1
|
Huang T, Liu YN, Ding DT, Wang Q, Xie QL, Miao XC, Qin C, Huang XF, Li J. Identification of a novel single nucleotide deletion in the NHS causing Nance-Horan syndrome. BMC Ophthalmol 2025; 25:92. [PMID: 39994540 PMCID: PMC11854407 DOI: 10.1186/s12886-025-03933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Nance-Horan syndrome (NHS) is a rare X-linked dominant disorder caused by pathogenic variants in the NHS gene on chromosome Xp22.2-Xp22.13. Clinical manifestations consist of congenital cataracts, along with dysmorphic facial features and dental anomalies and, in certain instances, intellectual disability. This study aimed to identify the genetic cause responsible for NHS in a Chinese family with four individuals primarily presenting with congenital cataracts. METHODS Genomic DNA was collected from six family members, including four affected individuals (three females and one male) from a two-generation family. The family history and clinical data were documented. Whole-exome sequencing was performed on the proband, and candidate pathogenic variants were filtered through a series of screening steps and validated by Sanger sequencing. Co-segregation analysis was conducted to confirm the pathogenicity of the identified variant. RESULTS Genetic analysis revealed a novel frameshift pathogenic variant in NHS gene (c.1735delA: p.R579Gfs*91) present in all four affected members. All affected members exhibited congenital cataracts, congenital ptosis, strabismus, high myopia as well as dental and facial anomalies, and more severe characteristic features observed in the male patient. These clinical manifestations were consistent with the phenotype of NHS. CONCLUSION This study identified a novel NHS pathogenic variant in a Chinese family, expanding the mutational spectrum of NHS. Contrary to previous reports of female carriers exhibiting mild symptoms, we demonstrated severe ocular phenotypes in three affected females. These findings will assist in providing genetic counseling for NHS patients.
Collapse
Affiliation(s)
- Teng Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dan-Tong Ding
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiao Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiu-Ling Xie
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xue-Chuan Miao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chuan Qin
- Institute of PSI Genomics Co., Ltd, Wenzhou, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, 325027, China.
| | - Jin Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Alsulami AF. Mut-Map: Comprehensive Computational Pipeline for Structural Mapping and Analysis of Cancer-Associated Mutations. Brief Bioinform 2024; 25:bbae514. [PMID: 39413799 PMCID: PMC11483132 DOI: 10.1093/bib/bbae514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Understanding the functional impact of genetic mutations on protein structures is essential for advancing cancer research and developing targeted therapies. The main challenge lies in accurately mapping these mutations to protein structures and analysing their effects on protein function. To address this, Mut-Map (https://genemutation.org/) is a comprehensive computational pipeline designed to integrate mutation data from the Catalogue Of Somatic Mutations In Cancer database with protein structural data from the Protein Data Bank and AlphaFold models. The pipeline begins by taking a UniProt ID and proceeds through mapping corresponding Protein Data Bank structures, renumbering residues, and assessing disorder percentages. It then overlays mutation data, categorizes mutations based on structural context, and visualizes them using advanced tools like MolStar. This approach allows for a detailed analysis of how mutations may disrupt protein function by affecting key regions such as DNA interfaces, ligand-binding sites, and dimer interactions. To validate the pipeline, a case study on the TP53 gene, a critical tumour suppressor often mutated in cancers, was conducted. The analysis highlighted the most frequent mutations occurring at the DNA-binding interface, providing insights into their potential role in cancer progression. Mut-Map offers a powerful resource for elucidating the structural implications of cancer-associated mutations, paving the way for more targeted therapeutic strategies and advancing our understanding of protein structure-function relationships.
Collapse
Affiliation(s)
- Ali F Alsulami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Andhika NS, Biswas S, Hardcastle C, Green DJ, Ramsden SC, Birney E, Black GC, Sergouniotis PI. Using computational approaches to enhance the interpretation of missense variants in the PAX6 gene. Eur J Hum Genet 2024; 32:1005-1013. [PMID: 38849599 PMCID: PMC11292026 DOI: 10.1038/s41431-024-01638-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
The PAX6 gene encodes a highly-conserved transcription factor involved in eye development. Heterozygous loss-of-function variants in PAX6 can cause a range of ophthalmic disorders including aniridia. A key molecular diagnostic challenge is that many PAX6 missense changes are presently classified as variants of uncertain significance. While computational tools can be used to assess the effect of genetic alterations, the accuracy of their predictions varies. Here, we evaluated and optimised the performance of computational prediction tools in relation to PAX6 missense variants. Through inspection of publicly available resources (including HGMD, ClinVar, LOVD and gnomAD), we identified 241 PAX6 missense variants that were used for model training and evaluation. The performance of ten commonly used computational tools was assessed and a threshold optimization approach was utilized to determine optimal cut-off values. Validation studies were subsequently undertaken using PAX6 variants from a local database. AlphaMissense, SIFT4G and REVEL emerged as the best-performing predictors; the optimized thresholds of these tools were 0.967, 0.025, and 0.772, respectively. Combining the prediction from these top-three tools resulted in lower performance compared to using AlphaMissense alone. Tailoring the use of computational tools by employing optimized thresholds specific to PAX6 can enhance algorithmic performance. Our findings have implications for PAX6 variant interpretation in clinical settings.
Collapse
Affiliation(s)
- Nadya S Andhika
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Susmito Biswas
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Claire Hardcastle
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - David J Green
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Simon C Ramsden
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Graeme C Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Panagiotis I Sergouniotis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
4
|
Mhatre I, Abdelhalim H, Degroat W, Ashok S, Liang BT, Ahmed Z. Functional mutation, splice, distribution, and divergence analysis of impactful genes associated with heart failure and other cardiovascular diseases. Sci Rep 2023; 13:16769. [PMID: 37798313 PMCID: PMC10556087 DOI: 10.1038/s41598-023-44127-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
Cardiovascular disease (CVD) is caused by a multitude of complex and largely heritable conditions. Identifying key genes and understanding their susceptibility to CVD in the human genome can assist in early diagnosis and personalized treatment of the relevant patients. Heart failure (HF) is among those CVD phenotypes that has a high rate of mortality. In this study, we investigated genes primarily associated with HF and other CVDs. Achieving the goals of this study, we built a cohort of thirty-five consented patients, and sequenced their serum-based samples. We have generated and processed whole genome sequence (WGS) data, and performed functional mutation, splice, variant distribution, and divergence analysis to understand the relationships between each mutation type and its impact. Our variant and prevalence analysis found FLNA, CST3, LGALS3, and HBA1 linked to many enrichment pathways. Functional mutation analysis uncovered ACE, MME, LGALS3, NR3C2, PIK3C2A, CALD1, TEK, and TRPV1 to be notable and potentially significant genes. We discovered intron, 5' Flank, 3' UTR, and 3' Flank mutations to be the most common among HF and other CVD genes. Missense mutations were less common among HF and other CVD genes but had more of a functional impact. We reported HBA1, FADD, NPPC, ADRB2, ADBR1, MYH6, and PLN to be consequential based on our divergence analysis.
Collapse
Affiliation(s)
- Ishani Mhatre
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Habiba Abdelhalim
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - William Degroat
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Shreya Ashok
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Bruce T Liang
- Pat and Jim Calhoun Cardiology Center, UConn Health, 263 Farmington Ave, Farmington, CT, USA
- UConn School of Medicine, University of Connecticut, 263 Farmington Ave, Farmington, CT, USA
| | - Zeeshan Ahmed
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA.
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Ave, Farmington, CT, USA.
- Department of Medicine/Cardiovascular Disease and Hypertension, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
5
|
Kim YS, Bang CH, Chung YJ. Mutational Landscape of Normal Human Skin: Clues to Understanding Early-Stage Carcinogenesis in Keratinocyte Neoplasia. J Invest Dermatol 2023; 143:1187-1196.e9. [PMID: 36716918 DOI: 10.1016/j.jid.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/15/2022] [Accepted: 01/07/2023] [Indexed: 01/29/2023]
Abstract
Normal skin contains numerous clones carrying cancer driver mutations. However, the mutational landscape of normal skin and its clonal relationship with skin cancer requires further elucidation. The aim of our study was to investigate the mutational landscape of normal human skin. We performed whole-exome sequencing using physiologically normal skin tissues and the matched peripheral blood (n = 39) and adjacent-matched skin cancers from a subset of patients (n = 10). Exposed skin harbored a median of 530 mutations (10.4/mb, range = 51-2,947), whereas nonexposed skin majorly exhibited significantly fewer mutations (median = 13, 0.25/mb, range = 1-166). Patient age was significantly correlated with the mutational burden. Mutations in six driver genes (NOTCH1, FAT1, TP53, PPM1D, KMT2D, and ASXL1) were identified. De novo mutational signature analysis identified a single signature with components of UV- and aging-related signatures. Normal skin harbored only three instances of copy-neutral loss of heterozygosity in 9q (n = 2) and 6q (n = 1). The mutational burden of normal skin was not correlated with that of matched skin cancers, and no protein-coding mutations were shared. In conclusion, we revealed the mutational landscape of normal skin, highlighting the role of driver genes in the malignant progression of normal skin.
Collapse
Affiliation(s)
- Yoon-Seob Kim
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Hwan Bang
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun-Jun Chung
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Ahmed Z, Renart EG, Zeeshan S. Investigating underlying human immunity genes, implicated diseases and their relationship to COVID-19. Per Med 2022; 19:229-250. [PMID: 35261286 PMCID: PMC8919975 DOI: 10.2217/pme-2021-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aim: A human immunogenetics variation study was conducted in samples collected from diverse COVID-19 populations. Materials & methods: Whole-genome and whole-exome sequencing (WGS/WES), data processing, analysis and visualization pipeline were applied to identify variants associated with genes of interest. Results: A total of 2886 mutations were found across the entire set of 13 genomes. Functional annotation of the gene variants revealed mutation type and protein change. Many variants were found to be biologically implicated in COVID-19. The involvement of these genes was also found in multiple other diseases. Conclusion: The analysis determined that ACE2, TMPRSS4, TMPRSS2, SLC6A20 and FYCOI had functional implications and TMPRSS4 was the gene most altered in virally infected patients. The quest to establish an understanding of the genetics underlying COVID-19 is a central focus of life sciences today. COVID-19 is triggered by SARS-CoV-2, a single-stranded RNA respiratory virus. Several clinical-genomics studies have emerged positing different human gene mutations occurring due to COVID-19. A global analysis of these genes was conducted targeting major components of the immune system to identify possible variations likely to be involved in COVID-19 predisposition. Gene-variant analysis was performed on whole-genome sequencing samples collected from diverse populations. ACE2, TMPRSS4, TMPRSS2, SLC6A20 and FYCOI were found to have functional implications and TMPRSS4 may have a role in the severity of clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy & Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ 08901, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical & Health Sciences, 125 Paterson Street, New Brunswick, NJ 08901, USA
| | - Eduard Gibert Renart
- Rutgers Institute for Health, Health Care Policy & Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ 08901, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ 08901, USA
| |
Collapse
|
7
|
Kim J, Kim SY, Ma SX, Kim SM, Shin SJ, Lee YS, Chang H, Chang HS, Park CS, Lim SB. PPARγ Targets-Derived Diagnostic and Prognostic Index for Papillary Thyroid Cancer. Cancers (Basel) 2021; 13:cancers13205110. [PMID: 34680260 PMCID: PMC8533916 DOI: 10.3390/cancers13205110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Through targeted next-generation sequencing of thyroid cancer-related genes in monozygotic twins with papillary thyroid cancer (PTC), we identified common variants of the gene encoding peroxisome proliferator activated receptor gamma (PPARG). Notably, the expression levels of PPARγ target genes were frequently deregulated in PTC compared to benign tissues and were closely associated with disease-specific survival (DSS) outcomes in a TCGA-PTC cohort. Machine learning-powered personalized scoring index comprising 10 PPARγ targets, termed as PPARGi, achieved a near-perfect accuracy in distinguishing cancers from benign tissues, and further identified a small subpopulation of patients at high-risk across different profiling platforms. Abstract In most cases, papillary thyroid cancer (PTC) is highly curable and associated with an excellent prognosis. Yet, there are several clinicopathological features that lead to a poor prognosis, underscoring the need for a better genomic strategy to refine prognostication and patient management. We hypothesized that PPARγ targets could be potential markers for better diagnosis and prognosis due to the variants found in PPARG in three pairs of monozygotic twins with PTC. Here, we developed a 10-gene personalized prognostic index, designated PPARGi, based on gene expression of 10 PPARγ targets. Through scRNA-seq data analysis of PTC tissues derived from patients, we found that PPARGi genes were predominantly expressed in macrophages and epithelial cells. Machine learning algorithms showed a near-perfect performance of PPARGi in deciding the presence of the disease and in selecting a small subset of patients with poor disease-specific survival in TCGA-THCA and newly developed merged microarray data (MMD) consisting exclusively of thyroid cancers and normal tissues.
Collapse
Affiliation(s)
- Jaehyung Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Soo Young Kim
- Department of Surgery, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Shi-Xun Ma
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Seok-Mo Kim
- Thyroid Cancer Center, Department of Surgery, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.S.L.); (H.C.); (H.-S.C.)
- Correspondence: (S.-M.K.); (S.B.L.); Tel.: +82-2-2019-3370 (S.-M.K.); +82-31-219-5056 (S.B.L.)
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Yong Sang Lee
- Thyroid Cancer Center, Department of Surgery, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.S.L.); (H.C.); (H.-S.C.)
| | - Hojin Chang
- Thyroid Cancer Center, Department of Surgery, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.S.L.); (H.C.); (H.-S.C.)
| | - Hang-Seok Chang
- Thyroid Cancer Center, Department of Surgery, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.S.L.); (H.C.); (H.-S.C.)
| | - Cheong Soo Park
- CHA Ilsan Medical Center, Department of Surgery, Goyang-si 10414, Korea;
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea;
- Correspondence: (S.-M.K.); (S.B.L.); Tel.: +82-2-2019-3370 (S.-M.K.); +82-31-219-5056 (S.B.L.)
| |
Collapse
|
8
|
Lin Q, Bai MJ, Wang HF, Wu XY, Huang MS, Li X. Aspirin-induced long-term tumor remission in hepatocellular carcinoma with adenomatous polyposis coli stop-gain mutation: A case report. World J Clin Cases 2021; 9:7189-7195. [PMID: 34540977 PMCID: PMC8409191 DOI: 10.12998/wjcc.v9.i24.7189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Targeted therapy based on pathway analysis of hepatitis B-related hepatocellular carcinoma (HCC) may be a promising remedy.
CASE SUMMARY The present case involved an advanced hepatocellular carcinoma (HCC) patient who did not receive local regional therapy and was intolerant to sorafenib. Total RNA extracted from the patient’s tumor tissue was used to obtain the gene mutation profile. The c.3676A>T and c.4402A>T stop-gain mutations in adenomatous polyposis coli (APC) were the most prevalent (42.2% and 35.1%, respectively). MutationMapper analysis indicated that the functional domain of APC was lost in the two APC mutant genes. APC is a major suppressor of the Wnt signaling pathway. Thus, the Wnt pathway was exclusively activated due to APC dysfunction, as other elements of this pathway were not found to be mutated. Aspirin has been reported to suppress the Wnt pathway by inducing β-catenin phosphorylation through the activation of glycogen synthase kinase 3 beta via cyclooxygenase-2 pathway inhibition. Therefore, aspirin was administered to the patient, which achieved four years of disease control.
CONCLUSION Exclusive mutations of APC of all the Wnt pathway elements could be a therapeutic target in HCC, with aspirin as an effective treatment option.
Collapse
Affiliation(s)
- Qu Lin
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Ming-Jun Bai
- Department of Intervention and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Hao-Fan Wang
- Department of Intervention and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Xiang-Yuan Wu
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Ming-Sheng Huang
- Department of Intervention and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Xing Li
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
9
|
Sharmin S, Zohura FT, Islam MS, Shimonty A, Khan MAAK, Parveen R, Sharmin F, Ahsan CR, Islam ABMMK, Yasmin M. Mutational profiles of marker genes of cervical carcinoma in Bangladeshi patients. BMC Cancer 2021; 21:289. [PMID: 33736612 PMCID: PMC7977314 DOI: 10.1186/s12885-021-07906-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/12/2021] [Indexed: 01/22/2023] Open
Abstract
Background Cervical cancer is a gynecologic cancer type that develops in the cervix, accounting for 8% mortality of all female cancer patients. Infection with specific human papillomavirus (HPV) types is considered the most severe risk factor for cervical cancer. In the context of our socioeconomic conditions, an increasing burden of this disease and high mortality rate prevail in Bangladesh. Although several researches related to the epidemiology, HPV vaccination, and treatment modalities were conducted, researches on the mutation profiles of marker genes in cervical cancer in Bangladesh remain unexplored. Methods In this study, five different genomic regions within the top three most frequently mutated genes (EGFR, KRAS and PIK3CA) in COSMIC database with a key role in the development of cervical cancers were selected to study the mutation frequency in Bangladeshi patients. In silico analysis was done in two steps: nucleotide sequence analysis and its corresponding amino acid analysis. Results DNA from 46 cervical cancer tissue samples were extracted and amplified by PCR, using 1 set of primers designed for EGFR and 2 sets of primers designed for two different regions of both PIK3CA and KRAS gene. In total, 39 mutations were found in 26 patient samples. Eleven different mutations (23.91%), twenty-four different mutations (52.17%) and four mutations (8.7%) were found in amplified EGFR, PIK3CA and KRAS gene fragments, respectively; among which 1 (EGFR) was common in seven patient samples and 2 (PIKCA) were found in more than 1 patient. Our study shows that except for KRAS, the frequency of observed mutations in our patients is higher than those reported earlier in other parts of the world. Most of the exonic mutations were found only in the PIK3CA and EGFR genes. Conclusions The study can be used as a basis to build a mutation database for cervical cancer in Bangladesh with the possibility of targetable oncogenic mutations. Further explorations are needed to establish future diagnostics, personalized medicine decisions, and other pharmaceutical applications for specific cancer subtypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07906-5.
Collapse
Affiliation(s)
- Shahana Sharmin
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Fatima Tuj Zohura
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh.,Current Affiliation: Internal Medicine OPD, Bangabandhu Sheikh Mujib Medical University Hospital, Dhaka, Bangladesh
| | - Md Sajedul Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh.,Current Affiliation: Department of Biochemistry and Biotechnology, University of Barisal, Barisal, Bangladesh
| | - Anika Shimonty
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Md Abdullah-Al-Kamran Khan
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh.,Current Affiliation Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | - Foujia Sharmin
- Department of Gynecological Oncology, National Institute of Cancer Research & Hospital, Dhaka, Bangladesh
| | | | | | - Mahmuda Yasmin
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
10
|
Park KS. Carrier frequency and predicted genetic prevalence of Pompe disease based on a general population database. Mol Genet Metab Rep 2021; 27:100734. [PMID: 33717985 PMCID: PMC7933537 DOI: 10.1016/j.ymgmr.2021.100734] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background The genetic prevalence of Pompe disease was estimated based on the proportion of individuals who have a causative genotype in a general population database. In addition, clinical severity for causative genotypes was assessed based on currently available locus-specific databases (LSDBs), which contain information on both genotype and clinical severity. Methods Genetic variants in the GAA gene in the Genome Aggregation Database (gnomAD) (v2.1.1) were analyzed in combination with LSDBs of ClinVar, ClinGen Evidence Repository, Pompe disease GAA variant database, and the Pompe Registry. Carrier frequency (CF) and predicted genetic prevalence (pGP) were estimated. Results Of 7 populations, East Asian and African showed higher proportions of pathogenic or likely pathogenic variants (PLPVs) associated with classic infantile-onset Pompe disease. Total CF and pGP in the overall population were 1.3% (1 in 77) and 1:23,232, respectively. The highest pGP was observed in the East Asian population at 1:12,125, followed by Non-Finnish European (1:13,756), Ashkenazi Jewish (1:22,851), African/African-American (1:26,560), Latino/Admixed American (1:57,620), South Asian (1:93,087), and Finnish (1:1,056,444). Conclusions Pompe disease has a higher pGP (1:23,232) than earlier accepted (1:40,000). The pGP for Pompe disease was expectedly wide by population and consistent with previous reports based on newborn screening programs (approximately 1:10,000-1:30,000).
Collapse
Affiliation(s)
- Kyung Sun Park
- Department of Laboratory Medicine, Kyung Hee University School of Medicine and Kyung Hee University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
11
|
Beird HC, Khan M, Wang F, Alfayez M, Cai T, Zhao L, Khoury J, Futreal PA, Konopleva M, Pemmaraju N. Features of non-activation dendritic state and immune deficiency in blastic plasmacytoid dendritic cell neoplasm (BPDCN). Blood Cancer J 2019; 9:99. [PMID: 31811114 PMCID: PMC6898719 DOI: 10.1038/s41408-019-0262-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/05/2023] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare, male-predominant hematologic malignancy with poor outcomes and with just one recently approved agent (tagraxofusp). It is characterized by the abnormal proliferation of precursor plasmacytoid dendritic cells (pDCs) with morphologic and molecular similarities to acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)/chronic myelomonocytic leukemia (CMML) in its presentation within the bone marrow and peripheral blood. To identify disease-specific molecular features of BPDCN, we profiled the bone marrow, peripheral blood, and serum samples from primary patient samples using an in-house hematologic malignancy panel ("T300" panel), transcriptome microarray, and serum multiplex immunoassays. TET2 mutations (5/8, 63%) were the most prevalent in our cohort. Using the transcriptome microarray, genes specific to pDCs (LAMP5, CCDC50) were more highly expressed in BPDCN than in AML specimens. Finally, the serum cytokine profile analysis showed significantly elevated levels of eosinophil chemoattractants eotaxin and RANTES in BPDCN as compared with AML. Along with the high levels of PTPRS and dendritic nature of the tumor cells, these findings suggest a possible pre-inflammatory context of this disease, in which BPDCN features nonactivated pDCs.
Collapse
Affiliation(s)
- Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maliha Khan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mansour Alfayez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tianyu Cai
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph Khoury
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Negri GL, Grande BM, Delaidelli A, El-Naggar A, Cochrane D, Lau CC, Triche TJ, Moore RA, Jones SJ, Montpetit A, Marra MA, Malkin D, Morin RD, Sorensen PH. Integrative genomic analysis of matched primary and metastatic pediatric osteosarcoma. J Pathol 2019; 249:319-331. [PMID: 31236944 DOI: 10.1002/path.5319] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/23/2019] [Accepted: 06/20/2019] [Indexed: 01/14/2023]
Abstract
Despite being the most common childhood bone tumor, the genomic characterization of osteosarcoma remains incomplete. In particular, very few osteosarcoma metastases have been sequenced to date, critical to better understand mechanisms of progression and evolution in this tumor. We performed an integrated whole genome and exome sequencing analysis of paired primary and metastatic pediatric osteosarcoma specimens to identify recurrent genomic alterations. Sequencing of 13 osteosarcoma patients including 13 primary, 10 metastatic, and 3 locally recurring tumors revealed a highly heterogeneous mutational landscape, including cases of hypermutation and microsatellite instability positivity, but with virtually no recurrent alterations except for mutations involving the tumor suppressor genes RB1 and TP53. At the germline level, we detected alterations in multiple cancer related genes in the majority of the cohort, including those potentially disrupting DNA damage response pathways. Metastases retained only a minimal number of short variants from their corresponding primary tumors, while copy number alterations showed higher conservation. One recurrently amplified gene, KDR, was highly expressed in advanced cases and associated with poor prognosis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gian Luca Negri
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Bruno M Grande
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Amal El-Naggar
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Dawn Cochrane
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Ching C Lau
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Timothy J Triche
- Department of Pathology and Laboratory Medicine, Childrens Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pathology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Steven Jm Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Alexandre Montpetit
- Department of Human Genetics, McGill University and Research Institute, McGill University Health Centre, Montreal, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - David Malkin
- Division of Haematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Huang BJ, Wandler AM, Meyer LK, Dail M, Daemen A, Sampath D, Li Q, Wang X, Wong JC, Nakitandwe J, Downing JR, Zhang J, Taylor BS, Shannon K. Convergent genetic aberrations in murine and human T lineage acute lymphoblastic leukemias. PLoS Genet 2019; 15:e1008168. [PMID: 31199785 PMCID: PMC6594654 DOI: 10.1371/journal.pgen.1008168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/26/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
The lack of predictive preclinical models is a fundamental barrier to translating knowledge about the molecular pathogenesis of cancer into improved therapies. Insertional mutagenesis (IM) in mice is a robust strategy for generating malignancies that recapitulate the extensive inter- and intra-tumoral genetic heterogeneity found in advanced human cancers. While the central role of "driver" viral insertions in IM models that aberrantly increase the expression of proto-oncogenes or disrupt tumor suppressors has been appreciated for many years, the contributions of cooperating somatic mutations and large chromosomal alterations to tumorigenesis are largely unknown. Integrated genomic studies of T lineage acute lymphoblastic leukemias (T-ALLs) generated by IM in wild-type (WT) and Kras mutant mice reveal frequent point mutations and other recurrent non-insertional genetic alterations that also occur in human T-ALL. These somatic mutations are sensitive and specific markers for defining clonal dynamics and identifying candidate resistance mechanisms in leukemias that relapse after an initial therapeutic response. Primary cancers initiated by IM and resistant clones that emerge during in vivo treatment close key gaps in existing preclinical models, and are robust platforms for investigating the efficacy of new therapies and for elucidating how drug exposure shapes tumor evolution and patterns of resistance. A lack of predictive cancer models is a major bottleneck for prioritizing new anti-cancer drugs for clinical trials. We comprehensively profiled a panel of primary mouse T lineage leukemias initiated by insertional mutagenesis and found remarkable similarities with human T-ALL in regard to overall mutational burden, the occurrence of specific somatic mutations and large chromosomal alterations, and concordant gene expression signatures. We observed frequent duplication of the Kras oncogene with loss of the normal allele, which has potential therapeutic implications that merit further investigation in human leukemia and in other preclinical models. Mutations identified in mouse leukemias that relapsed after in vivo treatment with signal transduction inhibitors were also observed in relapsed human T-ALL, indicating that this model system can be utilized to investigate strategies for overcoming intrinsic and acquired drug resistance. Finally, preclinical models similar to the one described here that are characterized by a normal endogenous tumor microenvironment and intact immune system will become increasingly important for testing immunotherapy approaches for human cancer.
Collapse
Affiliation(s)
- Benjamin J. Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Anica M. Wandler
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Lauren K. Meyer
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Monique Dail
- Department of Oncology Biomarker Development, Genentech, South San Francisco, CA, United States of America
| | - Anneleen Daemen
- Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA, United States of America
| | - Deepak Sampath
- Department of Translational Oncology, Genentech, South San Francisco, CA, United States of America
| | - Qing Li
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Xinyue Wang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Jasmine C. Wong
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Joy Nakitandwe
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - James R. Downing
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Barry S. Taylor
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Kevin Shannon
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood 2019; 133:1664-1676. [PMID: 30782609 DOI: 10.1182/blood-2018-09-872549] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/10/2019] [Indexed: 02/07/2023] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a group of complex clinicopathological entities, often associated with an aggressive clinical course. Angioimmunoblastic T-cell lymphoma (AITL) and PTCL-not otherwise specified (PTCL-NOS) are the 2 most frequent categories, accounting for >50% of PTCLs. Gene expression profiling (GEP) defined molecular signatures for AITL and delineated biological and prognostic subgroups within PTCL-NOS (PTCL-GATA3 and PTCL-TBX21). Genomic copy number (CN) analysis and targeted sequencing of these molecular subgroups revealed unique CN abnormalities (CNAs) and oncogenic pathways, indicating distinct oncogenic evolution. PTCL-GATA3 exhibited greater genomic complexity that was characterized by frequent loss or mutation of tumor suppressor genes targeting the CDKN2A /B-TP53 axis and PTEN-PI3K pathways. Co-occurring gains/amplifications of STAT3 and MYC occurred in PTCL-GATA3. Several CNAs, in particular loss of CDKN2A, exhibited prognostic significance in PTCL-NOS as a single entity and in the PTCL-GATA3 subgroup. The PTCL-TBX21 subgroup had fewer CNAs, primarily targeting cytotoxic effector genes, and was enriched in mutations of genes regulating DNA methylation. CNAs affecting metabolic processes regulating RNA/protein degradation and T-cell receptor signaling were common in both subgroups. AITL showed lower genomic complexity compared with other PTCL entities, with frequent co-occurring gains of chromosome 5 (chr5) and chr21 that were significantly associated with IDH2 R172 mutation. CN losses were enriched in genes regulating PI3K-AKT-mTOR signaling in cases without IDH2 mutation. Overall, we demonstrated that novel GEP-defined PTCL subgroups likely evolve by distinct genetic pathways and provided biological rationale for therapies that may be investigated in future clinical trials.
Collapse
|
15
|
Kreft L, Turan D, Hulstaert N, Botzki A, Martens L, Vandermarliere E. Scop3D: Online Visualization of Mutation Rates on Protein Structure. J Proteome Res 2019; 18:765-769. [PMID: 30540477 DOI: 10.1021/acs.jproteome.8b00681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scop3D is a tool that automatically annotates protein structure with sequence conservation starting from a set of protein sequence variants. We present a complete upgrade and rewrite of Scop3D. We have included a DNA module that allows the analysis of single nucleotide polymorphisms in relation to the structural context of the protein. Scop3D therefore forms a bridge between genomics and protein structure. Moreover, Scop3D is now also available through an intuitive web-interface that makes the tool highly user-friendly.
Collapse
Affiliation(s)
- Lukasz Kreft
- VIB Bioinformatics Core , VIB , Ghent 120-9052 , Belgium
| | - Demet Turan
- VIB-UGent Center for Medical Biotechnology , VIB , Ghent 9000 , Belgium.,Department of Biochemistry , Ghent University , Ghent 9000 , Belgium
| | - Niels Hulstaert
- VIB-UGent Center for Medical Biotechnology , VIB , Ghent 9000 , Belgium.,Department of Biochemistry , Ghent University , Ghent 9000 , Belgium
| | | | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology , VIB , Ghent 9000 , Belgium.,Department of Biochemistry , Ghent University , Ghent 9000 , Belgium
| | - Elien Vandermarliere
- VIB-UGent Center for Medical Biotechnology , VIB , Ghent 9000 , Belgium.,Department of Biochemistry , Ghent University , Ghent 9000 , Belgium.,VIB Headquarters , VIB , Ghent 120-9052 , Belgium
| |
Collapse
|
16
|
Kanthi A, Hebbar M, Bielas SL, Girisha KM, Shukla A. Bi-allelic c.181_183delTGT in BTB domain of KLHL7 is associated with overlapping phenotypes of Crisponi/CISS1-like and Bohring-Opitz like syndrome. Eur J Med Genet 2018; 62:103528. [PMID: 30142437 DOI: 10.1016/j.ejmg.2018.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 01/30/2023]
Abstract
Biallelic pathogenic variants in KLHL7 are known to result in Crisponi syndrome (CS)/cold-induced sweating syndrome type 1 (CISS1) like phenotype and Bohring-Opitz-like syndrome. In this report, a trio whole-exome sequencing (WES) was performed in proband with cold-induced sweating, microcephaly, facial dysmorphism, spasticity, failure to thrive, pigmentary abnormalities of the retina, hypoplasia of corpus callosum and periventricular nodular heterotopia. A novel homozygous in-frame deletion was identified in exon 2 of KLHL7, affecting the BTB domain of the protein. Our findings expand the clinical and molecular spectrum of KLHL7-related disorders.
Collapse
Affiliation(s)
- Anil Kanthi
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Malavika Hebbar
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
17
|
Boudjadi S, Chatterjee B, Sun W, Vemu P, Barr FG. The expression and function of PAX3 in development and disease. Gene 2018; 666:145-157. [PMID: 29730428 DOI: 10.1016/j.gene.2018.04.087] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
Abstract
The PAX3 gene encodes a member of the PAX family of transcription factors that is characterized by a highly conserved paired box motif. The PAX3 protein is a transcription factor consisting of an N-terminal DNA binding domain (containing a paired box and homeodomain) and a C-terminal transcriptional activation domain. This protein is expressed during development of skeletal muscle, central nervous system and neural crest derivatives, and regulates expression of target genes that impact on proliferation, survival, differentiation and motility in these lineages. Germline mutations of the murine Pax3 and human PAX3 genes cause deficiencies in these developmental lineages and result in the Splotch phenotype and Waardenburg syndrome, respectively. Somatic genetic rearrangements that juxtapose the PAX3 DNA binding domain to the transcriptional activation domain of other transcription factors deregulate PAX3 function and contribute to the pathogenesis of the soft tissue cancers alveolar rhabdomyosarcoma and biphenotypic sinonasal sarcoma. The wild-type PAX3 protein is also expressed in other cancers related to developmental lineages that normally express this protein and exerts phenotypic effects related to its normal developmental role.
Collapse
Affiliation(s)
- Salah Boudjadi
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | | | - Wenyue Sun
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Prasantha Vemu
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Frederic G Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
18
|
Cejuela JM, Bojchevski A, Uhlig C, Bekmukhametov R, Kumar Karn S, Mahmuti S, Baghudana A, Dubey A, Satagopam VP, Rost B. nala: text mining natural language mutation mentions. Bioinformatics 2018; 33:1852-1858. [PMID: 28200120 PMCID: PMC5870606 DOI: 10.1093/bioinformatics/btx083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/08/2017] [Indexed: 01/30/2023] Open
Abstract
Motivation The extraction of sequence variants from the literature remains an important task. Existing methods primarily target standard (ST) mutation mentions (e.g. ‘E6V’), leaving relevant mentions natural language (NL) largely untapped (e.g. ‘glutamic acid was substituted by valine at residue 6’). Results We introduced three new corpora suggesting named-entity recognition (NER) to be more challenging than anticipated: 28–77% of all articles contained mentions only available in NL. Our new method nala captured NL and ST by combining conditional random fields with word embedding features learned unsupervised from the entire PubMed. In our hands, nala substantially outperformed the state-of-the-art. For instance, we compared all unique mentions in new discoveries correctly detected by any of three methods (SETH, tmVar, or nala). Neither SETH nor tmVar discovered anything missed by nala, while nala uniquely tagged 33% mentions. For NL mentions the corresponding value shot up to 100% nala-only. Availability and Implementation Source code, API and corpora freely available at: http://tagtog.net/-corpora/IDP4+. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Juan Miguel Cejuela
- TUM, Department of Informatics, Bioinformatics & Computational Biology - i12, Garching, Munich, Germany.,TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Garching, Germany
| | - Aleksandar Bojchevski
- TUM, Department of Informatics, Bioinformatics & Computational Biology - i12, Garching, Munich, Germany.,TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Garching, Germany
| | - Carsten Uhlig
- TUM, Department of Informatics, Bioinformatics & Computational Biology - i12, Garching, Munich, Germany
| | - Rustem Bekmukhametov
- TUM, Department of Informatics, Bioinformatics & Computational Biology - i12, Garching, Munich, Germany.,Microsoft, WA, Bellevue, USA
| | - Sanjeev Kumar Karn
- TUM, Department of Informatics, Bioinformatics & Computational Biology - i12, Garching, Munich, Germany.,Ludwig Maximilian University, 80538 Munich & Siemens AG, Corporate Technology, Munich, Germany
| | - Shpend Mahmuti
- TUM, Department of Informatics, Bioinformatics & Computational Biology - i12, Garching, Munich, Germany
| | - Ashish Baghudana
- TUM, Department of Informatics, Bioinformatics & Computational Biology - i12, Garching, Munich, Germany.,BITS-Pilani K. K. Birla Goa Campus, Goa, India
| | - Ankit Dubey
- TUM, Department of Informatics, Bioinformatics & Computational Biology - i12, Garching, Munich, Germany.,Concur (Germany) GmbH, Frankfurt am Main, Germany
| | - Venkata P Satagopam
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Burkhard Rost
- TUM, Department of Informatics, Bioinformatics & Computational Biology - i12, Garching, Munich, Germany.,Institute of Advanced Study (TUM-IAS) & Institute for Food and Plant Sciences WZW - Weihenstephan & New York Consortium on Membrane Protein Structure (NYCOMPS) & Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
19
|
Ng PKS, Li J, Jeong KJ, Shao S, Chen H, Tsang YH, Sengupta S, Wang Z, Bhavana VH, Tran R, Soewito S, Minussi DC, Moreno D, Kong K, Dogruluk T, Lu H, Gao J, Tokheim C, Zhou DC, Johnson AM, Zeng J, Ip CKM, Ju Z, Wester M, Yu S, Li Y, Vellano CP, Schultz N, Karchin R, Ding L, Lu Y, Cheung LWT, Chen K, Shaw KR, Meric-Bernstam F, Scott KL, Yi S, Sahni N, Liang H, Mills GB. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell 2018; 33:450-462.e10. [PMID: 29533785 PMCID: PMC5926201 DOI: 10.1016/j.ccell.2018.01.021] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/07/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022]
Abstract
The functional impact of the vast majority of cancer somatic mutations remains unknown, representing a critical knowledge gap for implementing precision oncology. Here, we report the development of a moderate-throughput functional genomic platform consisting of efficient mutant generation, sensitive viability assays using two growth factor-dependent cell models, and functional proteomic profiling of signaling effects for select aberrations. We apply the platform to annotate >1,000 genomic aberrations, including gene amplifications, point mutations, indels, and gene fusions, potentially doubling the number of driver mutations characterized in clinically actionable genes. Further, the platform is sufficiently sensitive to identify weak drivers. Our data are accessible through a user-friendly, public data portal. Our study will facilitate biomarker discovery, prediction algorithm improvement, and drug development.
Collapse
Affiliation(s)
- Patrick Kwok-Shing Ng
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kang Jin Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shan Shao
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hu Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yiu Huen Tsang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sohini Sengupta
- Division of Oncology, Department of Medicine, Washington University, St. Louis, MO 63108, USA
| | - Zixing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Richard Tran
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephanie Soewito
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Darlan Conterno Minussi
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniela Moreno
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathleen Kong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Turgut Dogruluk
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hengyu Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianjiong Gao
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Collin Tokheim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel Cui Zhou
- Division of Oncology, Department of Medicine, Washington University, St. Louis, MO 63108, USA
| | - Amber M Johnson
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jia Zeng
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carman Ka Man Ip
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew Wester
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuangxing Yu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongsheng Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher P Vellano
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rachel Karchin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins Medicine, Baltimore, MD 21287, USA
| | - Li Ding
- Division of Oncology, Department of Medicine, Washington University, St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University, St. Louis, MO 63108, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lydia Wai Ting Cheung
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenna R Shaw
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Funda Meric-Bernstam
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Song Yi
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Nidhi Sahni
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
20
|
The landscape of genomic alterations across childhood cancers. Nature 2018; 555:321-327. [PMID: 29489754 DOI: 10.1038/nature25480] [Citation(s) in RCA: 1023] [Impact Index Per Article: 146.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 12/24/2017] [Indexed: 02/07/2023]
Abstract
Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.
Collapse
|
21
|
Zapata L, Susak H, Drechsel O, Friedländer MR, Estivill X, Ossowski S. Signatures of positive selection reveal a universal role of chromatin modifiers as cancer driver genes. Sci Rep 2017; 7:13124. [PMID: 29030609 PMCID: PMC5640613 DOI: 10.1038/s41598-017-12888-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/15/2017] [Indexed: 12/24/2022] Open
Abstract
Tumors are composed of an evolving population of cells subjected to tissue-specific selection, which fuels tumor heterogeneity and ultimately complicates cancer driver gene identification. Here, we integrate cancer cell fraction, population recurrence, and functional impact of somatic mutations as signatures of selection into a Bayesian model for driver prediction. We demonstrate that our model, cDriver, outperforms competing methods when analyzing solid tumors, hematological malignancies, and pan-cancer datasets. Applying cDriver to exome sequencing data of 21 cancer types from 6,870 individuals revealed 98 unreported tumor type-driver gene connections. These novel connections are highly enriched for chromatin-modifying proteins, hinting at a universal role of chromatin regulation in cancer etiology. Although infrequently mutated as single genes, we show that chromatin modifiers are altered in a large fraction of cancer patients. In summary, we demonstrate that integration of evolutionary signatures is key for identifying mutational driver genes, thereby facilitating the discovery of novel therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Luis Zapata
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Hana Susak
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Oliver Drechsel
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Marc R Friedländer
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691, Stockholm, Sweden
| | - Xavier Estivill
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Experimental Genetics Division, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Stephan Ossowski
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Zafari Z, Dalili M, Zeinali S, Saber S, Fazeli Far AF, Akbari MT. Identification and characterization of a novel recessive KCNQ1 mutation associated with Romano-Ward Long-QT syndrome in two Iranian families. J Electrocardiol 2017; 50:912-918. [PMID: 29033053 DOI: 10.1016/j.jelectrocard.2017.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND One of the foremost causes of sudden cardiac death in the young is an inherent cardiac arrhythmia known as Long-QT syndrome (LQTS). Whereas heterozygous mutations typically lead to the Romano-Ward type of LQTS, We have provided a further evidence for the recessive transmission of a novel KCNQ1 gene mutation in two consanguineous families for the first time in Iran. METHODS Next generation sequencing, DNA Sanger sequencing and haplotype analysis were performed for genotype determination. Twelve different in silico tools were used for predicting the variant pathogenecity along with the family and population study. RESULTS A novel recessive KCNQ1 variant (p.D564G) was revealed in none of the unrelated healthy individuals but four patients in two apparently unrelated families. The variant was classified as a likely pathogenic mutation by combining the resulted criteria for the changed amino acid. CONCLUSIONS Identification of the novel mutation not only supports the genetic testing as a definitive diagnostic tool for detection of at risk family members, but also emphasizes its screening in Iranian LQTS patients as this mutation is very likely a founder mutation in Iran.
Collapse
Affiliation(s)
- Zahra Zafari
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Dalili
- Cardiac Electrophysiology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sirus Zeinali
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Siamak Saber
- Cardiac Electrophysiology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazeli Far
- Cardiac Electrophysiology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Akbari
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
23
|
Vavalà T, Monica V, Lo Iacono M, Mele T, Busso S, Righi L, Papotti M, Scagliotti GV, Novello S. Precision medicine in age-specific non-small-cell-lung-cancer patients: Integrating biomolecular results into clinical practice-A new approach to improve personalized translational research. Lung Cancer 2016; 107:84-90. [PMID: 27346245 DOI: 10.1016/j.lungcan.2016.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/11/2016] [Accepted: 05/29/2016] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Non-small-cell-lung-cancer (NSCLC) in young adults (≤45 years-old) accounts for a very small proportion, as this disease usually occurs in people at older age. The youthful NSCLC may constitute an entity with different clinical-pathologic characteristics, having predominance of adenocarcinoma histology and affecting mostly non-smoker subjects. However, without specific guidelines, it is currently considered, both clinically and biologically, as the same disease of the older counterpart, although differences have been documented. MATERIALS AND METHODS Using formalin-fixed paraffin embedded diagnostic tissues (FFPE), targeted next-generation sequencing (NGS) technology allowed to provide insight the mutational pattern of 46 oncogenes and tumor-suppressor genes in 26 young patients (Y). Two additional populations, including a FFPE series of aged counterpart (A: 29 patients) and a group of healthy young controls (C: 21, blood provided), were also investigated to compare NGS profiles. RESULTS Clinical features of enrolled young patients harmonized with literature data, being most of patients women (58%), never-smokers (38%) and with adenocarcinoma histology (96%). C group was adopted to filter all the non-synonymous genetic variations (NS-GVs) not-associated with malignant overt disease. This skimmed selection mostly highlighted three genes: TP53, EGFR and KRAS. TP53 NS-GVs were numerically more numerous in younger, many involving specific annotated hotspot (R248, R273, G245, R249 and R282); the majority of EGFR NS-GVs was detected in young patients, with higher allelic frequency and mostly represented by exon 19 deletions. On the contrary, KRAS NS-GVs were mainly detected in aged population, with a prevalent compact pattern involving p.G12 position and associated with adenocarcinoma histology. CONCLUSION This retrospective study confirmed the feasibility of NGS approach for genetic characterization of NSCLC young adult patients, supporting the involvement of TP53, EGFR, and KRAS alterations in the early onset of NSCLC. Some of these GVs, or their pattern, may potentially contribute to customized targeted therapies.
Collapse
Affiliation(s)
- Tiziana Vavalà
- Department of Oncology, University of Turin AOU San Luigi, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Valentina Monica
- Department of Oncology, University of Turin AOU San Luigi, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Marco Lo Iacono
- Department of Oncology, University of Turin AOU San Luigi, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Teresa Mele
- Department of Oncology, University of Turin AOU San Luigi, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Simone Busso
- Department of Oncology, University of Turin AOU San Luigi, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Luisella Righi
- Department of Oncology, University of Turin AOU San Luigi, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin AOU San Luigi, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | | | - Silvia Novello
- Department of Oncology, University of Turin AOU San Luigi, Regione Gonzole 10, 10043 Orbassano (TO), Italy.
| |
Collapse
|
24
|
Lo Iacono M, Buttigliero C, Monica V, Bollito E, Garrou D, Cappia S, Rapa I, Vignani F, Bertaglia V, Fiori C, Papotti M, Volante M, Scagliotti GV, Porpiglia F, Tucci M. Retrospective study testing next generation sequencing of selected cancer-associated genes in resected prostate cancer. Oncotarget 2016; 7:14394-404. [PMID: 26887047 PMCID: PMC4924723 DOI: 10.18632/oncotarget.7343] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/25/2016] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Prostate cancer (PCa) has a highly heterogeneous outcome. Beyond Gleason Score, Prostate Serum Antigen and tumor stage, nowadays there are no biological prognostic factors to discriminate between indolent and aggressive tumors.The most common known genomic alterations are the TMPRSS-ETS translocation and mutations in the PI3K, MAPK pathways and in p53, RB and c-MYC genes.The aim of this retrospective study was to identify by next generation sequencing the most frequent genetic variations (GVs) in localized and locally advanced PCa underwent prostatectomy and to investigate their correlation with clinical-pathological variables and disease progression. RESULTS Identified non-synonymous GVs included TP53 p.P72R (78% of tumors), two CSFR1 SNPs, rs2066934 and rs2066933 (70%), KDR p.Q472H (67%), KIT p.M541L (28%), PIK3CA p.I391M (19%), MET p.V378I (10%) and FGFR3 p.F384L/p.F386L (8%). TP53 p.P72R, MET p.V378I and CSFR1 SNPs were significantly associated with the HI risk group, TP53 and MET variations with T≥T2c. FGFR3 p.F384L/p.F386L was correlated with T≤T2b. MET p.V378I mutation, detected in 20% of HI risk patients, was associated with early biochemical recurrence. EXPERIMENTAL DESIGN Nucleic acids were obtained from tissue samples of 30 high (HI) and 30 low-intermediate (LM) risk patients, according to D'Amico criteria. Genomic DNA was explored with the Ion_AmpliSeq_Cancer_Hotspot_Panel_v.2 including 50 cancer-associated genes. GVs with allelic frequency (AF) ≥10%, affecting protein function or previously associated with cancer, were correlated with clinical-pathological variables. CONCLUSION Our results confirm a complex mutational profile in PCa, supporting the involvement of TP53, MET, FGFR3, CSF1R GVs in tumor progression and aggressiveness.
Collapse
Affiliation(s)
- Marco Lo Iacono
- University of Turin, Department of Oncology, Orbassano, Italy
| | | | | | - Enrico Bollito
- University of Turin, Department of Oncology, Orbassano, Italy
| | - Diletta Garrou
- University of Turin, Department of Oncology, Orbassano, Italy
| | - Susanna Cappia
- University of Turin, Department of Oncology, Orbassano, Italy
| | - Ida Rapa
- University of Turin, Department of Oncology, Orbassano, Italy
| | | | | | - Cristian Fiori
- University of Turin, Department of Oncology, Orbassano, Italy
| | - Mauro Papotti
- University of Turin, Department of Oncology, Orbassano, Italy
| | - Marco Volante
- University of Turin, Department of Oncology, Orbassano, Italy
| | | | | | - Marcello Tucci
- University of Turin, Department of Oncology, Orbassano, Italy
| |
Collapse
|
25
|
Flock T, Ravarani CNJ, Sun D, Venkatakrishnan AJ, Kayikci M, Tate CG, Veprintsev DB, Babu MM. Universal allosteric mechanism for Gα activation by GPCRs. Nature 2015; 524:173-179. [PMID: 26147082 PMCID: PMC4866443 DOI: 10.1038/nature14663] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 06/16/2015] [Indexed: 12/25/2022]
Abstract
G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are ∼800 human GPCRs and 16 different Gα genes, this raises the question of whether a universal allosteric mechanism governs Gα activation. Here we show that different GPCRs interact with and activate Gα proteins through a highly conserved mechanism. Comparison of Gα with the small G protein Ras reveals how the evolution of short segments that undergo disorder-to-order transitions can decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR-Gα system diversified rapidly, while conserving the allosteric activation mechanism.
Collapse
Affiliation(s)
- Tilman Flock
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Dawei Sun
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Melis Kayikci
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher G. Tate
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Dmitry B. Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - M. Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|