1
|
Szwajca M, Kazek G, Śmierciak N, Mizera J, Pomierny-Chamiolo L, Szwajca K, Biesaga B, Pilecki M. GDNF and miRNA-29a as biomarkers in the first episode of psychosis: uncovering associations with psychosocial factors. Front Psychiatry 2024; 15:1320650. [PMID: 38645418 PMCID: PMC11027163 DOI: 10.3389/fpsyt.2024.1320650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Aim Schizophrenia involves complex interactions between biological and environmental factors, including childhood trauma, cognitive impairments, and premorbid adjustment. Predicting its severity and progression remains challenging. Biomarkers like glial cell line-derived neurotrophic factor (GDNF) and miRNA-29a may bridge biological and environmental aspects. The goal was to explore the connections between miRNAs and neural proteins and cognitive functioning, childhood trauma, and premorbid adjustment in the first episode of psychosis (FEP). Method This study included 19 FEP patients who underwent clinical evaluation with: the Childhood Trauma Questionnaire (CTQ), the Premorbid Adjustment Scale (PAS), the Positive and Negative Syndrome Scale (PANSS), and the Montreal Cognitive Assessment Scale (MoCA). Multiplex assays for plasma proteins were conducted with Luminex xMAP technology. Additionally, miRNA levels were quantitatively determined through RNA extraction, cDNA synthesis, and RT-qPCR on a 7500 Fast Real-Time PCR System. Results Among miRNAs, only miR-29a-3p exhibited a significant correlation with PAS-C scores (r = -0.513, p = 0.025) and cognitive improvement (r = -0.505, p = 0.033). Among the analyzed proteins, only GDNF showed correlations with MoCA scores at the baseline and after 3 months (r = 0.533, p = 0.0189 and r = 0.598, p = 0.007), cognitive improvement (r = 0.511, p = 0.025), and CTQ subtests. MIF concentrations correlated with the PAS-C subscale (r = -0.5670, p = 0.011). Conclusion GDNF and miR-29a-3p are promising as biomarkers for understanding and addressing cognitive deficits in psychosis. This study links miRNA and MIF to premorbid adjustment and reveals GDNF's unique role in connection with childhood trauma.
Collapse
Affiliation(s)
- Marta Szwajca
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kazek
- Department of Pharmacological Screening, Jagiellonian University Medical College, Krakow, Poland
| | - Natalia Śmierciak
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Józef Mizera
- Department of Toxicology, Jagiellonian University Medical College, Kraków, Poland
| | | | - Krzysztof Szwajca
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Beata Biesaga
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
2
|
Naderi A, Liles K, Burns T, Chavez B, Huynh-Dam KT, Kiaris H. Pair bonding and disruption impact lung transcriptome in monogamous Peromyscus californicus. BMC Genomics 2023; 24:789. [PMID: 38114920 PMCID: PMC10729396 DOI: 10.1186/s12864-023-09873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
Social interactions affect physiological and pathological processes, yet their direct impact in peripheral tissues remains elusive. Recently we showed that disruption of pair bonds in monogamous Peromyscus californicus promotes lung tumorigenesis, pointing to a direct effect of bonding status in the periphery (Naderi et al., 2021). Here we show that lung transcriptomes of tumor-free Peromyscus are altered in a manner that depends on pair bonding and superseding the impact of genetic relevance between siblings. Pathways affected involve response to hypoxia and heart development. These effects are consistent with the profile of the serum proteome of bonded and bond-disrupted Peromyscus and were extended to lung cancer cells cultured in vitro, with sera from animals that differ in bonding experiences. In this setting, the species' origin of serum (deer mouse vs FBS) is the most potent discriminator of RNA expression profiles, followed by bonding status. By analyzing the transcriptomes of lung cancer cells exposed to deer mouse sera, an expression signature was developed that discriminates cells according to the history of social interactions and possesses prognostic significance when applied to primary human lung cancers. The results suggest that present and past social experiences modulate the expression profile of peripheral tissues such as the lungs, in a manner that impacts physiological processes and may affect disease outcomes. Furthermore, they show that besides the direct effects of the hormones that regulate bonding behavior, physiological changes influencing oxygen metabolism may contribute to the adverse effects of bond disruption.
Collapse
Affiliation(s)
- A Naderi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - K Liles
- Department of Mathematics and Computer Sciences, Claflin University, Orangeburg, SC, USA
| | - T Burns
- Department of Biology, Claflin University, Orangeburg, SC, USA
| | - B Chavez
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - K-T Huynh-Dam
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - H Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
3
|
Tavelli L, Barootchi S, Stefanini M, Zucchelli G, Giannobile WV, Wang HL. Wound healing dynamics, morbidity, and complications of palatal soft-tissue harvesting. Periodontol 2000 2023; 92:90-119. [PMID: 36583690 DOI: 10.1111/prd.12466] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 12/31/2022]
Abstract
Palatal-tissue harvesting is a routinely performed procedure in periodontal and peri-implant plastic surgery. Over the years, several surgical approaches have been attempted with the aim of obtaining autogenous soft-tissue grafts while minimizing patient morbidity, which is considered the most common drawback of palatal harvesting. At the same time, treatment errors during the procedure may increase not only postoperative discomfort or pain but also the risk of developing other complications, such as injury to the greater palatine artery, prolonged bleeding, wound/flap sloughing, necrosis, infection, and inadequate graft size or quality. This chapter described treatment errors and complications of palatal harvesting techniques, together with approaches for reducing patient morbidity and accelerating donor site wound healing. The role of biologic agents, photobiomodulation therapy, local and systemic factors, and genes implicated in palatal wound healing are also discussed.
Collapse
Affiliation(s)
- Lorenzo Tavelli
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shayan Barootchi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Martina Stefanini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Zucchelli
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Guo F, Tang C, Huang B, Gu L, Zhou J, Mo Z, Liu C, Liu Y. LncRNA H19 Drives Proliferation of Cardiac Fibroblasts and Collagen Production via Suppression of the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β Axis. Mol Cells 2022; 45:122-133. [PMID: 34887365 PMCID: PMC8926865 DOI: 10.14348/molcells.2021.0066] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to investigating whether lncRNA H19 promotes myocardial fibrosis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis. Patients with atrial fibrillation (AF) and healthy volunteers were included in the study, and their biochemical parameters were collected. In addition, pcDNA3.1-H19, si-H19, and miR-29a/b-3p mimic/inhibitor were transfected into cardiac fibroblasts (CFs), and proliferation of CFs was detected by MTT assay. Expression of H19 and miR-29a/b-3p were detected using real-time quantitative polymerase chain reaction, and expression of α-smooth muscle actin (α-SMA), collagen I, collagen II, matrix metalloproteinase-2 (MMP-2), and elastin were measured by western blot analysis. The dual luciferase reporter gene assay was carried out to detect the sponging relationship between H19 and miR-29a/b-3p in CFs. Compared with healthy volunteers, the level of plasma H19 was significantly elevated in patients with AF, while miR-29a-3p and miR-29b-3p were markedly depressed (P < 0.05). Serum expression of lncRNA H19 was negatively correlated with the expression of miR-29a-3p and miR-29b-3p among patients with AF (rs = -0.337, rs = -0.236). Moreover, up-regulation of H19 expression and down-regulation of miR-29a/b-3p expression facilitated proliferation and synthesis of extracellular matrix (ECM)-related proteins. SB431542 and si-VEGFA are able to reverse the promotion of miR-29a/b-3p on proliferation of CFs and ECM-related protein synthesis. The findings of the present study suggest that H19 promoted CF proliferation and collagen synthesis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis, and provide support for a potential new direction for the treatment of AF.
Collapse
Affiliation(s)
- Feng Guo
- Department of Cardiology, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital Southeast University, Nanjing 210009, China
| | - Bo Huang
- Department of Cardiology, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Lifei Gu
- Department of Cardiology, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Jun Zhou
- Department of Cardiology, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Zongyang Mo
- Department of Cardiology, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Chang Liu
- Department of Cardiology, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Yuqing Liu
- Department of Emergency, Naval Characteristic Medical Center Affiliated to Shanghai, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Yang YL, Tsai MC, Chang YH, Wang CC, Chu PY, Lin HY, Huang YH. MIR29A Impedes Metastatic Behaviors in Hepatocellular Carcinoma via Targeting LOX, LOXL2, and VEGFA. Int J Mol Sci 2021; 22:ijms22116001. [PMID: 34206143 PMCID: PMC8199573 DOI: 10.3390/ijms22116001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Primary liver cancer accounts for the third most deadly type of malignant tumor globally, and approximately 80% of the cases are hepatocellular carcinoma (HCC), which highly relies on the activity of hypoxia responsive pathways to bolster its metastatic behaviors. MicroRNA-29a (MIR29A) has been shown to exert a hepatoprotective effect on hepatocellular damage and liver fibrosis induced by cholestasis and diet stress, while its clinical and biological role on the activity hypoxia responsive genes including LOX, LOXL2, and VEGFA remains unclear. TCGA datasets were retrieved to confirm the differential expression and prognostic significance of all genes in the HCC and normal tissue. The Gene Expression Omnibus (GEO) dataset was used to corroborate the differential expression and diagnostic value of MIR29A. The bioinformatic identification were conducted to examine the interaction of MIR29A with LOX, LOXL2, and VEGFA. The suppressive activity of MIR29A on LOX, LOXL2, and VEGF was verified by qPCR, immunoblotting, and luciferase. The effect of overexpression of MIR29A-3p mimics in vitro on apoptosis markers (caspase-9, -3, and poly (ADP-ribose) polymerase (PARP)); cell viability and wound healing performance were examined using immunoblot and a WST-1 assay and a wound healing assay, respectively. The HCC tissue presented low expression of MIR29A, yet high expression of LOX, LOXL2, and VEGFA as compared to normal control. Serum MIR29A of HCC patients showed decreased levels as compared to that of normal control, with an area under curve (AUC) of 0.751 of a receiver operating characteristic (ROC) curve. Low expression of MIR29A and high expression of LOX, LOXL2, and VEGFA indicated poor overall survival (OS). MIR29A-3p was shown to target the 3'UTR of LOX, LOXL2, and VEGFA. Overexpression of MIR29A-3p mimic in HepG2 cells led to downregulated gene and protein expression levels of LOX, LOXL2, and VEGFA, wherein luciferase reporter assay confirmed that MIR29A-3p exerts the inhibitory activity via directly binding to the 3'UTR of LOX and VEGFA. Furthermore, overexpression of MIR29A-3p mimic induced the activity of caspase-9 and -3 and PARP, while it inhibited the cell viability and wound healing performance. Collectively, this study provides novel insight into a clinical-applicable panel consisting of MIR29, LOX, LOXL2, and VEGFA and demonstrates an anti-HCC effect of MIR29A via comprehensively suppressing the expression of LOX, LOXL2, and VEGFA, paving the way to a prospective theragnostic approach for HCC.
Collapse
Affiliation(s)
- Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Ming-Chao Tsai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Yen-Hsiang Chang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chen-Chen Wang
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Correspondence: (P.-Y.C.); (H.-Y.L.); (Y.-H.H.); Tel.: +886-9-75611505 (H.-Y.L.)
| | - Hung-Yu Lin
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
- Correspondence: (P.-Y.C.); (H.-Y.L.); (Y.-H.H.); Tel.: +886-9-75611505 (H.-Y.L.)
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Correspondence: (P.-Y.C.); (H.-Y.L.); (Y.-H.H.); Tel.: +886-9-75611505 (H.-Y.L.)
| |
Collapse
|
6
|
Arzate-Mejía RG, Lottenbach Z, Schindler V, Jawaid A, Mansuy IM. Long-Term Impact of Social Isolation and Molecular Underpinnings. Front Genet 2020; 11:589621. [PMID: 33193727 PMCID: PMC7649797 DOI: 10.3389/fgene.2020.589621] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022] Open
Abstract
Prolonged periods of social isolation can have detrimental effects on the physiology and behavior of exposed individuals in humans and animal models. This involves complex molecular mechanisms across tissues in the body which remain partly identified. This review discusses the biology of social isolation and describes the acute and lasting effects of prolonged periods of social isolation with a focus on the molecular events leading to behavioral alterations. We highlight the role of epigenetic mechanisms and non-coding RNA in the control of gene expression as a response to social isolation, and the consequences for behavior. Considering the use of strict quarantine during epidemics, like currently with COVID-19, we provide a cautionary tale on the indiscriminate implementation of such form of social isolation and its potential damaging and lasting effects in mental health.
Collapse
Affiliation(s)
- Rodrigo G Arzate-Mejía
- Laboratory of Neuroepigenetics, Medical Faculty of the University of Zurich and Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Zurich, Switzerland
| | | | | | - Ali Jawaid
- Laboratory of Neuroepigenetics, Medical Faculty of the University of Zurich and Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Zurich, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Medical Faculty of the University of Zurich and Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Elazazy O, Amr K, Abd El Fattah A, Abouzaid M. Evaluation of serum and gingival crevicular fluid microRNA-223, microRNA-203 and microRNA-200b expression in chronic periodontitis patients with and without diabetes type 2. Arch Oral Biol 2020; 121:104949. [PMID: 33157494 DOI: 10.1016/j.archoralbio.2020.104949] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
microRNA dysregulation is a reported feature of multiple pathologies, including periodontal disease, as demonstrated on cell lines, in animal models, and tissues biopsies, but serum and gingival crevicular fluid microRNA expression data in humans is scarce, especially with the diabetes (type 2) systemic complication. OBJECTIVE To assess serum and gingival crevicular fluid relative quantification levels of miR-223, miR-203, and miR-200b in chronic periodontitis and type 2 diabetic chronic periodontitis patients to address their possible implication in chronic periodontitis pathogenesis and its systemic complications and also to correlate their differential expression with some inflammatory (serum tumor necrosis factor-α and interleukin-10) parameters. METHODS Sixty subjects were recruited and divided into three groups; chronic periodontitis (n = 20), type 2 diabetic chronic periodontitis (n = 20), and healthy control (n = 20). Both serum and gingival crevicular fluid were collected from each participant for miRNA expression analysis and serum inflammatory parameters assessment. RESULTS A significant increase in the relative quantification levels of miR-223 and miR-200b were detected in patient groups along with a positive correlation with tumor necrosis factor-α. However, miR-203 was significantly decreased in patient groups associated with a negative correlation with tumor necrosis factor-α. CONCLUSIONS miR-223 and miR-200b have a potential role in chronic periodontitis pathogenesis associated with type 2 diabetes, with the ability to induce tumor necrosis factor-α secretion, while miR-203 might have a protective and healing role due to the negative correlation with the serum tumor necrosis factor-α levels found. Therefore, they may be considered as a promising therapeutic target and effective serum disease biomarkers.
Collapse
Affiliation(s)
- Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt.
| | - Khalda Amr
- Department of Medical Molecular Genetics, National Research Center, Cairo, Egypt
| | - Abeer Abd El Fattah
- Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Maha Abouzaid
- Department of Orodental Genetics, National Research Center, Cairo, Egypt
| |
Collapse
|
8
|
Ragusa M, Santagati M, Mirabella F, Lauretta G, Cirnigliaro M, Brex D, Barbagallo C, Domini CN, Gulisano M, Barone R, Trovato L, Oliveri S, Mongelli G, Spitale A, Barbagallo D, Di Pietro C, Stefani S, Rizzo R, Purrello M. Potential Associations Among Alteration of Salivary miRNAs, Saliva Microbiome Structure, and Cognitive Impairments in Autistic Children. Int J Mol Sci 2020; 21:ijms21176203. [PMID: 32867322 PMCID: PMC7504581 DOI: 10.3390/ijms21176203] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
Recent evidence has demonstrated that salivary molecules, as well as bacterial populations, can be perturbed by several pathological conditions, including neuro-psychiatric diseases. This relationship between brain functionality and saliva composition could be exploited to unveil new pathological mechanisms of elusive diseases, such as Autistic Spectrum Disorder (ASD). We performed a combined approach of miRNA expression profiling by NanoString technology, followed by validation experiments in qPCR, and 16S rRNA microbiome analysis on saliva from 53 ASD and 27 neurologically unaffected control (NUC) children. MiR-29a-3p and miR-141-3p were upregulated, while miR-16-5p, let-7b-5p, and miR-451a were downregulated in ASD compared to NUCs. Microbiome analysis on the same subjects revealed that Rothia, Filifactor, Actinobacillus, Weeksellaceae, Ralstonia, Pasteurellaceae, and Aggregatibacter increased their abundance in ASD patients, while Tannerella, Moryella and TM7-3 decreased. Variations of both miRNAs and microbes were statistically associated to different neuropsychological scores related to anomalies in social interaction and communication. Among miRNA/bacteria associations, the most relevant was the negative correlation between salivary miR-141-3p expression and Tannerella abundance. MiRNA and microbiome dysregulations found in the saliva of ASD children are potentially associated with cognitive impairments of the subjects. Furthermore, a potential cross-talking between circulating miRNAs and resident bacteria could occur in saliva of ASD.
Collapse
Affiliation(s)
- Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
| | - Federica Mirabella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Giovanni Lauretta
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Matilde Cirnigliaro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Duilia Brex
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Carla Noemi Domini
- Department of Clinical and Experimental Medicine, Section of Child and Adolescent Psychiatry, University of Catania, 95123 Catania, Italy; (C.N.D.); (M.G.); (R.B.); (R.R.)
| | - Mariangela Gulisano
- Department of Clinical and Experimental Medicine, Section of Child and Adolescent Psychiatry, University of Catania, 95123 Catania, Italy; (C.N.D.); (M.G.); (R.B.); (R.R.)
| | - Rita Barone
- Department of Clinical and Experimental Medicine, Section of Child and Adolescent Psychiatry, University of Catania, 95123 Catania, Italy; (C.N.D.); (M.G.); (R.B.); (R.R.)
| | - Laura Trovato
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
| | - Salvatore Oliveri
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
| | - Gino Mongelli
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, 95123 Catania, Italy
| | - Ambra Spitale
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy; (M.S.); (L.T.); (S.O.); (G.M.); (A.S.); (S.S.)
| | - Renata Rizzo
- Department of Clinical and Experimental Medicine, Section of Child and Adolescent Psychiatry, University of Catania, 95123 Catania, Italy; (C.N.D.); (M.G.); (R.B.); (R.R.)
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, 95123 Catania, Italy; (M.R.); (F.M.); (G.L.); (M.C.); (D.B.); (C.B.); (D.B.); (C.D.P.)
- Correspondence:
| |
Collapse
|
9
|
Fayne RA, Borda LJ, Egger AN, Tomic-Canic M. The Potential Impact of Social Genomics on Wound Healing. Adv Wound Care (New Rochelle) 2020; 9:325-331. [PMID: 32286204 DOI: 10.1089/wound.2019.1095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Significance: Human skin wounds carry an immense epidemiologic and financial burden, and their impact will continue to grow with an aging population and rising incidence of comorbid conditions known to affect wound healing. To comprehensively address this growing clinical issue, physicians should also be aware of how conditions of the human social environment may affect wound healing. Here we provide a review of the emerging field of social genomics and its potential impact on the wound healing. Recent Advances: Multiple studies using human and animal models have correlated social influences and their contributing effects to acute and chronic stress with delays in wound healing. Furthermore, observations between nongenetic factors such as nutrition, socioeconomic, and educational status have also shown to have a direct or indirect impact on clinical outcomes of wound healing. Critical Issues: Nutrition, financial burden, socioeconomic and education status, and acute and chronic stress are variables that have either direct (epigenetic) or indirect impact on wound healing and patients' quality of life. Wound care is costly and remains a challenge placing economic burden on patients. Furthermore, poor clinical outcomes and complications including loss of mobility and disability may lead to job loss, further contributing to socioeconomic related stress. Thus, the economic burden and inadequate wound healing are intertwined, making each other worse. Future Directions: Although some evidence regarding the specific changes in genetic pathways imparted by conditions of the social environment exists, further studies are warranted to identify potential mechanisms, interventions, and prevention approaches.
Collapse
Affiliation(s)
- Rachel A. Fayne
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Luis J. Borda
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Andjela N. Egger
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
10
|
Sahranavardfard P, Firouzi J, Azimi M, Khosravani P, Heydari R, Emami Razavi A, Dorraj M, Keighobadi F, Ebrahimi M. MicroRNA-203 reinforces stemness properties in melanoma and augments tumorigenesis in vivo. J Cell Physiol 2019; 234:20193-20205. [PMID: 31016725 DOI: 10.1002/jcp.28619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022]
Abstract
One of the challenges encountered in microRNA (miRNA) studies is to observe their dual role in different conditions and cells. This leads to a tougher prediction of their behavior as gene expression regulators. miR-203 has been identified to play a negative role in the progression of malignant melanoma; however, it has been reported, with dual effect, as both an oncomiR and tumor suppressor miRNA in some malignancies, such as breast cancer, meanwhile, the role of miR-203 in melanoma stem cells or even metastatic cells is unclear. In the present study, after observation of upregulation of miR-203 in melanoma patient's serum and also melanospheres as cancer stem cells model, we examined its overexpression on the stemness potential and migration ability of melanoma cells. Our data demonstrated that the increased miR-203 level was significantly associated with significant increase in the ability of proliferation, colony and spheres formation, migration, and tumorigenesis in A375 and NA8 cells. All of these changes were associated with enhancement of BRAF, several epithelial to mesenchymal transition factors, and stemness genes. In conclusion, our results clearly determined that miR-203 could be down-regulateddownregulated in melanoma tissues but be overexpressed in melanoma stem cells. It has an important role as oncomiR and promote repopulation, tumorigenicity, self-renewal, and migration. Therefore, we suggested overexpression of miR-203 as biomarker for early detection of metastasis. However, more studies are needed to validate our data.
Collapse
Affiliation(s)
- Parisa Sahranavardfard
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Javad Firouzi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Azimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Pardis Khosravani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Amirnader Emami Razavi
- Iran National Tumor Bank, The cancer institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Dorraj
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Keighobadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
11
|
Nucleic acids and analogs for bone regeneration. Bone Res 2018; 6:37. [PMID: 30603226 PMCID: PMC6306486 DOI: 10.1038/s41413-018-0042-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
With the incidence of different bone diseases increasing, effective therapies are needed that coordinate a combination of various technologies and biological materials. Bone tissue engineering has also been considered as a promising strategy to repair various bone defects. Therefore, different biological materials that can promote stem cell proliferation, migration, and osteoblastic differentiation to accelerate bone tissue regeneration and repair have also become the focus of research in multiple fields. Stem cell therapy, biomaterial scaffolds, and biological growth factors have shown potential for bone tissue engineering; however, off-target effects and cytotoxicity have limited their clinical use. The application of nucleic acids (deoxyribonucleic acid or ribonucleic acid) and nucleic acid analogs (peptide nucleic acids or locked nucleic acids), which are designed based on foreign genes or with special structures, can be taken up by target cells to exert different effects such as modulating protein expression, replacing a missing gene, or targeting specific gens or proteins. Due to some drawbacks, nucleic acids and nucleic acid analogs are combined with various delivery systems to exert enhanced effects, but current studies of these molecules have not yet satisfied clinical requirements. In-depth studies of nucleic acid or nucleic acid analog delivery systems have been performed, with a particular focus on bone tissue regeneration and repair. In this review, we mainly introduce delivery systems for nucleic acids and nucleic acid analogs and their applications in bone repair and regeneration. At the same time, the application of conventional scaffold materials for the delivery of nucleic acids and nucleic acid analogs is also discussed. Used with an appropriate delivery system, nucleic acids and nucleic acid analogs have excellent potential for bone repair and regeneration. Owing to various challenges with bone tissue regeneration, current research is largely focused on gene therapy, which employs genes to treat or prevent disease, and such new materials as nucleic acids (DNA and RNA) and nucleic acid analogs (compounds structurally similar to naturally occurring nucleic acids). A team headed by Yunfeng Lin at Sichuan University, China conducted a review of delivery systems for nucleic acids and nucleic acid analogs and their application in bone repair and regeneration. The authors identified the use of biomaterial scaffolds (which mimic living tissue) as one of the most important research areas for gene therapy, and that strategy has proven effective with all types of bone regeneration and repair.
Collapse
|
12
|
Zhang Y, Shen B, Zhang D, Wang Y, Tang Z, Ni N, Jin X, Luo M, Sun H, Gu P. miR-29a regulates the proliferation and differentiation of retinal progenitors by targeting Rbm8a. Oncotarget 2018; 8:31993-32008. [PMID: 28404883 PMCID: PMC5458264 DOI: 10.18632/oncotarget.16669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Abstract
During development, tight regulation of the expansion of retinal progenitor cells (RPCs) and their differentiation into neuronal and glial cells is important for retinal formation and function. Our study demonstrated that microRNA (miR)-29a modulated the proliferation and differentiation of RPCs by suppressing RBM8A (one of the factors in the exon junction complex). Particularly, overexpression of miR-29a reduced RPC proliferation but accelerated RPC differentiation. By contrast, reduction of endogenous miR-29a elicited the opposite effects. Overexpression of miR-29a repressed the translation of Rbm8a, thus negatively regulating RPC proliferation and promoting the neuronal and glial differentiation of RPCs, and knockdown of endogenous Rbm8a phenocopied the observed effects of miR-29a overexpression. Furthermore, a luciferase reporter assay showed that miR-29a directly interacted with the Rbm8a mRNA 3′UTR, which indicated that Rbm8a is the direct target of miR-29a. To further verify the result, co-overexpression of the Rbm8a 3′ UTR-wt (plasmids into which the Rbm8a 3′ UTR sequence had been introduced) and miR-29a in RPCs rescued the phenotype associated with miR-29a overexpression, reversing the promotion of differentiation and inhibition of proliferation. These results show a novel mechanism by which miR-29a regulates the proliferation and differentiation of RPCs through Rbm8a.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Bingqiao Shen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Dandan Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yuyao Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Zhimin Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Min Luo
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
13
|
Exosomes, DAMPs and miRNA: Features of Stress Physiology and Immune Homeostasis. Trends Immunol 2017; 38:768-776. [PMID: 28838855 DOI: 10.1016/j.it.2017.08.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Psychological/physical stressors and local tissue damage increase inflammatory proteins in tissues and blood in humans and animals, in the absence of pathogenic disease. Stress-evoked cytokine/chemokine responses, or sterile inflammation, can facilitate host survival and/or negatively affect health, depending on context. Recent evidence supports the hypothesis that systemic stress-evoked sterile inflammation is initiated by the sympathetic nervous system, resulting in the elevation of exosome-associated immunostimulatory endogenous danger/damage associated molecular patterns (DAMPs) and a reduction in immunoinhibitory miRNA, which are carried in the circulation to tissues throughout the body. We propose that sterile inflammation should be considered an elemental feature of the stress response and that circulating exosomes transporting immunomodulatory signals, may play a role fundamental role in immune homeostasis.
Collapse
|
14
|
Zhou J, Zhang X, Liang P, Ren L, Zeng J, Zhang M, Zhang P, Huang X. Protective role of microRNA-29a in denatured dermis and skin fibroblast cells after thermal injury. Biol Open 2016; 5:211-9. [PMID: 26794609 PMCID: PMC4810739 DOI: 10.1242/bio.014910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our previous study has suggested that downregulated microRNA (miR)-29a in denatured dermis might be involved in burn wound healing. However, the exact role of miR-29a in healing of burn injury still remains unclear. Here, we found that expression of miR-29a was notably upregulated in denatured dermis tissues and skin fibroblast cells after thermal injury, and thereafter gradually downregulated compared with control group. By contrast, the expression of collagen, type I, alpha 2 (COL1A2) and vascular endothelial growth factor (VEGF-A) were first reduced and subsequently upregulated in denatured dermis tissues and skin fibroblast cells after thermal injury. We further identified COL1A2 as a novel target of miR-29a, which is involved in type I collagen synthesis, and showed that miR-29a negatively regulated the expression level of COL1A2 in skin fibroblast cells. In addition, VEGF-A, another target gene of miR-29a, was also negatively mediated by miR-29a in skin fibroblast cells. Inhibition of miR-29a expression significantly promoted the proliferation and migration of skin fibroblast cells after thermal injury, and knockdown of COL1A2 and VEGF-A reversed the effects of miR-29a on the proliferation and migration of skin fibroblast cells. Furthermore, we found that Notch2/Jagged2 signaling was involved in miR-29a response to burn wound healing. Our findings suggest that downregulated miR-29a in denatured dermis may help burn wound healing in the later phase, probably via upregulation of COL1A2 and VEGF-A expression, which can further enhance type I collagen synthesis and angiogenesis. Summary: Inhibition of miR-29a can promote the proliferation and migration of skin fibroblast cells after thermal injury, and upregulate the production of COL1A2 and VEGF-A to further enhance the collagen synthesis and angiogenesis in skin and help burn wound healing in the later phase.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xipeng Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Licheng Ren
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jizhang Zeng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Minghua Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Pihong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xiaoyuan Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
15
|
Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5679040. [PMID: 26798423 PMCID: PMC4699099 DOI: 10.1155/2016/5679040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/11/2015] [Indexed: 12/17/2022]
Abstract
The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses.
Collapse
|
16
|
Braza-Boïls A, Salloum-Asfar S, Marí-Alexandre J, Arroyo AB, González-Conejero R, Barceló-Molina M, García-Oms J, Vicente V, Estellés A, Gilabert-Estellés J, Martínez C. Peritoneal fluid modifies the microRNA expression profile in endometrial and endometriotic cells from women with endometriosis. Hum Reprod 2015; 30:2292-302. [PMID: 26307093 DOI: 10.1093/humrep/dev204] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Could peritoneal fluid (PF) from patients with endometriosis alter the microRNA (miRNA) expression profile in endometrial and endometriotic cells from patients? SUMMARY ANSWER PF from patients with endometriosis modifies the miRNA expression profile in endometrial cells from patients. WHAT IS KNOWN ALREADY Angiogenesis is a pivotal system in the development of endometriosis, and dysregulated miRNA expression in this disease has been reported. However, to our knowledge, the effect of PF from patients on the miRNA expression profile of patient endometrial cells has not been reported. Moreover, an effect of three miRNAs (miR-16-5p, miR-29c-3p and miR-424-5p) on the regulation of vascular endothelial growth factor (VEGF)-A mRNA translation in endometrial cells from patients with endometriosis has not been demonstrated. STUDY DESIGN, SIZE, DURATION Primary cultures of stromal cells from endometrium from 8 control women (control cells) and 11 patients with endometriosis (eutopic cells) and ovarian endometriomas (ectopic cells) were treated with PF from control women (CPF) and patients (EPF) or not treated (0PF) in order to evaluate the effect of PF on miRNA expression in these cells. PARTICIPANTS/MATERIALS, SETTING, METHODS MiRNA expression arrays (Affymetrix platform) were prepared from cells (control, eutopic, ectopic) treated with CPF, EPF or 0PF. Results from arrays were validated by quantitative reverse transcription-polymerase chain reaction in cultures from 8 control endometrium, 11 eutopic endometrium and 11 ovarian endometriomas. Functional experiments were performed in primary cell cultures using mimics for miRNAs miR-16-5p, miR-29c-3p and miR-424-5p to assess their effect as VEGF-A expression regulators. To confirm a repressive action of miR-29c-3p through forming miRNA:VEGFA duplexes, we performed luciferase expression assays. MAIN RESULTS AND THE ROLE OF CHANCE EPF modified the miRNA expression profile in eutopic cells. A total of 267 miRNAs were modified in response to EPF compared with 0PF in eutopic cells. Nine miRNAs (miR-16-5p, miR-21-5p, miR-29c-3p, miR-106b-5p, miR-130a-5p, miR-149-5p, miR-185-5p, miR-195-5p, miR-424-5p) that were differently expressed in response to EPF, and which were potential targets involved in angiogenesis, proteolysis or endometriosis, were validated in further experiments (control = 8, eutopic = 11, ectopic = 11). Except for miR-149-5p, all validated miRNAs showed significantly lower levels (miR-16-5p, miR-106b-5p, miR-130a-5p; miR-195-5p and miR-424-5p, P < 0.05; miR-21-5p, miR-29c-3p and miR-185-5p, P < 0.01) after EPF treatment in primary cell cultures from eutopic endometrium from patients in comparison with 0PF. Transfection of stromal cells with mimics of miRNAs miR-16-5p, miR-29c-3p and miR-424-5p showed a significant down-regulation of VEGF-A protein expression. However, VEGFA mRNA expression after mimic transfection was not significantly modified, indicating the miRNAs inhibited VEGF-A mRNA translation rather than degrading VEGFA mRNA. Luciferase experiments also corroborated VEGF-A as a target gene of miR-29c-3p. LIMITATIONS, REASONS FOR CAUTION The study was performed in an in vitro model of endometriosis using stromal cells. This model is just a representation to try to elucidate the molecular mechanisms involved in the development of endometriosis. Further studies to identify the pathways involved in this miRNA expression modification in response to PF from patients are needed. WIDER IMPLICATIONS OF THE FINDINGS This is the first study describing a modified miRNA expression profile in eutopic cells from patients in response to PF from patients. These promising results improve the body of knowledge on endometriosis pathogenesis and could open up new therapeutic strategies for the treatment of endometriosis through the use of miRNAs. STUDY FUNDING/COMPETING INTERESTS This work was supported by research grants by ISCIII and FEDER (PI11/00091, PI11/00566, PI14/01309, PI14/00253 and FI12/00012), RIC (RD12/0042/0029 and RD12/0042/0050), IIS La Fe 2011-211, Prometeo 2011/027 and Contrato Sara Borrell CD13/0005. There are no conflicts of interest to declare.
Collapse
Affiliation(s)
- Aitana Braza-Boïls
- Grupo de Hemostasia, Trombosis, Aterosclerosis y Biología Vascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Salam Salloum-Asfar
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Josep Marí-Alexandre
- Grupo de Hemostasia, Trombosis, Aterosclerosis y Biología Vascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Ana Belén Arroyo
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Rocío González-Conejero
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Moisés Barceló-Molina
- Grupo de Hemostasia, Trombosis, Aterosclerosis y Biología Vascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Javier García-Oms
- Área Maternoinfantil, Hospital General Universitario, Valencia, Spain
| | - Vicente Vicente
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Amparo Estellés
- Grupo de Hemostasia, Trombosis, Aterosclerosis y Biología Vascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | - Constantino Martínez
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
17
|
El-Gowelli HM, Saad EI, Abdel-Galil AGA, Ibrahim ER. Co-administration of α-lipoic acid and cyclosporine aggravates colon ulceration of acetic acid-induced ulcerative colitis via facilitation of NO/COX-2/miR-210 cascade. Toxicol Appl Pharmacol 2015; 288:300-12. [PMID: 26276312 DOI: 10.1016/j.taap.2015.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/22/2015] [Accepted: 08/05/2015] [Indexed: 02/07/2023]
Abstract
In this work, α-lipoic acid and cyclosporine demonstrated significant protection against acetic acid-induced ulcerative colitis in rats. We proposed that α-lipoic acid and cyclosporine co-administration might modulate their individual effects. Induction of ulcerative colitis in rats was performed by intra-rectal acetic acid (5% v/v) administration for 3 consecutive days. Effects of individual or combined used of α-lipoic acid (35 mg/kg ip) or cyclosporine (5mg/kg sc) for 6 days starting 2 days prior to acetic acid were assessed. Acetic acid caused colon ulceration, bloody diarrhea and weight loss. Histologically, there was mucosal atrophy and inflammatory cells infiltration in submucosa, associated with depletion of colon reduced glutathione, superoxide dismutase and catalase activities and elevated colon malondialdehyde, serum C-reactive protein (C-RP) and tumor necrosis factor-α (TNF-α). Colon gene expression of cyclooxygenase-2 and miR-210 was also elevated. These devastating effects of acetic acid were abolished upon concurrent administration of α-lipoic acid. Alternatively, cyclosporine caused partial protection against acetic acid-induced ulcerative colitis. Cyclosporine did not restore colon reduced glutathione, catalase activity, serum C-RP or TNF-α. Unexpectedly, co-administration of α-lipoic acid and cyclosporine aggravated colon ulceration. Concomitant use of α-lipoic acid and cyclosporine significantly increased nitric oxide production, cyclooxygenase-2 and miR-210 gene expression compared to all other studied groups. The current findings suggest that facilitation of nitric oxide/cyclooxygenase-2/miR-210 cascade constitutes, at least partially, the cellular mechanism by which concurrent use of α-lipoic acid and cyclosporine aggravates colon damage. Collectively, the present work highlights the probable risk of using α-lipoic acid/cyclosporine combination in ulcerative colitis patients.
Collapse
Affiliation(s)
- Hanan M El-Gowelli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Evan I Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | | | - Einas R Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
18
|
Zhang K, Zhang C, Liu L, Zhou J. A key role of microRNA-29b in suppression of osteosarcoma cell proliferation and migration via modulation of VEGF. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5701-5708. [PMID: 25337211 PMCID: PMC4203182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/23/2014] [Indexed: 06/04/2023]
Abstract
MicroRNA (miRNA) is a small, non-coding RNAs and it could post-transcriptionally related gene expression by negatively regulating the stability or translational efficiency of their target genes. Previous studies have reported the antineoplastic effect of microRNA-29b (miR-29b) in several kinds of cancers. The aim of this study was to investigate the potential role of miR-29b in human osteosarcoma pathogenesis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to determine the expression level of miR-29b in 20 osteosarcoma specimens and adjacent normal bone tissues. The proliferation, apoptosis, migration and invasion were employed to detect the effect of miR-29b on the osteosarcoma cell line MG63. The results showed that miR-29b expression was relatively decreased in osteosarcoma specimens compared with adjacent normal tissues. Overexpression of miR-29b suppressed MG63 cell proliferation, migration and invasion. Meanwhile miR-29b could induce apoptosis of MG63. Besides, miR-29b directly targets VEGF and over-expression of miR-29b led to down-regulation of VEGF protein level, In conclusions, miR-29b may play an important role in osteosarcoma progression, which might negatively regulate the expression of VEGF and suppresses proliferation and induces apoptosis of MG63 cell line.
Collapse
Affiliation(s)
- Kexiang Zhang
- Department of Orthopedics, Third Xiangya Hospital, Central South University Changsha 410013, Hunan Province, China
| | - Chaoyue Zhang
- Department of Orthopedics, Third Xiangya Hospital, Central South University Changsha 410013, Hunan Province, China
| | - Li Liu
- Department of Orthopedics, Third Xiangya Hospital, Central South University Changsha 410013, Hunan Province, China
| | - Jiahui Zhou
- Department of Orthopedics, Third Xiangya Hospital, Central South University Changsha 410013, Hunan Province, China
| |
Collapse
|
19
|
Bahi A, Chandrasekar V, Dreyer JL. Selective lentiviral-mediated suppression of microRNA124a in the hippocampus evokes antidepressants-like effects in rats. Psychoneuroendocrinology 2014; 46:78-87. [PMID: 24882160 DOI: 10.1016/j.psyneuen.2014.04.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
Several lines of evidences suggest that the brain-derived neutrophic factor (BDNF) is implicated in the pathophysiology of depression. However, the molecular mechanisms are not fully understood. In the current study we aimed to investigate how genetic modulation of BDNF in the hippocampus using microRNa124a (miR124a)-expressing lentiviral vectors (LV) might affect depression-like behavior in adult rats. For this purpose, we assessed the expression level of miR124a and its direct target BDNF in the hippocampus and the cortex after 21-days exposure to social defeat stress. Results demonstrated that miR124a was up-regulated in the hippocampus but not in the cortex. In contrast, and as expected, BDNF transcripts were down-regulated. In a different set of experiments, male Wistar rats received bilateral intra-hippocampal or intra-cortical infusions of BDNF- and miR124a-expressing lentiviral vectors and depression-like behavior was assessed after 21-days social defeat stress using the novelty suppressed feeding, the sucrose preference and the forced swim tests. The results indicated that miR124a overexpression exacerbated depression-like behavior. However, an anti-depressant like effect was observed when BDNF or miR124a-silencers (siR124a) were injected into the hippocampus. Importantly, when expressed into the cortex, LV-miR124a, LV-siR124a and LV-BDNF had no effect on depression. Our findings indicate that hippocampal miR124a and its direct target BDNF play an important role in depression-like behavior. Taken together, the current results reveal, for the first time, a potential molecular regulation of miR124a on BDNF, and the pronounced behavioral consequences of this regulation shed light on the mechanisms underlying BDNF anti-depressant potential.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, Tawam Medical Campus, CMHS, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Vijay Chandrasekar
- Institute of Neuropathology, University Hospital of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
20
|
Exosomes: an emerging factor in stress-induced immunomodulation. Semin Immunol 2014; 26:394-401. [PMID: 24405946 DOI: 10.1016/j.smim.2013.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 12/31/2022]
Abstract
Cells constitutively release small (40-100 nm) vesicles known as exosomes, but their composition and function changes in response to a variety of physiological challenges, such as injury, infection, and disease. Advances in our understanding of the immunological relevance of exosomes have been made, however, few studies have explored their role in stress physiology. Exposure to a variety of acute stressors facilitates the efficacy of innate immune responses, but the mechanisms for these effects are not fully understood. Since exosomes are emerging as important inflammatory mediators, they likely exhibit a similar role when an organism is exposed to an acute stressor. Here, we review our current knowledge of the basic properties and immunological functions of exosomes and provide emerging data supporting the role of stress-modified exosomes in regulating the innate immune response, potentially enabling long-distance cellular communication and obviating the need for direct cell-to-cell contact.
Collapse
|