1
|
Ma Y, Patterson B, Zhu L. Biased signaling in GPCRs: Structural insights and implications for drug development. Pharmacol Ther 2025; 266:108786. [PMID: 39719175 DOI: 10.1016/j.pharmthera.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans, playing a crucial role in regulating diverse cellular processes and serving as primary drug targets. Traditional drug design has primarily focused on ligands that uniformly activate or inhibit GPCRs. However, the concept of biased agonism-where ligands selectively stabilize distinct receptor conformations, leading to unique signaling outcomes-has introduced a paradigm shift in therapeutic development. Despite the promise of biased agonists to enhance drug efficacy and minimize side effects, a comprehensive understanding of the structural and biophysical mechanisms underlying biased signaling is essential. Recent advancements in GPCR structural biology have provided unprecedented insights into ligand binding, conformational dynamics, and the molecular basis of biased signaling. These insights, combined with improved techniques for characterizing ligand efficacy, have driven the development of biased ligands for several GPCRs, including opioid, angiotensin, and adrenergic receptors. This review synthesizes these developments, from mechanisms to drug discovery in biased signaling, emphasizing the role of structural insights in the rational design of next-generation biased agonists with superior therapeutic profiles. Ultimately, these advances hold the potential to revolutionize GPCR-targeted drug discovery, paving the way for more precise and effective treatments.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brandon Patterson
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.
| |
Collapse
|
2
|
Parichatikanond W, Duangrat R, Kurose H, Mangmool S. Regulation of β-Adrenergic Receptors in the Heart: A Review on Emerging Therapeutic Strategies for Heart Failure. Cells 2024; 13:1674. [PMID: 39451192 PMCID: PMC11506672 DOI: 10.3390/cells13201674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
The prolonged overstimulation of β-adrenergic receptors (β-ARs), a member of the G protein-coupled receptor (GPCR) family, causes abnormalities in the density and functionality of the receptor and contributes to cardiac dysfunctions, leading to the development and progression of heart diseases, especially heart failure (HF). Despite recent advancements in HF therapy, mortality and morbidity rates continue to be high. Treatment with β-AR antagonists (β-blockers) has improved clinical outcomes and reduced overall hospitalization and mortality rates. However, several barriers in the management of HF remain, providing opportunities to develop new strategies that focus on the functions and signal transduction of β-ARs involved in the pathogenesis of HF. As β-AR can signal through multiple pathways influenced by different receptor subtypes, expression levels, and signaling components such as G proteins, G protein-coupled receptor kinases (GRKs), β-arrestins, and downstream effectors, it presents a complex mechanism that could be targeted in HF management. In this narrative review, we focus on the regulation of β-ARs at the receptor, G protein, and effector loci, as well as their signal transductions in the physiology and pathophysiology of the heart. The discovery of potential ligands for β-AR that activate cardioprotective pathways while limiting off-target signaling is promising for the treatment of HF. However, applying findings from preclinical animal models to human patients faces several challenges, including species differences, the genetic variability of β-ARs, and the complexity and heterogeneity of humans. In this review, we also summarize recent updates and future research on the regulation of β-ARs in the molecular basis of HF and highlight potential therapeutic strategies for HF.
Collapse
Affiliation(s)
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Hitoshi Kurose
- Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan;
- Pharmacology for Life Sciences, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Hajiaghayi M, Gholizadeh F, Han E, Little SR, Rahbari N, Ardila I, Lopez Naranjo C, Tehranimeh K, Shih SCC, Darlington PJ. The β 2-adrenergic biased agonist nebivolol inhibits the development of Th17 and the response of memory Th17 cells in an NF-κB-dependent manner. Front Immunol 2024; 15:1446424. [PMID: 39445009 PMCID: PMC11496295 DOI: 10.3389/fimmu.2024.1446424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Adrenergic receptors regulate metabolic, cardiovascular, and immunological functions in response to the sympathetic nervous system. The effect of β2-adrenergic receptor (AR) as a high expression receptor on different subpopulations of T cells is complex and varies depending on the type of ligand and context. While traditional β2-AR agonists generally suppress T cells, they potentially enhance IL-17A production by Th17 cells. The effects of pharmacological drugs that count as biased agonists of AR like nebivolol are not completely understood. We investigated the impact of nebivolol on human memory CD4+ T (Th1, Th2, Th17) cells and polarized naive Th17 cells, highlighting its potential for IL-17A suppression via a non-canonical β2-AR cell signaling pathway. Methods The effects of nebivolol were tested on healthy human peripheral blood mononuclear cells, purified memory Th cells, and polarized naive Th17 cells activated with anti-CD3/anti-CD28/anti-CD2 ImmunoCult reagent. IFN-γ, IL-4, and IL-17A, which are primarily derived from Th1, Th2, and Th17 cells, respectively, were quantified by ELISA and flow cytometry. IL-10 was measured by ELISA. Gene expression of RORC, ADRB1, ADRB2, and ADRB3 was evaluated by qPCR. The ADRB2 gene was knocked out in memory Th cells using CRISPR/Cas9. Protein expression of phosphorylated serine133-CREB and phosphorylated NF-κB p65 was assessed by Western blot. Proliferation was assessed by fluorescent dye loading and flow cytometry. Results Nebivolol treatment decreased IL-17A and IFN-γ secretion by activated memory Th cells and elevated IL-4 levels. Nebivolol reduced the proportion of IL-17A+ Th cells and downregulated RORC expression. Unlike the β2-AR agonist terbutaline, nebivolol inhibited the shift of naive CD4+ T cells toward the Th17 phenotype. IL-10 and the proliferation index remained unchanged. Nebivolol-treated β2-knockout memory Th cells showed significant inhibition of β2-AR-mediated signaling, evidenced by the absence of IL-17A suppression compared to controls. Phosphorylation of the NF-κB p65 subunit was inhibited by nebivolol, but CREB phosphorylation was not changed, suggesting a selective transcriptional control. Conclusions The findings demonstrate that nebivolol acts through a β2-AR-mediated signaling pathway, as a distinctive anti-inflammatory agent capable of selectively shifting Th17 cells and suppressing the phosphorylation of NF-κB. This highlights nebivolol's potential for therapeutic interventions in chronic autoimmune conditions with elevated IL-17A levels.
Collapse
Affiliation(s)
- Mehri Hajiaghayi
- Department of Biology, Concordia University, Montréal, QC, Canada
| | | | - Eric Han
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal QC, Canada
| | - Samuel R. Little
- Department of Electrical and Computer Engineering, Concordia University, Center of Applied Synthetic Biology, Montréal, QC, Canada
| | - Niloufar Rahbari
- Department of Electrical and Computer Engineering, Concordia University, Center of Applied Synthetic Biology, Montréal, QC, Canada
| | - Isabella Ardila
- Department of Biology, Concordia University, Montréal, QC, Canada
| | | | - Kasra Tehranimeh
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal QC, Canada
| | - Steve C. C. Shih
- Department of Electrical and Computer Engineering, Concordia University, Center of Applied Synthetic Biology, Montréal, QC, Canada
| | - Peter J. Darlington
- Department of Biology, Concordia University, Montréal, QC, Canada
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal QC, Canada
| |
Collapse
|
4
|
Kenakin T. Know your molecule: pharmacological characterization of drug candidates to enhance efficacy and reduce late-stage attrition. Nat Rev Drug Discov 2024; 23:626-644. [PMID: 38890494 DOI: 10.1038/s41573-024-00958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Despite advances in chemical, computational and biological sciences, the rate of attrition of drug candidates in clinical development is still high. A key point in the small-molecule discovery process that could provide opportunities to help address this challenge is the pharmacological characterization of hit and lead compounds, culminating in the selection of a drug candidate. Deeper characterization is increasingly important, because the 'quality' of drug efficacy, at least for G protein-coupled receptors (GPCRs), is now understood to be much more than activation of commonly evaluated pathways such as cAMP signalling, with many more 'efficacies' of ligands that could be harnessed therapeutically. Such characterization is being enabled by novel assays to characterize the complex behaviour of GPCRs, such as biased signalling and allosteric modulation, as well as advances in structural biology, such as cryo-electron microscopy. This article discusses key factors in the assessments of the pharmacology of hit and lead compounds in the context of GPCRs as a target class, highlighting opportunities to identify drug candidates with the potential to address limitations of current therapies and to improve the probability of them succeeding in clinical development.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Kenakin T. Bias translation: The final frontier? Br J Pharmacol 2024; 181:1345-1360. [PMID: 38424747 DOI: 10.1111/bph.16335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 03/02/2024] Open
Abstract
Biased signalling is a natural result of GPCR allosteric function and should be expected from any and all synthetic and natural agonists. Therefore, it may be encountered in all agonist discovery projects and must be considered as a beneficial (or possible detrimental) feature of new candidate molecules. While bias is detected easily, the synoptic nature of GPCR signalling makes translation of simple in vitro bias to complex in vivo systems problematic. The practical outcome of this is a difficulty in predicting the therapeutic value of biased signalling due to the failure of translation of identified biased signalling to in vivo agonism. This is discussed in this review as well as some new ways forward to improve this translation process and better exploit this powerful pharmacologic mechanism.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Watts SW, Townsend RR, Neubig RR. How New Developments in Pharmacology Receptor Theory Are Changing (Our Understanding of) Hypertension Therapy. Am J Hypertens 2024; 37:248-260. [PMID: 38150382 PMCID: PMC10941088 DOI: 10.1093/ajh/hpad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Many hypertension therapeutics were developed prior to major advances in drug receptor theory. Moreover, newer drugs may take advantage of some of the newly understood modalities of receptor function. GOAL The goal of this review is to provide an up-to-date summary of drug receptor theory. This is followed by a discussion of the drug classes recognized for treating hypertension to which new concepts in receptor theory apply. RESULTS We raise ideas for mechanisms of potential new antihypertensive drugs and whether they may take advantage of new theories in drug-receptor interaction.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan 48824-131, USA
| | - Raymond R Townsend
- Department of Nephrology and Hypertension, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan 48824-131, USA
| |
Collapse
|
7
|
Gul R, Okla M, Mahmood A, Nawaz S, Fallata A, Bazighifan A, Alfayez M, Alfadda AA. Comparison of the Protective Effects of Nebivolol and Metoprolol against LPS-Induced Injury in H9c2 Cardiomyoblasts. Curr Issues Mol Biol 2023; 45:9316-9327. [PMID: 37998760 PMCID: PMC10670410 DOI: 10.3390/cimb45110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Here, we, for the first time, compared the cardioprotective effects of third-generation vasodilating beta-blocker nebivolol (Neb) and conventional beta-blocker metoprolol (Met) on LPS-induced injury in H9c2 cardiomyoblasts. Our findings denoted that Neb and Met pretreatment diminish LPS-mediated cytotoxicity and oxidative stress. Concomitantly, LPS-triggered inflammatory cytokines activation was significantly suppressed by Neb but not by Met. Pretreatment with either Neb or Met alleviated LPS-mediated mitochondrial impairment by enhancing the expression of genes related to its biogenesis such as PGC-1α, NRF1, and TFAM. On the contrary, Neb but not Met-upregulated mitochondrial fusion-related genes such as OPA, and MFN2. In summary, our findings suggest that Neb and Met treatment significantly ameliorated the LPS-induced cytotoxicity and oxidative stress. Additionally, these findings suggest that Neb but not Met significantly down-regulates LPS-induced proinflammatory factors, probably by enhancing mitochondrial biogenesis and fusion.
Collapse
Affiliation(s)
- Rukhsana Gul
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (S.N.); (A.B.); (A.A.A.)
| | - Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Shahid Nawaz
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (S.N.); (A.B.); (A.A.A.)
| | - Amina Fallata
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (S.N.); (A.B.); (A.A.A.)
| | - Arwa Bazighifan
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (S.N.); (A.B.); (A.A.A.)
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Assim A. Alfadda
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (S.N.); (A.B.); (A.A.A.)
- Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
8
|
Guven B, Onay-Besikci A. Past and present of beta arrestins: A new perspective on insulin secretion and effect. Eur J Pharmacol 2023; 956:175952. [PMID: 37541367 DOI: 10.1016/j.ejphar.2023.175952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Beta arrestins had been known as intracellular adaptors that uncouple and inactivate the G protein-coupled receptors that they interact with. Their roles as signal initiators for some receptors have recently been recognized. SCOPE OF REVIEW In this review, we focused on their role in mediating metabolic modulation primarily in relation to insulin signaling. Commenced by the upstream receptor, they seem to act like intracellular hubs that divert the metabolic profile of the cell. The amount of metabolic substrates in circulation and their usage/deposition by tissues are controlled by the contribution of all systems in the organism. This control is enabled by the release of hormones such as insulin, glucagon and glucagon-like peptide-1. Intriguingly, some ligands -either agonists or antagonists-of different classes of receptors have preferential properties mediated by β arrestins. This is not surprizing considering that substrate supply and usage should parallel physiological function such as hormone release or muscle contraction. MAJOR CONCLUSIONS Available data indicate that β arrestins conduct the regulatory role in insulin secretion and action. They may be good candidates to target when the upstream signal demands the function that may compromise the cell. An example is carvedilol that is protective by preventing the stimulatory effects of excessive catecholamines, stimulates mitochondrial function and has preferential clinical outcomes in metabolic disorders.
Collapse
Affiliation(s)
- Berna Guven
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey
| | - Arzu Onay-Besikci
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey.
| |
Collapse
|
9
|
Veeder JA, Hothem LN, Cipriani AE, Jensen BC, Rodgers JE. Chemotherapy-associated cardiomyopathy: Mechanisms of toxicity and cardioprotective strategies. Pharmacotherapy 2021; 41:1066-1080. [PMID: 34806206 DOI: 10.1002/phar.2638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To describe the proposed mechanisms of chemotherapy-associated cardiomyopathy (CAC) and potential cardioprotective therapies for CAC including a comprehensive review of existing systematic analyses, guideline recommendations, and ongoing clinical trials. DATA SOURCES A literature search of MEDLINE was performed (from 1990 to June 2020) using the following search terms: anthracycline, trastuzumab, cardiomyopathy, cardiotoxicity, primary prevention, angiotensin-converting enzyme inhibitor (ACEI), angiotensin receptor blocker (ARB), beta blocker, dexrazoxane (DEX) as well as using individual names from select therapeutic categories. STUDY SELECTION AND DATA EXTRACTION Existing English language systematic analyses and guidelines were considered. DATA SYNTHESIS The mechanisms of CAC are multifaceted, but various cardioprotective therapies target many of these pathways. To date, anthracyclines and HER-2 targeted therapies have been the focus of cardioprotective trials to date as they are the most commonly implicated therapies in CAC. While traditional neurohormonal antagonists (ACEIs, ARBs, and beta blockers) and DEX performed favorably in many small clinical trials, the quality of available evidence remains limited. Hence, major guidelines lack consensus on an approach to primary prevention of CAC. Given the uncertain role of preventive therapy, monitoring for a symptomatic or asymptomatic decline in LV function is imperative with prompt evaluation should this occur. Numerous ongoing randomized controlled trials seek to either confirm the findings of these previous studies or identify new therapeutic agents to prevent CAC. Clinical implications are derived from the available literature as well as current guideline recommendations for CAC cardioprotection. CONCLUSION At this time, no single therapy has a clear cardioprotective benefit in preventing CAC nor is any therapy strongly recommended by current guidelines. Additional studies are needed to determine the optimal preventative regimens.
Collapse
Affiliation(s)
- Justin A Veeder
- UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
- AstraZeneca, Nashville, Tennessee, USA
| | - Lauren N Hothem
- UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
- GlaxoSmithKline, Research Triangle, North Carolina, USA
| | - Amber E Cipriani
- UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, North Carolina, USA
| | - Brian C Jensen
- Department of Medicine, University of North Carolina Medical Center, Chapel Hill, North Carolina, USA
| | - Jo E Rodgers
- UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Biased activation of β 2-AR/Gi/GRK2 signal pathway attenuated β 1-AR sustained activation induced by β 1-adrenergic receptor autoantibody. Cell Death Dis 2021; 7:340. [PMID: 34750352 PMCID: PMC8576015 DOI: 10.1038/s41420-021-00735-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023]
Abstract
Heart failure is the terminal stage of many cardiac diseases, in which β1-adrenoceptor (β1-AR) autoantibody (β1-AA) has a causative role. By continuously activating β1-AR, β1-AA can induce cytotoxicity, leading to cardiomyocyte apoptosis and heart dysfunction. However, the mechanism underlying the persistent activation of β1-AR by β1-AA is not fully understood. Receptor endocytosis has a critical role in terminating signals over time. β2-adrenoceptor (β2-AR) is involved in the regulation of β1-AR signaling. This research aimed to clarify the mechanism of the β1-AA-induced sustained activation of β1-AR and explore the role of the β2-AR/Gi-signaling pathway in this process. The beating frequency of neonatal rat cardiomyocytes, cyclic adenosine monophosphate content, and intracellular Ca2+ levels were examined to detect the activation of β1-AA. Total internal reflection fluorescence microscopy was used to detect the endocytosis of β1-AR. ICI118551 was used to assess β2-AR/Gi function in β1-AR sustained activation induced by β1-AA in vitro and in vivo. Monoclonal β1-AA derived from a mouse hybridoma could continuously activate β1-AR. β1-AA-restricted β1-AR endocytosis, which was reversed by overexpressing the endocytosis scaffold protein β-arrestin1/2, resulting in the cessation of β1-AR signaling. β2-AR could promote β1-AR endocytosis, as demonstrated by overexpressing/interfering with β2-AR in HL-1 cells, whereas β1-AA inhibited the binding of β2-AR to β1-AR, as determined by surface plasmon resonance. ICI118551 biasedly activated the β2-AR/Gi/G protein-coupled receptor kinase 2 (GRK2) pathway, leading to the arrest of limited endocytosis and continuous activation of β1-AR by β1-AA in vitro. In vivo, ICI118551 treatment attenuated myocardial fiber rupture and left ventricular dysfunction in β1-AA-positive mice. This study showed that β1-AA continuously activated β1-AR by inhibiting receptor endocytosis. Biased activation of the β2-AR/Gi/GRK2 signaling pathway could promote β1-AR endocytosis restricted by β1-AA, terminate signal transduction, and alleviate heart damage.
Collapse
|
11
|
Prasad A, Mahmood A, Gupta R, Bisoyi P, Saleem N, Naga Prasad SV, Goswami SK. In cardiac muscle cells, both adrenergic agonists and antagonists induce reactive oxygen species from NOX2 but mutually attenuate each other's effects. Eur J Pharmacol 2021; 908:174350. [PMID: 34265295 DOI: 10.1016/j.ejphar.2021.174350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022]
Abstract
In cardiac muscle cells adrenergic agonists stimulate the generation of reactive oxygen species, followed by redox signaling. We postulated that the antagonists would attenuate such reactive oxygen species generation by the agonists. H9c2 cardiac myoblasts, neonatal rat cardiac myocytes, and HEK293 cells expressing β1/β2 adrenoceptors were stimulated with several agonists and antagonists. All the agonists and antagonists independently generated reactive oxygen species; but its generation was minimum whenever an agonists was added together with an antagonist. We monitored the Ca++ signaling in the treated cells and obtained similar results. In all treatment sets, superoxide and H2O2 were generated in the mitochondria and the cytosol respectively. NOX2 inhibitor gp91ds-tat blocked reactive oxygen species generation by both the agonists and the antagonists. The level of p47phox subunit of NOX2 rapidly increased upon treatment, and it translocated to the plasma membrane, confirming NOX2 activation. Inhibitor studies showed that the activation of NOX2 involves ERK, PI3K, and tyrosine kinases. Recombinant promoter-reporter assays showed that reactive oxygen species generated by both the agonists and antagonists modulated downstream gene expression. Mice injected with the β-adrenergic agonist isoproterenol and fed with the antagonist metoprolol showed a robust induction of p47phox in the heart. We conclude that both the agonism and antagonism of adrenoceptors initiate redox signaling but when added together, they mutually counteract each other's effects. Our study thus highlights the importance of reactive oxygen species in adrenoceptor agonism and antagonism with relevance to the therapeutic use of the β blockers.
Collapse
Affiliation(s)
- Anamika Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Amena Mahmood
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India; DDU-Kaushal Kendra, Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Padmini Bisoyi
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Nikhat Saleem
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Sathyamangla V Naga Prasad
- NB50, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
12
|
Gabani M, Castañeda D, Nguyen QM, Choi SK, Chen C, Mapara A, Kassan A, Gonzalez AA, Khataei T, Ait-Aissa K, Kassan M. Association of Cardiotoxicity With Doxorubicin and Trastuzumab: A Double-Edged Sword in Chemotherapy. Cureus 2021; 13:e18194. [PMID: 34589374 PMCID: PMC8459919 DOI: 10.7759/cureus.18194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/05/2022] Open
Abstract
Anticancer drugs play an important role in reducing mortality rates and increasing life expectancy in cancer patients. Treatments include monotherapy and/or a combination of radiation therapy, chemotherapy, hormone therapy, or immunotherapy. Despite great advances in drug development, some of these treatments have been shown to induce cardiotoxicity directly affecting heart function and structure, as well as accelerating the development of cardiovascular disease. Such side effects restrict treatment options and can negatively affect disease management. Consequently, when managing cancer patients, it is vital to understand the mechanisms causing cardiotoxicity to better monitor heart function, develop preventative measures against cardiotoxicity, and treat heart failure when it occurs in this patient population. This review discusses the role and mechanism of major chemotherapy agents with principal cardiovascular complications in cancer patients.
Collapse
Affiliation(s)
- Mohanad Gabani
- Internal Medicine, Harlem Hospital Center, New York, USA
| | - Diana Castañeda
- Basic Sciences, California State University, Los Angeles, USA
| | - Quynh My Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, USA
| | | | - Cheng Chen
- Department of Emergency and Critical Care, Shanghai General Hospital, Shanghai, CHN
| | - Ayesha Mapara
- Biological Sciences, Northeastern Illinois University, Chicago, USA
| | - Adam Kassan
- School of Pharmacy, West Coast University, Los Angeles, USA
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, CHL
| | | | | | - Modar Kassan
- Physiology, The University of Tennessee Health Science Center, Memphis, USA
| |
Collapse
|
13
|
Hatefi A, Zare Shahneh A, Ansari Pirsaraie Z, Alizadeh AM, Atashnak MP, Masoudi R, Pio F. The stimulation and inhibition of beta-2 adrenergic receptor on the inflammatory responses of ovary and immune system in the aged laying hens. BMC Vet Res 2021; 17:195. [PMID: 34022889 PMCID: PMC8140518 DOI: 10.1186/s12917-021-02892-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022] Open
Abstract
Background Ovarian chronic inflammation has been known to incidence in the laying hen mainly via increasing laying frequency and microbial infection, especially during late stage of production period. This study was aimed to evaluate beta-2 adrenergic agonist (Beta-2 Adrenergic Agonist, BAA) Salmeterol and beta blocker (Beta Blocker, BB) Propranolol on the gene expression of the ovarian pro- and anti-inflammatory mediators, inflammatory responses of immune system, ovarian functions and, hormones in the laying hens on the late stage of production period. Forty-eight White Leghorn hens aged 92 weeks were used for 4 weeks to be supplemented by Salmeterol and Propranolol. Ovulation rate and follicular growth were determined based on laying frequency and ovarian visual evaluation, respectively; the mRNA expressions of follicular beta-2 adrenergic receptor (Beta-2 Adrenergic Receptor, β2ADR), cyclooxygenases (Cyclooxygenases, COX) 1 and 2, and cytokines were measured by real-time PCR. The plasma concentration of ovarian hormones, cellular, and humoral immune responses were measured via ELISA, heterophil to lymphocyte ratio (Heterophil to Lymphocyte ratio, H:L), and sheep red blood cell (Sheep Red Blood Cell, SRBC) test, respectively. Results As compared to control, both of BAA Salmeterol and BB Propranolol resulted in a significant decrease in the mRNA expression of β2ADR, cyclooxygenases, and pro- and anti-inflammatory cytokines (P < 0.01). A significant elevation was observed in the ovulation rate (P < 0.05), plasma estradiol content on both treated groups (P < 0.05), and the content of progesterone and was just significantly (P < 0.05) increased in Salmeterol group. H:L was reduced in BAA group (P < 0.05), and immunoglobulin (Ig) M was elevated in both treated hens, when compared to control. The results indicated that Salmeterol significantly increases body weight (P < 0.05). Conclusion The stimulation and inhibition of beta-2 adrenergic signaling could reduce ovarian inflammatory condition in addition to enhancing laying efficiency in the aged laying hens.
Collapse
Affiliation(s)
- Ali Hatefi
- Department of Animal Science, University of Tehran, Karaj, Iran.
| | | | | | | | - Mohammad Pouya Atashnak
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Reza Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Frederic Pio
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
14
|
Lymperopoulos A, Cora N, Maning J, Brill AR, Sizova A. Signaling and function of cardiac autonomic nervous system receptors: Insights from the GPCR signalling universe. FEBS J 2021; 288:2645-2659. [PMID: 33599081 DOI: 10.1111/febs.15771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Ava R. Brill
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| |
Collapse
|
15
|
Gonczi CMC, Touma F, Daigneault T, Pozzebon C, Burchell-Reyes K, Darlington PJ. Modulation of IL-17A and IFNγ by β2-adrenergic agonist terbutaline and inverse-agonist nebivolol, influence of ADRB2 polymorphisms. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract><sec>
<title>Background</title>
<p>Upon activation, helper T (Th) cells produce cytokines such as IL-17A and IFNγ, which may exacerbate inflammatory disease and disorders. Adrenergic drugs are emerging as immunomodulatory agents to treat pro-inflammatory diseases, but their function is not completely understood. Th Cells express the β2-adrenergic receptor (β2AR) that is encoded by <italic>ADRB2</italic>. Agonists of the β2AR decrease IFNγ but can increase IL-17A from Th cells. We compared a β2AR agonist to an inverse-agonist, and assessed the influence of <italic>ADRB2</italic> polymorphisms on IL-17A and IFNγ responses.</p>
</sec><sec>
<title>Methods</title>
<p>Peripheral blood mononuclear cells (PBMCs) from venous blood of healthy human participants were cultured with T cell activators anti-CD3 and anti-CD28 antibodies. Terbutaline, a β2AR agonist or nebivolol, a β1AR antagonist and β2AR inverse-agonist, were added <italic>in vitro</italic>. Cytokines IL-17A and IFNγ were measured using enzyme-linked immunosorbent assay. Genomic <italic>ADRB2</italic> and its immediate upstream region were sequenced using Sanger's method. Cytokine response to drug was analyzed based on <italic>ADRB2</italic> polymorphisms.</p>
</sec><sec>
<title>Results</title>
<p>Terbutaline consistently inhibited IFNγ from activated PBMC samples. In contrast, it increased IL-17A in PBMC homozygous for Gly16 codon of <italic>ADRB2</italic>. Nebivolol inhibited IL-17A and IFNγ from activated Th cells. When applied to activated-PBMCs, nebivolol inhibited IL-17A but did not significantly inhibit IFNγ although a trend was observed. The ability of nebivolol to inhibit IL-17A was attenuated by a β2AR-specific antagonist. Cellular proliferation and viability was not significantly changed by nebivolol. Nebivolol suppressed IL-17A in all of the samples regardless of <italic>ADRB2</italic> polymorphisms.</p>
</sec><sec>
<title>Conclusions</title>
<p>This data demonstrates that terbutaline inhibited IFNγ, however, it increased IL-17A in samples with the common Gly16 polymorphism of <italic>ADRB2</italic>. Nebivolol inhibited IL-17A regardless of <italic>ADRB2</italic> polymorphisms. Thus, nebivolol is a strong candidate for treating inflammatory diseases or disorders where IL-17A exacerbates symptoms.</p>
</sec></abstract>
Collapse
|
16
|
Ippolito M, Benovic JL. Biased agonism at β-adrenergic receptors. Cell Signal 2020; 80:109905. [PMID: 33385503 DOI: 10.1016/j.cellsig.2020.109905] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/27/2020] [Indexed: 12/19/2022]
Abstract
The β-adrenergic receptors (βARs) include three subtypes, β1, β2 and β3. These receptors are widely expressed and regulate numerous physiological processes including cardiovascular and metabolic functions and airway tone. The βARs are also important targets in the treatment of many diseases including hypertension, heart failure and asthma. In some cases, the use of current βAR ligands to treat a disease is suboptimal and can lead to severe side effects. One strategy to potentially improve such treatments is the development of biased agonists that selectively regulate a subset of βAR signaling pathways and responses. Here we discuss the compounds identified to date that preferentially activate a Gs- or β-arrestin-mediated signaling pathway through βARs. Mechanistic insight on how these compounds bias signaling sheds light on the potential development of even more selective compounds that should have increased utility in treating disease.
Collapse
Affiliation(s)
- Michael Ippolito
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America.
| |
Collapse
|
17
|
Kenakin T. Biased signaling as allosteric probe dependence. Cell Signal 2020; 79:109844. [PMID: 33242565 DOI: 10.1016/j.cellsig.2020.109844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/07/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023]
Abstract
Signaling 'bias' is a phenomenon whereby the natural allosteric probe dependence of seven transmembrane receptors allows different receptor conformations (stabilized by different agonists) to activate some signaling pathways (coupled to pleiotropically coupled receptors) more than others at the expense of those other pathways. There are a number of relevant scenarios where such an activity could be therapeutically beneficial therefore there are practical reasons why this property of receptors should be exploited. This paper discusses recent ideas around attempts to harness this potentially useful idea and also the limitations around the current methods available to do so. Specifically, the determination of a quantitative value for the receptor bias of a given agonist that may translate to useful in vivo has been particularly elusive and studies need to be directed to solving this problem.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Güven B, Kara Z, Onay-Beşikci A. Metabolic effects of carvedilol through β-arrestin proteins: investigations in a streptozotocin-induced diabetes rat model and in C2C12 myoblasts. Br J Pharmacol 2020; 177:5580-5594. [PMID: 32931611 DOI: 10.1111/bph.15269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Carvedilol is a third-generation β-adrenoceptor antagonist, which also stimulates β-arrestins. β-arrestins initiate intracellular signalling and are involved in insulin release and sensitivity. Carvedilol is superior in effectiveness to other drugs that are used for similar indications and does not cause insulin resistance or diabetes, which can occur with other β-antagonists. We have shown that carvedilol increased glucose usage in C2C12 cells. We investigate the biased agonist efficacy of carvedilol on β-arrestins. EXPERIMENTAL APPROACH Streptozotocin (STZ)-induced diabetes rat model was used to induce metabolic and cardiac disorders. After 8 weeks of diabetes, animals were treated with carvedilol or vehicle for another 4 weeks. In vitro heart function was evaluated at baseline as well as with increasing concentrations of isoprenaline. Effects of diabetes and carvedilol treatment on β-arrestins, ERK, PPARα, CD36 proteins and pyruvate kinase activity were evaluated. β-arrestins were silenced in C2C12 cells by using siRNA. Acute effects of carvedilol on ERK, CD36, mitochondrial transcription factor A, cardiolipin proteins and citrate synthase activity were investigated. KEY RESULTS Carvedilol reversed the deterioration of cardiac function in diabetes and diabetes-induced decrease in β-arrestins in rats. Carvedilol decreased the expression of CD36 in diabetes and increased mitochondrial transcription factor A and cardiolipin proteins. Silencing of β-arrestins in cells prevented the effects of carvedilol on these proteins. CONCLUSION AND IMPLICATIONS The metabolic effects of carvedilol seem to be related to biased activation of β-arrestins. Patients with cardiovascular and metabolic disorders may benefit from new compounds that selectively act on β-arrestins.
Collapse
Affiliation(s)
- Berna Güven
- Department of Pharmacology, Ankara University, Ankara, Turkey
| | - Zümra Kara
- Department of Pharmacology, Ankara University, Ankara, Turkey
| | | |
Collapse
|
19
|
Rezk AM, Ibrahim IAAEH, Mahmoud MF, Mahmoud AAA. Quercetin and lithium chloride potentiate the protective effects of carvedilol against renal ischemia-reperfusion injury in high-fructose, high-fat diet-fed Swiss albino mice independent of renal lipid signaling. Chem Biol Interact 2020; 333:109307. [PMID: 33159969 DOI: 10.1016/j.cbi.2020.109307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
Renal ischemia-reperfusion injury (R-IRI) is the main cause of acute renal failure. Carvedilol has been shown to protect against R-IRI. However, the underlying mechanisms are still not completely clarified. This study aimed to investigate the role of lipid signaling in mediating carvedilol protective effects against R-IRI in insulin-resistant mice by using two different lipid signaling modulators, quercetin and lithium chloride (LiCl). Mice were fed high-fructose, high-fat diet (HFrHFD) for 16 weeks to induce insulin resistance. At the end of feeding period, mice were randomly distributed into five groups; Sham, R-IRI, Carvedilol (20 mg/kg, i.p.), Carvedilol + Quercetin (10 mg/kg, i.p.), Carvedilol + LiCl (200 mg/kg, i.p.). R-IRI was performed by applying 30 min of unilateral renal ischemia followed by one hour of reperfusion. Quercetin and LiCl were administered 30 min before carvedilol administration and carvedilol was administered 30 min before ischemia. Changes in kidney function tests, histopathology, fibrosis area, lipid signaling, inflammatory, apoptosis and oxidative stress markers in the kidney were measured. Results showed that R-IRI decreased kidney function, impaired renal tissue integrity, modulated lipid signaling and increased renal inflammation, apoptosis and oxidative stress. Carvedilol treatment decreased the detrimental effects induced by R-IRI. In addition, pre-injection of both quercetin and LiCl potentiated the reno-protective effects of carvedilol against R-IRI independent of changes in lipid mediators like phosphatidyl inositol 4,5 bisphosphate (PIP2) and diacylglycerol (DAG). In conclusion, quercetin and LiCl potentiate the protective effects of carvedilol against R-IRI in HFrHFD-fed mice by reducing inflammation and oxidative stress independent of lipid signaling.
Collapse
Affiliation(s)
- Asmaa M Rezk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt; Department of Pharmacies, Benha University Hospitals, Benha, Egypt
| | - Islam A A E-H Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amr A A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
20
|
Abstract
The antihypertrophic effect of nebivolol over cardioselective beta-blockers (β-blockers) is attributed to the activation of cardiac nitric oxide signaling. However, the precise role of nebivolol on hypertrophied cardiomyocytes remains unclear. In the current study, in vitro cardiomyocyte hypertrophy model was induced with isoprenaline (10 μM), angiotensin II (1 μM), and phenylephrine (20 μM) in neonatal cardiomyocytes isolated from 0- to 2-day-old Sprague-Dawley rats. In addition to hypertrophic agents, cardiomyocytes were treated with nebivolol (1 μM), metoprolol (10 μM), N(ω)-nitro-L-arginine methyl ester (L-NAME) (100 μM), KT5823 (1 μM), DETA-NONOate (1-10 μM), and BAY412272 (10 μM). After 24 hours of treatment, cardiomyocyte size and transcriptional changes in cardiac hypertrophy markers were evaluated. Cardiomyocyte size increased equally in response to all hypertrophic agents. Nebivolol reduced the enhancement in cell size in response to both isoprenaline and angiotensin II; metoprolol did not. The antihypertrophic effect of nebivolol was prevented with L-NAME blockage indicating the role of NOS signaling on cardiomyocyte hypertrophy. The increased mRNA levels of atrial natriuretic peptide induced by isoprenaline decreased with nebivolol, but both β-blockers reduced the angiotensin II-induced increase in atrial natriuretic peptide expression. Combined, these results reveal that by activating NOS signaling, nebivolol exerts antihypertrophic effects on neonatal cardiomyocytes independent from the action mechanism of hypertrophic stimulus.
Collapse
|
21
|
Agonist Effects of Propranolol on Non-Tumor Human Breast Cells. Cells 2020; 9:cells9041036. [PMID: 32331276 PMCID: PMC7226086 DOI: 10.3390/cells9041036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
The β-blocker propranolol (PROP) has been proposed as a repurposed treatment for breast cancer. The similarity of action between β-agonists and antagonists found on breast cells encouraged us to compare PROP and isoproterenol (ISO, agonist) signaling pathways on a human breast cell line. Cell proliferation was measured by cell counting and DNA-synthesis. Cell adhesion was measured counting the cells that remained adhered to the plastic after different treatments. Changes in actin cytoskeleton were observed by fluorescence staining and Western Blot. ISO and PROP caused a diminution of cell proliferation and an increase of cell adhesion, reverted by the pure β-antagonist ICI-118551. ISO and PROP induced a reorganization of actin cytoskeleton increasing F-actin, p-COFILIN and p-LIMK. While ISO elicited a marked enhancement of cAMP concentrations and an increase of vasodilator-stimulated phosphoprotein (VASP) and cAMP response element-binding protein (CREB) phosphorylation, PROP did not. Clathrin-mediated endocytosis inhibition or β-arrestin1 dominant-negative mutant abrogated PROP-induced cell adhesion and COFILIN phosphorylation. The fact that PROP has been proposed as an adjuvant drug for breast cancer makes it necessary to determine the specific action of PROP in breast models. These results provide an explanation for the discrepancies observed between experimental results and clinical evidence.
Collapse
|
22
|
Graffagnino J, Kondapalli L, Arora G, Hawi R, Lenneman CG. Strategies to Prevent Cardiotoxicity. Curr Treat Options Oncol 2020; 21:32. [PMID: 32270293 DOI: 10.1007/s11864-020-0722-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OPINION STATEMENT Cardiovascular disease is a leading cause of death among cancer survivors. While the field of cardiology as a whole is driven by evidence generated through robust clinical trials, data in cardio-oncology is limited to a relatively small number of prospective clinical trials with heterogeneous groups of cancer patients. In addition, many pharmaceutical trials in oncology are flawed from a cardiovascular perspective because they exclude patients with significant cardiovascular (CV) history and have wide variation in the definitions of CV events and cardiotoxicity. Ultimately, oncology trials often underrepresent the possibility of cardiovascular events in a "real world" population. Thus, the signal for CV toxicity from a cancer treatment is often not manifested until phase IV studies; where we are often caught trying to mitigate the CV effects rather than preventing them. Most of the data about cardiotoxicity from cancer therapy and cardioprotective strategies has been developed from our experience in using anthracyclines for over 50 years with dramatic improvement in cancer survivorship. However, as we are in an era where cancer drug discovery is moving at lightning pace with increasing survival rates, it is imperative to move beyond anthracyclines and commit to research on the cardiovascular side effects of all aspects of cancer therapy with a focus on prevention. We emphasize the role of pre-cancer treatment CV assessment to anticipate cardiac issues and ultimately optimizing CV risk prior to cancer therapy as an opportunity to mitigate cardiovascular risk from cancer therapy.
Collapse
Affiliation(s)
- Jason Graffagnino
- Department of Medicine, University of Alabama at Birmingham, 321 Lyons Harrison Research Building, 1720 2nd Ave South, Birmingham, AL, 35294, USA
| | - Lavanya Kondapalli
- Division of Cardiology, Department of Medicine, University of Colorado, 12631 E. 17th Ave, Mail Stop B130, Aurora, CO, 80045, USA
| | - Garima Arora
- Department of Medicine, University of Alabama at Birmingham, 321 Lyons Harrison Research Building, 1720 2nd Ave South, Birmingham, AL, 35294, USA
- Division of Cardiology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Riem Hawi
- Department of Medicine, University of Alabama at Birmingham, 321 Lyons Harrison Research Building, 1720 2nd Ave South, Birmingham, AL, 35294, USA
- Division of Cardiology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carrie G Lenneman
- Department of Medicine, University of Alabama at Birmingham, 321 Lyons Harrison Research Building, 1720 2nd Ave South, Birmingham, AL, 35294, USA.
- Division of Cardiology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
23
|
Nasr AM, Rezq S, Shaheen A, Elshazly SM. Renal protective effect of nebivolol in rat models of acute renal injury: role of sodium glucose co-transporter 2. Pharmacol Rep 2020; 72:956-968. [PMID: 32128711 DOI: 10.1007/s43440-020-00059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/17/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Upregulation of the sodium glucose co-transporter (SGLT2) is implicated in acute renal injury (ARI) progression and is regulated by extracellular signal-regulated kinase (ERK), hypoxia-inducible factor 1 alpha (HIF1α) or prostaglandin E2 (PGE2). This study aimed to assess the possible protective effect of nebivolol on renal ischemia/reperfusion (IR) and glycerol-induced ARI targeting SGLT2 via modulating the ERK-HIF1α pathway. METHODS Rats were divided into control, sham, IR or nebivolol-treated group, in which rats were treated with nebivolol (10 mg/kg) for 3 days prior to the induction of IR. The rats were subjected to renal ischemia by bilateral clamping of the pedicles for 45 min, followed by 24 h reperfusion. Another group of rats received the vehicle or nebivolol (10 mg/kg) for 3 days followed by injection of 50% glycerol (8 ml/kg, IM) or saline. Kidney function tests, systolic blood pressure (SBP), oxidative stress markers [malondialdehyde (MDA) and NADPH oxidase] and kidney levels of nitric oxide (NO), inducible nitric oxide synthase (iNOS), HIF1α, ERK phosphorylation and PGE2 were determined. Additionally, renal sections were used for histological grading of renal injury and immunological expression of SGLT2. RESULTS ARI rats showed significantly increased SBP, poor kidney function tests, increased oxidative stress, iNOS, NO, HIF1α levels, decreased PGE2 and ERK phosphorylation and upregulation of SGLT2 expression. Nebivolol treatment protected against the kidney damage both on the biochemical and histological levels. CONCLUSION Nebivolol has a direct renoprotective effect, at least in part, by down-regulating SGLT2 possibly via modulating HIF1α, ERK activity and PGE2 production.
Collapse
Affiliation(s)
- Ahmed M Nasr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Samar Rezq
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt. .,Department of Cell and Molecular Biology, UMMC, 2500 N State St., Jackson, MS, 39216, USA.
| | - Aya Shaheen
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Shimaa M Elshazly
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
24
|
Apostolakou AE, Baltoumas FA, Stravopodis DJ, Iconomidou VA. Extended Human G-Protein Coupled Receptor Network: Cell-Type-Specific Analysis of G-Protein Coupled Receptor Signaling Pathways. J Proteome Res 2019; 19:511-524. [PMID: 31774292 DOI: 10.1021/acs.jproteome.9b00754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G-protein coupled receptors (GPCRs) mediate crucial physiological functions in humans, have been implicated in an array of diseases, and are therefore prime drug targets. GPCRs signal via a multitude of pathways, mainly through G-proteins and β-arrestins, to regulate effectors responsible for cellular responses. The limited number of transducers results in different GPCRs exerting control on the same pathway, while the availability of signaling proteins in a cell defines the result of GPCR activation. The aim of this study was to construct the extended human GPCR network (hGPCRnet) and examine the effect that cell-type specificity has on GPCR signaling pathways. To achieve this, protein-protein interaction data between GPCRs, G-protein coupled receptor kinases (GRKs), Gα subunits, β-arrestins, and effectors were combined with protein expression data in cell types. This resulted in the hGPCRnet, a very large interconnected network, and similar cell-type-specific networks in which, distinct GPCR signaling pathways were formed. Finally, a user friendly web application, hGPCRnet ( http://bioinformatics.biol.uoa.gr/hGPCRnet ), was created to allow for the visualization and exploration of these networks and of GPCR signaling pathways. This work, and the resulting application, can be useful in further studies of GPCR function and pharmacology.
Collapse
Affiliation(s)
- Avgi E Apostolakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences , National and Kapodistrian University of Athens , Panepistimiopolis , Athens 15701 , Greece
| | - Fotis A Baltoumas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences , National and Kapodistrian University of Athens , Panepistimiopolis , Athens 15701 , Greece
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences , National and Kapodistrian University of Athens , Panepistimiopolis , Athens 15701 , Greece
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences , National and Kapodistrian University of Athens , Panepistimiopolis , Athens 15701 , Greece
| |
Collapse
|
25
|
Mohammed SG, Ibrahim IAH, Mahmoud MF, Mahmoud AA. Carvedilol protects against hepatic ischemia/reperfusion injury in high-fructose/high-fat diet-fed mice: Role of G protein-coupled receptor kinase 2 and 5. Toxicol Appl Pharmacol 2019; 382:114750. [DOI: 10.1016/j.taap.2019.114750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/26/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
|
26
|
Oliver E, Mayor Jr F, D’Ocon P. Bloqueadores beta: perspectiva histórica y mecanismos de acción. Rev Esp Cardiol 2019. [DOI: 10.1016/j.recesp.2019.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Tocchetti CG, Cadeddu C, Di Lisi D, Femminò S, Madonna R, Mele D, Monte I, Novo G, Penna C, Pepe A, Spallarossa P, Varricchi G, Zito C, Pagliaro P, Mercuro G. From Molecular Mechanisms to Clinical Management of Antineoplastic Drug-Induced Cardiovascular Toxicity: A Translational Overview. Antioxid Redox Signal 2019; 30:2110-2153. [PMID: 28398124 PMCID: PMC6529857 DOI: 10.1089/ars.2016.6930] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Antineoplastic therapies have significantly improved the prognosis of oncology patients. However, these treatments can bring to a higher incidence of side-effects, including the worrying cardiovascular toxicity (CTX). Recent Advances: Substantial evidence indicates multiple mechanisms of CTX, with redox mechanisms playing a key role. Recent data singled out mitochondria as key targets for antineoplastic drug-induced CTX; understanding the underlying mechanisms is, therefore, crucial for effective cardioprotection, without compromising the efficacy of anti-cancer treatments. Critical Issues: CTX can occur within a few days or many years after treatment. Type I CTX is associated with irreversible cardiac cell injury, and it is typically caused by anthracyclines and traditional chemotherapeutics. Type II CTX is generally caused by novel biologics and more targeted drugs, and it is associated with reversible myocardial dysfunction. Therefore, patients undergoing anti-cancer treatments should be closely monitored, and patients at risk of CTX should be identified before beginning treatment to reduce CTX-related morbidity. Future Directions: Genetic profiling of clinical risk factors and an integrated approach using molecular, imaging, and clinical data may allow the recognition of patients who are at a high risk of developing chemotherapy-related CTX, and it may suggest methodologies to limit damage in a wider range of patients. The involvement of redox mechanisms in cancer biology and anticancer treatments is a very active field of research. Further investigations will be necessary to uncover the hallmarks of cancer from a redox perspective and to develop more efficacious antineoplastic therapies that also spare the cardiovascular system.
Collapse
Affiliation(s)
| | - Christian Cadeddu
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniela Di Lisi
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Saveria Femminò
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Rosalinda Madonna
- 5 Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy.,6 Department of Internal Medicine, The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Donato Mele
- 7 Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- 8 Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Italy
| | - Giuseppina Novo
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Claudia Penna
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Pepe
- 9 U.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa, Italy
| | - Paolo Spallarossa
- 10 Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Gilda Varricchi
- 1 Department of Translational Medical Sciences, Federico II University, Naples, Italy.,11 Center for Basic and Clinical Immunology Research (CISI) - Federico II University, Naples, Italy
| | - Concetta Zito
- 12 Division of Cardiology, Clinical and Experimental Department of Medicine and Pharmacology, Policlinico "G. Martino" University of Messina, Messina, Italy
| | - Pasquale Pagliaro
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giuseppe Mercuro
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
28
|
Emery MA, Eitan S. Members of the same pharmacological family are not alike: Different opioids, different consequences, hope for the opioid crisis? Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:428-449. [PMID: 30790677 DOI: 10.1016/j.pnpbp.2019.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
Abstract
Pain management is the specialized medical practice of modulating pain perception and thus easing the suffering and improving the life quality of individuals suffering from painful conditions. Since this requires the modulation of the activity of endogenous systems involved in pain perception, and given the large role that the opioidergic system plays in pain perception, opioids are currently the most effective pain treatment available and are likely to remain relevant for the foreseeable future. This contributes to the rise in opioid use, misuse, and overdose death, which is currently characterized by public health officials in the United States as an epidemic. Historically, the majority of preclinical rodent studies were focused on morphine. This has resulted in our understanding of opioids in general being highly biased by our knowledge of morphine specifically. However, recent in vitro studies suggest that direct extrapolation of research findings from morphine to other opioids is likely to be flawed. Notably, these studies suggest that different opioid analgesics (opioid agonists) engage different downstream signaling effects within the cell, despite binding to and activating the same receptors. This recognition implies that, in contrast to the historical status quo, different opioids cannot be made equivalent by merely dose adjustment. Notably, even at equianalgesic doses, different opioids could result in different beneficial and risk outcomes. In order to foster further translational research regarding drug-specific differences among opioids, here we review basic research elucidating differences among opioids in pharmacokinetics, pharmacodynamics, their capacity for second messenger pathway activation, and their interactions with the immune system and the dopamine D2 receptors.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA.
| |
Collapse
|
29
|
Oliver E, Mayor F, D'Ocon P. Beta-blockers: Historical Perspective and Mechanisms of Action. ACTA ACUST UNITED AC 2019; 72:853-862. [PMID: 31178382 DOI: 10.1016/j.rec.2019.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Beta-blockers are widely used molecules that are able to antagonize β-adrenergic receptors (ARs), which belong to the G protein-coupled receptor family and receive their stimulus from endogenous catecholamines. Upon β-AR stimulation, numerous intracellular cascades are activated, ultimately leading to cardiac contraction or vascular dilation, depending on the relevant subtype and their location. Three subtypes have been described that are differentially expressed in the body (β1-, β2- and β3-ARs), β1 being the most abundant subtype in the heart. Since their discovery, β-ARs have become an important target to fight cardiovascular disease. In fact, since their discovery by James Black in the late 1950s, β-blockers have revolutionized the field of cardiovascular therapies. To date, 3 generations of drugs have been released: nonselective β-blockers, cardioselective β-blockers (selective β1-antagonists), and a third generation of these drugs able to block β1 together with extra vasodilation activity (also called vasodilating β-blockers) either by blocking α1- or by activating β3-AR. More than 50 years after propranolol was introduced to the market due to its ability to reduce heart rate and consequently myocardial oxygen demand in the event of an angina attack, β-blockers are still widely used in clinics.
Collapse
Affiliation(s)
- Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| | - Federico Mayor
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Pilar D'Ocon
- Departamento de Farmacología, Universitat de València, Valencia, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
30
|
Velmurugan BK, Baskaran R, Huang CY. Detailed insight on β-adrenoceptors as therapeutic targets. Biomed Pharmacother 2019; 117:109039. [PMID: 31176173 DOI: 10.1016/j.biopha.2019.109039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023] Open
Abstract
Human G protein-coupled receptors (GPCRs), especially adrenoceptors, play a crucial role in maintaining important physiological activities including cardiovascular and pulmonary functions. Among all adrenoceptors, β-adrenoceptors are the best characterized GPCRs and possess distinctive features as drug targets. Similarly, ligands that activate/deactivate β-adrenoceptors also hold a significant position in the field of biomarker identification and drug discovery. Several studies regarding molecular characterization of the β-adrenoceptor ligands have revealed that ligands with abilities to inhibit basal or intrinsic receptor activity or prevent receptor desensitization are particularly important to efficiently manage detrimental health conditions, including chronic heart failure, asthma, chronic obstructive pulmonary disease, obesity, and diabetes. Given the importance of β-adrenoceptors as molecular targets for many pathological conditions, this review aims to provide a detailed insight on the structural and functional aspects of β-adrenoceptors, with a particular emphasis on their importance as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Bharath Kumar Velmurugan
- Toxicology and Biomedicine Research group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular research center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
31
|
Hot topics in opioid pharmacology: mixed and biased opioids. Br J Anaesth 2019; 122:e136-e145. [DOI: 10.1016/j.bja.2019.03.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 01/14/2023] Open
|
32
|
Cleveland KH, Liang S, Chang A, Huang KM, Chen S, Guo L, Huang Y, Andresen BT. Carvedilol inhibits EGF-mediated JB6 P+ colony formation through a mechanism independent of adrenoceptors. PLoS One 2019; 14:e0217038. [PMID: 31107911 PMCID: PMC6527222 DOI: 10.1371/journal.pone.0217038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/02/2019] [Indexed: 01/13/2023] Open
Abstract
Carvedilol is reported to prevent cancers in humans and animal models. However, a molecular mechanism has yet to be established, and the extent to which other β-blockers are chemopreventive remains relatively unknown. A comparative pharmacological approach was utilized with the expectation that a mechanism of action could be devised. JB6 Cl 41-5a (JB6 P+) murine epidermal cells were used to elucidate the chemopreventative properties of β-blockers, as JB6 P+ cells recapitulate in vivo tumor promotion and chemoprevention. The initial hypothesis was that β-blockers that are GRK/β-arrestin biased agonists, like carvedilol, are chemopreventive. Sixteen β-blockers of different classes, isoproterenol, and HEAT HCl were individually co-administered with epidermal growth factor (EGF) to JB6 P+ cells to examine the chemopreventative properties of each ligand. Cytotoxicity was examined to ensure that the anti-transformation effects of each ligand were not due to cellular growth inhibition. Many of the examined β-blockers suppressed EGF-induced JB6 P+ cell transformation in a non-cytotoxic and concentration-dependent manner. However, the IC50 values are high for the most potent inhibitors (243, 326, and 431 nM for carvedilol, labetalol, and alprenolol, respectively) and there is no correlation between pharmacological properties and inhibition of transformation. Therefore, the role of α1- and β2-adrenergic receptors (AR) was examined by standard competition assays and shRNA targeting β2-ARs, the only β-AR expressed in JB6 P+ cells. The results reveal that pharmacological inhibition of α1- and β2-ARs and genetic knockdown of β2-ARs did not abrogate carvedilol-mediated inhibition of EGF-induced JB6 P+ cell transformation. Furthermore, topical administration of carvedilol protected mice from UV-induced skin damage, while genetic ablation of β2-ARs increased carvedilol-mediated effects. Therefore, the prevailing hypothesis that the chemopreventive property of carvedilol is mediated through β-ARs is not supported by this data.
Collapse
Affiliation(s)
- Kristan H. Cleveland
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Sherry Liang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Andy Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Kevin M. Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (YH); (BTA)
| | - Bradley T. Andresen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (YH); (BTA)
| |
Collapse
|
33
|
|
34
|
Jagla CAD, Scott CE, Tang Y, Qiao C, Mateo-Semidey GE, Yudowski GA, Lu D, Kendall DA. Pyrimidinyl Biphenylureas Act as Allosteric Modulators to Activate Cannabinoid Receptor 1 and Initiate β-Arrestin-Dependent Responses. Mol Pharmacol 2019; 95:1-10. [PMID: 30322873 PMCID: PMC6277924 DOI: 10.1124/mol.118.112854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/12/2018] [Indexed: 01/14/2023] Open
Abstract
Cannabinoid receptor 1 (CB1) is a G-protein-coupled receptor that is abundant in the central nervous system. It binds several compounds in its orthosteric site, including the endocannabinoids, arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol, and the plant-derived Δ9-tetrahydrocannabinol, one of the main psychoactive components of marijuana. It primarily couples to Gi/o proteins to inhibit adenylate cyclase activity and typically induces downstream signaling that is Gi-dependent. Since this receptor is implicated in several maladies, such as obesity, pain, and neurodegenerative disorders, there is interest in developing therapeutics that selectively target this receptor. Allosteric modulators of CB1 offer one new approach that has tremendous therapeutic potential. Here, we reveal receptor- and cellular-level properties consistent with receptor activation by a series of pyrimidinyl biphenylureas (LDK1285, LDK1288, LDK1305, and PSNCBAM1), including promoting binding of the agonist CP55940 with positive cooperativity and inhibiting binding of the inverse agonist SR141716A with negative cooperativity, demonstrated via radioligand binding studies. Consistent with these findings, the allosteric modulators induced cellular internalization of the receptor and recruitment of β-arrestin 2 in human embryonic kidney cell line 293 cells monitored with confocal and total internal reflective fluorescence microscopy, respectively. These allosteric modulators, however, caused G-protein-independent but β-arrestin 1-dependent phosphorylation of the downstream kinases extracellular signal-regulated kinase 1/2, mitogen-activated protein kinase, and Src, shown by immunoblotting studies. These results are consistent with the involvement of β-arrestin and suggest that these allosteric modulators induce biased signaling.
Collapse
Affiliation(s)
- Caitlin A D Jagla
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Caitlin E Scott
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Yaliang Tang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Changjiang Qiao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Gabriel E Mateo-Semidey
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Guillermo A Yudowski
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Dai Lu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| |
Collapse
|
35
|
Mangmool S, Parichatikanond W, Kurose H. Therapeutic Targets for Treatment of Heart Failure: Focus on GRKs and β-Arrestins Affecting βAR Signaling. Front Pharmacol 2018; 9:1336. [PMID: 30538631 PMCID: PMC6277550 DOI: 10.3389/fphar.2018.01336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022] Open
Abstract
Heart failure (HF) is a heart disease that is classified into two main types: HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). Both types of HF lead to significant risk of mortality and morbidity. Pharmacological treatment with β-adrenergic receptor (βAR) antagonists (also called β-blockers) has been shown to reduce the overall hospitalization and mortality rates and improve the clinical outcomes in HF patients with HFrEF but not HFpEF. Although, the survival rate of patients suffering from HF continues to drop, the management of HF still faces several limitations and discrepancies highlighting the need to develop new treatment strategies. Overstimulation of the sympathetic nervous system is an adaptive neurohormonal response to acute myocardial injury and heart damage, whereas prolonged exposure to catecholamines causes defects in βAR regulation, including a reduction in the amount of βARs and an increase in βAR desensitization due to the upregulation of G protein-coupled receptor kinases (GRKs) in the heart, contributing in turn to the progression of HF. Several studies show that myocardial GRK2 activity and expression are raised in the failing heart. Furthermore, β-arrestins play a pivotal role in βAR desensitization and, interestingly, can mediate their own signal transduction without any G protein-dependent pathway involved. In this review, we provide new insight into the role of GRKs and β-arrestins on how they affect βAR signaling regarding the molecular and cellular pathophysiology of HF. Additionally, we discuss the therapeutic potential of targeting GRKs and β-arrestins for the treatment of HF.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
Abstract
β-arrestin1 (or arrestin2) and β-arrestin2 (or arrestin3) are ubiquitously expressed cytosolic adaptor proteins that were originally discovered for their inhibitory role in G protein-coupled receptor (GPCR) signaling through heterotrimeric G proteins. However, further biochemical characterization revealed that β-arrestins do not just "block" the activated GPCRs, but trigger endocytosis and kinase activation leading to specific signaling pathways that can be localized on endosomes. The signaling pathways initiated by β-arrestins were also found to be independent of G protein activation by GPCRs. The discovery of ligands that blocked G protein activation but promoted β-arrestin binding, or vice-versa, suggested the exciting possibility of selectively activating intracellular signaling pathways. In addition, it is becoming increasingly evident that β-arrestin-dependent signaling is extremely diverse and provokes distinct cellular responses through different GPCRs even when the same effector kinase is involved. In this review, we summarize various signaling pathways mediated by β-arrestins and highlight the physiologic effects of β-arrestin-dependent signaling.
Collapse
|
37
|
Cleveland KH, Yeung S, Huang KM, Liang S, Andresen BT, Huang Y. Phosphoproteome profiling provides insight into the mechanism of action for carvedilol-mediated cancer prevention. Mol Carcinog 2018; 57:997-1007. [PMID: 29626349 DOI: 10.1002/mc.22820] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022]
Abstract
Recent studies suggest that the β-blocker drug carvedilol prevents skin carcinogenesis but the mechanism is unknown. Carvedilol is one of a few β-blockers identified as biased agonist based on an ability to promote β-arrestin-mediated processes such as ERK phosphorylation. To understand the role of phosphoproteomic signaling in carvedilol's anticancer activity, the mouse epidermal JB6 P+ cells treated with EGF, carvedilol, or their combination were analyzed using the Phospho Explorer Antibody Array containing 1318 site-specific and phospho-specific antibodies of over 30 signaling pathways. The array data indicated that both EGF and carvedilol increased phosphorylation of ERK's cytosolic target P70S6 K while its nuclear target ELK-1 were activated only by EGF; Furthermore, EGF-induced phosphorylation of ELK-1 and c-Jun was attenuated by carvedilol. Subcellular fractionation analysis indicated that ERK nuclear translocation induced by EGF was blocked by co-treatment with carvedilol. Western blot and luciferase reporter assays confirmed that the biased β-blockers carvedilol and alprenolol blocked EGF-induced phosphorylation and activation of c-Jun/AP-1 and ELK-1. Consistently, both carvedilol and alprenolol strongly prevented EGF-induced neoplastic transformation of JB6 P+ cells. Remarkably, oral carvedilol treatment significantly inhibited the growth of A375 melanoma xenograft in SCID mice. As nuclear translocation of ERK is a key step in carcinogenesis, inhibition of this event is proposed as a novel anticancer mechanism for biased β-blockers such as carvedilol.
Collapse
Affiliation(s)
- Kristan H Cleveland
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Steven Yeung
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Kevin M Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Sherry Liang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Bradley T Andresen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| |
Collapse
|
38
|
Dias A, Claudino W, Sinha R, Perez C, Jain D. Human epidermal growth factor antagonists and cardiotoxicity—A short review of the problem and preventative measures. Crit Rev Oncol Hematol 2016; 104:42-51. [DOI: 10.1016/j.critrevonc.2016.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 03/09/2016] [Accepted: 04/27/2016] [Indexed: 01/21/2023] Open
|
39
|
β-arrestin-biased signaling through the β2-adrenergic receptor promotes cardiomyocyte contraction. Proc Natl Acad Sci U S A 2016; 113:E4107-16. [PMID: 27354517 DOI: 10.1073/pnas.1606267113] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
β-adrenergic receptors (βARs) are critical regulators of acute cardiovascular physiology. In response to elevated catecholamine stimulation during development of congestive heart failure (CHF), chronic activation of Gs-dependent β1AR and Gi-dependent β2AR pathways leads to enhanced cardiomyocyte death, reduced β1AR expression, and decreased inotropic reserve. β-blockers act to block excessive catecholamine stimulation of βARs to decrease cellular apoptotic signaling and normalize β1AR expression and inotropy. Whereas these actions reduce cardiac remodeling and mortality outcomes, the effects are not sustained. Converse to G-protein-dependent signaling, β-arrestin-dependent signaling promotes cardiomyocyte survival. Given that β2AR expression is unaltered in CHF, a β-arrestin-biased agonist that operates through the β2AR represents a potentially useful therapeutic approach. Carvedilol, a currently prescribed nonselective β-blocker, has been classified as a β-arrestin-biased agonist that can inhibit basal signaling from βARs and also stimulate cell survival signaling pathways. To understand the relative contribution of β-arrestin bias to the efficacy of select β-blockers, a specific β-arrestin-biased pepducin for the β2AR, intracellular loop (ICL)1-9, was used to decouple β-arrestin-biased signaling from occupation of the orthosteric ligand-binding pocket. With similar efficacy to carvedilol, ICL1-9 was able to promote β2AR phosphorylation, β-arrestin recruitment, β2AR internalization, and β-arrestin-biased signaling. Interestingly, ICL1-9 was also able to induce β2AR- and β-arrestin-dependent and Ca(2+)-independent contractility in primary adult murine cardiomyocytes, whereas carvedilol had no efficacy. Thus, ICL1-9 is an effective tool to access a pharmacological profile stimulating cardioprotective signaling and inotropic effects through the β2AR and serves as a model for the next generation of cardiovascular drug development.
Collapse
|
40
|
Cadeddu C, Mercurio V, Spallarossa P, Nodari S, Triggiani M, Monte I, Piras R, Madonna R, Pagliaro P, Tocchetti CG, Mercuro G. Preventing antiblastic drug-related cardiomyopathy: old and new therapeutic strategies. J Cardiovasc Med (Hagerstown) 2016; 17 Suppl 1:e64-e75. [PMID: 27183527 DOI: 10.2459/jcm.0000000000000382] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of the recent advances in chemotherapeutic protocols, cancer survival has improved significantly, although cardiovascular disease has become a major cause of morbidity and mortality among cancer survivors: in addition to the well-known cardiotoxicity (CTX) from anthracyclines, biologic drugs that target molecules that are active in cancer biology also interfere with cardiovascular homeostasis.Pharmacological and non-pharmacological strategies to protect the cardiovascular structure and function are the best approaches to reducing the prevalence of cardiomyopathy linked to anticancer drugs. Extensive efforts have been devoted to identifying and testing strategies to achieve this end, but little consensus has been reached on a common and shared operability.Timing, dose and mode of chemotherapy administration play a crucial role in the development of acute or late myocardial dysfunction. Primary prevention initiatives cover a wide area that ranges from conventional heart failure drugs, such as β-blockers and renin-angiotensin-aldosterone system antagonists to nutritional supplementation and physical training. Additional studies on the pathophysiology and cellular mechanisms of anticancer-drug-related CTX will enable the introduction of novel therapies.We present various typologies of prevention strategies, describing the approaches that have already been used and those that could be effective on the basis of a better understanding of pharmacokinetic and pharmacodynamic CTX mechanisms.
Collapse
Affiliation(s)
- Christian Cadeddu
- aDepartment of Medical Sciences 'Mario Aresu', University of Cagliari, Cagliari bDepartment of Translational Medical Sciences, Division of Internal Medicine, Federico II University, Naples cClinic of Cardiovascular Diseases, IRCCS San Martino IST, Genoa dDepartment of Clinical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia eDepartment of General Surgery and Medical-Surgery Specialities, University of Catania, Catania fInstitute of Cardiology, Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti gDepartment of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Najafi A, Sequeira V, Kuster DWD, van der Velden J. β-adrenergic receptor signalling and its functional consequences in the diseased heart. Eur J Clin Invest 2016; 46:362-74. [PMID: 26842371 DOI: 10.1111/eci.12598] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/30/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND To maintain the balance between the demand of the body and supply (cardiac output), cardiac performance is tightly regulated via the parasympathetic and sympathetic nervous systems. In heart failure, cardiac output (supply) is decreased due to pathologic remodelling of the heart. To meet the demands of the body, the sympathetic system is activated and catecholamines stimulate β-adrenergic receptors (β-ARs) to increase contractile performance and cardiac output. Although this is beneficial in the acute phase, chronic β-ARs stimulation initiates a cascade of alterations at the cellular level, resulting in a diminished contractile performance of the heart. MATERIALS AND METHODS This narrative review includes results from previously published systematic reviews and clinical and basic research publications obtained via PubMed up to May 2015. RESULTS We discuss the alterations that occur during sustained β-AR stimulation in diseased myocardium and emphasize the consequences of β-AR overstimulation for cardiac function. In addition, current treatment options as well as future therapeutic strategies to treat patients with heart failure to normalize consequences of β-AR overstimulation are discussed. CONCLUSIONS The heart is able to protect itself from chronic stimulation of the β-ARs via desensitization and reduced membrane availability of the β-ARs. However, ultimately this leads to an impaired downstream signalling and decreased protein kinase A (PKA)-mediated protein phosphorylation. β-blockers are widely used to prevent β-AR overstimulation and restore β-ARs in the failing hearts. However, novel and more specific therapeutic treatments are needed to improve treatment of HF in the future.
Collapse
Affiliation(s)
- Aref Najafi
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular research (ICaR-VU), Amsterdam, the Netherlands.,ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Vasco Sequeira
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular research (ICaR-VU), Amsterdam, the Netherlands
| | - Diederik W D Kuster
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular research (ICaR-VU), Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular research (ICaR-VU), Amsterdam, the Netherlands.,ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| |
Collapse
|
42
|
|
43
|
Differential Effects of β-Blockers, Angiotensin II Receptor Blockers, and a Novel AT2R Agonist NP-6A4 on Stress Response of Nutrient-Starved Cardiovascular Cells. PLoS One 2015; 10:e0144824. [PMID: 26691397 PMCID: PMC4686716 DOI: 10.1371/journal.pone.0144824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022] Open
Abstract
In order to determine differences in cardiovascular cell response during nutrient stress to different cardiovascular protective drugs, we investigated cell responses of serum starved mouse cardiomyocyte HL-1 cells and primary cultures of human coronary artery vascular smooth muscles (hCAVSMCs) to treatment with β-blockers (atenolol, metoprolol, carvedilol, nebivolol, 3μM each), AT1R blocker losartan (1μM) and AT2R agonists (CGP42112A and novel agonist NP-6A4, 300nM each). Treatment with nebivolol, carvedilol, metoprolol and atenolol suppressed Cell Index (CI) of serum-starved HL-1 cells (≤17%, ≤8%, ≤15% and ≤15% respectively) as measured by the Xcelligence Real-Time Cell Analyzer (RTCA). Conversely, CI was increased by Ang II (≥9.6%), CGP42112A (≥14%), and NP-6A4 (≥25%) respectively and this effect was blocked by AT2R antagonist PD123319, but not by AT1R antagonist losartan. Thus, the CI signature for each drug could be unique. MTS cell proliferation assay showed that NP-6A4, but not other drugs, increased viability (≥20%) of HL-1 and hCAVSMCs. Wheat Germ Agglutinin (WGA) staining showed that nebivolol was most effective in reducing cell sizes of HL-1 and hCAVSMCs. Myeloid Cell Leukemia 1 (MCL-1) is a protein critical for cardiovascular cell survival and implicated in cell adhesion. β-blockers significantly suppressed and NP-6A4 increased MCL-1 expression in HL-1 and hCAVSMCs as determined by immunofluorescence. Thus, reduction in cell size and/or MCL-1 expression might underlie β-blocker-induced reduction in CI of HL-1. Conversely, increase in cell viability and MCL-1 expression by NP-6A4 through AT2R could have resulted in NP-6A4 mediated increase in CI of HL-1. These data show for the first time that activation of the AT2R-MCL-1 axis by NP-6A4 in nutrient-stressed mouse and human cardiovascular cells (mouse HL-1 cells and primary cultures of hCAVSMCs) might underlie improved survival of cells treated by NP-6A4 compared to other drugs tested in this study.
Collapse
|
44
|
Abstract
G protein-coupled receptors (GPCRs) remain a major domain of pharmaceutical discovery. The identification of GPCR lead compounds and their optimization are now structure-based, thanks to advances in X-ray crystallography, molecular modeling, protein engineering and biophysical techniques. In silico screening provides useful hit molecules. New pharmacological approaches to tuning the pleotropic action of GPCRs include: allosteric modulators, biased ligands, GPCR heterodimer-targeted compounds, manipulation of polypharmacology, receptor antibodies and tailoring of drug molecules to fit GPCR pharmacogenomics. Measurements of kinetics and drug efficacy are factors influencing clinical success. With the exception of inhibitors of GPCR kinases, targeting of intracellular GPCR signaling or receptor cycling for therapeutic purposes remains a futuristic concept. New assay approaches are more efficient and multidimensional: cell-based, label-free, fluorescence-based assays, and biosensors. Tailoring GPCR drugs to a patient's genetic background is now being considered. Chemoinformatic tools can predict ADME-tox properties. New imaging technology visualizes drug action in vivo. Thus, there is reason to be optimistic that new technology for GPCR ligand discovery will help reverse the current narrowing of the pharmaceutical pipeline.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, Bethesda, Maryland 20892, USA.
| |
Collapse
|
45
|
Gul R, Mahmood A, Luck C, Lum-Naihe K, Alfadda AA, Speth RC, Pulakat L. Regulation of cardiac miR-208a, an inducer of obesity, by rapamycin and nebivolol. Obesity (Silver Spring) 2015; 23:2251-9. [PMID: 26381051 PMCID: PMC4633375 DOI: 10.1002/oby.21227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Resistance to obesity is observed in rodents and humans treated with rapamycin (Rap) or nebivolol (Neb). Because cardiac miR-208a promotes obesity, this study tested whether the modes of actions of Rap and Neb involve inhibition of miR-208a. METHODS Mouse cardiomyocyte HL-1 cells and Zucker obese (ZO) rats were used to investigate regulation of cardiac miR-208a. RESULTS Angiotensin II (Ang II) increased miR-208a expression in HL-1 cells. Pretreatment with an AT1 receptor (AT1R) antagonist, losartan (1 μM), antagonized this effect, whereas a phospholipase C inhibitor, U73122 (10 μM), and an NADPH oxidase inhibitor, apocynin (0.5 mM), did not. Ang II-induced increase in miR-208a was suppressed by Rap (10 nM), an inhibitor of nutrient sensor kinase mTORC1, and Neb (1 μM), a 3rd generation β-blocker that suppressed bioavailable AT1R binding of (125) I-Ang II. Thus, suppression of AT1R expression by Neb, inhibition of AT1R activation by losartan, and inhibition of AT1R-induced activation of mTORC1 by Rap attenuated the Ang II-induced increase in miR-208a. In ZO rats, Rap treatment (750 μg kg(-1) day(-1) ; 12 weeks) reduced obesity despite similar food intake, suppressed cardiac miR-208a, and increased cardiac MED13, a suppresser of obesity. CONCLUSIONS Rap and Neb suppressed cardiac miR-208a. Suppression of miR-208a and increase in MED13 correlated with attenuated weight gain despite leptin resistance.
Collapse
Affiliation(s)
- Rukhsana Gul
- Department of Medicine, University of Missouri, Columbia, MO
- Harry S Truman Memorial Veterans Affairs Hospital, Columbia, MO
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abuzar Mahmood
- Department of Medicine, University of Missouri, Columbia, MO
- Harry S Truman Memorial Veterans Affairs Hospital, Columbia, MO
| | - Christian Luck
- Department of Medicine, University of Missouri, Columbia, MO
- Harry S Truman Memorial Veterans Affairs Hospital, Columbia, MO
| | - Kelly Lum-Naihe
- Department of Medicine, University of Missouri, Columbia, MO
- Harry S Truman Memorial Veterans Affairs Hospital, Columbia, MO
| | - Assim A Alfadda
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018
- Department of Pharmacology and Physiology, Georgetown University, Washington, D.C. 20057
| | - Lakshmi Pulakat
- Department of Medicine, University of Missouri, Columbia, MO
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
- Harry S Truman Memorial Veterans Affairs Hospital, Columbia, MO
| |
Collapse
|
46
|
Littmann T, Göttle M, Reinartz MT, Kälble S, Wainer IW, Ozawa T, Seifert R. Recruitment of β-arrestin 1 and 2 to the β2-adrenoceptor: analysis of 65 ligands. J Pharmacol Exp Ther 2015; 355:183-90. [PMID: 26306764 DOI: 10.1124/jpet.115.227959] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/21/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Beyond canonical signaling via Gαs and cAMP, the concept of functional selectivity at β2-adrenoceptors (β2ARs) describes the ability of adrenergic drugs to stabilize ligand-specific receptor conformations to initiate further signaling cascades comprising additional G-protein classes or β-arrestins (βarr). A set of 65 adrenergic ligands including 40 agonists and 25 antagonists in either racemic or enantiopure forms was used for βarr recruitment experiments based on a split-luciferase assay in a cellular system expressing β2AR. Many agonists showed only (weak) partial agonism regarding βarr recruitment. Potencies and/or efficacies increased depending on the number of chirality centers in (R) configuration; no (S)-configured distomer was more effective at inducing βarr recruitment other than the eutomer. βarr2 was recruited more effectively than βarr1. The analysis of antagonists revealed no significant effects on βarr recruitment. Several agonists showed preference for activation of Gαs GTPase relative to βarr recruitment, and no βarr-biased ligand was identified. IN CONCLUSION 1) agonists show strong bias for Gαs activation relative to βarr recruitment; 2) agonists recruit βarr1 and βarr2 with subtle differences; and 3) there is no evidence for βarr recruitment by antagonists.
Collapse
Affiliation(s)
- Timo Littmann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany (T.L.; M.G.; M.T.R.; S.K., R.S.); Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland (I.W.W.); and Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan (T.O.)
| | - Martin Göttle
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany (T.L.; M.G.; M.T.R.; S.K., R.S.); Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland (I.W.W.); and Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan (T.O.)
| | - Michael T Reinartz
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany (T.L.; M.G.; M.T.R.; S.K., R.S.); Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland (I.W.W.); and Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan (T.O.)
| | - Solveig Kälble
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany (T.L.; M.G.; M.T.R.; S.K., R.S.); Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland (I.W.W.); and Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan (T.O.)
| | - Irving W Wainer
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany (T.L.; M.G.; M.T.R.; S.K., R.S.); Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland (I.W.W.); and Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan (T.O.)
| | - Takeaki Ozawa
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany (T.L.; M.G.; M.T.R.; S.K., R.S.); Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland (I.W.W.); and Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan (T.O.)
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany (T.L.; M.G.; M.T.R.; S.K., R.S.); Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland (I.W.W.); and Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan (T.O.)
| |
Collapse
|
47
|
Michel MC, Seifert R. Selectivity of pharmacological tools: implications for use in cell physiology. A review in the theme: Cell signaling: proteins, pathways and mechanisms. Am J Physiol Cell Physiol 2015; 308:C505-20. [PMID: 25631871 DOI: 10.1152/ajpcell.00389.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/24/2015] [Indexed: 01/08/2023]
Abstract
Pharmacological inhibitors are frequently used to identify the receptors, receptor subtypes, and associated signaling pathways involved in physiological cell responses. Based on the effects of such inhibitors conclusions are drawn about the involvement of their assumed target or lack thereof. While such inhibitors can be useful tools for a better physiological understanding, their uncritical use can lead to incorrect conclusions. This article reviews the concept of inhibitor selectivity and its implication for cell physiology. Specifically, we discuss the implications of using inhibitor vs. activator approaches, issues of direct vs. indirect pathway modulation, implications of inverse agonism and biased signaling, and those of orthosteric vs. allosteric, competitive vs. noncompetitive, and reversible vs. irreversible inhibition. Additional problems can result from inconsistent estimates of inhibitor potency and differences in potency between cell-free systems and intact cells. These concepts are illustrated by several examples of inhibitors displaying affinity for related but distinct targets or even unrelated targets. Of note, many of the issues being addressed are also applicable to genetic inhibition strategies. The main practical conclusion following from these concepts is that investigators should be critical in the choice of inhibitor, its concentrations, and its mode of application. When this advice is adhered to, small-molecule pharmacological inhibitors can be important experimental tools in the hand of physiologists.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany; and
| | - Roland Seifert
- Department of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
48
|
Soriano-Ursúa MA, Trujillo-Ferrara JG, Arias-Montaño JA, Villalobos-Molina R. Insights into a defined secondary binding region on β-adrenoceptors and putative roles in ligand binding and drug design. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00011d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Putative roles of a secondary binding region shared among beta-adrenoceptors.
Collapse
Affiliation(s)
- M. A. Soriano-Ursúa
- Posgraduate and Research Section
- Escuela Superior de Medicina
- Instituto Politécnico Nacional
- Mexico City
- Mexico
| | - J. G. Trujillo-Ferrara
- Posgraduate and Research Section
- Escuela Superior de Medicina
- Instituto Politécnico Nacional
- Mexico City
- Mexico
| | - J. A. Arias-Montaño
- Departamento de Fisiología
- Biofísica y Neurociencias. Centro de Investigación y de Estudios Avanzados del IPN
- Mexico City
- Mexico
| | - R. Villalobos-Molina
- Unidad de Investigación en Biomedicina
- Facultad de Estudios Superiores Iztacala
- Universidad Nacional Autónoma de México
- Tlalnepantla
- Mexico
| |
Collapse
|
49
|
Carr R, Du Y, Quoyer J, Panettieri RA, Janz JM, Bouvier M, Kobilka BK, Benovic JL. Development and characterization of pepducins as Gs-biased allosteric agonists. J Biol Chem 2014; 289:35668-84. [PMID: 25395624 DOI: 10.1074/jbc.m114.618819] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The β2-adrenergic receptor (β2AR) is a prototypical G protein-coupled receptor that mediates many hormonal responses, including cardiovascular and pulmonary function. β-Agonists used to combat hypercontractility in airway smooth muscle stimulate β2AR-dependent cAMP production that ultimately promotes airway relaxation. Chronic stimulation of the β2AR by long acting β-agonists used in the treatment of asthma can promote attenuated responsiveness to agonists and an increased frequency of fatal asthmatic attacks. β2AR desensitization to β-agonists is primarily mediated by G protein-coupled receptor kinases and β-arrestins that attenuate receptor-Gs coupling and promote β2AR internalization and degradation. A biased agonist that can selectively stimulate Gs signaling without promoting receptor interaction with G protein-coupled receptor kinases and β-arrestins should serve as an advantageous asthma therapeutic. To identify such molecules, we screened ∼50 lipidated peptides derived from the intracellular loops of the β2AR, known as pepducins. This screen revealed two classes of Gs-biased pepducins, receptor-independent and receptor-dependent, as well as several β-arrestin-biased pepducins. The receptor-independent Gs-biased pepducins operate by directly stimulating G protein activation. In contrast, receptor-dependent Gs-biased pepducins appear to stabilize a Gs-biased conformation of the β2AR that couples to Gs but does not undergo G protein-coupled receptor kinase-mediated phosphorylation or β-arrestin-mediated internalization. Functional studies in primary human airway smooth muscle cells demonstrate that Gs-biased pepducins are not subject to conventional desensitization and thus may be good candidates for the development of next generation asthma therapeutics. Our study reports the first Gs-biased activator of the β2AR and provides valuable tools for the study of β2AR function.
Collapse
Affiliation(s)
- Richard Carr
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Yang Du
- the Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | - Julie Quoyer
- the Department of Biochemistry and Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Reynold A Panettieri
- the Department of Medicine, Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Jay M Janz
- Anchor Therapeutics, Cambridge, Massachusetts 02139
| | - Michel Bouvier
- the Department of Biochemistry and Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Brian K Kobilka
- the Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | - Jeffrey L Benovic
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107,
| |
Collapse
|
50
|
Chang A, Yeung S, Thakkar A, Huang KM, Liu MM, Kanassatega RS, Parsa C, Orlando R, Jackson EK, Andresen BT, Huang Y. Prevention of skin carcinogenesis by the β-blocker carvedilol. Cancer Prev Res (Phila) 2014; 8:27-36. [PMID: 25367979 DOI: 10.1158/1940-6207.capr-14-0193] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The stress-related catecholamine hormones and the α- and β-adrenergic receptors (α- and β-AR) may affect carcinogenesis. The β-AR GRK/β-arrestin biased agonist carvedilol can induce β-AR-mediated transactivation of the EGFR. The initial purpose of this study was to determine whether carvedilol, through activation of EGFR, can promote cancer. Carvedilol failed to promote anchorage-independent growth of JB6 P(+) cells, a skin cell model used to study tumor promotion. However, at nontoxic concentrations, carvedilol dose dependently inhibited EGF-induced malignant transformation of JB6 P(+) cells, suggesting that carvedilol has chemopreventive activity against skin cancer. Such effect was not observed for the β-AR agonist isoproterenol and the β-AR antagonist atenolol. Gene expression, receptor binding, and functional studies indicate that JB6 P(+) cells only express β2-ARs. Carvedilol, but not atenolol, inhibited EGF-mediated activator protein-1 (AP-1) activation. A topical 7,12-dimethylbenz(α)anthracene (DMBA)-induced skin hyperplasia model in SENCAR mice was utilized to determine the in vivo cancer preventative activity of carvedilol. Both topical and oral carvedilol treatment inhibited DMBA-induced epidermal hyperplasia (P < 0.05) and reduced H-ras mutations; topical treatment being the most potent. However, in models of established cancer, carvedilol had modest to no inhibitory effect on tumor growth of human lung cancer A549 cells in vitro and in vivo. In conclusion, these results suggest that the cardiovascular drug carvedilol may be repurposed for skin cancer chemoprevention, but may not be an effective treatment of established tumors. More broadly, this study suggests that β-ARs may serve as a novel target for cancer prevention.
Collapse
Affiliation(s)
- Andy Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Steven Yeung
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Arvind Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Kevin M Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Mandy M Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Rhye-Samuel Kanassatega
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Cyrus Parsa
- Department of Clinical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
| | - Robert Orlando
- Department of Clinical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bradley T Andresen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California.
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California.
| |
Collapse
|