1
|
Breen P, Zimbric M, Caverly LJ. Itaconic acid inhibits nontuberculous mycobacterial growth in pH dependent manner while 4-octyl-itaconic acid enhances THP-1 clearance of nontuberculous mycobacteria in vitro. PLoS One 2024; 19:e0303516. [PMID: 38728330 PMCID: PMC11086914 DOI: 10.1371/journal.pone.0303516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Increasingly prevalent, nontuberculous mycobacteria (NTM) infections affect approximately 20% of people with cystic fibrosis (CF). Previous studies of CF sputum identified lower levels of the host metabolite itaconate in those infected with NTM. Itaconate can inhibit the growth of M. tuberculosis (MTB) in vitro via the inhibition of the glyoxylate cycle enzyme (ICL), but its impact on NTM is unclear. To test itaconic acid's (IA) effect on NTM growth, laboratory and CF clinical strains of Mycobacterium abscessus and Mycobacterium avium were cultured in 7H9 minimal media supplemented with 1-10 mM of IA and short-chain fatty acids (SCFA). M. avium and M. abscessus grew when supplemented with SCFAs, whereas the addition of IA (≥ 10 mM) completely inhibited NTM growth. NTM supplemented with acetate or propionate and 5 mM IA displayed slower growth than NTM cultured with SCFA and ≤ 1 mM of IA. However, IA's inhibition of NTM was pH dependent; as similar and higher quantities (100 mM) of pH adjusted IA (pH 7) did not inhibit growth in vitro, while in an acidic minimal media (pH 6.1), 1 to 5 mM of non-pH adjusted IA inhibited growth. None of the examined isolates displayed the ability to utilize IA as a carbon source, and IA added to M. abscessus isocitrate lyase (ICL) decreased enzymatic activity. Lastly, the addition of cell-permeable 4-octyl itaconate (4-OI) to THP-1 cells enhanced NTM clearance, demonstrating a potential role for IA/itaconate in host defense against NTM infections.
Collapse
Affiliation(s)
- Paul Breen
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Madsen Zimbric
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Lindsay J. Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| |
Collapse
|
2
|
Yoshida M, Kwon AT, Qin XY, Nishimura H, Maeda S, Miyamoto Y, Yoshida Y, Hoshino Y, Suzuki H. Transcriptome analysis of long non-coding RNAs in Mycobacterium avium complex-infected macrophages. Front Immunol 2024; 15:1374437. [PMID: 38711507 PMCID: PMC11070510 DOI: 10.3389/fimmu.2024.1374437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Mycobacterium avium complex (MAC) is a non-tuberculous mycobacterium widely distributed in the environment. Even though MAC infection is increasing in older women and immunocompromised patients, to our knowledge there has been no comprehensive analysis of the MAC-infected host-cell transcriptome-and particularly of long non-coding RNAs (lncRNAs). By using in vitro-cultured primary mouse bone-marrow-derived macrophages (BMDMs) and Cap analysis of gene expression, we analyzed the transcriptional and kinetic landscape of macrophage genes, with a focus on lncRNAs, during MAC infection. MAC infection of macrophages induced the expression of immune/inflammatory response genes and other genes similar to those involved in M1 macrophage activation, consistent with previous reports, although Nos2 (M1 activation) and Arg1 (M2 activation) had distinct expression profiles. We identified 31 upregulated and 30 downregulated lncRNA promoters corresponding respectively to 18 and 26 lncRNAs. Upregulated lncRNAs were clustered into two groups-early and late upregulated-predicted to be associated with immune activation and the immune response to infection, respectively. Furthermore, an Ingenuity Pathway Analysis revealed canonical pathways and upstream transcription regulators associated with differentially expressed lncRNAs. Several differentially expressed lncRNAs reported elsewhere underwent expressional changes upon M1 or M2 preactivation and subsequent MAC infection. Finally, we showed that expressional change of lncRNAs in MAC-infected BMDMs was mediated by toll-like receptor 2, although there may be other mechanisms that sense MAC infection. We identified differentially expressed lncRNAs in MAC-infected BMDMs, revealing diverse features that imply the distinct roles of these lncRNAs in MAC infection and macrophage polarization.
Collapse
Affiliation(s)
- Mitsunori Yoshida
- Department of Mycobacteriology, National Institute of Infectious Diseases, Higashi-Murayama, Tokyo, Japan
| | - Andrew Taejun Kwon
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Xian-Yang Qin
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Hajime Nishimura
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shiori Maeda
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yuji Miyamoto
- Department of Mycobacteriology, National Institute of Infectious Diseases, Higashi-Murayama, Tokyo, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Kita-Kyushu, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, National Institute of Infectious Diseases, Higashi-Murayama, Tokyo, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
3
|
Li Y, Liu C, Ma A, He W, Qiu Q, Zhao Y, Li Y. Identification and drug susceptibility testing of the subspecies of Mycobacterium avium complex clinical isolates in mainland China. J Glob Antimicrob Resist 2022; 31:90-97. [PMID: 35660663 DOI: 10.1016/j.jgar.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 10/25/2021] [Accepted: 05/29/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The Mycobacterium avium complex (MAC), comprising a series of subspecies, has a worldwide distribution, with differences in drug susceptibility among subspecies. This study aimed to assess the composition of MAC and susceptibility differences among subspecies in mainland China. METHODS A total of 287 MAC clinical strains were included in the study. Multitarget sequences were applied to accurately identify subspecies, and a microdilution method was used to evaluate minimum inhibitory concentrations (MICs) among subspecies using Sensititre SLOMYCO plates. RESULTS Mycobacterium intracellular (N = 169), Mycobacterium avium (N = 52), Mycobacterium chimaera (N = 22), Mycobacterium marseillense (N = 25), Mycobacterium colombiense (N = 14), Mycobacterium yongonense (N = 4), Mycobacterium vulneris (N = 3) and Mycobacterium timonense (N = 2) were isolated from MAC. Clarithromycin, amikacin and rifabutin showed lower MIC50 and MIC90 values than other drugs, and the resistance rates of clarithromycin, amikacin, linezolid and moxifloxacin were 6.3%, 10.5%, 51.9% and 46.3%, respectively. The resistance rates of clarithromycin and moxifloxacin in the initial treatment group were significantly lower than those in the retreatment group (4.09% vs. 12.94%; 30.41% vs. 75.29%; P < 0.05). Drug susceptibility differences were observed in clarithromycin and moxifloxacin among the five major subspecies (P < 0.05); however, those statistically significant differences disappeared when MACs were divided into two groups according to previous anti-tuberculosis (anti-TB) treatment history. CONCLUSION This study revealed that MAC, primarily comprising M. intracellulare, was susceptible to clarithromycin, amikacin and rifabutin. Drug susceptibility among subspecies did not exhibit intrinsic differences in our study. Previous anti-TB treatment patients are more resistant to drugs; thus, attention should be given to those patients in the clinic.
Collapse
Affiliation(s)
- Yuanchun Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chunfa Liu
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Aijing Ma
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wencong He
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Qiu
- Research Institute of Tuberculosis, Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Yanming Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
A case of mediastinal abscess and infected aortic aneurysm caused by dissemination of Mycobacterium abscessus subsp. massiliense pulmonary disease. J Infect Chemother 2022; 29:82-86. [PMID: 36162647 DOI: 10.1016/j.jiac.2022.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022]
Abstract
An 81-year-old man was admitted to our hospital because of fever and malaise that had persisted for 3 months. The patient had undergone two aortic valve replacements, 10 and 5 years previously, because of aortic valve regurgitation and infectious endocarditis. He also had had asymptomatic Mycobacterium abscessus complex (MABC) pulmonary disease for the two previous years. Contrast-enhanced computed tomography showed a mediastinal abscess and an ascending aortic aneurysm. Mycobacterium abscessus subsp. massiliense was cultured from his blood, suggesting the aortic aneurysm was secondary to infection of an implanted device. After enlargement over only a few days, a leakage of contrast medium to the mediastinal abscess was found on computed tomography. The patient was diagnosed with rupture of an infectious aortic aneurysm, and emergency aortic replacement and drainage of the mediastinal abscess were successful. The patient was treated with several antibiotics, including meropenem, amikacin, and clarithromycin, and his general condition improved. Cultures from both the mediastinal abscess and a pericardial patch that was placed at the time of surgery 5 years previously revealed MABC. In our case, the infected aortic aneurysm most likely resulted from MABC pulmonary disease rather than from previous intraoperative contamination. This route of infection is rare. Physicians should be aware of the possibility of dissemination and subsequent infection of implants related to MABC pulmonary disease.
Collapse
|
5
|
Mizzi R, Plain KM, Whittington R, Timms VJ. Global Phylogeny of Mycobacterium avium and Identification of Mutation Hotspots During Niche Adaptation. Front Microbiol 2022; 13:892333. [PMID: 35602010 PMCID: PMC9121174 DOI: 10.3389/fmicb.2022.892333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 12/27/2022] Open
Abstract
Mycobacterium avium is separated into four subspecies: M. avium subspecies avium (MAA), M. avium subspecies silvaticum (MAS), M. avium subspecies hominissuis (MAH), and M. avium subspecies paratuberculosis (MAP). Understanding the mechanisms of host and tissue adaptation leading to their clinical significance is vital to reduce the economic, welfare, and public health concerns associated with diseases they may cause in humans and animals. Despite substantial phenotypic diversity, the subspecies nomenclature is controversial due to high genetic similarity. Consequently, a set of 1,230 M. avium genomes was used to generate a phylogeny, investigate SNP hotspots, and identify subspecies-specific genes. Phylogeny reiterated the findings from previous work and established that Mycobacterium avium is a species made up of one highly diverse subspecies, known as MAH, and at least two clonal pathogens, named MAA and MAP. Pan-genomes identified coding sequences unique to each subspecies, and in conjunction with a mapping approach, mutation hotspot regions were revealed compared to the reference genomes for MAA, MAH, and MAP. These subspecies-specific genes may serve as valuable biomarkers, providing a deeper understanding of genetic differences between M. avium subspecies and the virulence mechanisms of mycobacteria. Furthermore, SNP analysis demonstrated common regions between subspecies that have undergone extensive mutations during niche adaptation. The findings provide insights into host and tissue specificity of this genetically conserved but phenotypically diverse species, with the potential to provide new diagnostic targets and epidemiological and therapeutic advances.
Collapse
Affiliation(s)
- Rachel Mizzi
- Farm Animal Health, School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Karren M Plain
- Farm Animal Health, School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia.,Microbiology and Parasitology Research, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Richard Whittington
- Farm Animal Health, School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Verlaine J Timms
- Neilan Laboratory of Microbial and Molecular Diversity, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
6
|
Komatsu T, Ohya K, Ota A, Nishiuchi Y, Yano H, Matsuo K, Odoi JO, Suganuma S, Sawai K, Hasebe A, Asai T, Yanai T, Fukushi H, Wada T, Yoshida S, Ito T, Arikawa K, Kawai M, Ato M, Baughn AD, Iwamoto T, Maruyama F. Genomic features of Mycobacterium avium subsp. hominissuis isolated from pigs in Japan. GIGABYTE 2021; 2021:gigabyte33. [PMID: 36824340 PMCID: PMC9650289 DOI: 10.46471/gigabyte.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/05/2021] [Indexed: 11/09/2022] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is one of the most important agents causing non-tuberculosis mycobacterial infection in humans and pigs. There have been advances in genome analysis of MAH from human isolates, but studies of isolates from pigs are limited despite its potential source of infection to human. Here, we obtained 30 draft genome sequences of MAH from pigs reared in Japan. The 30 draft genomes were 4,848,678-5,620,788 bp in length, comprising 4652-5388 coding genes and 46-75 (median: 47) tRNAs. All isolates had restriction modification-associated genes and 185-222 predicted virulence genes. Two isolates had tRNA arrays and one isolate had a clustered regularly interspaced short palindromic repeat (CRISPR) region. Our results will be useful for evaluation of the ecology of MAH by providing a foundation for genome-based epidemiological studies.
Collapse
Affiliation(s)
- Tetsuya Komatsu
- Aichi Prefectural Chuo Livestock Hygiene Service Center, Okazaki, Aichi, Japan
| | - Kenji Ohya
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu, Japan
| | - Atsushi Ota
- Data Science Center, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yukiko Nishiuchi
- Office of Academic Research and Industry-Government Collaboration, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kayoko Matsuo
- Kumamoto Prefectural Aso Public Health Center, Aso, Kumamoto, Japan
| | - Justice Opare Odoi
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu, Japan
| | - Shota Suganuma
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Kotaro Sawai
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki, Japan
| | - Akemi Hasebe
- Toyama Prefectural Meat Inspection Center, Imizu, Toyama, Japan
| | - Tetsuo Asai
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu, Japan
| | - Tokuma Yanai
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu, Japan
- Hiwa Natural History Museum, Shobara, Hiroshima, Japan
| | - Hideto Fukushi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu, Japan
| | - Takayuki Wada
- Graduate School of Human Life Science, Osaka City University, Osaka, Osaka, Japan
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Toshihiro Ito
- Laboratory of Proteome Research, Proteome Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Kentaro Arikawa
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
| | - Mikihiko Kawai
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Kyoto, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
| | - Fumito Maruyama
- Office of Academic Research and Industry-Government Collaboration, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Project Research Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
7
|
Hasan NA, Davidson RM, Epperson LE, Kammlade SM, Beagle S, Levin AR, de Moura VC, Hunkins JJ, Weakly N, Sagel SD, Martiniano SL, Salfinger M, Daley CL, Nick JA, Strong M. Population Genomics and Inference of Mycobacterium avium Complex Clusters in Cystic Fibrosis Care Centers, United States. Emerg Infect Dis 2021; 27:2836-2846. [PMID: 34670648 PMCID: PMC8544995 DOI: 10.3201/eid2711.210124] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium avium complex (MAC) species constitute most mycobacteria infections in persons with cystic fibrosis (CF) in the United States, but little is known about their genomic diversity or transmission. During 2016–2020, we performed whole-genome sequencing on 364 MAC isolates from 186 persons with CF from 42 cystic fibrosis care centers (CFCCs) across 23 states. We compared isolate genomes to identify instances of shared strains between persons with CF. Among persons with multiple isolates sequenced, 15/56 (27%) had >1 MAC strain type. Genomic comparisons revealed 18 clusters of highly similar isolates; 8 of these clusters had patients who shared CFCCs, which included 27/186 (15%) persons with CF. We provide genomic evidence of highly similar MAC strains shared among patients at the same CFCCs. Polyclonal infections and high genetic similarity between MAC isolates are consistent with multiple modes of acquisition for persons with CF to acquire MAC infections.
Collapse
|
8
|
Tateishi Y, Ozeki Y, Nishiyama A, Miki M, Maekura R, Fukushima Y, Nakajima C, Suzuki Y, Matsumoto S. Comparative genomic analysis of Mycobacterium intracellulare: implications for clinical taxonomic classification in pulmonary Mycobacterium avium-intracellulare complex disease. BMC Microbiol 2021; 21:103. [PMID: 33823816 PMCID: PMC8025370 DOI: 10.1186/s12866-021-02163-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/18/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mycobacterium intracellulare is a representative etiological agent of emerging pulmonary M. avium-intracellulare complex disease in the industrialized countries worldwide. The recent genome sequencing of clinical strains isolated from pulmonary M. avium-intracellulare complex disease has provided insight into the genomic characteristics of pathogenic mycobacteria, especially for M. avium; however, the genomic characteristics of M. intracellulare remain to be elucidated. RESULTS In this study, we performed comparative genomic analysis of 55 M. intracellulare and related strains such as M. paraintracellulare (MP), M. indicus pranii (MIP) and M. yonogonense. Based on the average nucleotide identity, the clinical M. intracellulare strains were phylogenetically grouped in two clusters: (1) the typical M. intracellulare (TMI) group, including ATCC13950 and virulent M.i.27 and M.i.198 that we previously reported, and (2) the MP-MIP group. The alignment of the genomic regions was mostly preserved between groups. Plasmids were identified between groups and subgroups, including a plasmid common among some strains of the M.i.27 subgroup. Several genomic regions including those encoding factors involved in lipid metabolism (e.g., fadE3, fadE33), transporters (e.g., mce3), and type VII secretion system (genes of ESX-2 system) were shown to be hypermutated in the clinical strains. M. intracellulare was shown to be pan-genomic at the species and subspecies levels. The mce genes were specific to particular subspecies, suggesting that these genes may be helpful in discriminating virulence phenotypes between subspecies. CONCLUSIONS Our data suggest that genomic diversity among M. intracellulare, M. paraintracellulare, M. indicus pranii and M. yonogonense remains at the subspecies or genovar levels and does not reach the species level. Genetic components such as mce genes revealed by the comparative genomic analysis could be the novel focus for further insight into the mechanism of human pathogenesis for M. intracellulare and related strains.
Collapse
Affiliation(s)
- Yoshitaka Tateishi
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Yuriko Ozeki
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Mari Miki
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Ryoji Maekura
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
- Graduate School of Health Care Sciences, Jikei Institute, Osaka, Japan
| | - Yukari Fukushima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl. Mulyorejo, Surabaya, Indonesia
| |
Collapse
|
9
|
Shin MK, Shin SJ. Genetic Involvement of Mycobacterium avium Complex in the Regulation and Manipulation of Innate Immune Functions of Host Cells. Int J Mol Sci 2021; 22:ijms22063011. [PMID: 33809463 PMCID: PMC8000623 DOI: 10.3390/ijms22063011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium avium complex (MAC), a collection of mycobacterial species representing nontuberculous mycobacteria, are characterized as ubiquitous and opportunistic pathogens. The incidence and prevalence of infectious diseases caused by MAC have been emerging globally due to complications in the treatment of MAC-pulmonary disease (PD) in humans and the lack of understating individual differences in genetic traits and pathogenesis of MAC species or subspecies. Despite genetically close one to another, mycobacteria species belonging to the MAC cause diseases to different host range along with a distinct spectrum of disease. In addition, unlike Mycobacterium tuberculosis, the underlying mechanisms for the pathogenesis of MAC infection from environmental sources of infection to their survival strategies within host cells have not been fully elucidated. In this review, we highlight unique genetic and genotypic differences in MAC species and the virulence factors conferring the ability to MAC for the tactics evading innate immune attacks of host cells based on the recent advances in genetic analysis by exemplifying M. avium subsp. hominissuis, a major representative pathogen causing MAC-PD in humans. Further understanding of the genetic link between host and MAC may contribute to enhance host anti-MAC immunity, but also provide novel therapeutic approaches targeting the pangenesis-associated genes of MAC.
Collapse
Affiliation(s)
- Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-1813
| |
Collapse
|
10
|
Differential Protein Expression in Exponential and Stationary Growth Phases of Mycobacterium avium subsp. hominissuis 104. Molecules 2021; 26:molecules26020305. [PMID: 33435591 PMCID: PMC7827551 DOI: 10.3390/molecules26020305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/03/2022] Open
Abstract
Mycobacterium avium complex (MAC) is the most common non-tuberculous mycobacterium (NTM) and causes different types of pulmonary diseases. While genomic and transcriptomic analysis of Mycobacterium avium 104 (M. avium 104) has been extensive, little is known about the proteomics of M. avium 104. We utilized proteomics technology to analyze the changes in the whole proteome of M. avium 104 during exponential and stationary growth phases. We found 12 dys-regulated proteins; the up-regulated protein hits in the stationary phase were involved in aminopeptidase, choline dehydrogenase, oxidoreductase, and ATP binding, while the down-regulated proteins in the stationary phase were acetyl-CoA acetyltransferase, universal stress protein, catalase peroxidase, and elongation factor (Tu). The differently expressed proteins between exponential and stationary phases were implicated in metabolism and stress response, pointing to the functional adaptation of the cells to the environment. Proteomic analysis in different growth phases could participate in understanding the course of infection, the mechanisms of virulence, the means of survival, and the possible targets for treatment.
Collapse
|
11
|
Zaychikova MV, Danilenko VN. The Actinobacterial mce Operon: Structure and Functions. BIOLOGY BULLETIN REVIEWS 2020. [PMCID: PMC7709480 DOI: 10.1134/s2079086420060079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- M. V. Zaychikova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia
| | - V. N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia
| |
Collapse
|
12
|
Bannantine JP, Conde C, Bayles DO, Branger M, Biet F. Genetic Diversity Among Mycobacterium avium Subspecies Revealed by Analysis of Complete Genome Sequences. Front Microbiol 2020; 11:1701. [PMID: 32849358 PMCID: PMC7426613 DOI: 10.3389/fmicb.2020.01701] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium avium comprises four subspecies that contain both human and veterinary pathogens. At the inception of this study, twenty-eight M. avium genomes had been annotated as RefSeq genomes, facilitating direct comparisons. These genomes represent strains from around the world and provided a unique opportunity to examine genome dynamics in this species. Each genome was confirmed to be classified correctly based on SNP genotyping, nucleotide identity and presence/absence of repetitive elements or other typing methods. The Mycobacterium avium subspecies paratuberculosis (Map) genome size and organization was remarkably consistent, averaging 4.8 Mb with a variance of only 29.6 kb among the 13 strains. Comparing recombination events along with the larger genome size and variance observed among Mycobacterium avium subspecies avium (Maa) and Mycobacterium avium subspecies hominissuis (Mah) strains (collectively termed non-Map) suggests horizontal gene transfer occurs in non-Map, but not in Map strains. Overall, M. avium subspecies could be divided into two major sub-divisions, with the Map type II (bovine strains) clustering tightly on one end of a phylogenetic spectrum and Mah strains clustering more loosely together on the other end. The most evolutionarily distinct Map strain was an ovine strain, designated Telford, which had >1,000 SNPs and showed large rearrangements compared to the bovine type II strains. The Telford strain clustered with Maa strains as an intermediate between Map type II and Mah. SNP analysis and genome organization analyses repeatedly demonstrated the conserved nature of Map versus the mosaic nature of non-Map M. avium strains. Finally, core and pangenomes were developed for Map and non-Map strains. A total of 80% Map genes belonged to the Map core genome, while only 40% of non-Map genes belonged to the non-Map core genome. These genomes provide a more complete and detailed comparison of these subspecies strains as well as a blueprint for how genetic diversity originated.
Collapse
Affiliation(s)
- John P Bannantine
- USDA-Agricultural Research Service, National Animal Disease Center, Ames, IA, United States
| | - Cyril Conde
- INRAE, Université de Tours, ISP, Nouzilly, France
| | - Darrell O Bayles
- USDA-Agricultural Research Service, National Animal Disease Center, Ames, IA, United States
| | | | - Franck Biet
- INRAE, Université de Tours, ISP, Nouzilly, France
| |
Collapse
|
13
|
Hemati Z, Haghkhah M, Derakhshandeh A, Chaubey KK, Singh SV. Novel recombinant Mce-truncated protein based ELISA for the diagnosis of Mycobacterium avium subsp. paratuberculosis infection in domestic livestock. PLoS One 2020; 15:e0233695. [PMID: 32479551 PMCID: PMC7263793 DOI: 10.1371/journal.pone.0233695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
Johne’s disease (JD) is an infectious wasting condition of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) in domestic livestock of every country that has been investigated. Controlling JD is problematic due to the lack of sensitive, specific, efficient, and cost-effective diagnostic tests. A major challenge in the development of diagnostics like ELISA is the selection of an ideal antigen/(s) that is pathogen-specific and allows sensitive recognition. Therefore, the purpose of this study was to identify and use Mce-truncated protein-based ELISA assay for the diagnosis of MAP infection with high sensitivity and specificity. In silico epitope prediction by epitope mapping throughout the whole length of MAP2191 protein revealed that C-terminal portion of this protein presented potential T- and B-cell epitopes. Therefore, a novel Mce-truncated protein encoded by the selected region of MAP2191 gene was expressed, purified with Ni-NTA gel matrix and confirmed by SDS PAGE and western blot. A profiling ELISA assay was developed to evaluate sera from MAP infected and non-infected ruminant species for antibodies against Mce-truncated protein to infer the immunogenicity of this protein in the host. Using this Mce protein-based ELISA, 251 goats, 53 sheep, 117 buffaloes, and 33 cattle serum samples were screened and 49.4, 51.0, 69.2, and 54.6% animals, respectively, were found positive. Comparing with i-ELISA, the new Mce-based ELISA kit showed a relatively higher specificity but suffered from slightly reduced sensitivity. Mce-based ELISA excluded apparently false positive results of i-ELISA. Mce protein was found to be antigenic and Mce-ELISA test could be employed as a diagnostic test for JD in domestic livestock in view of the a relatively higher specificity and accuracy. The antigenic potential of Mce antigen can also be exploited for the development of a new vaccine for the control of MAP infection.
Collapse
Affiliation(s)
- Zahra Hemati
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Masoud Haghkhah
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- * E-mail: ,
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Kundan Kumar Chaubey
- Animal Health Division, Central Institute for Research on Goats, Makhdoom, Farah, Mathura Uttar Pradesh, India
| | - Shoor Vir Singh
- Animal Health Division, Central Institute for Research on Goats, Makhdoom, Farah, Mathura Uttar Pradesh, India
| |
Collapse
|
14
|
Uddin R, Siraj B, Rashid M, Khan A, Ahsan Halim S, Al-Harrasi A. Genome Subtraction and Comparison for the Identification of Novel Drug Targets against Mycobacterium avium subsp. hominissuis. Pathogens 2020; 9:pathogens9050368. [PMID: 32408506 PMCID: PMC7281720 DOI: 10.3390/pathogens9050368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 01/03/2023] Open
Abstract
Mycobacterium avium complex (MAC) is a major cause of non-tuberculous pulmonary and disseminated diseases worldwide, inducing bronchiectasis, and affects HIV and immunocompromised patients. In MAC, Mycobacterium avium subsp. hominissuis is a pathogen that infects humans and mammals, and that is why it is a focus of this study. It is crucial to find essential drug targets to eradicate the infections caused by these virulent microorganisms. The application of bioinformatics and proteomics has made a significant impact on discovering unique drug targets against the deadly pathogens. One successful bioinformatics methodology is the use of in silico subtractive genomics. In this study, the aim was to identify the unique, non-host and essential protein-based drug targets of Mycobacterium avium subsp. hominissuis via in silico a subtractive genomics approach. Therefore, an in silico subtractive genomics approach was applied in which complete proteome is subtracted systematically to shortlist potential drug targets. For this, the complete dataset of proteins of Mycobacterium avium subsp. hominissuis was retrieved. The applied subtractive genomics method, which involves the homology search between the host and the pathogen to subtract the non-druggable proteins, resulted in the identification of a few prioritized potential drug targets against the three strains of M. avium subsp. Hominissuis, i.e., MAH-TH135, OCU466 and A5. In conclusion, the current study resulted in the prioritization of vital drug targets, which opens future avenues to perform structural as well as biochemical studies on predicted drug targets against M. avium subsp. hominissuis.
Collapse
Affiliation(s)
- Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (B.S.); (M.R.)
- Correspondence: (R.U.); (A.A.-H.); Tel.: +92-21-34824930 (R.U.); +96825446328 (A.A.-H.)
| | - Bushra Siraj
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (B.S.); (M.R.)
| | - Muhammad Rashid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (B.S.); (M.R.)
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman; (A.K.); (S.A.H.)
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman; (A.K.); (S.A.H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman; (A.K.); (S.A.H.)
- Correspondence: (R.U.); (A.A.-H.); Tel.: +92-21-34824930 (R.U.); +96825446328 (A.A.-H.)
| |
Collapse
|
15
|
Fiuza TS, Lima JPMS, de Souza GA. EpitoCore: Mining Conserved Epitope Vaccine Candidates in the Core Proteome of Multiple Bacteria Strains. Front Immunol 2020; 11:816. [PMID: 32431712 PMCID: PMC7214623 DOI: 10.3389/fimmu.2020.00816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 12/30/2022] Open
Abstract
In reverse vaccinology approaches, complete proteomes of bacteria are submitted to multiple computational prediction steps in order to filter proteins that are possible vaccine candidates. Most available tools perform such analysis only in a single strain, or a very limited number of strains. But the vast amount of genomic data had shown that most bacteria contain pangenomes, i.e., their genomic information contains core, conserved genes, and random accessory genes specific to each strain. Therefore, in reverse vaccinology methods it is of the utmost importance to define core proteins and core epitopes. EpitoCore is a decision-tree pipeline developed to fulfill that need. It provides surfaceome prediction of proteins from related strains, defines core proteins within those, calculate their immunogenicity, predicts epitopes for a given set of MHC alleles defined by the user, and then reports if epitopes are located extracellularly and if they are conserved among the core homologs. Pipeline performance is illustrated by mining peptide vaccine candidates in Mycobacterium avium hominissuis strains. From a total proteome of ~4,800 proteins per strain, EpitoCore predicted 103 highly immunogenic core homologs located at cell surface, many of those related to virulence and drug resistance. Conserved epitopes identified among these homologs allows the users to define sets of peptides with potential to immunize the largest coverage of tested HLA alleles using peptide-based vaccines. Therefore, EpitoCore is able to provide automated identification of conserved epitopes in bacterial pangenomic datasets.
Collapse
Affiliation(s)
- Tayna S. Fiuza
- Bioinformatics Multidisciplinary Environment, Universidade Federal do Rio Grande Do Norte-UFRN, Natal, Brazil
| | - João P. M. S. Lima
- Bioinformatics Multidisciplinary Environment, Universidade Federal do Rio Grande Do Norte-UFRN, Natal, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte-UFRN, Natal, Brazil
| | - Gustavo A. de Souza
- Bioinformatics Multidisciplinary Environment, Universidade Federal do Rio Grande Do Norte-UFRN, Natal, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte-UFRN, Natal, Brazil
| |
Collapse
|
16
|
Hemati Z, Derakhshandeh A, Haghkhah M, Chaubey KK, Gupta S, Singh M, Singh SV, Dhama K. Mammalian cell entry operons; novel and major subset candidates for diagnostics with special reference to Mycobacterium avium subspecies paratuberculosis infection. Vet Q 2020; 39:65-75. [PMID: 31282842 PMCID: PMC6830979 DOI: 10.1080/01652176.2019.1641764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian cell entry (mce) genes are the components of the mce operon and play a vital role in the entry of Mycobacteria into the mammalian cell and their survival within phagocytes and epithelial cells. Mce operons are present in the DNA of Mycobacteria and translate proteins associated with the invasion and long-term existence of these pathogens in macrophages. The exact mechanism of action of mce genes and their functions are not clear yet. However, with the loss of these genes Mycobacteria lose their pathogenicity. Mycobacterium avium subspecies paratuberculosis (MAP), the etiological agent of Johne’s disease, is the cause of chronic enteritis of animals and significantly affects economic impact on the livestock industry. Since MAP is not inactivated during pasteurization, human population is continuously at the risk of getting exposed to MAP infection through consumption of dairy products. There is need for new candidate genes and/or proteins for developing improved diagnostic assays for the diagnosis of MAP infection and for the control of disease. Increasing evidences showed that expression of mce genes is important for the virulence of MAP. Whole-genome DNA microarray representing MAP revealed that there are 14 large sequence polymorphisms with LSPP12 being the most widely conserved MAP-specific region that included a cluster of six homologs of mce-family involved in lipid metabolism. On the other hand, LSP11 comprising part of mce2 operon was absent in MAP isolates. This review summarizes the advancement of research on mce genes of Mycobacteria with special reference to the MAP infection.
Collapse
Affiliation(s)
- Zahra Hemati
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Masoud Haghkhah
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Kundan Kumar Chaubey
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Manju Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Shoorvir V Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Kuldeep Dhama
- Department of Pathology, Indian Veterinary Research Institute , Bareilly , India
| |
Collapse
|
17
|
Seto S, Morimoto K, Yoshida T, Hiramatsu M, Hijikata M, Nagata T, Kikuchi F, Shiraishi Y, Kurashima A, Keicho N. Proteomic Profiling Reveals the Architecture of Granulomatous Lesions Caused by Tuberculosis and Mycobacterium avium Complex Lung Disease. Front Microbiol 2020; 10:3081. [PMID: 32010116 PMCID: PMC6978656 DOI: 10.3389/fmicb.2019.03081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis (TB) and Mycobacterium avium complex lung disease (MAC-LD) are both characterized pathologically by granuloma lesions, which are typically composed of a necrotic caseum at the center surrounded by fibrotic cells and lymphocytes. Although the histological characterization of TB and MAC-LD granulomas has been well-documented, their molecular signatures have not been fully evaluated. In this research we applied mass spectrometry-based proteomics combined with laser microdissection to investigate the unique protein markers in human mycobacterial granulomatous lesions. Comparing the protein abundance between caseous and cellular sub-compartments of mycobacterial granulomas, we found distinct differences. Proteins involved in cellular metabolism in transcription and translation were abundant in cellular regions, while in caseous regions proteins related to antimicrobial response accumulated. To investigate the determinants of their heterogeneity, we compared the protein abundance in caseous regions between TB and MAC-LD granulomas. We found that several proteins were significantly abundant in the MAC-LD caseum of which proteomic profiles were different from those of the TB caseum. Immunohistochemistry demonstrated that one of these proteins, Angiogenin, specifically localized to the caseous regions of selected MAC-LD granulomas. We also detected peptides derived from mycobacterial proteins in the granulomas of both diseases. This study provides new insights into the architecture of granulomatous lesions in TB and MAC-LD.
Collapse
Affiliation(s)
- Shintaro Seto
- Department of Pathophysiology and Host Defense, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Tsutomu Yoshida
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Miyako Hiramatsu
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Toshi Nagata
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Fumihito Kikuchi
- Department of Pathology, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yuji Shiraishi
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Atsuyuki Kurashima
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Naoto Keicho
- Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
18
|
Daniel-Wayman S, Abate G, Barber DL, Bermudez LE, Coler RN, Cynamon MH, Daley CL, Davidson RM, Dick T, Floto RA, Henkle E, Holland SM, Jackson M, Lee RE, Nuermberger EL, Olivier KN, Ordway DJ, Prevots DR, Sacchettini JC, Salfinger M, Sassetti CM, Sizemore CF, Winthrop KL, Zelazny AM. Advancing Translational Science for Pulmonary Nontuberculous Mycobacterial Infections. A Road Map for Research. Am J Respir Crit Care Med 2020; 199:947-951. [PMID: 30428263 DOI: 10.1164/rccm.201807-1273pp] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Shelby Daniel-Wayman
- 1 Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases
| | - Getahun Abate
- 2 Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri
| | - Daniel L Barber
- 3 T Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases
| | - Luiz E Bermudez
- 4 Department of Biomedical Sciences and.,5 Department of Microbiology, Oregon State University, Corvallis, Oregon
| | - Rhea N Coler
- 6 Infectious Disease Research Institute, Seattle, Washington.,7 Department of Global Health, University of Washington, Seattle, Washington
| | - Michael H Cynamon
- 8 Veterans Administration Medical Center, Syracuse, New York.,9 State University of New York Upstate Medical Center, Syracuse, New York
| | - Charles L Daley
- 10 Division of Mycobacterial and Respiratory Infections, Department of Medicine
| | | | - Thomas Dick
- 12 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,13 Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - R Andres Floto
- 14 Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Steven M Holland
- 16 Division of Intramural Research, National Institute of Allergy and Infectious Diseases
| | - Mary Jackson
- 17 Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Richard E Lee
- 18 Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Eric L Nuermberger
- 19 Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,20 Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kenneth N Olivier
- 21 Laboratory of Chronic Airway Infection, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, and
| | - Diane J Ordway
- 17 Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - D Rebecca Prevots
- 1 Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases
| | - James C Sacchettini
- 22 Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Max Salfinger
- 23 Mycobacteriology and Pharmacokinetics Laboratories, National Jewish Health, Denver, Colorado.,24 College of Public Health, University of South Florida, Tampa, Florida
| | - Christopher M Sassetti
- 25 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts; and
| | - Christine F Sizemore
- 26 Tuberculosis, Leprosy, and other Mycobacterial Diseases Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Kevin L Winthrop
- 15 OHSU-PSU School of Public Health and.,27 Division of Infectious Disease, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Adrian M Zelazny
- 28 Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Global Assessment of Mycobacterium avium subsp. hominissuis Genetic Requirement for Growth and Virulence. mSystems 2019; 4:4/6/e00402-19. [PMID: 31822597 PMCID: PMC6906737 DOI: 10.1128/msystems.00402-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacterial infections caused by the opportunistic pathogen Mycobacterium avium subsp. hominissuis (MAH) are currently receiving renewed attention due to increased incidence combined with difficult treatment. Insights into the disease-causing mechanisms of this species have been hampered by difficulties in genetic manipulation of the bacteria. Here, we identified and sequenced a highly transformable, virulent MAH clinical isolate susceptible to high-density transposon mutagenesis, facilitating global gene disruption and subsequent investigation of MAH gene function. By transposon insertion sequencing (TnSeq) of this strain, we defined the MAH genome-wide genetic requirement for virulence and in vitro growth and organized ∼3,500 identified transposon mutants for hypothesis-driven research. The majority (96%) of the genes we identified as essential for MAH in vitro had a mutual ortholog in the related and highly virulent Mycobacterium tuberculosis (Mtb). However, passaging our library through a mouse model of infection revealed a substantial number (54% of total hits) of novel virulence genes. More than 97% of the MAH virulence genes had a mutual ortholog in Mtb Finally, we validated novel genes required for successful MAH infection: one encoding a probable major facilitator superfamily (MFS) transporter and another encoding a hypothetical protein located in the immediate vicinity of six other identified virulence genes. In summary, we provide new, fundamental insights into the underlying genetic requirement of MAH for growth and host infection.IMPORTANCE Pulmonary disease caused by nontuberculous mycobacteria is increasing worldwide. The majority of these infections are caused by the Mycobacterium avium complex (MAC), whereof >90% are due to Mycobacterium avium subsp. hominissuis (MAH). Treatment of MAH infections is currently difficult, with a combination of antibiotics given for at least 12 months. To control MAH by improved therapy, prevention, and diagnostics, we need to understand the underlying mechanisms of infection. Here, we provide crucial insights into MAH's global genetic requirements for growth and infection. We find that the vast majority of genes required for MAH growth and virulence (96% and 97%, respectively) have mutual orthologs in the tuberculosis-causing pathogen M. tuberculosis (Mtb). However, we also find growth and virulence genes specific to MAC species. Finally, we validate novel mycobacterial virulence factors that might serve as future drug targets for MAH-specific treatment or translate to broader treatment of related mycobacterial diseases.
Collapse
|
20
|
Yano H, Suzuki H, Maruyama F, Iwamoto T. The recombination-cold region as an epidemiological marker of recombinogenic opportunistic pathogen Mycobacterium avium. BMC Genomics 2019; 20:752. [PMID: 31623552 PMCID: PMC6798384 DOI: 10.1186/s12864-019-6078-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 09/04/2019] [Indexed: 11/10/2022] Open
Abstract
Background The rapid identification of lineage remains a challenge in the genotyping of clinical isolates of recombinogenic pathogens. The chromosome of Mycobacterium avium subsp. hominissuis (MAH), an agent of Mycobacterium avium complex (MAC) lung disease, is often mosaic and is composed of chromosomal segments originating from different lineages. This makes it difficult to infer the MAH lineage in a simple experimental set-up. To overcome this difficulty, we sought to identify chromosomal marker genes containing lineage-specific alleles by genome data mining. Results We conducted genetic population structure analysis, phylogenetic analysis, and a survey of historical recombination using data from 125 global MAH isolates. Six MAH lineages (EA1, EA2, SC1, SC2, SC3, and SC4) were identified in the current dataset. One P-450 gene (locus_tag MAH_0788/MAV_0940) in the recombination-cold region was found to have multiple alleles that could discriminate five lineages. By combining the information about allele type from one additional gene, the six MAH lineages as well as other M. avium subspecies were distinguishable. A recombination-cold region of 116 kb contains an insertion hotspot and is flanked by a mammalian cell-entry protein operon where allelic variants have previously been reported to occur. Hence, we speculate that the acquisition of lineage- or strain-specific insertions has introduced homology breaks in the chromosome, thereby reducing the chance of interlineage recombination. Conclusions The allele types of the newly identified marker genes can be used to predict major lineages of M. avium. The single nucleotide polymorphism typing approach targeting multiallelic loci in recombination-cold regions will facilitate the epidemiological study of MAC, and may also be useful for equivalent studies of other nontuberculous mycobacteria potentially carrying mosaic genomes.
Collapse
Affiliation(s)
- Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Japan.
| | - Haruo Suzuki
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Fumito Maruyama
- Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, Hiroshima, Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Japan.
| |
Collapse
|
21
|
Genetic Variation/Evolution and Differential Host Responses Resulting from In-Patient Adaptation of Mycobacterium avium. Infect Immun 2019; 87:IAI.00323-18. [PMID: 30642899 PMCID: PMC6434124 DOI: 10.1128/iai.00323-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
Members of the Mycobacterium avium complex (MAC) are characterized as nontuberculosis mycobacteria and are pathogenic mainly in immunocompromised individuals. MAC strains show a wide genetic variability, and there is growing evidence suggesting that genetic differences may contribute to a varied immune response that may impact the infection outcome. Members of the Mycobacterium avium complex (MAC) are characterized as nontuberculosis mycobacteria and are pathogenic mainly in immunocompromised individuals. MAC strains show a wide genetic variability, and there is growing evidence suggesting that genetic differences may contribute to a varied immune response that may impact the infection outcome. The current study aimed to characterize the genomic changes within M.avium isolates collected from single patients over time and test the host immune responses to these clinical isolates. Pulsed-field gel electrophoresis and whole-genome sequencing were performed on 40 MAC isolates isolated from 15 patients at the Department of Medical Microbiology at St. Olavs Hospital in Trondheim, Norway. Isolates from patients (patients 4, 9, and 13) for whom more than two isolates were available were selected for further analysis. These isolates exhibited extensive sequence variation in the form of single-nucleotide polymorphisms (SNPs), suggesting that M. avium accumulates mutations at higher rates during persistent infections than other mycobacteria. Infection of murine macrophages and mice with sequential isolates from patients showed a tendency toward increased persistence and the downregulation of inflammatory cytokines by host-adapted M. avium strains. The study revealed the rapid genetic evolution of M. avium in chronically infected patients, accompanied by changes in the virulence properties of the sequential mycobacterial isolates.
Collapse
|
22
|
Yano H, Iwamoto T, Nishiuchi Y, Nakajima C, Starkova DA, Mokrousov I, Narvskaya O, Yoshida S, Arikawa K, Nakanishi N, Osaki K, Nakagawa I, Ato M, Suzuki Y, Maruyama F. Population Structure and Local Adaptation of MAC Lung Disease Agent Mycobacterium avium subsp. hominissuis. Genome Biol Evol 2018; 9:2403-2417. [PMID: 28957464 PMCID: PMC5622343 DOI: 10.1093/gbe/evx183] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is one of the most common nontuberculous mycobacterial species responsible for chronic lung disease in humans. Despite increasing worldwide incidence, little is known about the genetic mechanisms behind the population evolution of MAH. To elucidate the local adaptation mechanisms of MAH, we assessed genetic population structure, the mutual homologous recombination, and gene content for 36 global MAH isolates, including 12 Japanese isolates sequenced in the present study. We identified five major MAH lineages and found that extensive mutual homologous recombination occurs among them. Two lineages (MahEastAsia1 and MahEastAsia2) were predominant in the Japanese isolates. We identified alleles unique to these two East Asian lineages in the loci responsible for trehalose biosynthesis (treS and mak) and in one mammalian cell entry operon, which presumably originated from as yet undiscovered mycobacterial lineages. Several genes and alleles unique to East Asian strains were located in the fragments introduced via recombination between East Asian lineages, suggesting implication of recombination in local adaptation. These patterns of MAH genomes are consistent with the signature of distribution conjugative transfer, a mode of sexual reproduction reported for other mycobacterial species.
Collapse
Affiliation(s)
- Hirokazu Yano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Japan
| | - Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Medical School, Osaka, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo, Japan
| | | | - Igor Mokrousov
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Olga Narvskaya
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Kentaro Arikawa
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Japan
| | - Noriko Nakanishi
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Japan
| | - Ken Osaki
- TOMY Digital Biology Co. Ltd, Taito-Ku, Tokyo, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-Ku, Tokyo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo, Japan
| | - Fumito Maruyama
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Antibiotic Susceptibility and Genotyping of Mycobacterium avium Strains That Cause Pulmonary and Disseminated Infection. Antimicrob Agents Chemother 2018; 62:AAC.02035-17. [PMID: 29378709 DOI: 10.1128/aac.02035-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/20/2018] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium avium subsp. hominissuis mainly causes disseminated infection in immunocompromised hosts, such as individuals with human immunodeficiency virus (HIV) infection, and pulmonary infection in immunocompetent hosts. However, many aspects of the different types of M. avium subsp. hominissuis infection remain unclear. We examined the antibiotic susceptibilities and genotypes of M. avium subsp. hominissuis isolates from different hosts by performing drug susceptibility testing using eight antibiotics (clarithromycin, rifampin, ethambutol, streptomycin, kanamycin, amikacin, ethionamide, and levofloxacin) and variable-number tandem-repeat (VNTR) typing analysis for 46 isolates from the sputa of HIV-negative patients with pulmonary M. avium subsp. hominissuis disease without previous antibiotic treatment and 30 isolates from the blood of HIV-positive patients with disseminated M. avium subsp. hominissuis disease. Interestingly, isolates from pulmonary M. avium subsp. hominissuis disease patients were more resistant to seven of the eight drugs, with the exception being rifampin, than isolates from HIV-positive patients. Moreover, VNTR typing analysis showed that the strains examined in this study were roughly classified into three clusters, and the genetic distance from reference strain 104 for isolates from pulmonary M. avium subsp. hominissuis disease patients was statistically significantly different from that for isolates from HIV-positive patients (P = 0.0018), suggesting that M. avium subsp. hominissuis strains that cause pulmonary and disseminated disease have genetically distinct features. Significant differences in susceptibility to seven of the eight drugs, with the exception being ethambutol, were noted among the three clusters. Collectively, these results suggest that an association between the type of M. avium subsp. hominissuis infection, drug susceptibility, and the VNTR genotype and the properties of M. avium subsp. hominissuis strains associated with the development of pulmonary disease are involved in higher levels of antibiotic resistance.
Collapse
|
24
|
Jeffrey B, Rose SJ, Gilbert K, Lewis M, Bermudez LE. Comparative analysis of the genomes of clinical isolates of Mycobacterium avium subsp. hominissuis regarding virulence-related genes. J Med Microbiol 2017; 66:1063-1075. [PMID: 28671535 DOI: 10.1099/jmm.0.000507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Mycobacterium avium subsp. hominissuis is a member of the M. avium complex, a heterogeneous group of bacteria that cause lung infection in immunocompetent patients or disseminated infection in patients with immunosuppression. The bacteria belonging to this complex have variable virulence, depending on the strain considered, and therefore a representative of the most common clinical phenotype was analysed. METHODOLOGY The genomic sequences of four M. avium subsp. hominissuis isolates obtained from clinical specimens were completed. Mav101, Mav100 and MavA5 were isolated from the blood of patients with AIDS. MavA5 was disseminated from the lung, while Mav3388 was isolated from the lungs of a patient with chronic lung disease. The sequences were annotated using the published Mav104 genome as a blueprint. Functional and virulence analyses of the sequences were carried out. Mice studies comparing the virulence of the strains were performed. RESULTS Findings showed that while Mav101 was very similar to Mav104, there were numerous differences between Mav104 and the remaining strains at nucleotide and predicted protein levels. The presence of genes associated with biofilm formation and several known virulence-related genes were sometimes differentially present among the isolates, suggesting overlapping functions by different genetic determinants. CONCLUSIONS The sequences provided important information about M. avium heterogenicity and evolution as a pathogen. The limitation is the lack of understanding on possible overlapping functions of genes/proteins.
Collapse
Affiliation(s)
- Brendan Jeffrey
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, Oregon, USA
| | - Sasha J Rose
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, Oregon, USA.,Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - Kerrigan Gilbert
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, Oregon, USA
| | - Matthew Lewis
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, Oregon, USA.,Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - Luiz E Bermudez
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, Oregon, USA
| |
Collapse
|
25
|
Complete Genome Sequence of Mycobacterium avium subsp. hominissuis Strain H87 Isolated from an Indoor Water Sample. GENOME ANNOUNCEMENTS 2017; 5:5/16/e00189-17. [PMID: 28428297 PMCID: PMC5399256 DOI: 10.1128/genomea.00189-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacterium avium subsp. hominissuis is an environmentally acquired bacterium known to cause pulmonary and soft tissue infections, lymphadenitis, and disseminated disease in humans. We report here the complete genome sequence of strain H87, isolated from an indoor water sample, as a single circular chromosome of 5,626,623 bp with a G+C content of 68.8%.
Collapse
|
26
|
Bruffaerts N, Vluggen C, Roupie V, Duytschaever L, Van den Poel C, Denoël J, Wattiez R, Letesson JJ, Fretin D, Rigouts L, Chapeira O, Mathys V, Saegerman C, Huygen K. Virulence and immunogenicity of genetically defined human and porcine isolates of M. avium subsp. hominissuis in an experimental mouse infection. PLoS One 2017; 12:e0171895. [PMID: 28182785 PMCID: PMC5300754 DOI: 10.1371/journal.pone.0171895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/27/2017] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium avium subsp. hominissuis (Mah) represents a health concern for humans and to a lesser extent for pigs, but its zoonotic potential remains elusive. Using multispacer sequence typing (MST) we previously identified 49 different genotypes of Mah among Belgian clinical and porcine isolates, with 5 MSTs shared by both hosts. Using experimental intranasal infection of BALB/c mice, we compared the virulence and immunogenicity of porcine and clinical human isolates with shared genotype or with a genotype only found in humans or pigs. Bacterial replication was monitored for 20 weeks in lungs, spleen and liver and mycobacteria specific spleen cell IFN-γ, IL-10 and IL-17 production as well as serum antibody responses were analyzed. Isolates varied in virulence, with human and porcine isolates sharing MST22 genotype showing a thousand fold higher bacterial replication in lungs and more dissemination to spleen and liver than the human and porcine MST91 isolates. Virulent MST22 type was also associated with progressive suppression of IFN-γ and IL-17 responses, and increased IL-10 production. Whole genome sequencing of the two virulent isolates with MST22 genotype and two avirulent isolates of genotype MST91 and comparison with two well-studied M. avium subsp. hominissuis reference strains i.e. Mah 104 and Mah TH135, identified in the two MST22 isolates nine specific virulence factors of the mammalian cell entry family, that were identical with Mah 104 strain. Despite the obvious limitations of the mouse model, a striking link of virulence and identity at the genome level of porcine and human isolates with the same multisequence type, for which no correlation of place of residence (humans) or farm of origin (pigs) was observed, seems to point to the existence in the environment of certain genotypes of Mah which may be more infectious both for humans and pigs than other genotypes.
Collapse
Affiliation(s)
- Nicolas Bruffaerts
- Service Immunology, Operational Direction Communicable and infectious Diseases, Scientific Institute of Public Health, Brussels, Belgium
- * E-mail: (NB); (KH)
| | - Christelle Vluggen
- Service Bacterial diseases, Operational Direction Communicable and infectious Diseases, Scientific Institute of Public Health, Brussels, Belgium
| | - Virginie Roupie
- Unit Bacterial Zoonoses of livestock, Operational Direction Bacterial Diseases, Veterinary and Agrochemical Research Centre, Brussels, Belgium
| | - Lucille Duytschaever
- Unit Bacterial Zoonoses of livestock, Operational Direction Bacterial Diseases, Veterinary and Agrochemical Research Centre, Brussels, Belgium
- Research Unit in Epidemiology and Risk Analysis applied to Veterinary Sciences, Fundamental and Applied Research for Animal and Health, Université of Liège, Liège, Belgium
| | - Christophe Van den Poel
- Service Immunology, Operational Direction Communicable and infectious Diseases, Scientific Institute of Public Health, Brussels, Belgium
| | - Joseph Denoël
- Research Unit in Epidemiology and Risk Analysis applied to Veterinary Sciences, Fundamental and Applied Research for Animal and Health, Université of Liège, Liège, Belgium
| | - Ruddy Wattiez
- Service Protéomique et Microbiologie, Université de Mons, Mons, Belgium
| | - Jean-Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes, Université de Namur, Namur, Belgium
| | - David Fretin
- Unit Bacterial Zoonoses of livestock, Operational Direction Bacterial Diseases, Veterinary and Agrochemical Research Centre, Brussels, Belgium
| | - Leen Rigouts
- Department Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Unit Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Vanessa Mathys
- Service Bacterial diseases, Operational Direction Communicable and infectious Diseases, Scientific Institute of Public Health, Brussels, Belgium
| | - Claude Saegerman
- Research Unit in Epidemiology and Risk Analysis applied to Veterinary Sciences, Fundamental and Applied Research for Animal and Health, Université of Liège, Liège, Belgium
| | - Kris Huygen
- Service Immunology, Operational Direction Communicable and infectious Diseases, Scientific Institute of Public Health, Brussels, Belgium
- * E-mail: (NB); (KH)
| |
Collapse
|
27
|
Uchiya KI, Tomida S, Nakagawa T, Asahi S, Nikai T, Ogawa K. Comparative genome analyses of Mycobacterium avium reveal genomic features of its subspecies and strains that cause progression of pulmonary disease. Sci Rep 2017; 7:39750. [PMID: 28045086 PMCID: PMC5206733 DOI: 10.1038/srep39750] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022] Open
Abstract
Pulmonary disease caused by nontuberculous mycobacteria (NTM) is increasing worldwide. Mycobacterium avium is the most clinically significant NTM species in humans and animals, and comprises four subspecies: M. avium subsp. avium (MAA), M. avium subsp. silvaticum (MAS), M. avium subsp. paratuberculosis (MAP), and M. avium subsp. hominissuis (MAH). To improve our understanding of the genetic landscape and diversity of M. avium and its role in disease, we performed a comparative genome analysis of 79 M. avium strains. Our analysis demonstrated that MAH is an open pan-genome species. Phylogenetic analysis based on single nucleotide variants showed that MAH had the highest degree of sequence variability among the subspecies, and MAH strains isolated in Japan and those isolated abroad possessed distinct phylogenetic features. Furthermore, MAP strains, MAS and MAA strains isolated from birds, and many MAH strains that cause the progression of pulmonary disease were grouped in each specific cluster. Comparative genome analysis revealed the presence of genetic elements specific to each lineage, which are thought to be acquired via horizontal gene transfer during the evolutionary process, and identified potential genetic determinants accounting for the pathogenic and host range characteristics of M. avium.
Collapse
Affiliation(s)
- Kei-Ichi Uchiya
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Shuta Tomida
- Department of Biobank, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Taku Nakagawa
- Department of Clinical Research, National Hospital Organization, Higashinagoya National Hospital, Nagoya 465-8620, Japan.,Department of Respiratory Medicine, National Hospital Organization, Higashinagoya National Hospital, Nagoya 465-8620, Japan
| | - Shoki Asahi
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Toshiaki Nikai
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Kenji Ogawa
- Department of Clinical Research, National Hospital Organization, Higashinagoya National Hospital, Nagoya 465-8620, Japan.,Department of Respiratory Medicine, National Hospital Organization, Higashinagoya National Hospital, Nagoya 465-8620, Japan
| |
Collapse
|
28
|
Sanchini A, Dematheis F, Semmler T, Lewin A. Metabolic phenotype of clinical and environmental Mycobacterium avium subsp. hominissuis isolates. PeerJ 2017; 5:e2833. [PMID: 28070460 PMCID: PMC5214758 DOI: 10.7717/peerj.2833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/27/2016] [Indexed: 11/29/2022] Open
Abstract
Background Mycobacterium avium subsp. hominissuis (MAH) is an emerging opportunistic human pathogen. It can cause pulmonary infections, lymphadenitis and disseminated infections in immuno-compromised patients. In addition, MAH is widespread in the environment, since it has been isolated from water, soil or dust. In recent years, knowledge on MAH at the molecular level has increased substantially. In contrast, knowledge of the MAH metabolic phenotypes remains limited. Methods In this study, for the first time we analyzed the metabolic substrate utilization of ten MAH isolates, five from a clinical source and five from an environmental source. We used BIOLOG Phenotype MicroarrayTM technology for the analysis. This technology permits the rapid and global analysis of metabolic phenotypes. Results The ten MAH isolates tested showed different metabolic patterns pointing to high intra-species diversity. Our MAH isolates preferred to use fatty acids such as Tween, caproic, butyric and propionic acid as a carbon source, and L-cysteine as a nitrogen source. Environmental MAH isolates resulted in being more metabolically active than clinical isolates, since the former metabolized more strongly butyric acid (p = 0.0209) and propionic acid (p = 0.00307). Discussion Our study provides new insight into the metabolism of MAH. Understanding how bacteria utilize substrates during infection might help the developing of strategies to fight such infections.
Collapse
Affiliation(s)
- Andrea Sanchini
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute , Berlin , Germany
| | - Flavia Dematheis
- Institute of Microbiology and Epizootics, Free University Berlin , Berlin , Germany
| | - Torsten Semmler
- NG 1 Microbial Genomics, Robert Koch Institute , Berlin , Germany
| | - Astrid Lewin
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute , Berlin , Germany
| |
Collapse
|
29
|
Vluggen C, Soetaert K, Duytschaever L, Denoël J, Fauville-Dufaux M, Smeets F, Bruffaerts N, Huygen K, Fretin D, Rigouts L, Saegerman C, Mathys V. Genotyping and strain distribution of Mycobacterium avium subspecies hominissuis isolated from humans and pigs in Belgium, 2011-2013. ACTA ACUST UNITED AC 2016; 21:30111. [PMID: 26835872 DOI: 10.2807/1560-7917.es.2016.21.3.30111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/05/2015] [Indexed: 11/20/2022]
Abstract
Mycobacterium avium represents a health concern for both humans and pigs. The characterisation of its subspecies is an important step improving the understanding of the epidemiology and the control of this pathogen. Ninety-two human M. avium strains were selected for a retrospective study. Subspecies determination by rpoB sequencing and IS1245/IS901 analysis showed that 98.9% of Belgian human M. avium strains belong to the subspecies hominissuis (MAH). Some of these MAH strains present particular IS1245/IS901 profiles (absence of IS1245 and false IS901 detection provoked by the presence of ISMav6). In addition, 54 MAH strains isolated from submandibular lymph nodes of Belgian pigs with lymphadenitis were included in this study. Genotyping of human and porcine isolates was performed using multispacer sequence typing (MST). In total, 49 different MST types were identified among pig (n = 11) and human (n = 43) MA isolates, with only five shared by both hosts. Among these MST types, 34 were newly identified. Our findings demonstrate the extensive genetic diversity among MAH isolates. Some genotypes were more prevalent in human or pigs but no correlation was observed between MST type and place of residence or the farm of origin for human and porcine isolates respectively, suggesting an environmental source of infection.
Collapse
Affiliation(s)
- Christelle Vluggen
- Bacterial Diseases Service, Operational Direction Communicable and Infectious Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kalvisa A, Tsirogiannis C, Silamikelis I, Skenders G, Broka L, Zirnitis A, Jansone I, Ranka R. MIRU-VNTR genotype diversity and indications of homoplasy in M. avium strains isolated from humans and slaughter pigs in Latvia. INFECTION GENETICS AND EVOLUTION 2016; 43:15-21. [PMID: 27178993 DOI: 10.1016/j.meegid.2016.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 10/21/2022]
Abstract
Diseases which are caused by non-tuberculous mycobacteria (NTM) are an increasing problem in the developed countries. In Latvia, one of the most clinically important members of NTM is Mycobacterium avium (M. avium), an opportunistic pathogen which has been isolated from several lung disease patients and tissue samples of slaughter pigs. This study was designed to characterize the genetic diversity of the M. avium isolates in Latvia and to compare the distribution of genotypic patterns among humans and pigs. Eleven (Hall and Salipante, 2010) clinical M. avium samples, isolated from patients of Center of Tuberculosis and Lung Diseases (years 2003-2010), and 32 isolates from pig necrotic mesenterial lymph nodes in different regions (years 2003-2007) were analyzed. The majority (42 of 43) of samples were identified as M. avium subsp. hominissuis; one porcine isolate belonged to M. avium subsp. avium. MIRU-VNTR genotyping revealed 13 distinct genotypes, among which nine genotype patterns, including M. avium subsp. avium isolate, were newly identified. IS1245 RFLP fingerprinting of 25 M. avium subsp. hominissuis samples yielded 17 different IS1245 RFLP patterns, allowing an efficient discrimination of isolates. Clusters of identical RFLP profiles were observed within host species, geographical locations and time frame of several years. Additional in silico analysis on simulated MIRU-VNTR genotype population datasets showed that the MIRU-VNTR pattern similarity could partly arise due to probabilistic increase of acquiring homoplasy among subpopulations, thus the similar MIRU-VNTR profiles of M. avium strains even in close geographical proximity should be interpreted with caution.
Collapse
Affiliation(s)
- Adrija Kalvisa
- Latvian Biomedical Research and Study Centre (LV BMC), Riga, Latvia; Riga Stradins University (RSU), Riga, Latvia
| | | | | | - Girts Skenders
- Riga East University Hospital, Tuberculosis and Lung Diseases Center, Latvia
| | - Lonija Broka
- Riga East University Hospital, Tuberculosis and Lung Diseases Center, Latvia
| | - Agris Zirnitis
- Department of Veterinary Medicine, Latvia University of Agriculture, Jelgava, Latvia
| | - Inta Jansone
- Latvian Biomedical Research and Study Centre (LV BMC), Riga, Latvia
| | - Renate Ranka
- Latvian Biomedical Research and Study Centre (LV BMC), Riga, Latvia; Riga Stradins University (RSU), Riga, Latvia.
| |
Collapse
|
31
|
Timms VJ, Daskalopoulos G, Mitchell HM, Neilan BA. The Association of Mycobacterium avium subsp. paratuberculosis with Inflammatory Bowel Disease. PLoS One 2016; 11:e0148731. [PMID: 26849125 PMCID: PMC4746060 DOI: 10.1371/journal.pone.0148731] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022] Open
Abstract
The association of Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) with Crohn’s disease is a controversial issue. M. paratuberculosis is detected by amplifying the IS900 gene, as microbial culture is unreliable from humans. We determined the presence of M. paratuberculosis in patients with Crohn’s disease (CD) (n = 22), ulcerative colitis (UC) (n = 20), aphthous ulcers (n = 21) and controls (n = 42) using PCR assays validated on bovine tissue. Culture from human tissue was also performed. M. paratuberculosis prevalence in the CD and UC groups was compared to the prevalence in age and sex matched non-inflammatory bowel disease controls. Patients and controls were determined to be M. paratuberculosis positive if all three PCR assays were positive. A significant association was found between M. paratuberculosis and Crohn’s disease (p = 0.02) that was not related to age, gender, place of birth, smoking or alcohol intake. No significant association was detected between M. paratuberculosis and UC or aphthous ulcers; however, one M. paratuberculosis isolate was successfully cultured from a patient with UC. We report the resistance of this isolate to ethambutol, rifampin, clofazamine and streptomycin. Interestingly this isolate could not only survive but could grow slowly at 5°C. We demonstrate a significant association between M. paratuberculosis and CD using multiple pre-validated PCR assays and that M. paratuberculosis can be isolated from patients with UC.
Collapse
Affiliation(s)
- Verlaine J. Timms
- School of Biotechnology and Biomolecular Sciences, Level 3, Biosciences Building, University of New South Wales, Sydney, Australia
| | - George Daskalopoulos
- Inner West Endoscopy Centre, Endoscopy Services Pty. Ltd., Marrickville, Sydney, Australia
| | - Hazel M. Mitchell
- School of Biotechnology and Biomolecular Sciences, Level 3, Biosciences Building, University of New South Wales, Sydney, Australia
| | - Brett A. Neilan
- School of Biotechnology and Biomolecular Sciences, Level 3, Biosciences Building, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
32
|
Timms VJ, Hassan KA, Mitchell HM, Neilan BA. Comparative genomics between human and animal associated subspecies of the Mycobacterium avium complex: a basis for pathogenicity. BMC Genomics 2015; 16:695. [PMID: 26370227 PMCID: PMC4570654 DOI: 10.1186/s12864-015-1889-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/01/2015] [Indexed: 12/25/2022] Open
Abstract
Background A human isolate of Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis 43525) was sequenced and compared genomically to other mycobacterial pathogens. M. paratuberculosis 43525 was recently isolated from a patient with ulcerative colitis and belongs to the M. avium complex, a group known to infect both humans and animals. While M. paratuberculosis is a known pathogen of livestock, there are only 20 human isolates from the last 20 years, therefore we took the opportunity to perform a whole genome comparison between human and animal mycobacterial pathogens. We also compared virulence determinants such as the mycobactin cluster, PE/PPE genes and mammalian cell entry (mce) operons between MAC subspecies that infect animals and those that infect humans. M. tuberculosis was also included in these analyses given its predominant role as a human pathogen. Results This genome comparison showed the PE/PPE profile of M. paratuberculosis 43525 to be largely the same as other M. paratuberculosis isolates, except that it had one PPE and one PE_PGRS protein that are only present in human MAC strains and M. tuberculosis. PE/PPE proteins that were unique to M. paratuberculosis 43525, M. avium subsp. hominissuis and a caprine M. paratuberculosis isolate, were also identified. In addition, the mycobactin cluster differed between human and animal isolates and a unique mce operon flanked by two mycobactin genes, mbtA and mbtJ, was identified in all available M. paratuberculosis genomes. Conclusions Despite the whole genome comparison placing M. paratuberculosis 43525 as closely related to bovine M. paratuberculosis, key virulence factors were similar to human mycobacterial pathogens. This study highlights key factors of mycobacterial pathogenesis in humans and forms the basis for future functional studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1889-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Verlaine J Timms
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia. .,Centre for Infectious Diseases and Microbiology, Institute of Clinical Microbiology and Medical Research, Westmead Hospital, Sydney, NSW, Australia.
| | - Karl A Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia.
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
33
|
Ssengooba W, Cobelens FG, Nakiyingi L, Mboowa G, Armstrong DT, Manabe YC, Joloba ML, de Jong BC. High Genotypic Discordance of Concurrent Mycobacterium tuberculosis Isolates from Sputum and Blood of HIV-Infected Individuals. PLoS One 2015; 10:e0132581. [PMID: 26176604 PMCID: PMC4503667 DOI: 10.1371/journal.pone.0132581] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/16/2015] [Indexed: 11/19/2022] Open
Abstract
Background Among HIV-infected individuals with CD4 less than 200 cells/mm3, tuberculosis often has an atypical presentation, is more likely to be disseminated and is diagnostically challenging. We sought to understand the genotypic discordance of concurrent sputum and blood M. tuberculosis (MTB) isolates from HIV-infected individuals. Methods From a prospective diagnostic accuracy study with 182 HIV-infected culture-positive TB adults, isolates were obtained from 51 of 66 participants who were MTB culture-positive by both sputum and blood. Isolates were subjected to susceptibility testing to 1st line drugs, spoligotyping and 24 locus- MIRU-VNTR. Results The median age of the participants was 31 (IQR; 27–38) years and 51% were male. The median CD4 count was 29 (IQR; 10–84) cells/mm3 with 20% taking ART; 8.0% were previously treated for TB, and 63% were AFB smear-negative. The isolates belonged to two of the main global MTB-lineages; East-African-Indian (L3) 17 (16.7%) and Euro-American (L4) 85 (83.3%). We identified 26 (51.0%) participants with discordant MTB-genotypes between sputum and blood, including two patients with evidence of mixed infection in either compartment. Having discordant MTB-genotypes was not predicted by the MTB-lineage in either blood or sputum, CD4 cell count, or any other clinical characteristic. Conclusions There is a high genotypic discordance among M. tuberculosis concurrently isolated from sputum and blood of HIV-infected individuals. These findings suggest that infection with more than one strain of M. tuberculosis occurs in at least half of patients with advanced HIV infection.
Collapse
Affiliation(s)
- Willy Ssengooba
- Department of Medical Microbiology, College of Health Sciences Makerere University, Kampala, Uganda
- Department of Global Health and Amsterdam Institute of Global Health and Development, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Unit of Mycobacteriology Institute of Tropical Medicine, Antwerp, Belgium
| | - Frank G. Cobelens
- Department of Global Health and Amsterdam Institute of Global Health and Development, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- KNCV Tuberculosis Foundation, The Hague, Netherlands
| | - Lydia Nakiyingi
- Infectious Diseases Institute, College of Health Sciences Makerere University, Kampala, Uganda
| | - Gerald Mboowa
- Department of Medical Microbiology, College of Health Sciences Makerere University, Kampala, Uganda
| | - Derek T. Armstrong
- Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Yukari C. Manabe
- Infectious Diseases Institute, College of Health Sciences Makerere University, Kampala, Uganda
- Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Moses L. Joloba
- Department of Medical Microbiology, College of Health Sciences Makerere University, Kampala, Uganda
- Infectious Diseases Institute, College of Health Sciences Makerere University, Kampala, Uganda
| | - Bouke C. de Jong
- Unit of Mycobacteriology Institute of Tropical Medicine, Antwerp, Belgium
- Division of Infectious Diseases, New York University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
34
|
Non-tuberculous mycobacterial infection in hospitalized children: a case series. Epidemiol Infect 2015; 143:3173-81. [DOI: 10.1017/s0950268815000333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYNon-tuberculous mycobacteria (NTM) illness is an emerging life-threatening infection, and paediatric features have not been well studied. The objective of our study was to review the NTM isolates of hospitalized paediatric patients identified at our institution and to describe the characteristics of these cases. Our retrospective chart review from 2010 to 2013 identified 45 patients with 46 positive NTM cultures. Fifteen (33%) patients had received haematopoietic cell transplant, 13 (29%) had cystic fibrosis, and six (13%) were previously healthy. Twenty-seven (59%) NTM isolates were Mycobacterium chelonae/abscessus, 14 (30%) were M. avium intracellulare, and four (9%) were M. immunogenum. The majority (65%) of cases were community-acquired, and 20 (43%) patients were treated as infection. This case series identified a predominance of M. chelonae/abscessus, and includes a substantial number of haematopoietic cell transplant patients, which reflects the changing spectrum of NTM disease as molecular diagnostics improve and quaternary care facilities provide for a larger immunocompromised population.
Collapse
|
35
|
Uchiya KI, Takahashi H, Nakagawa T, Yagi T, Moriyama M, Inagaki T, Ichikawa K, Nikai T, Ogawa K. Characterization of a novel plasmid, pMAH135, from Mycobacterium avium subsp. hominissuis. PLoS One 2015; 10:e0117797. [PMID: 25671431 PMCID: PMC4324632 DOI: 10.1371/journal.pone.0117797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/31/2014] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium avium complex (MAC) causes mainly two types of disease. The first is disseminated disease in immunocompromised hosts, such as individuals infected by human immunodeficiency virus (HIV). The second is pulmonary disease in individuals without systemic immunosuppression, and the incidence of this type is increasing worldwide. M. avium subsp. hominissuis, a component of MAC, causes infection in pigs as well as in humans. Many aspects of the different modes of M. avium infection and its host specificity remain unclear. Here, we report the characteristics and complete sequence of a novel plasmid, designated pMAH135, derived from M. avium strain TH135 in an HIV-negative patient with pulmonary MAC disease. The pMAH135 plasmid consists of 194,711 nucleotides with an average G + C content of 66.5% and encodes 164 coding sequences (CDSs). This plasmid was unique in terms of its homology to other mycobacterial plasmids. Interestingly, it contains CDSs with sequence homology to mycobactin biosynthesis proteins and type VII secretion system-related proteins, which are involved in the pathogenicity of mycobacteria. It also contains putative conserved domains of the multidrug efflux transporter. Screening of isolates from humans and pigs for genes located on pMAH135 revealed that the detection rate of these genes was higher in clinical isolates from pulmonary MAC disease patients than in those from HIV-positive patients, whereas the genes were almost entirely absent in isolates from pigs. Moreover, variable number tandem repeats typing analysis showed that isolates carrying pMAH135 genes are grouped in a specific cluster. Collectively, the pMAH135 plasmid contains genes associated with M. avium's pathogenicity and resistance to antimicrobial agents. The results of this study suggest that pMAH135 influence not only the pathological manifestations of MAC disease, but also the host specificity of MAC infection.
Collapse
Affiliation(s)
- Kei-ichi Uchiya
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- * E-mail:
| | - Hiroyasu Takahashi
- Department of Pharmacy, Kainan Hospital Aichi Prefectural Welfare Federation of Agricultural Cooperatives, Yatomi, Japan
| | - Taku Nakagawa
- Department of Clinical Research, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
- Department of Pulmonary Medicine, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Center of National University Hospital for Infection Control, Nagoya University Hospital, Nagoya, Japan
| | - Makoto Moriyama
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Department of Pharmacy, National Hospital Organization, Toyohashi Medical Center, Toyohashi, Japan
| | - Takayuki Inagaki
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Department of Pharmacy, Nagoya University Hospital, Nagoya, Japan
| | - Kazuya Ichikawa
- Department of Pharmacy, Nagoya University Hospital, Nagoya, Japan
| | - Toshiaki Nikai
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kenji Ogawa
- Department of Clinical Research, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
- Department of Pulmonary Medicine, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
| |
Collapse
|
36
|
Lahiri A, Sanchini A, Semmler T, Schäfer H, Lewin A. Identification and comparative analysis of a genomic island in Mycobacterium avium
subsp. hominissuis. FEBS Lett 2014; 588:3906-11. [DOI: 10.1016/j.febslet.2014.08.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/26/2022]
|
37
|
Sano Y, Matsuda K, Osaki K, Miyasho T, Tsuda T, Taniyama H. Systemic mycobacteriosis in an aborted thoroughbred fetus in Japan. J Vet Med Sci 2014; 76:1617-21. [PMID: 25649944 PMCID: PMC4300377 DOI: 10.1292/jvms.14-0276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A male Thoroughbred fetus was
aborted on day 251 of pregnancy. Gross and histological examinations detected systemic
granulomatous lesions in many superficial and visceral lymph nodes and organs including
the liver, tonsils, lungs, thymus, spleen, right thyroid gland and gastrointestinal tract,
and suppurative placentitis, pyogranulomatous amnionitis and intralesional acid-fast
bacilli were also detected. An examination of the DNA base sequence of the β subunit of
RNA polymerase demonstrated that Mycobacterium avium strain 104 had
infected several organs. To the best of our knowledge, this is the first report of equine
fetal mycobacterial infection in Japan.
Collapse
Affiliation(s)
- Yuto Sano
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Rindi L, Garzelli C. Genetic diversity and phylogeny of Mycobacterium avium. INFECTION GENETICS AND EVOLUTION 2013; 21:375-83. [PMID: 24345519 DOI: 10.1016/j.meegid.2013.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 02/02/2023]
Abstract
Mycobacterium avium, one of the species of the M. avium complex (MAC), includes 4 subspecies, i.e., M. avium subsp. hominissuis (MAH), M. avium subsp. avium (MAA), M. avium subsp. silvaticum (MAS) and M. avium subsp. paratuberculosis (MAP), in turn classified into the S (sheep) and C (cattle) types. These subspecies, although closely related, represent distinct organisms, each endowed with specific pathogenetic and host range characteristics, ranging from environmental opportunistic bacteria that cause infections in swine and immunocompromised patients to pathogens of birds and ruminants. The present review summarizes the basic epidemiological and pathological features of the M. avium subspecies, describes the major genomic events responsible of M. avium subspecies diversity (insertion sequences, sequence variations in specific chromosome loci or genes, deletions, duplications and insertions of large genomic regions) and then reconstructs the phylogenetic relationships among the M. avium subspecies.
Collapse
Affiliation(s)
- Laura Rindi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, I-56127 Pisa, Italy.
| | - Carlo Garzelli
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, I-56127 Pisa, Italy
| |
Collapse
|