1
|
Garcia-Silva MR, Márquez ME, Pinello N. PIWI pathway: bridging acute myeloid leukemia stemness and cellular differentiation. Front Cell Dev Biol 2024; 12:1449353. [PMID: 39188528 PMCID: PMC11345186 DOI: 10.3389/fcell.2024.1449353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
PIWI proteins are stem cell-associated RNA-binding proteins crucial for survival of germ stem cells. In cancer, PIWI proteins are overexpressed. Specifically, PIWIL4 is highly expressed in multiple cancers with the highest levels found in acute myeloid leukemia (AML), an aggressive malignancy propagated by a population of leukemia stem cells (LSCs). Bamezai et al. (Blood Journal, blood, 2023, 142, 90-105) demonstrated that PIWIL4 supports AML blasts and LSCs but is not necessary for healthy human hematopoietic progenitor stem cells (HSPCs) function in vivo. PIWIL4 in AML acts by preventing the accumulation of R-loops in key genes for LSCs persistence implicated in: DNA damage, replicative stress, and transcription arrest. We report that PIWIL4 expression significantly decreases in THP-1 monocytes exposed to a differentiating agent, suggesting a potential role for PIWIL4 in maintaining the undifferentiated state of myeloid cells. PIWIL4 overexpression could lead to the emergence of LSCs, driving leukemia propagation and maintenance. Our findings correlate with the persistent overexpression of PIWIL4 in myeloid cancers as reported by Bamezai et al., and suggest that PIWIL4 may be involved in myeloid cell differentiation. In this perspective, we highlight recent findings on the implication of PIWI pathway in maintaining AML stemness. Additionally, we propose further investigation on the role of PIWI pathway in oncogenesis and cellular differentiation as a strategy to identify biomarkers and therapeutic targets for AML.
Collapse
Affiliation(s)
- M. R. Garcia-Silva
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay
| | | | | |
Collapse
|
2
|
Ding W, Wang D, Cai M, Yan Y, Liu S, Liu X, Luo A, Deng D, Liu X, Jiang H. PIWIL1 gene polymorphism and pediatric acute lymphoblastic leukemia relapse susceptibility among Chinese children: a five-center case-control study. Front Oncol 2023; 13:1203002. [PMID: 38023199 PMCID: PMC10652278 DOI: 10.3389/fonc.2023.1203002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Objective PIWIL1 polymorphisms' role in pediatric acute lymphoblastic leukemia (ALL) relapse susceptibility remains undiscovered. Methods A case-control designed and multiple logistic regression model was performed to evaluate the overall risk of pediatric ALL and five single-nucleotide polymorphisms (SNPs) of PIWIL1 gene (rs35997018 C>T, rs1106042 A>G, rs7957349 C>G, rs10773771 C>T, and rs10848087 A>G) in 785 cases and 1,323 controls, which were genotyped by TaqMan assay. The odds ratio (OR) and its 95% confidence interval (CI) were used to estimate the relationship. Stratified analysis was used to investigate the correlation of rs1106042 and rs10773771 genotypes and pediatric ALL relapse susceptibility in terms of age, sex, number of white blood cells (WBC), immunophenotyping, gene fusion type, karyotype, primitive/naïve lymphocytes, and minimal residual disease (MRD) in bone marrow. Finally, the haplotype analysis was performed to appraise the relationship between inferred haplotypes of PIWIL1 and pediatric ALL risk. Results Among the five analyzed SNPs, rs1106042 A>G was related to increased ALL risk, and rs10773771 C>T was related to decreased ALL risk. Compared to the GG genotype, the rs1106042 GA/AA had a deleterious effect on children of age <120 months, who were female and male, had high or average number of WBC, pro-B ALL, pre-B ALL, T-ALL, low- and middle-risk ALL, E2A-PBX fusion gene, non-gene fusion, abnormal diploid, high hyperdiploid, hypodiploid, and normal diploid. Moreover, rs1106042 A>G harmfully affected primitive/naïve lymphocytes and MRD on days 15-19, day 33, and week 12. On the contrary, rs10773771 TC/CC exhibited a protective effect on ALL children with the TEL-AML fusion gene. Haplotype analysis demonstrated that haplotypes CAGT, TACC, TACT, and TAGT were significantly associated with increased pediatric ALL relapse susceptibility. Conclusion PIWIL1 rs1106042 A>G was related to increased ALL risk, and rs10773771 C>T was linked to decreased ALL risk in eastern Chinese children. Rs1106042 GA/AA may predict poor prognosis.
Collapse
Affiliation(s)
- Wenjiao Ding
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Dao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mansi Cai
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yaping Yan
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Shanshan Liu
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Xiaodan Liu
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Ailing Luo
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Decheng Deng
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Xiaoping Liu
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hua Jiang
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Hodson DJ. Breaking the loop in AML. Blood 2023; 142:6-7. [PMID: 37410505 DOI: 10.1182/blood.2023020672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
|
4
|
Gasperini C, Tuntevski K, Beatini S, Pelizzoli R, Lo Van A, Mangoni D, Cossu RM, Pascarella G, Bianchini P, Bielefeld P, Scarpato M, Pons‐Espinal M, Sanges R, Diaspro A, Fitzsimons CP, Carninci P, Gustincich S, De Pietri Tonelli D. Piwil2 (Mili) sustains neurogenesis and prevents cellular senescence in the postnatal hippocampus. EMBO Rep 2023; 24:e53801. [PMID: 36472244 PMCID: PMC9900342 DOI: 10.15252/embr.202153801] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Adult neural progenitor cells (aNPCs) ensure lifelong neurogenesis in the mammalian hippocampus. Proper regulation of aNPC fate has thus important implications for brain plasticity and healthy aging. Piwi proteins and the small noncoding RNAs interacting with them (piRNAs) have been proposed to control memory and anxiety, but the mechanism remains elusive. Here, we show that Piwil2 (Mili) is essential for proper neurogenesis in the postnatal mouse hippocampus. RNA sequencing of aNPCs and their differentiated progeny reveal that Mili and piRNAs are dynamically expressed in neurogenesis. Depletion of Mili and piRNAs in the adult hippocampus impairs aNPC differentiation toward a neural fate, induces senescence, and generates reactive glia. Transcripts modulated upon Mili depletion bear sequences complementary or homologous to piRNAs and include repetitive elements and mRNAs encoding essential proteins for proper neurogenesis. Our results provide evidence of a critical role for Mili in maintaining fitness and proper fate of aNPCs, underpinning a possible involvement of the piRNA pathway in brain plasticity and successful aging.
Collapse
Affiliation(s)
- Caterina Gasperini
- Neurobiology of miRNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
| | - Kiril Tuntevski
- Neurobiology of miRNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
- The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia (ARC@IIT)GenoaItaly
| | - Silvia Beatini
- Neurobiology of miRNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
| | - Roberta Pelizzoli
- Neurobiology of miRNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
| | - Amanda Lo Van
- Neurobiology of miRNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
| | - Damiano Mangoni
- Central RNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
| | - Rosa M Cossu
- Central RNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
| | - Giovanni Pascarella
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
| | - Paolo Bianchini
- Nanoscopy, CHT ErzelliIstituto Italiano di TecnologiaGenoaItaly
| | - Pascal Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | | | | | - Remo Sanges
- Central RNA LaboratoryIstituto Italiano di TecnologiaGenoaItaly
- Area of NeuroscienceSISSATriesteItaly
| | - Alberto Diaspro
- Nanoscopy, CHT ErzelliIstituto Italiano di TecnologiaGenoaItaly
| | - Carlos P Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Piero Carninci
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
- Human TechnopoleMilanItaly
| | | | | |
Collapse
|
5
|
Wang Y, Yao L, Teng Y, Yin H, Wu Q. PIWIL1 Drives Chemoresistance in Multiple Myeloma by Modulating Mitophagy and the Myeloma Stem Cell Population. Front Oncol 2022; 11:783583. [PMID: 35083142 PMCID: PMC8784391 DOI: 10.3389/fonc.2021.783583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
As an important member of the Argonaute protein family, PIWI-like protein 1 (PIWIL1) plays a key role in tumor cell viability. However, the exact function of PIWIL1 in multiple myeloma (MM) and the underlying mechanism remain unclear. Here, we revealed that PIWIL1 was highly expressed in myeloma cell lines and newly diagnosed MM patients, and that its expression was notably higher in refractory/relapsed MM patients. PIWIL1 promoted the proliferation of MM cells and conferred resistance to chemotherapeutic agents both in vitro and in vivo. More importantly, PIWIL1 enhanced the formation of autophagosomes, especially mitophagosomes, by disrupting mitochondrial calcium signaling and modulating mitophagy-related canonical PINK1/Parkin pathway protein components. Mitophagy/autophagy inhibitors overcome PIWIL1-induced chemoresistance. In addition, PIWIL1 overexpression increased the proportion of side population (SP) cells and upregulated the expression of the stem cell-associated genes Nanog, OCT4, and SOX2, while its inhibition resulted in opposite effects. Taken together, our findings demonstrated that PIWIL1 induced drug resistance by activating mitophagy and regulating the MM stem cell population. PIWIL1 depletion significantly overcame drug resistance and could be used as a novel therapeutic target for reversing resistance in MM patients.
Collapse
Affiliation(s)
- Yajun Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Merkerova MD, Krejcik Z. Transposable elements and Piwi‑interacting RNAs in hemato‑oncology with a focus on myelodysplastic syndrome (Review). Int J Oncol 2021; 59:105. [PMID: 34779490 DOI: 10.3892/ijo.2021.5285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/06/2022] Open
Abstract
Our current understanding of hematopoietic stem cell differentiation and the abnormalities that lead to leukemogenesis originates from the accumulation of knowledge regarding protein‑coding genes. However, the possible impact of transposable element (TE) mobilization and the expression of P‑element‑induced WImpy testis‑interacting RNAs (piRNAs) on leukemogenesis has been beyond the scope of scientific interest to date. The expression profiles of these molecules and their importance for human health have only been characterized recently due to the rapid progress of high‑throughput sequencing technology development. In the present review, current knowledge on the expression profile and function of TEs and piRNAs was summarized, with specific focus on their reported involvement in leukemogenesis and pathogenesis of myelodysplastic syndrome.
Collapse
Affiliation(s)
| | - Zdenek Krejcik
- Institute of Hematology and Blood Transfusion, 128 20 Prague, Czech Republic
| |
Collapse
|
7
|
Li D, Taylor DH, van Wolfswinkel JC. PIWI-mediated control of tissue-specific transposons is essential for somatic cell differentiation. Cell Rep 2021; 37:109776. [PMID: 34610311 PMCID: PMC8532177 DOI: 10.1016/j.celrep.2021.109776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
PIWI proteins are known as mediators of transposon silencing in animal germlines but are also found in adult pluripotent stem cells of highly regenerative animals, where they are essential for regeneration. Study of the nuclear PIWI protein SMEDWI-2 in the planarian somatic stem cell system reveals an intricate interplay between transposons and cell differentiation in which a subset of transposons is inevitably activated during cell differentiation, and the PIWI protein is required to regain control. Absence of SMEDWI-2 leads to tissue-specific transposon derepression related to cell-type-specific chromatin remodeling events and in addition causes reduced accessibility of lineage-specific genes and defective cell differentiation, resulting in fatal tissue dysfunction. Finally, we show that additional PIWI proteins provide a stem-cell-specific second layer of protection in planarian neoblasts. These findings reveal a far-reaching role of PIWI proteins and PIWI-interacting RNAs (piRNAs) in stem cell biology and cell differentiation.
Collapse
Affiliation(s)
- Danyan Li
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - David H Taylor
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Josien C van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
8
|
Huang H, Yu X, Han X, Hao J, Zhao J, Bebek G, Bao S, Prayson RA, Khalil AM, Jankowsky E, Yu JS. Piwil1 Regulates Glioma Stem Cell Maintenance and Glioblastoma Progression. Cell Rep 2021; 34:108522. [PMID: 33406417 PMCID: PMC7837390 DOI: 10.1016/j.celrep.2020.108522] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/12/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Piwi proteins are a subfamily of Argonaute proteins that maintain germ cells in eukaryotes. However, the role of their human homologs in cancer stem cells, and more broadly in cancer, is poorly understood. Here, we report that Piwi-like family members are overexpressed in glioblastoma (GBM), with Piwil1 (Hiwi) most frequently overexpressed (88%). Piwil1 is enriched in glioma stem-like cells (GSCs) to maintain self-renewal. Silencing Piwil1 in GSCs leads to global changes in gene expression resulting in cell-cycle arrest, senescence, or apoptosis. Piwil1 knockdown increases expression of the transcriptional co-regulator BTG2 and the E3-ubiquitin ligase FBXW7, leading to reduced c-Myc expression, as well as loss of expression of stem cell factors Olig2 and Nestin. Piwil1 regulates mRNA stability of BTG2, FBXW7, and CDKN1B. In animal models of GBM, Piwil1 knockdown suppresses tumor growth and promotes mouse survival. These findings support a role of Piwil1 in GSC maintenance and glioblastoma progression. Huang et al. find that Piwil1 protein is overexpressed in glioblastoma and glioma stem cells (GSCs). Piwil1 maintains GSC self-renewal and survival by regulating gene expression. Targeting Piwil1 extends survival in mouse models of glioblastoma. Piwil1 represents a therapeutic vulnerability.
Collapse
Affiliation(s)
- Haidong Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE60, Cleveland, OH 44195, USA
| | - Xingjiang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE60, Cleveland, OH 44195, USA
| | - Xiangzi Han
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE60, Cleveland, OH 44195, USA
| | - Jing Hao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE60, Cleveland, OH 44195, USA
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE60, Cleveland, OH 44195, USA
| | - Gurkan Bebek
- Department of Nutrition, Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, BRB 921, Cleveland, OH 44106, USA
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE60, Cleveland, OH 44195, USA
| | - Richard A Prayson
- Department of Anatomic Pathology, The Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Ahmad M Khalil
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Wood Bldg. 137, Cleveland, OH 44106, USA
| | - Jennifer S Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE60, Cleveland, OH 44195, USA; Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, CA50, Cleveland, OH 44195, USA.
| |
Collapse
|
9
|
Kim IV, Riedelbauch S, Kuhn CD. The piRNA pathway in planarian flatworms: new model, new insights. Biol Chem 2020; 401:1123-1141. [DOI: 10.1515/hsz-2019-0445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022]
Abstract
AbstractPIWI-interacting RNAs (piRNAs) are small regulatory RNAs that associate with members of the PIWI clade of the Argonaute superfamily of proteins. piRNAs are predominantly found in animal gonads. There they silence transposable elements (TEs), regulate gene expression and participate in DNA methylation, thus orchestrating proper germline development. Furthermore, PIWI proteins are also indispensable for the maintenance and differentiation capabilities of pluripotent stem cells in free-living invertebrate species with regenerative potential. Thus, PIWI proteins and piRNAs seem to constitute an essential molecular feature of somatic pluripotent stem cells and the germline. In keeping with this hypothesis, both PIWI proteins and piRNAs are enriched in neoblasts, the adult stem cells of planarian flatworms, and their presence is a prerequisite for the proper regeneration and perpetual tissue homeostasis of these animals. The piRNA pathway is required to maintain the unique biology of planarians because, in analogy to the animal germline, planarian piRNAs silence TEs and ensure stable genome inheritance. Moreover, planarian piRNAs also contribute to the degradation of numerous protein-coding transcripts, a function that may be critical for neoblast differentiation. This review gives an overview of the planarian piRNA pathway and of its crucial function in neoblast biology.
Collapse
Affiliation(s)
- Iana V. Kim
- Gene regulation by Non-coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Sebastian Riedelbauch
- Gene regulation by Non-coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Claus-D. Kuhn
- Gene regulation by Non-coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| |
Collapse
|
10
|
piRNA-Guided CRISPR-like Immunity in Eukaryotes. Trends Immunol 2019; 40:998-1010. [DOI: 10.1016/j.it.2019.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
|
11
|
Zhu Y, Fan C, Zhao B. Differential expression of piRNAs in reprogrammed pluripotent stem cells from mouse embryonic fibroblasts. IUBMB Life 2019; 71:1906-1915. [PMID: 31317647 DOI: 10.1002/iub.2128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022]
Abstract
piRNAs are a large class of small noncoding RNA that interact with an animal-specific class of Argonaute proteins, P-element induced wimpy proteins. piRNAs were initially discovered in mouse testes to be a fundamental component of spermatogenesis. Outside of the germline, piRNAs were found to function in embryogenesis, development, regeneration and cancer cells. However, despite a decade of scrutiny, functional understanding of this class of small RNAs remains very limited. To determine whether there are piRNAs present and involved in the cellular reprogramming process, we extracted piwi-interacting RNA (piRNA) signatures from a small RNA deep sequencing data set of mouse embryonic fibroblasts (MEFs), mouse embryonic stem cells (mESCs) and reprogrammed stem cells by three different technologies. We successfully identified three piRNA families specifically expressed in these reprogrammed stem cells. Meanwhile, there were almost no piRNAs observed in MEFs and mESCs. Further analysis indicated that these piRNAs may associate with the reprogramming process but not cellular pluripotency. Target gene prediction suggested that at least one of piRNAs, piR-mmu-64162, may take part in the reprogramming process by regulating cell senescence. Overall, we firstly identified the potential reprogramming associated piRNAs, shedding new light on piRNA functions.
Collapse
Affiliation(s)
- Yanye Zhu
- National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai, 201210, China
| | - Chunsun Fan
- Department of Etiology, Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200, China
| | - Botao Zhao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
12
|
Rojas-Ríos P, Simonelig M. piRNAs and PIWI proteins: regulators of gene expression in development and stem cells. Development 2018; 145:145/17/dev161786. [PMID: 30194260 DOI: 10.1242/dev.161786] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PIWI proteins and Piwi-interacting RNAs (piRNAs) have established and conserved roles in repressing transposable elements (TEs) in the germline of animals. However, in several biological contexts, a large proportion of piRNAs are not related to TE sequences and, accordingly, functions for piRNAs and PIWI proteins that are independent of TE regulation have been identified. This aspect of piRNA biology is expanding rapidly. Indeed, recent reports have revealed the role of piRNAs in the regulation of endogenous gene expression programs in germ cells, as well as in somatic tissues, challenging dogma in the piRNA field. In this Review, we focus on recent data addressing the biological and developmental functions of piRNAs, highlighting their roles in embryonic patterning, germ cell specification, stem cell biology, neuronal activity and metabolism.
Collapse
Affiliation(s)
- Patricia Rojas-Ríos
- mRNA Regulation and Development, IGH, Univ. Montpellier, CNRS, Montpellier 34396, France
| | - Martine Simonelig
- mRNA Regulation and Development, IGH, Univ. Montpellier, CNRS, Montpellier 34396, France
| |
Collapse
|
13
|
Lenart P, Novak J, Bienertova-Vasku J. PIWI-piRNA pathway: Setting the pace of aging by reducing DNA damage. Mech Ageing Dev 2018; 173:29-38. [PMID: 29580825 DOI: 10.1016/j.mad.2018.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/02/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
Transposable elements (TEs) are powerful drivers of genome evolutionary dynamics but are principally deleterious to the host organism by compromising the integrity and function of the genome. The transposition of TEs may result in mutations and DNA damage. DNA double-strand breaks (DSBs), which may be caused by the transposition, are one of the processes directly linked to aging. TEs may thus be considered to constitute an internal source of aging and the frequency of transposition may, in turn, be considered to affect the pace of aging. The PIWI-piRNA pathway is a widespread strategy used by most animals to effectively suppress transposition. Interestingly, the PIWI-piRNA pathway is expressed predominantly in the animal germline, a more or less continuous immortal lineage set aside after the first few cell divisions of a developing embryo. Recent findings further imply that the PIWI-piRNA pathway and TE suppression constitute an important mechanism regulating aging. This article discusses the proposed role of the PIWI-piRNA pathway in setting the pace of aging as well as the possible mechanisms underlying this process.
Collapse
Affiliation(s)
- Peter Lenart
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Building A29, 625 00, Brno, Czech Republic
| | - Jan Novak
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic
| | - Julie Bienertova-Vasku
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Building A29, 625 00, Brno, Czech Republic.
| |
Collapse
|
14
|
Wasserman GA, Szymaniak AD, Hinds AC, Yamamoto K, Kamata H, Smith NM, Hilliard KL, Carrieri C, Labadorf AT, Quinton LJ, Ai X, Varelas X, Chen F, Mizgerd JP, Fine A, O'Carroll D, Jones MR. Expression of Piwi protein MIWI2 defines a distinct population of multiciliated cells. J Clin Invest 2017; 127:3866-3876. [PMID: 28920925 PMCID: PMC5617666 DOI: 10.1172/jci94639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
P-element-induced wimpy testes (Piwi) proteins are known for suppressing retrotransposon activation in the mammalian germline. However, whether Piwi protein or Piwi-dependent functions occur in the mammalian soma is unclear. Contrary to germline-restricted expression, we observed that Piwi-like Miwi2 mRNA is indeed expressed in epithelial cells of the lung in adult mice and that it is induced during pneumonia. Further investigation revealed that MIWI2 protein localized to the cytoplasm of a discrete population of multiciliated airway epithelial cells. Isolation and next-generation sequencing of MIWI2-positive multiciliated cells revealed that they are phenotypically distinct from neighboring MIWI2-negative multiciliated cells. Mice lacking MIWI2 exhibited an altered balance of airway epithelial cells, demonstrating fewer multiciliated cells and an increase in club cells. During pneumococcal pneumonia, Miwi2-deficient mice exhibited increased expression of inflammatory mediators and increased immune cell recruitment, leading to enhanced bacterial clearance. Taken together, our data delineate MIWI2-dependent functions outside of the germline and demonstrate the presence of distinct subsets of airway multiciliated cells that can be discriminated by MIWI2 expression. By demonstrating roles for MIWI2 in airway cell identity and pulmonary innate immunity, these studies elucidate unanticipated physiological functions for Piwi proteins in somatic tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicole Ms Smith
- The Pulmonary Center.,Department of Medicine.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Kristie L Hilliard
- The Pulmonary Center.,Department of Medicine.,Department of Microbiology
| | - Claudia Carrieri
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam T Labadorf
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Lee J Quinton
- The Pulmonary Center.,Department of Medicine.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xingbin Ai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Joseph P Mizgerd
- The Pulmonary Center.,Department of Medicine.,Department of Microbiology.,Department of Biochemistry, and
| | - Alan Fine
- The Pulmonary Center.,Department of Medicine
| | - Dónal O'Carroll
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
15
|
Sivagurunathan S, Palanisamy K, Arunachalam JP, Chidambaram S. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway. Mol Cell Biochem 2016; 427:145-156. [DOI: 10.1007/s11010-016-2906-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/03/2016] [Indexed: 12/22/2022]
|
16
|
Zhai L, Wang L, Teng F, Zhou L, Zhang W, Xiao J, Liu Y, Deng W. Argonaute and Argonaute-Bound Small RNAs in Stem Cells. Int J Mol Sci 2016; 17:208. [PMID: 26861290 PMCID: PMC4783940 DOI: 10.3390/ijms17020208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Abstract
Small RNAs are essential for a variety of cellular functions. Argonaute (AGO) proteins are associated with all of the different classes of small RNAs, and are indispensable in small RNA-mediated regulatory pathways. AGO proteins have been identified in various types of stem cells in diverse species from plants and animals. This review article highlights recent progress on how AGO proteins and AGO-bound small RNAs regulate the self-renewal and differentiation of distinct stem cell types, including pluripotent, germline, somatic, and cancer stem cells.
Collapse
Affiliation(s)
- Lihong Zhai
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Lin Wang
- Xiangyang Oral Hospital, Xiangyang 441003, Hubei, China.
| | - Feng Teng
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Lanting Zhou
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Wenjing Zhang
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Juan Xiao
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Ying Liu
- Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
- Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
17
|
Zhang X, He X, Liu C, Liu J, Hu Q, Pan T, Duan X, Liu B, Zhang Y, Chen J, Ma X, Zhang X, Luo H, Zhang H. IL-4 Inhibits the Biogenesis of an Epigenetically Suppressive PIWI-Interacting RNA To Upregulate CD1a Molecules on Monocytes/Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:1591-603. [PMID: 26755820 DOI: 10.4049/jimmunol.1500805] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022]
Abstract
The discovery of PIWI-interacting RNAs (piRNAs) revealed the complexity of the RNA world. Although piRNAs were first deemed to be germline specific, substantial evidence shows their various roles in somatic cells; however, their function in highly differentiated immune cells remains elusive. In this study, by initially screening with a small RNA deep-sequencing analysis, we found that a piRNA, tRNA-Glu-derived piRNA [td-piR(Glu)], was expressed much more abundantly in human monocytes than in dendritic cells. By regulating the polymerase III activity, IL-4 potently decreased the biogenesis of tRNA-Glu and, subsequently, td-piR(Glu). Further, we revealed that the td-piR(Glu)/PIWIL4 complex recruited SETDB1, SUV39H1, and heterochromatin protein 1β to the CD1A promoter region and facilitated H3K9 methylation. As a result, the transcription of CD1A was significantly inhibited. Collectively, we demonstrated that a piRNA acted as the signal molecule for a cytokine to regulate the expression of an important membrane protein for lipid Ag presentation.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xin He
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qifei Hu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaobing Duan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yiwen Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jingliang Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xingru Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xu Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Haihua Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
18
|
Lim RSM, Kai T. A piece of the pi(e): The diverse roles of animal piRNAs and their PIWI partners. Semin Cell Dev Biol 2015; 47-48:17-31. [PMID: 26582251 DOI: 10.1016/j.semcdb.2015.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small non-coding RNAs are indispensable to many biological processes. A class of endogenous small RNAs, termed PIWI-interacting RNAs (piRNAs) because of their association with PIWI proteins, has known roles in safeguarding the genome against inordinate transposon mobilization, embryonic development, and stem cell regulation, among others. This review discusses the biogenesis of animal piRNAs and their diverse functions together with their PIWI protein partners, both in the germline and in somatic cells, and highlights the evolutionarily conserved aspects of these molecular players in animal biology.
Collapse
Affiliation(s)
- Robyn S M Lim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Toshie Kai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
19
|
Zhong F, Zhou N, Wu K, Guo Y, Tan W, Zhang H, Zhang X, Geng G, Pan T, Luo H, Zhang Y, Xu Z, Liu J, Liu B, Gao W, Liu C, Ren L, Li J, Zhou J, Zhang H. A SnoRNA-derived piRNA interacts with human interleukin-4 pre-mRNA and induces its decay in nuclear exosomes. Nucleic Acids Res 2015; 43:10474-91. [PMID: 26405199 PMCID: PMC4666397 DOI: 10.1093/nar/gkv954] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023] Open
Abstract
PIWI interacting RNAs (piRNAs) are highly expressed in germline cells and are involved in maintaining genome integrity by silencing transposons. These are also involved in DNA/histone methylation and gene expression regulation in somatic cells of invertebrates. The functions of piRNAs in somatic cells of vertebrates, however, remain elusive. We found that snoRNA-derived and C (C′)/D′ (D)-box conserved piRNAs are abundant in human CD4 primary T-lymphocytes. piRNA (piR30840) significantly downregulated interleukin-4 (IL-4) via sequence complementarity binding to pre-mRNA intron, which subsequently inhibited the development of Th2 T-lymphocytes. Piwil4 and Ago4 are associated with this piRNA, and this complex further interacts with Trf4-Air2-Mtr4 Polyadenylation (TRAMP) complex, which leads to the decay of targeted pre-mRNA through nuclear exosomes. Taken together, we demonstrate a novel piRNA mechanism in regulating gene expression in highly differentiated somatic cells and a possible novel target for allergy therapeutics.
Collapse
Affiliation(s)
- Fudi Zhong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Nan Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Kang Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yubiao Guo
- Respiratory Division & Medicine Intensive Care Unit, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiping Tan
- Department of Pediatrics, the Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guannan Geng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Haihua Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yijun Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhibin Xu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenchao Gao
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Liangliang Ren
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
20
|
Méndez C, Ahlenstiel CL, Kelleher AD. Post-transcriptional gene silencing, transcriptional gene silencing and human immunodeficiency virus. World J Virol 2015; 4:219-244. [PMID: 26279984 PMCID: PMC4534814 DOI: 10.5501/wjv.v4.i3.219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/24/2015] [Accepted: 04/29/2015] [Indexed: 02/05/2023] Open
Abstract
While human immunodeficiency virus 1 (HIV-1) infection is controlled through continuous, life-long use of a combination of drugs targeting different steps of the virus cycle, HIV-1 is never completely eradicated from the body. Despite decades of research there is still no effective vaccine to prevent HIV-1 infection. Therefore, the possibility of an RNA interference (RNAi)-based cure has become an increasingly explored approach. Endogenous gene expression is controlled at both, transcriptional and post-transcriptional levels by non-coding RNAs, which act through diverse molecular mechanisms including RNAi. RNAi has the potential to control the turning on/off of specific genes through transcriptional gene silencing (TGS), as well as fine-tuning their expression through post-transcriptional gene silencing (PTGS). In this review we will describe in detail the canonical RNAi pathways for PTGS and TGS, the relationship of TGS with other silencing mechanisms and will discuss a variety of approaches developed to suppress HIV-1 via manipulation of RNAi. We will briefly compare RNAi strategies against other approaches developed to target the virus, highlighting their potential to overcome the major obstacle to finding a cure, which is the specific targeting of the HIV-1 reservoir within latently infected cells.
Collapse
|
21
|
Yamtich J, Heo SJ, Dhahbi J, Martin DIK, Boffelli D. piRNA-like small RNAs mark extended 3'UTRs present in germ and somatic cells. BMC Genomics 2015; 16:462. [PMID: 26076733 PMCID: PMC4469462 DOI: 10.1186/s12864-015-1662-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/29/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Piwi-interacting RNAs (piRNAs) are a class of small RNAs; distinct types of piRNAs are expressed in the mammalian testis at different stages of development. The function of piRNAs expressed in the adult testis is not well established. We conducted a detailed characterization of piRNAs aligning at or near the 3' UTRs of protein-coding genes in a deep dataset of small RNAs from adult mouse testis. RESULTS We identified 2710 piRNA clusters associated with 3' UTRs, including 1600 that overlapped genes not previously associated with piRNAs. 35% of the clusters extend beyond the annotated transcript; we find that these clusters correspond to, and are likely derived from, novel polyadenylated mRNA isoforms that contain previously unannotated extended 3'UTRs. Extended 3' UTRs, and small RNAs derived from them, are also present in somatic tissues; a subset of these somatic 3'UTR small RNA clusters are absent in mice lacking MIWI2, indicating a role for MIWI2 in the metabolism of somatic small RNAs. CONCLUSIONS The finding that piRNAs are processed from extended 3' UTRs suggests a role for piRNAs in the remodeling of 3' UTRs. The presence of both clusters and extended 3'UTRs in somatic cells, with evidence for involvement of MIWI2, indicates that this pathway is more broadly distributed than currently appreciated.
Collapse
Affiliation(s)
- Jennifer Yamtich
- Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA.
| | - Seok-Jin Heo
- Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA.
| | - Joseph Dhahbi
- Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA.
| | - David I K Martin
- Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA.
| | - Dario Boffelli
- Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA.
| |
Collapse
|
22
|
PIWI proteins are dispensable for mouse somatic development and reprogramming of fibroblasts into pluripotent stem cells. PLoS One 2014; 9:e97821. [PMID: 25238487 PMCID: PMC4169525 DOI: 10.1371/journal.pone.0097821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/23/2014] [Indexed: 11/19/2022] Open
Abstract
PIWI proteins play essential and conserved roles in germline development, including germline stem cell maintenance and meiosis. Because germline regulators such as OCT4, NANOG, and SOX2 are known to be potent factors that reprogram differentiated somatic cells into induced pluripotent stem cells (iPSCs), we investigated whether the PIWI protein family is involved in iPSC production. We find that all three mouse Piwi genes, Miwi, Mili, and Miwi2, are expressed in embryonic stem cells (ESCs) at higher levels than in fibroblasts, with Mili being the highest. However, mice lacking all three Piwi genes are viable and female fertile, and are only male sterile. Furthermore, embryonic fibroblasts derived from Miwi/Mili/Miwi2 triple knockout embryos can be efficiently reprogrammed into iPS cells. These iPS cells expressed pluripotency markers and were capable of differentiating into all three germ layers in teratoma assays. Genome-wide expression profiling reveals that the triple knockout iPS cells are very similar to littermate control iPS cells. These results indicate that PIWI proteins are dispensable for direct reprogramming of mouse fibroblasts.
Collapse
|
23
|
Keam SP, Young PE, McCorkindale AL, Dang THY, Clancy JL, Humphreys DT, Preiss T, Hutvagner G, Martin DIK, Cropley JE, Suter CM. The human Piwi protein Hiwi2 associates with tRNA-derived piRNAs in somatic cells. Nucleic Acids Res 2014; 42:8984-95. [PMID: 25038252 PMCID: PMC4132735 DOI: 10.1093/nar/gku620] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 01/31/2023] Open
Abstract
The Piwi-piRNA pathway is active in animal germ cells where its functions are required for germ cell maintenance and gamete differentiation. Piwi proteins and piRNAs have been detected outside germline tissue in multiple phyla, but activity of the pathway in mammalian somatic cells has been little explored. In particular, Piwi expression has been observed in cancer cells, but nothing is known about the piRNA partners or the function of the system in these cells. We have surveyed the expression of the three human Piwi genes, Hiwi, Hili and Hiwi2, in multiple normal tissues and cancer cell lines. We find that Hiwi2 is ubiquitously expressed; in cancer cells the protein is largely restricted to the cytoplasm and is associated with translating ribosomes. Immunoprecipitation of Hiwi2 from MDAMB231 cancer cells enriches for piRNAs that are predominantly derived from processed tRNAs and expressed genes, species which can also be found in adult human testis. Our studies indicate that a Piwi-piRNA pathway is present in human somatic cells, with an uncharacterised function linked to translation. Taking this evidence together with evidence from primitive organisms, we propose that this somatic function of the pathway predates the germline functions of the pathway in modern animals.
Collapse
Affiliation(s)
- Simon P Keam
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia Faculty of Engineering and Information Technology, Centre of Health Technologies, University of Technology Sydney, 235 Jones Street, Ultimo, NSW, 2007, Australia
| | - Paul E Young
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia
| | - Alexandra L McCorkindale
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia
| | - Thurston H Y Dang
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia
| | - Jennifer L Clancy
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia
| | - David T Humphreys
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia
| | - Thomas Preiss
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia
| | - Gyorgy Hutvagner
- Faculty of Engineering and Information Technology, Centre of Health Technologies, University of Technology Sydney, 235 Jones Street, Ultimo, NSW, 2007, Australia
| | - David I K Martin
- Center for Genetics, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | - Jennifer E Cropley
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia Faculty of Medicine, University of New South Wales, Kensington, 2052, Australia
| | - Catherine M Suter
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia Faculty of Medicine, University of New South Wales, Kensington, 2052, Australia
| |
Collapse
|
24
|
van Wolfswinkel JC. Piwi and Potency: PIWI Proteins in Animal Stem Cells and Regeneration. Integr Comp Biol 2014; 54:700-13. [DOI: 10.1093/icb/icu084] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
25
|
Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 2014; 505:353-359. [PMID: 24429634 PMCID: PMC4265809 DOI: 10.1038/nature12987] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022]
Abstract
The discovery of millions of PIWI-interacting RNAs revealed a fascinating and unanticipated dimension of biology. The PIWI-piRNA pathway has been commonly perceived as germline-specific, even though the somatic function of PIWI proteins was documented when they were first discovered. Recent studies have begun to re-explore this pathway in somatic cells in diverse organisms, particularly lower eukaryotes. These studies have illustrated the multifaceted somatic functions of the pathway not only in transposon silencing but also in genome rearrangement and epigenetic programming, with biological roles in stem-cell function, whole-body regeneration, memory and possibly cancer.
Collapse
Affiliation(s)
- Robert J Ross
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Molly M Weiner
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| |
Collapse
|
26
|
Jacobs JE, Wagner M, Dhahbi J, Boffelli D, Martin DIK. Deficiency of MIWI2 (Piwil4) induces mouse erythroleukemia cell differentiation, but has no effect on hematopoiesis in vivo. PLoS One 2013; 8:e82573. [PMID: 24376547 PMCID: PMC3871168 DOI: 10.1371/journal.pone.0082573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022] Open
Abstract
Piwi proteins and their small non-coding RNA partners are involved in the maintenance of stem cell character and genome integrity in the male germ cells of mammals. MIWI2, one of the mouse Piwi-like proteins, is expressed in the prepachytene phase of spermatogenesis during the period of de novo methylation. Absence of this protein leads to meiotic defects and a progressive loss of germ cells. There is an accumulation of evidence that Piwi proteins may be active in hematopoietic tissues. Thus, MIWI2 may have a role in hematopoietic stem and/or progenitor cell self-renewal and differentiation, and defects in MIWI2 may lead to abnormal hematopoiesis. MIWI2 mRNA can be detected in a mouse erythroblast cell line by RNA-seq, and shRNA-mediated knockdown of this mRNA causes the cells to take on characteristics of differentiated erythroid precursors. However, there are no detectable hematopoietic abnormalities in a MIWI2-deficient mouse model. While subtle, non-statistically significant changes were noted in the hematopoietic function of mice without a functional MIWI2 gene when compared to wild type mice, our results show that MIWI2 is not solely necessary for hematopoiesis within the normal life span of a mouse.
Collapse
MESH Headings
- Aging/pathology
- Animals
- Argonaute Proteins/deficiency
- Argonaute Proteins/metabolism
- Blood Cells/metabolism
- Cell Differentiation
- Cell Line, Tumor
- Gene Knockdown Techniques
- Hematopoiesis
- Hemoglobins/metabolism
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Mice, Inbred C57BL
- Organ Specificity/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Sequence Analysis, RNA
- Spleen/metabolism
- Whole-Body Irradiation
Collapse
Affiliation(s)
- James E. Jacobs
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| | - Mark Wagner
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Joseph Dhahbi
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Dario Boffelli
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - David I. K. Martin
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| |
Collapse
|