris 06, UMR 8227 CNRS, Equipe PCE, Station Biologique de Roscoff, 29682 Roscoff, France
| | - Chi-Ying Lee
- Department of Biology, National Changhua University of Education, Changhua 50058, Taiwan
| |
Collapse
|
19
|
Hunt BJ, Özkaya Ö, Davies NJ, Gaten E, Seear P, Kyriacou CP, Tarling G, Rosato E. The Euphausia superba transcriptome database, SuperbaSE: An online, open resource for researchers. Ecol Evol 2017; 7:6060-6077. [PMID: 30094004 PMCID: PMC6077532 DOI: 10.1002/ece3.3168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/28/2017] [Accepted: 05/21/2017] [Indexed: 11/13/2022] Open
Abstract
Antarctic krill (Euphausia superba) is a crucial component of the Southern Ocean ecosystem, acting as the major link between primary production and higher trophic levels with an annual predator demand of up to 470 million tonnes. It also acts as an ecosystem engineer, affecting carbon sequestration and recycling iron and nitrogen, and has increasing importance as a commercial product in the aquaculture and health industries. Here we describe the creation of a de novo assembled head transcriptome for E. superba. As an example of its potential as a molecular resource, we relate its exploitation in identifying and characterizing numerous genes related to the circadian clock in E. superba, including the major components of the central feedback loop. We have made the transcriptome openly accessible for a wider audience of ecologists, molecular biologists, evolutionary geneticists, and others in a user-friendly format at SuperbaSE, hosted at http://www.krill.le.ac.uk.
Collapse
Affiliation(s)
- Benjamin J. Hunt
- Department of GeneticsCollege of MedicineBiological Sciences and Psychology University of LeicesterUniversity RoadLeicesterUK
| | - Özge Özkaya
- Department of GeneticsCollege of MedicineBiological Sciences and Psychology University of LeicesterUniversity RoadLeicesterUK
| | - Nathaniel J. Davies
- Department of GeneticsCollege of MedicineBiological Sciences and Psychology University of LeicesterUniversity RoadLeicesterUK
| | - Edward Gaten
- Department of GeneticsCollege of MedicineBiological Sciences and Psychology University of LeicesterUniversity RoadLeicesterUK
| | - Paul Seear
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - Charalambos P. Kyriacou
- Department of GeneticsCollege of MedicineBiological Sciences and Psychology University of LeicesterUniversity RoadLeicesterUK
| | - Geraint Tarling
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - Ezio Rosato
- Department of GeneticsCollege of MedicineBiological Sciences and Psychology University of LeicesterUniversity RoadLeicesterUK
| |
Collapse
|
20
|
Zhou L, Li S, Wang Z, Li F, Xiang J. An eclosion hormone-like gene participates in the molting process of Palaemonid shrimp Exopalaemon carinicauda. Dev Genes Evol 2017; 227:189-199. [PMID: 28417205 DOI: 10.1007/s00427-017-0580-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 04/07/2017] [Indexed: 12/01/2022]
Abstract
Molting behavior is an important physiological process related to metamorphosis, growth, and reproduction in crustaceans. Previous studies indicated that the molting process was controlled by 20-hydroxyecdysone (20E) and upstream hormones, peptides, and environmental factors, which regulate 20E function. Eclosion hormone (EH) in insect is a kind of neuropeptide that is regulated by 20E and triggers ecdysis behavior at the end of molting process. However, the function of eclosion hormone gene during the molting process in crustaceans is still largely unknown. In the present study, an eclosion hormone-like gene EcEHL was identified from Exopalaemon carinicauda. The deduced amino acid sequence of EcEHL contained a signal peptide, a typical eclosion domain, and six conserved cysteine residues forming three putative disulfide bonds. EcEHL was predominantly expressed in the epidermis, gill, and eyestalk of shrimp. In situ hybridization analysis showed that EcEHL transcripts were localized in gill cells and in medulla externa X-organ, medulla terminalis X-organ, sinus gland, and lamina ganglionaris of eyestalks. During the molting process of shrimp, EcEHL showed the highest expression level in shrimp at the premolt stage. The expression level of EcEHL in shrimp at mid premolt stage was up-regulated by injection of exogenous 20E. Silencing of EcEHL using double-stranded RNA delayed both the molting process and ecdysis rate of E. carinicauda. Furthermore, injection of exogenous 20E to shrimp at mid premolt stage (D2) could remarkably speed up the molting process and also raise the ecdysis rate of E. carinicauda. The results revealed that EcEHL might participate in the molting process of shrimp and its expression was regulated by 20E. These data will help us to understand the molecular mechanism of molting in crustacean.
Collapse
Affiliation(s)
- Lihong Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Zhiwei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
21
|
Christie AE, Hull JJ, Richer JA, Geib SM, Tassone EE. Prediction of a peptidome for the western tarnished plant bug Lygus hesperus. Gen Comp Endocrinol 2017; 243:22-38. [PMID: 27789347 DOI: 10.1016/j.ygcen.2016.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/08/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022]
Abstract
Many strategies for controlling insect pests require an understanding of their hormonal signaling agents, peptides being the largest and most diverse single class of these molecules. Lygus hesperus is a pest species of particular concern, as it is responsible for significant damage to a wide variety of commercially important plant crops. At present, little is known about the peptide hormones of L. hesperus. Here, transcriptomic data were used to predict a peptidome for L. hesperus. Fifty-three L. hesperus transcripts encoding peptide precursors were identified, with a subset amplified by PCR for sequence verification. The proteins deduced from these transcripts allowed for the prediction of a 119-sequence peptidome for L. hesperus. The predicted peptides include isoforms of allatostatin A, allatostatin B (AST-B), allatostatin C, allatotropin, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, GSEFLamide, insulin-like peptide, myosuppressin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, pyrokinin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide. Of note were several isoforms of AST-B that possess -WX7Wamide carboxyl-termini rather than the stereotypical -WX6Wamide (e.g., KWQDMQNPGWamide), an allatotropin ending in -SARGFamide rather than -TARGFamide (GLKNGPLNSARGFamide), a GSEFLamide ending in -GTEFLamide (TVGTEFLamide), several orcokinins with PMDEIDR- rather than NFDEIDR- amino-termini (e.g., PMDEIDRAGFTHFV), and an eight rather than 12 amino acid long isoform of SIFamide (PPFNGSIFamide). Collectively, the L. hesperus peptidome predicted here provides a resource for initiating physiological investigations of peptidergic signaling in this species, including studies directed at the biological control of this agricultural pest.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Josh A Richer
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Scott M Geib
- Tropical Crop and Commodity Protection Research Unit, Daniel K. Inouye Pacific Basin Agricultural Research Center, USDA Agricultural Research Services, Hilo, HI 96720, USA
| | - Erica E Tassone
- Plant Physiology and Genetics Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| |
Collapse
|
22
|
O'Grady JF, Hoelters LS, Swain MT, Wilcockson DC. Identification and temporal expression of putative circadian clock transcripts in the amphipod crustacean Talitrus saltator. PeerJ 2016; 4:e2555. [PMID: 27761341 PMCID: PMC5068443 DOI: 10.7717/peerj.2555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/11/2016] [Indexed: 11/20/2022] Open
Abstract
Background Talitrus saltator is an amphipod crustacean that inhabits the supralittoral zone on sandy beaches in the Northeast Atlantic and Mediterranean. T. saltator exhibits endogenous locomotor activity rhythms and time-compensated sun and moon orientation, both of which necessitate at least one chronometric mechanism. Whilst their behaviour is well studied, currently there are no descriptions of the underlying molecular components of a biological clock in this animal, and very few in other crustacean species. Methods We harvested brain tissue from animals expressing robust circadian activity rhythms and used homology cloning and Illumina RNAseq approaches to sequence and identify the core circadian clock and clock-related genes in these samples. We assessed the temporal expression of these genes in time-course samples from rhythmic animals using RNAseq. Results We identified a comprehensive suite of circadian clock gene homologues in T. saltator including the ‘core’ clock genes period (Talper), cryptochrome 2 (Talcry2), timeless (Taltim), clock (Talclk), and bmal1 (Talbmal1). In addition we describe the sequence and putative structures of 23 clock-associated genes including two unusual, extended isoforms of pigment dispersing hormone (Talpdh). We examined time-course RNAseq expression data, derived from tissues harvested from behaviourally rhythmic animals, to reveal rhythmic expression of these genes with approximately circadian period in Talper and Talbmal1. Of the clock-related genes, casein kinase IIβ (TalckIIβ), ebony (Talebony), jetlag (Taljetlag), pigment dispensing hormone (Talpdh), protein phosphatase 1 (Talpp1), shaggy (Talshaggy), sirt1 (Talsirt1), sirt7 (Talsirt7) and supernumerary limbs (Talslimb) show temporal changes in expression. Discussion We report the sequences of principle genes that comprise the circadian clock of T. saltator and highlight the conserved structural and functional domains of their deduced cognate proteins. Our sequencing data contribute to the growing inventory of described comparative clocks. Expression profiling of the identified clock genes illuminates tantalising targets for experimental manipulation to elucidate the molecular and cellular control of clock-driven phenotypes in this crustacean.
Collapse
Affiliation(s)
- Joseph F O'Grady
- Institute of Biological, Environmental and Rural Sciences, University of Wales , Aberystwyth , Ceredigion , United Kingdom
| | - Laura S Hoelters
- Institute of Biological, Environmental and Rural Sciences, University of Wales , Aberystwyth , Ceredigion , United Kingdom
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, University of Wales , Aberystwyth , Ceredigion , United Kingdom
| | - David C Wilcockson
- Institute of Biological, Environmental and Rural Sciences, University of Wales , Aberystwyth , Ceredigion , United Kingdom
| |
Collapse
|
23
|
Christie AE, Pascual MG. Peptidergic signaling in the crab Cancer borealis: Tapping the power of transcriptomics for neuropeptidome expansion. Gen Comp Endocrinol 2016; 237:53-67. [PMID: 27497705 DOI: 10.1016/j.ygcen.2016.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 11/21/2022]
Abstract
The crab Cancer borealis has long been used as a model for understanding neural control of rhythmic behavior. One significant discovery made through its use is that even numerically simple neural circuits are capable of producing an essentially infinite array of distinct motor outputs via the actions of locally released and circulating neuromodulators, the largest class being peptides. While much work has focused on elucidating the peptidome of C. borealis, no investigation has used in silico transcriptome mining for peptide discovery in this species, a strategy proven highly effective for identifying neuropeptides in other crustaceans. Here, we mined a C. borealis neural transcriptome for putative peptide-encoding transcripts, and predicted 200 distinct mature neuropeptides from the proteins deduced from these sequences. The identified peptides include isoforms of allatostatin A, allatostatin B, allatostatin C, CCHamide, crustacean cardioactive peptide, crustacean hyperglycemic hormone, diuretic hormone 31 (DH31), diuretic hormone 44 (DH44), FMRFamide-like peptide, GSEFLamide, HIGSLYRamide, insulin-like peptide (ILP), intocin, leucokinin, neuroparsin, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, short neuropeptide F and SIFamide. While some of the predicted peptides were known previously from C. borealis, most (159) are new discoveries for the species, e.g., the isoforms of CCHamide, DH31, DH44, GSEFLamide, ILP, intocin and neuroparsin, which are the first members of these peptide families identified from C. borealis. Collectively, the peptides predicted here approximately double the peptidome known for C. borealis, and in so doing provide an expanded platform from which to launch new investigations of peptidergic neuromodulation in this species.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822 USA.
| | - Micah G Pascual
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822 USA
| |
Collapse
|
24
|
Dickinson PS, Qu X, Stanhope ME. Neuropeptide modulation of pattern-generating systems in crustaceans: comparative studies and approaches. Curr Opin Neurobiol 2016; 41:149-157. [PMID: 27693928 DOI: 10.1016/j.conb.2016.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
Abstract
Central pattern generators are subject to modulation by peptides, allowing for flexibility in patterned output. Current techniques used to characterize peptides include mass spectrometry and transcriptomics. In recent years, hundreds of neuropeptides have been sequenced from crustaceans; mass spectrometry has been used to identify peptides and to determine their levels and locations, setting the stage for comparative studies investigating the physiological roles of peptides. Such studies suggest that there is some evolutionary conservation of function, but also divergence of function even within a species. With current baseline data, it should be possible to begin using comparative approaches to ask fundamental questions about why peptides are encoded the way that they are and how this affects nervous system function.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Biology and Neuroscience, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA.
| | - Xuan Qu
- Neuroscience, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Meredith E Stanhope
- Neuroscience, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| |
Collapse
|
25
|
Christie AE, Roncalli V, Lenz PH. Diversity of insulin-like peptide signaling system proteins in Calanus finmarchicus (Crustacea; Copepoda) - Possible contributors to seasonal pre-adult diapause. Gen Comp Endocrinol 2016; 236:157-173. [PMID: 27432815 DOI: 10.1016/j.ygcen.2016.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 11/29/2022]
Abstract
Calanus finmarchicus, an abundant calanoid copepod in the North Atlantic Ocean, is both a major grazer on phytoplankton and an important forage species for invertebrate and vertebrate predators. One component of the life history of C. finmarchicus is the overwintering dormancy of sub-adults, a feature key for the annual recruitment of this species in early spring. While little is known about the control of dormancy in C. finmarchicus, one hypothesis is that it is an insect-like diapause, where the endocrine system is a key regulator. One group of hormones implicated in the control of insect diapause is the insulin-like peptides (ILPs). Here, C. finmarchicus transcriptomic data were used to predict ILP signaling pathway proteins. Four ILP precursors were identified, each possessing a distinct A- and B-chain peptide; these peptides are predicted to form bioactive heterodimers via inter-chain disulfide bridging. Two ILP receptors, which likely represent splice variants of a common gene, were identified. Three insulin-degrading enzymes were also discovered, as were proteins encoding the transcription factor FOXO, a downstream target of ILP that has been implicated in the regulation of insect diapause, and insulin receptor substrate, a protein putatively linking the ILP receptor and FOXO. RNA-Seq data suggest that some C. finmarchicus insulin pathway transcripts are differentially expressed across development. As in insects, the ILP signaling system may be involved in controlling C. finmarchicus' organism-environment interactions (e.g., regulation of seasonal sub-adult diapause), a hypothesis that can now be investigated using these data.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Petra H Lenz
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
26
|
Christie AE. Expansion of the neuropeptidome of the globally invasive marine crab Carcinus maenas. Gen Comp Endocrinol 2016; 235:150-169. [PMID: 27179880 DOI: 10.1016/j.ygcen.2016.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
Carcinus maenas is widely recognized as one of the world's most successful marine invasive species; its success as an invader is due largely to its ability to thrive under varied environmental conditions. The physiological/behavioral control systems that allow C. maenas to adapt to new environments are undoubtedly under hormonal control, the largest single class of hormones being peptides. While numerous studies have focused on identifying native C. maenas peptides, none has taken advantage of mining transcriptome shotgun assembly (TSA) sequence data, a strategy proven highly successful for peptide discovery in other crustaceans. Here, a C. maenas peptidome was predicted via in silico transcriptome mining. Thirty-seven peptide families were searched for in the extant TSA database, with transcripts encoding precursors for 29 groups identified. The pre/preprohormones deduced from the identified sequences allowed for the prediction of 263 distinct mature peptides, 193 of which are new discoveries for C. maenas. The predicted peptides include isoforms of adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone, diuretic hormone 31, diuretic hormone 44, eclosion hormone, FMRFamide-like peptide, HIGSLYRamide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, proctolin, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide, and tachykinin-related peptide. This peptidome is the largest predicted from any single crustacean using the in silico approach, and provides a platform for investigating peptidergic signaling in C. maenas, including control of the processes that allow for its success as a global marine invader.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
27
|
Wong YH, Yu L, Zhang G, He LS, Qian PY. In Silico Prediction of Neuropeptides/Peptide Hormone Transcripts in the Cheilostome Bryozoan Bugula neritina. PLoS One 2016; 11:e0160271. [PMID: 27537380 PMCID: PMC4990251 DOI: 10.1371/journal.pone.0160271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/15/2016] [Indexed: 11/18/2022] Open
Abstract
The bryozoan Bugula neritina has a biphasic life cycle that consists of a planktonic larval stage and a sessile juvenile/adult stage. The transition between these two stages is crucial for the development and recruitment of B. neritina. Metamorphosis in B. neritina is mediated by both the nervous system and the release of developmental signals. However, no research has been conducted to investigate the expression of neuropeptides (NP)/peptide hormones in B. neritina larvae. Here, we report a comprehensive study of the NP/peptide hormones in the marine bryozoan B. neritina based on in silico identification methods. We recovered 22 transcripts encompassing 11 NP/peptide hormone precursor transcript sequences. The transcript sequences of the 11 isolated NP precursors were validated by cDNA cloning using gene-specific primers. We also examined the expression of three peptide hormone precursor transcripts (BnFDSIG, BnILP1, BnGPB) in the coronate larvae of B. neritina, demonstrating their distinct expression patterns in the larvae. Overall, our findings serve as an important foundation for subsequent investigations of the peptidergic control of bryozoan larval behavior and settlement.
Collapse
Affiliation(s)
- Yue Him Wong
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Li Yu
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Gen Zhang
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Li-Sheng He
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Sanya Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, San Ya, Hai Nan, China
| | - Pei-Yuan Qian
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Sanya Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, San Ya, Hai Nan, China
- * E-mail:
| |
Collapse
|
28
|
Veenstra JA. Similarities between decapod and insect neuropeptidomes. PeerJ 2016; 4:e2043. [PMID: 27257538 PMCID: PMC4888303 DOI: 10.7717/peerj.2043] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
Background. Neuropeptides are important regulators of physiological processes and behavior. Although they tend to be generally well conserved, recent results using trancriptome sequencing on decapod crustaceans give the impression of significant differences between species, raising the question whether such differences are real or artefacts. Methods. The BLAST+ program was used to find short reads coding neuropeptides and neurohormons in publicly available short read archives. Such reads were then used to find similar reads in the same archives, and the DNA assembly program Trinity was employed to construct contigs encoding the neuropeptide precursors as completely as possible. Results. The seven decapod species analyzed in this fashion, the crabs Eriocheir sinensis, Carcinus maenas and Scylla paramamosain, the shrimp Litopenaeus vannamei, the lobster Homarus americanus, the fresh water prawn Macrobrachium rosenbergii and the crayfish Procambarus clarkii had remarkably similar neuropeptidomes. Although some neuropeptide precursors could not be assembled, in many cases individual reads pertaining to the missing precursors show unambiguously that these neuropeptides are present in these species. In other cases, the tissues that express those neuropeptides were not used in the construction of the cDNA libraries. One novel neuropeptide was identified: elongated PDH (pigment dispersing hormone), a variation on PDH that has a two-amino-acid insertion in its core sequence. Hyrg is another peptide that is ubiquitously present in decapods and is likely a novel neuropeptide precursor. Discussion. Many insect species have lost one or more neuropeptide genes, but apart from elongated PDH and hyrg all other decapod neuropeptides are present in at least some insect species, and allatotropin is the only insect neuropeptide missing from decapods. This strong similarity between insect and decapod neuropeptidomes makes it possible to predict the receptors for decapod neuropeptides that have been deorphanized in insects. This includes the androgenic insulin-like peptide that seems to be homologous to drosophila insulin-like peptide 8.
Collapse
Affiliation(s)
- Jan A Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (CNRS UMR5287), University of Bordeaux , Pessac , France
| |
Collapse
|
29
|
Christie AE. Prediction of Scylla olivacea (Crustacea; Brachyura) peptide hormones using publicly accessible transcriptome shotgun assembly (TSA) sequences. Gen Comp Endocrinol 2016; 230-231:1-16. [PMID: 26965954 DOI: 10.1016/j.ygcen.2016.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/06/2016] [Indexed: 12/21/2022]
Abstract
The aquaculture of crabs from the genus Scylla is of increasing economic importance for many Southeast Asian countries. Expansion of Scylla farming has led to increased efforts to understand the physiology and behavior of these crabs, and as such, there are growing molecular resources for them. Here, publicly accessible Scylla olivacea transcriptomic data were mined for putative peptide-encoding transcripts; the proteins deduced from the identified sequences were then used to predict the structures of mature peptide hormones. Forty-nine pre/preprohormone-encoding transcripts were identified, allowing for the prediction of 187 distinct mature peptides. The identified peptides included isoforms of adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, bursicon β, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, diuretic hormone 31, eclosion hormone, FMRFamide-like peptide, HIGSLYRamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide and tachykinin-related peptide, all well-known neuropeptide families. Surprisingly, the tissue used to generate the transcriptome mined here is reported to be testis. Whether or not the testis samples had neural contamination is unknown. However, if the peptides are truly produced by this reproductive organ, it could have far reaching consequences for the study of crustacean endocrinology, particularly in the area of reproductive control. Regardless, this peptidome is the largest thus far predicted for any brachyuran (true crab) species, and will serve as a foundation for future studies of peptidergic control in members of the commercially important genus Scylla.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
30
|
Papot C, Cascella K, Toullec JY, Jollivet D. Divergent ecological histories of two sister Antarctic krill species led to contrasted patterns of genetic diversity in their heat-shock protein (hsp70) arsenal. Ecol Evol 2016; 6:1555-75. [PMID: 27087928 PMCID: PMC4775515 DOI: 10.1002/ece3.1989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/28/2015] [Accepted: 01/03/2016] [Indexed: 11/12/2022] Open
Abstract
The Arctic and the Antarctic Peninsula are currently experiencing some of the most rapid rates of ocean warming on the planet. This raises the question of how the initial adaptation to extreme cold temperatures was put in place and whether or not directional selection has led to the loss of genetic variation at key adaptive systems, and thus polar species’ (re)adaptability to higher temperatures. In the Southern Ocean, krill represents the most abundant fauna and is a critical member at the base of the Antarctic food web. To better understand the role of selection in shaping current patterns of polymorphisms, we examined genetic diversity of the cox‐1 and hsp70 genes by comparing two closely related species of Euphausiid that differ in ecology. Results on mtcox‐1 agreed with previous studies, indicating high and similar effective population sizes. However, a coalescent‐based approach on hsp70 genes highlighted the role of positive selection and past demographic changes in their recent evolution. Firstly, some form of balancing selection was acting on the inducible isoform C, which reflected the maintenance of an ancestral adaptive polymorphism in both species. Secondly, E. crystallorophias seems to have lost most of its hsp70 diversity because of a population crash and/or directional selection to cold. Nonsynonymous diversities were always greater in E. superba, suggesting that it might have evolved under more heterogeneous conditions. This can be linked to species’ ecology with E. superba living in more variable pelagic conditions, while E. crystallorophias is strictly associated with continental shelves and sea ice.
Collapse
Affiliation(s)
- Claire Papot
- Université de Lille 1 CNRS UMR 8198 Groupe 'Ecoimmunology of Marine Annelids' Bât SN2, 1er étage porte 113 59655 Villeneuve d'Ascq France
| | - Kévin Cascella
- CNRS UMR 7144 Equipe ABICE Station Biologique de Roscoff 29682 Roscoff France; Laboratoire 'Adaptation et Diversité en Milieu Marin' UPMC Station Biologique 29682 Roscoff France
| | - Jean-Yves Toullec
- CNRS UMR 7144 Equipe ABICE Station Biologique de Roscoff 29682 Roscoff France; Laboratoire 'Adaptation et Diversité en Milieu Marin' UPMC Station Biologique 29682 Roscoff France
| | - Didier Jollivet
- CNRS UMR 7144 Equipe ABICE Station Biologique de Roscoff 29682 Roscoff France; Laboratoire 'Adaptation et Diversité en Milieu Marin' UPMC Station Biologique 29682 Roscoff France
| |
Collapse
|
31
|
|
32
|
Christie AE, Chi M, Lameyer TJ, Pascual MG, Shea DN, Stanhope ME, Schulz DJ, Dickinson PS. Neuropeptidergic Signaling in the American Lobster Homarus americanus: New Insights from High-Throughput Nucleotide Sequencing. PLoS One 2015; 10:e0145964. [PMID: 26716450 PMCID: PMC4696782 DOI: 10.1371/journal.pone.0145964] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/10/2015] [Indexed: 11/20/2022] Open
Abstract
Peptides are the largest and most diverse class of molecules used for neurochemical communication, playing key roles in the control of essentially all aspects of physiology and behavior. The American lobster, Homarus americanus, is a crustacean of commercial and biomedical importance; lobster growth and reproduction are under neuropeptidergic control, and portions of the lobster nervous system serve as models for understanding the general principles underlying rhythmic motor behavior (including peptidergic neuromodulation). While a number of neuropeptides have been identified from H. americanus, and the effects of some have been investigated at the cellular/systems levels, little is currently known about the molecular components of neuropeptidergic signaling in the lobster. Here, a H. americanus neural transcriptome was generated and mined for sequences encoding putative peptide precursors and receptors; 35 precursor- and 41 receptor-encoding transcripts were identified. We predicted 194 distinct neuropeptides from the deduced precursor proteins, including members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin C, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone (CHH), CHH precursor-related peptide, diuretic hormone 31, diuretic hormone 44, eclosion hormone, FLRFamide, GSEFLamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, proctolin, pyrokinin, SIFamide, sulfakinin and tachykinin-related peptide families. While some of the predicted peptides are known H. americanus isoforms, most are novel identifications, more than doubling the extant lobster neuropeptidome. The deduced receptor proteins are the first descriptions of H. americanus neuropeptide receptors, and include ones for most of the peptide groups mentioned earlier, as well as those for ecdysis-triggering hormone, red pigment concentrating hormone and short neuropeptide F. Multiple receptors were identified for most peptide families. These data represent the most complete description of the molecular underpinnings of peptidergic signaling in H. americanus, and will serve as a foundation for future gene-based studies of neuropeptidergic control in the lobster.
Collapse
Affiliation(s)
- Andrew E. Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center and Technology, 6500 College Station, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii, 96822, United States of America
- * E-mail:
| | - Megan Chi
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center and Technology, 6500 College Station, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii, 96822, United States of America
| | - Tess J. Lameyer
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine, 04672, United States of America
| | - Micah G. Pascual
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center and Technology, 6500 College Station, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii, 96822, United States of America
| | - Devlin N. Shea
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine, 04672, United States of America
| | - Meredith E. Stanhope
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine, 04672, United States of America
| | - David J. Schulz
- Division of Biological Sciences, University of Missouri, 218A LeFevre Hall, Columbia, Missouri, 65211, United States of America
| | - Patsy S. Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine, 04672, United States of America
| |
Collapse
|
33
|
Zatylny-Gaudin C, Cornet V, Leduc A, Zanuttini B, Corre E, Le Corguillé G, Bernay B, Garderes J, Kraut A, Couté Y, Henry J. Neuropeptidome of the Cephalopod Sepia officinalis: Identification, Tissue Mapping, and Expression Pattern of Neuropeptides and Neurohormones during Egg Laying. J Proteome Res 2015; 15:48-67. [PMID: 26632866 DOI: 10.1021/acs.jproteome.5b00463] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cephalopods exhibit a wide variety of behaviors such as prey capture, communication, camouflage, and reproduction thanks to a complex central nervous system (CNS) divided into several functional lobes that express a wide range of neuropeptides involved in the modulation of behaviors and physiological mechanisms associated with the main stages of their life cycle. This work focuses on the neuropeptidome expressed during egg-laying through de novo construction of the CNS transcriptome using an RNAseq approach (Illumina sequencing). Then, we completed the in silico analysis of the transcriptome by characterizing and tissue-mapping neuropeptides by mass spectrometry. To identify neuropeptides involved in the egg-laying process, we determined (1) the neuropeptide contents of the neurohemal area, hemolymph (blood), and nerve endings in mature females and (2) the expression levels of these peptides. Among the 38 neuropeptide families identified from 55 transcripts, 30 were described for the first time in Sepia officinalis, 5 were described for the first time in the animal kingdom, and 14 were strongly overexpressed in egg-laying females as compared with mature males. Mass spectrometry screening of hemolymph and nerve ending contents allowed us to clarify the status of many neuropeptides, that is, to determine whether they were neuromodulators or neurohormones.
Collapse
Affiliation(s)
- Céline Zatylny-Gaudin
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Valérie Cornet
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Alexandre Leduc
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Bruno Zanuttini
- Normandy University , GREYC, UMR CNRS 6072, F-14032 Caen, France
| | - Erwan Corre
- UPMC, CNRS, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | | | - Benoît Bernay
- Normandy University , F-14032 Caen, France.,Post Genomic Platform PROTEOGEN, Normandy University , SF ICORE 4206, F-14032 Caen, France
| | - Johan Garderes
- Center for Marine Research, "Ruder Boskovic" Institute , HR-52210 Rovinj, Croatia
| | - Alexandra Kraut
- Univ. Grenoble Alpes , iRTSV-BGE, F-38000 Grenoble, France.,CEA, iRTSV-BGE, F-38000 Grenoble, France.,INSERM, BGE, F-38000 Grenoble, France
| | - Yohan Couté
- Univ. Grenoble Alpes , iRTSV-BGE, F-38000 Grenoble, France.,CEA, iRTSV-BGE, F-38000 Grenoble, France.,INSERM, BGE, F-38000 Grenoble, France
| | - Joël Henry
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France.,Post Genomic Platform PROTEOGEN, Normandy University , SF ICORE 4206, F-14032 Caen, France
| |
Collapse
|
34
|
Christie AE, Chi M. Prediction of the neuropeptidomes of members of the Astacidea (Crustacea, Decapoda) using publicly accessible transcriptome shotgun assembly (TSA) sequence data. Gen Comp Endocrinol 2015; 224:38-60. [PMID: 26070255 DOI: 10.1016/j.ygcen.2015.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/30/2015] [Accepted: 06/03/2015] [Indexed: 11/20/2022]
Abstract
The decapod infraorder Astacidea is comprised of clawed lobsters and freshwater crayfish. Due to their economic importance and their use as models for investigating neurochemical signaling, much work has focused on elucidating their neurochemistry, particularly their peptidergic systems. Interestingly, no astacidean has been the subject of large-scale peptidomic analysis via in silico transcriptome mining, this despite growing transcriptomic resources for members of this taxon. Here, the publicly accessible astacidean transcriptome shotgun assembly data were mined for putative peptide-encoding transcripts; these sequences were used to predict the structures of mature neuropeptides. One hundred seventy-six distinct peptides were predicted for Procambarus clarkii, including isoforms of adipokinetic hormone-corazonin-like peptide (ACP), allatostatin A (AST-A), allatostatin B, allatostatin C (AST-C) bursicon α, bursicon β, CCHamide, crustacean hyperglycemic hormone (CHH)/ion transport peptide (ITP), diuretic hormone 31 (DH31), eclosion hormone (EH), FMRFamide-like peptide, GSEFLamide, intocin, leucokinin, neuroparsin, neuropeptide F, pigment dispersing hormone, pyrokinin, RYamide, short neuropeptide F (sNPF), SIFamide, sulfakinin and tachykinin-related peptide (TRP). Forty-six distinct peptides, including isoforms of AST-A, AST-C, bursicon α, CCHamide, CHH/ITP, DH31, EH, intocin, myosuppressin, neuroparsin, red pigment concentrating hormone, sNPF and TRP, were predicted for Pontastacus leptodactylus, with a bursicon β and a neuroparsin predicted for Cherax quadricarinatus. The identification of ACP is the first from a decapod, while the predictions of CCHamide, EH, GSEFLamide, intocin, neuroparsin and RYamide are firsts for the Astacidea. Collectively, these data greatly expand the catalog of known astacidean neuropeptides and provide a foundation for functional studies of peptidergic signaling in members of this decapod infraorder.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Megan Chi
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
35
|
Christie AE. Neuropeptide discovery in Symphylella vulgaris (Myriapoda, Symphyla): In silico prediction of the first myriapod peptidome. Gen Comp Endocrinol 2015; 223:73-86. [PMID: 26407502 DOI: 10.1016/j.ygcen.2015.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
Abstract
Arthropods have contributed greatly to our understanding of peptidergic control of physiology and behavior, and being the largest and most diverse animal phylum, represent a model for investigating peptide hormone evolution. Surprisingly, one arthropod subphylum, the Myriapoda, is uninvestigated in terms of its peptide hormones. The public deposition of a transcriptome for Symphylella vulgaris, a pseudocentipede, provides a means for peptide discovery in myriapods. Here, in silico transcriptome mining was used to identify 47 S. vulgaris neuropeptide-encoding transcripts within this dataset. The identified transcripts allowed for the deduction of 31 unique pre/preprohormone sequences, with 97 distinct mature peptides predicted from the deduced proteins. The predicted S. vulgaris peptidome includes members of the adipokinetic hormone/red pigment concentrating hormone, adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin C (AST-C), allatotropin, CCHamide, crustacean cardioactive peptide, GSEFLamide, insulin-like peptide, intocin, proctolin, pyrokinin, short neuropeptide F, SIFamide and sulfakinin families. This is the first, and thus far only, peptidome predicted for a myriapod. Of particular note were a modified AST-C, TYWKQCAFNAVSRFamide, that lacks one of two cysteine residues (i.e. one at position 13) stereotypically present in members of this peptide family (and hence is missing the disulfide bridge that spans these residues) and a SIFamide, PPFNGSIFamide, that is truncated due to a lysine for arginine substitution in the dibasic residue pair commonly located at positions 3 and 4 of stereotypical full-length isoforms (e.g. the crustacean peptide GYRKPPFNGSIFamide). The peptides predicted here represent the only extant resource for initiating investigations of native peptidergic signaling in the Myriapoda.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
36
|
Xu Z, Zhao M, Li X, Lu Q, Li Y, Ge J, Pan J. Transcriptome profiling of the eyestalk of precocious juvenile Chinese mitten crab reveals putative neuropeptides and differentially expressed genes. Gene 2015; 569:280-6. [DOI: 10.1016/j.gene.2015.05.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022]
|
37
|
Romanova EV, Sweedler JV. Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends Pharmacol Sci 2015; 36:579-86. [PMID: 26143240 DOI: 10.1016/j.tips.2015.05.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/31/2022]
Abstract
The discovery of neuropeptides as signaling molecules with paracrine or hormonal regulatory functions has led to trailblazing advances in physiology and fostered the characterization of numerous neuropeptide-binding G protein-coupled receptors (GPCRs) as potential drug targets. The impact on human health has been tremendous: approximately 30% of commercial drugs act via the GPCR pathway. However, about 25% of the GPCRs encoded by the mammalian genome still lack their pharmacological identity. Searching for the orphan GPCR endogenous ligands that are likely to be neuropeptides has proved to be a formidable task. Here we describe the mass spectrometry (MS)-based technologies and experimental strategies that have been successful in achieving high-throughput characterization of endogenous peptides in nervous and endocrine systems.
Collapse
Affiliation(s)
- Elena V Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
38
|
Transcriptome of the Antarctic brooding gastropod mollusc Margarella antarctica. Mar Genomics 2015; 24 Pt 3:231-2. [PMID: 26102557 DOI: 10.1016/j.margen.2015.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 11/20/2022]
Abstract
454 RNA-Seq transcriptome data were generated from foot tissue of the Antarctic brooding gastropod mollusc Margarella antarctica. A total of 6195 contigs were assembled de novo, providing a useful resource for researchers with an interest in Antarctic marine species, phylogenetics and mollusc biology, especially shell production.
Collapse
|
39
|
Suwansa-ard S, Thongbuakaew T, Wang T, Zhao M, Elizur A, Hanna PJ, Sretarugsa P, Cummins SF, Sobhon P. In silico Neuropeptidome of Female Macrobrachium rosenbergii Based on Transcriptome and Peptide Mining of Eyestalk, Central Nervous System and Ovary. PLoS One 2015; 10:e0123848. [PMID: 26023789 PMCID: PMC4449106 DOI: 10.1371/journal.pone.0123848] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 03/08/2015] [Indexed: 01/13/2023] Open
Abstract
Macrobrachium rosenbergii is the most economically important of the cultured freshwater crustacean species, yet there is currently a deficiency in genomic and transcriptomic information for research requirements. In this study, we present an in silico analysis of neuropeptide genes within the female M. rosenbergii eyestalk, central nervous system, and ovary. We could confidently predict 37 preproneuropeptide transcripts, including those that encode bursicons, crustacean cardioactive peptide, crustacean hyperglycemic hormones, eclosion hormone, pigment-dispersing hormones, diuretic hormones, neuropeptide F, neuroparsins, SIFamide, and sulfakinin. These transcripts are most prominent within the eyestalk and central nervous system. Transcript tissue distribution as determined by reverse transcription-polymerase chain reaction revealed the presence of selected neuropeptide genes of interest mainly in the nervous tissues while others were additionally present in the non-nervous tissues. Liquid chromatography-mass spectrometry analysis of eyestalk peptides confirmed the presence of the crustacean hyperglycemic hormone precursor. This data set provides a strong foundation for further studies into the functional roles of neuropeptides in M. rosenbergii, and will be especially helpful for developing methods to improve crustacean aquaculture.
Collapse
Affiliation(s)
- Saowaros Suwansa-ard
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tipsuda Thongbuakaew
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tianfang Wang
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Min Zhao
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Abigail Elizur
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Peter J. Hanna
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- Pro Vice-Chancellor’s Office, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
| | - Prapee Sretarugsa
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Scott F. Cummins
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- * E-mail: (SFC); (P. Sobhon)
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail: (SFC); (P. Sobhon)
| |
Collapse
|
40
|
Cascella K, Jollivet D, Papot C, Léger N, Corre E, Ravaux J, Clark MS, Toullec JY. Diversification, evolution and sub-functionalization of 70kDa heat-shock proteins in two sister species of antarctic krill: differences in thermal habitats, responses and implications under climate change. PLoS One 2015; 10:e0121642. [PMID: 25835552 PMCID: PMC4383606 DOI: 10.1371/journal.pone.0121642] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/03/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND A comparative thermal tolerance study was undertaken on two sister species of Euphausiids (Antarctic krills) Euphausia superba and Euphausia crystallorophias. Both are essential components of the Southern Ocean ecosystem, but occupy distinct environmental geographical locations with slightly different temperature regimes. They therefore provide a useful model system for the investigation of adaptations to thermal tolerance. METHODOLOGY/PRINCIPAL FINDING Initial CTmax studies showed that E. superba was slightly more thermotolerant than E. crystallorophias. Five Hsp70 mRNAs were characterized from the RNAseq data of both species and subsequent expression kinetics studies revealed notable differences in induction of each of the 5 orthologues between the two species, with E. crystallorophias reacting more rapidly than E. superba. Furthermore, analyses conducted to estimate the evolutionary rates and selection strengths acting on each gene tended to support the hypothesis that diversifying selection has contributed to the diversification of this gene family, and led to the selective relaxation on the inducible C form with its possible loss of function in the two krill species. CONCLUSIONS The sensitivity of the epipelagic species E. crystallorophias to temperature variations and/or its adaptation to cold is enhanced when compared with its sister species, E. superba. These results indicate that ice krill could be the first of the two species to be impacted by the warming of coastal waters of the Austral ocean in the coming years due to climate change.
Collapse
Affiliation(s)
- Kévin Cascella
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Didier Jollivet
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Claire Papot
- Université de Lille1, CNRS UMR8198, Ecoimmunology of Marine Annelids, 59655 Villeneuve d’Ascq, France
| | - Nelly Léger
- Sorbonne Universités, UPMC Université Paris 06, UMR 7208 CNRS, Equipe AMEX, 75005 Paris, France
- CNRS 7208, BOREA, UPMC Université Paris 06, 75005 Paris, France
| | - Erwan Corre
- Sorbonne Universités, UPMC Université Paris 06, FR 2424 CNRS, ABiMS, Analysis and Bioinformatics for Marine Science, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, FR 2424, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Juliette Ravaux
- Sorbonne Universités, UPMC Université Paris 06, UMR 7208 CNRS, Equipe AMEX, 75005 Paris, France
- CNRS 7208, BOREA, UPMC Université Paris 06, 75005 Paris, France
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom
| | - Jean-Yves Toullec
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
- * E-mail:
| |
Collapse
|
41
|
Christie AE, Chi M. Neuropeptide discovery in the Araneae (Arthropoda, Chelicerata, Arachnida): elucidation of true spider peptidomes using that of the Western black widow as a reference. Gen Comp Endocrinol 2015; 213:90-109. [PMID: 25687740 DOI: 10.1016/j.ygcen.2015.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/24/2015] [Accepted: 02/06/2015] [Indexed: 01/24/2023]
Abstract
The public deposition of large transcriptome shotgun assembly (TSA) datasets for the Araneae (true spiders) provides a resource for determining the structures of the native neuropeptides present in members of this chelicerate order. Here, the Araneae TSA data were mined for putative peptide-encoding transcripts using the recently deduced neuropeptide precursors from the Western black widow Latrodectus hesperus as query templates. Neuropeptide-encoding transcripts from five spiders, Latrodectus tredecimguttatus, Stegodyphus mimosarum, Stegodyphus lineatus, Stegodyphus tentoriicola and Acanthoscurria geniculata, were identified, including ones encoding members of the allatostatin A, allatostatin B, allatostatin C, allatotropin, CAPA/periviscerokinin/pyrokinin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, diuretic hormone 44, eclosion hormone, FMRFamide-like peptide (FLP), GSEFLamide, insulin-like peptide, orcokinin, proctolin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide (TRP) families. A total of 156 distinct peptides were predicted from the precursor proteins deduced from the S. mimosarum transcripts, with 65, 26, 21 and 12 peptides predicted from those deduced from the A. geniculata, L. tredecimguttatus, S. lineatus and S. tentoriicola sequences, respectively. Among the peptides identified were variant isoforms of FLP, orcokinin and TRP, peptides whose structures are similar to ones previously identified from L. hesperus. The prediction of these atypical peptides from multiple spiders suggests that they may be broadly conserved within the Araneae rather than being species-specific variants. Taken collectively, the data described here greatly expand the number of known Araneae neuropeptides, providing a foundation for future functional studies of peptidergic signaling in this important Chelicerate order.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Megan Chi
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
42
|
Christie AE. Neuropeptide discovery in Eucyclops serrulatus (Crustacea, Copepoda): in silico prediction of the first peptidome for a member of the Cyclopoida. Gen Comp Endocrinol 2015; 211:92-105. [PMID: 25448253 DOI: 10.1016/j.ygcen.2014.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/21/2014] [Accepted: 11/02/2014] [Indexed: 10/24/2022]
Abstract
Crustaceans of the subclass Copepoda are key components of essentially all aquatic ecosystems as they serve both as the primary consumers of phytoplankton and/or as major food sources for a wide variety of higher-level consumers. The dominant group of copepods in most freshwater ecosystems is the Cyclopoida; members of this order are routinely used as environmental indicators, and some predatory species are used for the biological control of disease-causing mosquitoes. Given their ecological and disease control importance, it is surprising that little is known about endocrine control in cyclopoids. Here, as part of an ongoing effort to identify and characterize the neurochemical signaling systems of members of the Copepoda, the extant transcriptome shotgun assembly for Eucyclops serrulatus, a member of the Cyclopoida, was mined for transcripts encoding putative peptide hormone-encoding transcripts. Via queries using known arthropod pre/preprohormone sequences, primarily ones from other copepod species, 36 E. serrulatus peptide-encoding transcripts were identified. The proteins deduced from these sequences allowed for the prediction of 160 unique mature neuropeptides, including the first copepod isoform of pigment dispersing hormone, as well as isoforms of adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, allatotropin, crustacean hyperglycemic hormone, diuretic hormone 31, DXXRLamide, FLRFamide, FXGGXamide, GSEFLamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F and tachykinin-related peptide. These peptides are currently the only ones known from any member of the Cyclopoida, and as such, provide a new resource for investigating peptidergic signaling in this important copepod order.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
43
|
Christie AE. In silico characterization of the neuropeptidome of the Western black widow spider Latrodectus hesperus. Gen Comp Endocrinol 2015; 210:63-80. [PMID: 25449184 DOI: 10.1016/j.ygcen.2014.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/26/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Technological advancements in high-throughput sequencing have resulted in the production/public deposition of an ever-growing number of arthropod transcriptomes. While most sequencing projects have focused on hexapods, transcriptomes have also been generated for members of the Chelicerata. One chelicerate for which a large transcriptome has recently been released is the Western black widow Latrodectus hesperus, a member of the Araneae (true spiders). Here, a neuropeptidome for L. hesperus was predicted using this resource. Thirty-eight peptide-encoding transcripts were mined from the L. hesperus transcriptome, with 216 distinct peptides predicted from the deduced pre/preprohormones. The identified peptides included members of the allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, CAPA/periviscerokinin/pyrokinin, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, diuretic hormone 44, FMRFamide-like peptide (FLP), GSEFLamide, insulin-like peptide, neuropeptide F (NPF), orcokinin, proctolin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide (TRP) families. Of particular note were the identifications of a carboxyl (C)-terminally extended corazonin, FLPs possessing -IMRFamide, -MMYFamide, and -MIHFamide C-termini, a NPF and a sulfakinin each ending in -RYamide rather than -RFamide, a precursor whose orcokinins include C-terminally amidated isoforms, and a collection of TRPs possessing -FXPXLamide rather than the stereotypical -FXGXLamide C-termini. The L. hesperus peptidome is by far the largest thus far published for any member of the Chelicerata. Taken collectively, these data serve as a reference for future neuropeptide discovery in the Araneae and provide a foundation for future studies of peptidergic control in L. hesperus and other spiders.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
44
|
Magi E, Tanwar S. 'Extreme mass spectrometry': the role of mass spectrometry in the study of the Antarctic environment. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:1071-1085. [PMID: 25395123 DOI: 10.1002/jms.3442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/16/2014] [Accepted: 07/11/2014] [Indexed: 06/04/2023]
Abstract
A focus on the studies of the Antarctic environment that have been performed by mass spectrometry is presented herein; our aim is to give evidence of the essential role of this instrumental technique in the framework of the scientific research in Antarctica, with a comprehensive review on the main literature of the last two decades. Due to the wideness of the topic, the present review is limited to the determination of organic pollutants, natural molecules and biomarkers in Antarctica, thus excluding elemental analysis and studies on inorganic species. The work has been divided into five sections, on the basis of the considered environmental compartment: air; ice and snow; seawater, pack ice and lakes; soil and sediments; and organisms and biomarkers.
Collapse
Affiliation(s)
- Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | | |
Collapse
|
45
|
Christie AE. Expansion of the Litopenaeus vannamei and Penaeus monodon peptidomes using transcriptome shotgun assembly sequence data. Gen Comp Endocrinol 2014; 206:235-54. [PMID: 24787055 DOI: 10.1016/j.ygcen.2014.04.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 11/21/2022]
Abstract
The shrimp Litopenaeus vannamei and Penaeus monodon are arguably the most important commercially farmed crustaceans. While expansion of their aquaculture has classically relied on improvements to rearing facilities, these options have largely been exhausted, and today a shift in focus is occurring, with increased investment in manipulating the shrimp themselves. Hormonal control is one strategy for increasing aquaculture output. However, to use it, one must first understand an animal's native hormonal systems. Here, transcriptome shotgun assembly (TSA) data were used to expand the peptidomes for L. vannamei and P. monodon. Via an established bioinformatics workflow, 41 L. vannamei and 25 P. monodon pre/preprohormone-encoding transcripts were identified, allowing for the prediction of 158 and 106 distinct peptide structures for these species, respectively. The identified peptides included isoforms of allatostatin A, B and C, as well as members the bursicon, CAPA, CCHamide, crustacean cardioactive peptide, crustacean hyperglycemic hormone, diuretic hormone 31, eclosion hormone, FLRFamide, GSEFLamide, intocin, leucokinin, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, pigment dispersing hormone, proctolin, red pigment concentrating hormone, RYamide, SIFamide, short neuropeptide F and tachykinin-related peptide families. While some of the predicted peptides are known L. vannamei and/or P. monodon isoforms (which vet the structures of many peptides identified previously via mass spectrometry and other means), most are described here for the first time. These data more than double the extant catalogs of L. vannamei and P. monodon peptides and provide platforms from which to launch future physiological studies of peptidergic signaling in these two commercially important species.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
46
|
Christie AE. Identification of the first neuropeptides from the Amphipoda (Arthropoda, Crustacea). Gen Comp Endocrinol 2014; 206:96-110. [PMID: 25058365 DOI: 10.1016/j.ygcen.2014.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/22/2022]
Abstract
Despite being used as models in the field of ecotoxicology, including use in studies of endocrine disruption, little is known about the hormonal systems of amphipods, particularly their peptidergic signaling systems. Here, transcriptome shotgun assembly (TSA) sequences were used to predict the structures of the first neuropeptides from members of this crustacean order. Using a well-established workflow, BLAST searches of the extant amphipod TSA data were conducted for putative peptide-encoding transcripts. The pre/preprohormones deduced from the identified TSA sequences were then used to predict the mature structures of amphipod neuropeptides. In total, 43 putative peptide-encoding transcripts were identified from three amphipods, Echinogammarus veneris, Hyalella azteca and Melita plumulosa. Collectively, 139 distinct mature peptides (110 from E. veneris alone) were predicted from these TSA sequences. The identified peptides included members of the adipokinetic hormone/red pigment concentrating hormone, allatostatin A, allatostatin B, allatostatin C, bursicon α, bursicon β, crustacean hyperglycemic hormone, diuretic hormone 31, FLRFamide, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone (PDH), proctolin, RYamide, SIFamide, sulfakinin and tachykinin-related peptide families. Of particular note were the identifications of orcokinins possessing SFDEIDR- rather than the typical NFDEIDR- amino-termini, e.g. SFDEINRSNFGFN, a carboxyl-terminally amidated orcokinin, i.e. SFDEINRSNFGFSamide, PDHs longer than the stereotypical 18 amino acids, e.g. NSELLNTLLGSKSLAALRAAamide, and a 13 rather than 12 amino acid long SIFamide, i.e. GPYRKPPFNGSIFamide. These data not only provide the first descriptions of native amphipod neuropeptides, but also represent a new resource for initiating investigations of peptidergic signaling in the Amphipoda.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
47
|
Christie AE. In silico characterization of the peptidome of the sea louse Caligus rogercresseyi (Crustacea, Copepoda). Gen Comp Endocrinol 2014; 204:248-60. [PMID: 24914818 DOI: 10.1016/j.ygcen.2014.05.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/24/2014] [Accepted: 05/30/2014] [Indexed: 02/01/2023]
Abstract
Copepods of the order Siphonostomatoida are a major concern for commercial aquaculture as many farmed fish serve as hosts for these parasitic crustaceans. Caligus rogercresseyi, a member of the Siphonostomatoida, is a significant problem for salmonid aquaculture in the Southern Hemisphere, and as such, a search for methods for controlling infestations of it is ongoing. One possibility for biological control of this and other copepod ectoparasites is endocrine manipulation. However, little is known about the native endocrine signaling systems in these animals. As part of an ongoing effort to characterize crustacean ectoparasite peptidergic systems, the publicly accessible C. rogercresseyi transcriptome shotgun assembly (TSA) was mined for peptide-encoding transcripts. Using the identified TSA sequences, precursor proteins were deduced and their mature peptides predicted. Thirty-three peptide-encoding transcripts were identified within the Caligus TSA dataset, with the structures of 131 distinct peptides characterized from the deduced pre/preprohormones. The predicted peptides included isoforms of allatostatin A, allatostatin B, bursicon α, bursicon β, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone, diuretic hormone 31, DXXRLamide, FLRFamide, FXGGXamide, GSEFLamide, insulin-like peptide (ILP), intocin, leucokinin, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F (NPF), orcokinin and tachykinin-related peptide. The predicted ILPs are of particular note as they are the first members of this peptide family identified from a copepod. Similarly, the predicted complement of four distinct NPFs is larger than that known from other crustaceans. Taken collectively, these data greatly expand the known C. rogercresseyi peptidome and provide a foundation for initiating studies of peptidergic control in this species.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
48
|
Christie AE. Peptide discovery in the ectoparasitic crustacean Argulus siamensis: identification of the first neuropeptides from a member of the Branchiura. Gen Comp Endocrinol 2014; 204:114-25. [PMID: 24842716 DOI: 10.1016/j.ygcen.2014.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/04/2014] [Accepted: 05/08/2014] [Indexed: 01/15/2023]
Abstract
Recent advances in high-throughput sequencing have facilitated the generation of large transcriptomic datasets for an ever-growing number of crustaceans, one being the carp louse Argulus siamensis. This and other members of the subclass Branchiura are obligate fish ectoparasites, and as such, are a major concern for commercial aquaculture. Using the extant transcriptome shotgun assembly (TSA) sequences for A. siamensis, 27 transcripts encoding putative neuropeptide precursors were identified, and their pre/preprohormones deduced and characterized using a well-established bioinformatics workflow. The structures of 105 distinct peptides were predicted from the deduced proteins, including isoforms of adipokinetic hormone (AKH), allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, crustacean cardioactive peptide (CCAP), diuretic hormone 31, diuretic hormone 44, eclosion hormone, myosuppressin, neuroparsin, neuropeptide Y, orcokinin, pigment dispersing hormone, proctolin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide. While several of the predicted peptides are known from other crustacean and/or insect species, e.g. RYLPT, a broadly conserved arthropod proctolin isoform, and PFCNAFTGCamide (disulfide bridging between the two cysteines), the stereotypical crustacean CCAP, the vast majority of them are described here for the first time, e.g. pQVNFSTKWamide, a new AKH/red pigment concentrating hormone superfamily member, pQEGLDHMFMRFamide, a novel myosuppressin, and SYKSKPPFNGSIFamide, a new member of the SIFamide family. As the peptides presented here are the only ones thus far described from A. siamensis, or for that matter, any branchiuran, they represent a new resource to begin investigations of peptidergic control of physiology and behavior in this and other related aquacultural pests.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
49
|
Fuenzalida G, Poulin E, Gonzalez-Wevar C, Molina C, Cardenas L. Next-generation transcriptome characterization in three Nacella species (Patellogastropoda: Nacellidae) from South America and Antarctica. Mar Genomics 2014; 18 Pt B:89-91. [PMID: 24975986 DOI: 10.1016/j.margen.2014.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/14/2014] [Accepted: 06/14/2014] [Indexed: 11/26/2022]
Abstract
The southern tip of South America and Antarctica are particularly interesting due to many genera and also species currently sharing between both areas. The genus Nacella (Patellogastropoda: Nacellidae) is distributed in different regions of South America and Antarctica living preferentially on rocks and boulders and grazing on algae, diatoms and bacterial films. We described the transcriptomes of three Nacella species, Nacella concinna (Strebel, 1908), inhabiting the Antarctic Peninsula; Nacella magallanica (Gmelin, 1791), from Patagonia and Nacella clypeater (Lesson, 1831), from central Chile. In total, we obtained over 20,000 contigs with an average length of 583bp. Homologous protein coding genes (PCGs) for mitochondrial genome of the three species were characterized and a database of molecular markers was also generated. This study represents the first publicly available report on pyrosequencing data for patellogastropod species, and provides an important comparative resource for studies in ecophysiology and evolutionary adaptation in marine invertebrate species.
Collapse
Affiliation(s)
- Gonzalo Fuenzalida
- UPMC Univ Paris 06, UMR 7144, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France; CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France.
| | - Elie Poulin
- Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras, 3425 Santiago, Chile.
| | - Claudio Gonzalez-Wevar
- Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras, 3425 Santiago, Chile.
| | - Cristian Molina
- AUSTRAL-omics, Facultad de Ciencias, Universidad Austral de Chile, Isla Teja S/N, Casilla 567, Valdivia, Chile.
| | - Leyla Cardenas
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Isla Teja S/N, Casilla 567, Valdivia, Chile.
| |
Collapse
|
50
|
Christie AE. Prediction of the peptidomes of Tigriopus californicus and Lepeophtheirus salmonis (Copepoda, Crustacea). Gen Comp Endocrinol 2014; 201:87-106. [PMID: 24613138 DOI: 10.1016/j.ygcen.2014.02.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 11/23/2022]
Abstract
Transcriptome mining is a powerful method for crustacean peptide discovery, especially when large sequence datasets are available and an appropriate reference is extant. Recently, a 206,041-sequence transcriptome for the copepod Calanus finmarchicus was mined for peptide-encoding transcripts, with ones for 17 families/subfamilies identified. Here, the deduced Calanus pre/preprohormones were used as templates for peptide discovery in the copepods Tigriopus californicus and Lepeophtheirus salmonis; large transcriptome shotgun assembly datasets are publicly accessible for both species. Sixty-five Tigriopus and 17 Lepeophtheirus transcripts, encompassing 22 and 13 distinct peptide families/subfamilies, respectively, were identified, with the structures of 161 and 70 unique mature peptides predicted from the deduced precursors. The identified peptides included members of the allatostatin A, allatostatin C, bursicon α, bursicon β, CAPA/periviscerokinin/pyrokinin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, FLRFamide, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, and tachykinin-related peptide families, most of which possess novel structures, though isoforms from other copepods are known. Of particular note was the discovery of novel isoforms of adipokinetic hormone-corazonin-like peptide, allatotropin, corazonin, eclosion hormone and intocin, peptide families previously unidentified in copepods. In addition, Tigriopus precursors for two previously unknown peptide groups were discovered, one encoding GSEFLamides and the other DXXRLamides; precursors for the novel FXGGXamide family were identified from both Tigriopus and Lepeophtheirus. These data not only greatly expand the catalog of known copepod peptides, but also provide strong foundations for future functional studies of peptidergic signaling in members of this ecologically important crustacean subclass.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|