1
|
Tasma Z, Rees TA, Guo S, Tan S, O'Carroll SJ, Faull RLM, Curtis MA, Christensen SL, Hay DL, Walker CS. Pharmacology of PACAP and VIP receptors in the spinal cord highlights the importance of the PAC 1 receptor. Br J Pharmacol 2024; 181:2655-2675. [PMID: 38616050 DOI: 10.1111/bph.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/18/2023] [Accepted: 01/20/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.
Collapse
MESH Headings
- Animals
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/agonists
- Humans
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Vasoactive Intestinal Peptide/metabolism
- Vasoactive Intestinal Peptide/pharmacology
- Mice
- Rats
- Signal Transduction/drug effects
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Peptide/antagonists & inhibitors
- Cells, Cultured
- Rats, Sprague-Dawley
- Male
- Mice, Inbred C57BL
- Cyclic AMP/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/agonists
Collapse
Affiliation(s)
- Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tayla A Rees
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Odontology, Panum Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Sheryl Tan
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Sarah L Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Debbie L Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, The University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Rouchka EC, de Almeida C, House RB, Daneshmand JC, Chariker JH, Saraswat-Ohri S, Gomes C, Sharp M, Shum-Siu A, Cesarz GM, Petruska JC, Magnuson DSK. Construction of a Searchable Database for Gene Expression Changes in Spinal Cord Injury Experiments. J Neurotrauma 2024; 41:1030-1043. [PMID: 37917105 PMCID: PMC11302316 DOI: 10.1089/neu.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition with an estimated 18,000 new cases annually in the United States. The field has accepted and adopted standardized databases such as the Open Data Commons for Spinal Cord Injury (ODC-SCI) to aid in broader analyses, but these currently lack high-throughput data despite the availability of nearly 6000 samples from over 90 studies available in the Sequence Read Archive. This limits the potential for large datasets to enhance our understanding of SCI-related mechanisms at the molecular and cellular level. Therefore, we have developed a protocol for processing RNA-Seq samples from high-throughput sequencing experiments related to SCI resulting in both raw and normalized data that can be efficiently mined for comparisons across studies, as well as homologous discovery across species. We have processed 1196 publicly available RNA-Seq samples from 50 bulk RNA-Seq studies across nine different species, resulting in an SQLite database that can be used by the SCI research community for further discovery. We provide both the database as well as a web-based front-end that can be used to query the database for genes of interest, differential gene expression, genes with high variance, and gene set enrichments.
Collapse
Affiliation(s)
- Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, USA
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
- Bioinformatics Program, University of Louisville, Louisville, Kentucky, USA
| | - Carlos de Almeida
- Translational Neuroscience Program, University of Louisville, Louisville, Kentucky, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Randi B. House
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | | | - Julia H. Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
- Department of Neuroscience Training, University of Louisville, Louisville, Kentucky, USA
| | - Sujata Saraswat-Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Cynthia Gomes
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Morgan Sharp
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Alice Shum-Siu
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Greta M. Cesarz
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Jeffrey C. Petruska
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - David S. K. Magnuson
- Translational Neuroscience Program, University of Louisville, Louisville, Kentucky, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
3
|
Pan JZ, Wang Z, Sun W, Pan P, Li W, Sun Y, Chen S, Lin A, Tan W, He L, Greene J, Yao V, An L, Liang R, Li Q, Yu J, Zhang L, Kyritsis N, Fernandez XD, Moncivais S, Mendoza E, Fung P, Wang G, Niu X, Du Q, Xiao Z, Chang Y, Lv P, Huie JR, Torres‐Espin A, Ferguson AR, Hemmerle DD, Talbott JF, Weinstein PR, Pascual LU, Singh V, DiGiorgio AM, Saigal R, Whetstone WD, Manley GT, Dhall SS, Bresnahan JC, Maze M, Jiang X, Singhal NS, Beattie MS, Su H, Guan Z. ATF3 is a neuron-specific biomarker for spinal cord injury and ischaemic stroke. Clin Transl Med 2024; 14:e1650. [PMID: 38649772 PMCID: PMC11035380 DOI: 10.1002/ctm2.1650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Although many molecules have been investigated as biomarkers for spinal cord injury (SCI) or ischemic stroke, none of them are specifically induced in central nervous system (CNS) neurons following injuries with low baseline expression. However, neuronal injury constitutes a major pathology associated with SCI or stroke and strongly correlates with neurological outcomes. Biomarkers characterized by low baseline expression and specific induction in neurons post-injury are likely to better correlate with injury severity and recovery, demonstrating higher sensitivity and specificity for CNS injuries compared to non-neuronal markers or pan-neuronal markers with constitutive expressions. METHODS In animal studies, young adult wildtype and global Atf3 knockout mice underwent unilateral cervical 5 (C5) SCI or permanent distal middle cerebral artery occlusion (pMCAO). Gene expression was assessed using RNA-sequencing and qRT-PCR, while protein expression was detected through immunostaining. Serum ATF3 levels in animal models and clinical human samples were measured using commercially available enzyme-linked immune-sorbent assay (ELISA) kits. RESULTS Activating transcription factor 3 (ATF3), a molecular marker for injured dorsal root ganglion sensory neurons in the peripheral nervous system, was not expressed in spinal cord or cortex of naïve mice but was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Additionally, ATF3 protein levels in mouse blood significantly increased 1 day after SCI or ischemic stroke. Importantly, ATF3 protein levels in human serum were elevated in clinical patients within 24 hours after SCI or ischemic stroke. Moreover, Atf3 knockout mice, compared to the wildtype mice, exhibited worse neurological outcomes and larger damage regions after SCI or ischemic stroke, indicating that ATF3 has a neuroprotective function. CONCLUSIONS ATF3 is an easily measurable, neuron-specific biomarker for clinical SCI and ischemic stroke, with neuroprotective properties. HIGHLIGHTS ATF3 was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Serum ATF3 protein levels are elevated in clinical patients within 24 hours after SCI or ischemic stroke. ATF3 exhibits neuroprotective properties, as evidenced by the worse neurological outcomes and larger damage regions observed in Atf3 knockout mice compared to wildtype mice following SCI or ischemic stroke.
Collapse
Affiliation(s)
- Jonathan Z. Pan
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Zhanqiang Wang
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of NeurologyCangzhou People's HospitalCangzhouChina
| | - Wei Sun
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyShandong Provincial Hospital, Shandong UniversityJinanChina
| | - Peipei Pan
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Wei Li
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyShandong Provincial Hospital, Shandong UniversityJinanChina
| | - Yongtao Sun
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyQianfoshan Hospital, Shandong UniversityJinanChina
| | - Shoulin Chen
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyThe Second Affiliated Hospital, Nanchang UniversityNanchangChina
| | - Amity Lin
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Wulin Tan
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyGuangzhou Medical UniversityGuangzhouChina
| | - Liangliang He
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Pain ManagementXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Jacob Greene
- Medical SchoolUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Virginia Yao
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lijun An
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyNo. 1 People's HospitalHuaianChina
| | - Rich Liang
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Qifeng Li
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
| | - Jessica Yu
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Nikolaos Kyritsis
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Xuan Duong Fernandez
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Sara Moncivais
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Esmeralda Mendoza
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Pamela Fung
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Gongming Wang
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyShandong Provincial Hospital, Shandong UniversityJinanChina
| | - Xinhuan Niu
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyShandong Provincial Hospital, Shandong UniversityJinanChina
| | - Qihang Du
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyShandong Provincial Hospital, Shandong UniversityJinanChina
| | - Zhaoyang Xiao
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyThe Second Affiliated Hospital, Dalian Medical UniversityDalianChina
| | - Yuwen Chang
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Peiyuan Lv
- Department of AnesthesiologyThe Second Affiliated Hospital, Dalian Medical UniversityDalianChina
- Department of NeurologyHebei Medical UniversityShijiazhuangChina
| | - J. Russell Huie
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Abel Torres‐Espin
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Adam R. Ferguson
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Debra D. Hemmerle
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jason F. Talbott
- Department of RadiologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Philip R. Weinstein
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lisa U. Pascual
- Department of Orthopedic SurgeryOrthopaedic Trauma InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Vineeta Singh
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Anthony M. DiGiorgio
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Rajiv Saigal
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - William D. Whetstone
- Department of Emergency MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Geoffrey T. Manley
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Sanjay S. Dhall
- Department of NeurosurgeryHarbor UCLA Medical CenterTorranceCaliforniaUSA
| | - Jacqueline C. Bresnahan
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mervyn Maze
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Xiangning Jiang
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Neel S. Singhal
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Michael S. Beattie
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Hua Su
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
4
|
Zhang C, Li Y, Bai F, Talifu Z, Ke H, Xu X, Li Z, Liu W, Pan Y, Gao F, Yang D, Wang X, Du H, Guo S, Gong H, Du L, Yu Y, Li J. The identification of new roles for nicotinamide mononucleotide after spinal cord injury in mice: an RNA-seq and global gene expression study. Front Cell Neurosci 2023; 17:1323566. [PMID: 38155866 PMCID: PMC10752985 DOI: 10.3389/fncel.2023.1323566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Nicotinamide mononucleotide (NMN), an important transforming precursor of nicotinamide adenine dinucleotide (NAD+). Numerous studies have confirmed the neuroprotective effects of NMN in nervous system diseases. However, its role in spinal cord injury (SCI) and the molecular mechanisms involved have yet to be fully elucidated. Methods We established a moderate-to-severe model of SCI by contusion (70 kdyn) using a spinal cord impactor. The drug was administered immediately after surgery, and mice were intraperitoneally injected with either NMN (500 mg NMN/kg body weight per day) or an equivalent volume of saline for seven days. The central area of the spinal cord was harvested seven days after injury for the systematic analysis of global gene expression by RNA Sequencing (RNA-seq) and finally validated using qRT-PCR. Results NMN supplementation restored NAD+ levels after SCI, promoted motor function recovery, and alleviated pain. This could potentially be associated with alterations in NAD+ dependent enzyme levels. RNA sequencing (RNA-seq) revealed that NMN can inhibit inflammation and potentially regulate signaling pathways, including interleukin-17 (IL-17), tumor necrosis factor (TNF), toll-like receptor, nod-like receptor, and chemokine signaling pathways. In addition, the construction of a protein-protein interaction (PPI) network and the screening of core genes showed that interleukin 1β (IL-1β), interferon regulatory factor 7 (IRF 7), C-X-C motif chemokine ligand 10 (Cxcl10), and other inflammationrelated factors, changed significantly after NMN treatment. qRT-PCR confirmed the inhibitory effect of NMN on inflammatory factors (IL-1β, TNF-α, IL-17A, IRF7) and chemokines (chemokine ligand 3, Cxcl10) in mice following SCI. Conclusion The reduction of NAD+ levels after SCI can be compensated by NMN supplementation, which can significantly restore motor function and relieve pain in a mouse model. RNA-seq and qRT-PCR systematically revealed that NMN affected inflammation-related signaling pathways, including the IL-17, TNF, Toll-like receptor, NOD-like receptor and chemokine signaling pathways, by down-regulating the expression of inflammatory factors and chemokines.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Li
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xiaoxin Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Huayong Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Shuang Guo
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
González-Orozco JC, Escobedo-Avila I, Velasco I. Transcriptome Profiling after Early Spinal Cord Injury in the Axolotl and Its Comparison with Rodent Animal Models through RNA-Seq Data Analysis. Genes (Basel) 2023; 14:2189. [PMID: 38137011 PMCID: PMC10742908 DOI: 10.3390/genes14122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is a disabling condition that affects millions of people around the world. Currently, no clinical treatment can restore spinal cord function. Comparison of molecular responses in regenerating to non-regenerating vertebrates can shed light on neural restoration. The axolotl (Ambystoma mexicanum) is an amphibian that regenerates regions of the brain or spinal cord after damage. METHODS In this study, we compared the transcriptomes after SCI at acute (1-2 days after SCI) and sub-acute (6-7 days post-SCI) periods through the analysis of RNA-seq public datasets from axolotl and non-regenerating rodents. RESULTS Genes related to wound healing and immune responses were upregulated in axolotls, rats, and mice after SCI; however, the immune-related processes were more prevalent in rodents. In the acute phase of SCI in the axolotl, the molecular pathways and genes associated with early development were upregulated, while processes related to neuronal function were downregulated. Importantly, the downregulation of processes related to sensorial and motor functions was observed only in rodents. This analysis also revealed that genes related to pluripotency, cytoskeleton rearrangement, and transposable elements (e.g., Sox2, Krt5, and LOC100130764) were among the most upregulated in the axolotl. Finally, gene regulatory networks in axolotls revealed the early activation of genes related to neurogenesis, including Atf3/4 and Foxa2. CONCLUSIONS Immune-related processes are upregulated shortly after SCI in axolotls and rodents; however, a strong immune response is more noticeable in rodents. Genes related to early development and neurogenesis are upregulated beginning in the acute stage of SCI in axolotls, while the loss of motor and sensory functions is detected only in rodents during the sub-acute period of SCI. The approach employed in this study might be useful for designing and establishing regenerative therapies after SCI in mammals, including humans.
Collapse
Affiliation(s)
- Juan Carlos González-Orozco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (J.C.G.-O.); (I.E.-A.)
| | - Itzel Escobedo-Avila
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (J.C.G.-O.); (I.E.-A.)
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (J.C.G.-O.); (I.E.-A.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
6
|
Cabrera-Aldana EE, Balderas-Martínez YI, Velázquez-Cruz R, Tovar-y-Romo LB, Sevilla-Montoya R, Martínez-Cruz A, Martinez-Cordero C, Valdés-Flores M, Santamaria-Olmedo M, Hidalgo-Bravo A, Guízar-Sahagún G. Administration of Tamoxifen Can Regulate Changes in Gene Expression during the Acute Phase of Traumatic Spinal Cord Injury. Curr Issues Mol Biol 2023; 45:7476-7491. [PMID: 37754256 PMCID: PMC10529143 DOI: 10.3390/cimb45090472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Traumatic spinal cord injury (SCI) causes irreversible damage leading to incapacity. Molecular mechanisms underlying SCI damage are not fully understood, preventing the development of novel therapies. Tamoxifen (TMX) has emerged as a promising therapy. Our aim was to identify transcriptome changes in the acute phase of SCI and the effect of Tamoxifen on those changes in a rat model of SCI. Four groups were considered: (1) Non-injured without TMX (Sham/TMX-), (2) Non-injured with TMX (Sham/TMX+), (3) injured without TMX (SCI/TMX-), and (4) injured with TMX (SCI/TMX+). Tamoxifen was administered intraperitoneally 30 min after injury, and spinal cord tissues were collected 24 h after injury. Clariom S Assays Array was used for transcriptome analysis. After comparing Sham/TMX- versus SCI/TMX-, 708 genes showed differential expression. The enriched pathways were the SCI pathway and pathways related to the inflammatory response. When comparing SCI/TMX- versus SCI/TMX+, only 30 genes showed differential expression, with no pathways enriched. Our results showed differential expression of genes related to the inflammatory response after SCI, and Tamoxifen seems to regulate gene expression changes in Ccr2 and Mmp12. Our study contributes data regarding the potential value of tamoxifen as a therapeutic resource for traumatic SCI during the acute phase.
Collapse
Affiliation(s)
- Eibar E. Cabrera-Aldana
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Yalbi I. Balderas-Martínez
- Laboratorio de Biología Computacional, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Calz. de Tlalpan 4502, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico;
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Periférico Sur 4809, Arenal Tepepan, Mexico City 14610, Mexico;
| | - Luis B. Tovar-y-Romo
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Rosalba Sevilla-Montoya
- Reproductive Research and Perinatal Health Department, National Institute of Perinatology, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico;
| | - Angelina Martínez-Cruz
- Department of Experimental Surgery, Proyecto Camina, A.C. 4430 Calz. Tlalpan, Mexico City 14050, Mexico;
| | - Claudia Martinez-Cordero
- Regional Hospital of High Specialty of the Bajio, Blvd. Milenio 130, Col. San Carlos la Roncha, León 37660, Guanajuato, Mexico;
| | - Margarita Valdés-Flores
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Monica Santamaria-Olmedo
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Alberto Hidalgo-Bravo
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Gabriel Guízar-Sahagún
- Research Unit for Neurological Diseases, Instituto Mexicano del Seguro Social, 330 Avenida Cuauhtémoc, Mexico City 06720, Mexico
| |
Collapse
|
7
|
Wei H, Wu X, Withrow J, Cuevas-Diaz Duran R, Singh S, Chaboub LS, Rakshit J, Mejia J, Rolfe A, Herrera JJ, Horner PJ, Wu JQ. Glial progenitor heterogeneity and key regulators revealed by single-cell RNA sequencing provide insight to regeneration in spinal cord injury. Cell Rep 2023; 42:112486. [PMID: 37149868 PMCID: PMC10511029 DOI: 10.1016/j.celrep.2023.112486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/12/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023] Open
Abstract
Recent studies have revealed the heterogeneous nature of astrocytes; however, how diverse constituents of astrocyte-lineage cells are regulated in adult spinal cord after injury and contribute to regeneration remains elusive. We perform single-cell RNA sequencing of GFAP-expressing cells from sub-chronic spinal cord injury models and identify and compare with the subpopulations in acute-stage data. We find subpopulations with distinct functional enrichment and their identities defined by subpopulation-specific transcription factors and regulons. Immunohistochemistry, RNAscope experiments, and quantification by stereology verify the molecular signature, location, and morphology of potential resident neural progenitors or neural stem cells in the adult spinal cord before and after injury and uncover the populations of the intermediate cells enriched in neuronal genes that could potentially transition into other subpopulations. This study has expanded the knowledge of the heterogeneity and cell state transition of glial progenitors in adult spinal cord before and after injury.
Collapse
Affiliation(s)
- Haichao Wei
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Xizi Wu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Joseph Withrow
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, Mexico
| | - Simranjit Singh
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Lesley S Chaboub
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jyotirmoy Rakshit
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Julio Mejia
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Andrew Rolfe
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Juan J Herrera
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, UTHealth, Houston, TX 77030, USA
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Jia Qian Wu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Effect and mechanism of terahertz irradiation in repairing spinal cord injury in mice. Gene 2023; 860:147218. [PMID: 36702395 DOI: 10.1016/j.gene.2023.147218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
SIGNIFICANCE Spinal cord injury (SCI) represents a serious trauma to the central nervous system. Terahertz (THz) irradiation is an emerging technique, it has potential application prospects in the treatment of central nervous system diseases. AIM We report on the investigation of the effect and mechanism of THz irradiation in repairing SCI in mice. APPROACH The effect of THz in SCI was evaluated by the expression of inflammatory factors, the mouse behavioral scale (BMS), and immunofluorescence staining. After RNA sequencing (RNA-seq), we determined the differentially expressed genes (DEGs) and performed GO and KEGG analysis. RESULTS After THz irradiation, the inflammatory response, the behavioral function, and the severity of SCI recovered well, indicating that THz irradiation can effectively promote the repair of SCI. GO and KEGG results show that genes related to inflammation, immune regulation, and IL-17 signaling pathway may play an important role in this process. CONCLUSIONS THz irradiation can effectively promote the repair of SCI. Genes related to inflammation, immune regulation, and IL-17 signaling pathway may play an important role in this process.
Collapse
|
9
|
Inhibition of Neural Stem Cell Necroptosis Mediated by RIPK1/MLKL Promotes Functional Recovery After SCI. Mol Neurobiol 2023; 60:2135-2149. [PMID: 36602703 DOI: 10.1007/s12035-022-03156-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/26/2022] [Indexed: 01/06/2023]
Abstract
Endogenous neural stem cells (eNSCs) are a new therapeutic strategy for the noninvasive repair of spinal cord injury (SCI). Necroptosis is a necrosome-dependent cell death process that serves as a significant regulatory mechanism in SCI. Current research shows that neurons, oligodendrocytes, and astrocytes all undergo necroptosis after SCI. However, it is unclear whether eNSCs are associated with necroptosis after SCI. By performing immunofluorescence analysis, we found that eNSCs undergo necroptosis during spinal cord injury repair in mice. Our present work demonstrates that receptor-interacting protein kinase 1 (RIPK1)/mixed lineage kinase domain-like protein (MLKL) are involved in necroptosis pathway in SCI mice. In vitro, the necroptosis induced by TNF-α/Smac-mimetic/Z-VAD-FMK (TSZ) treatment regulates phenotype of NSCs. In detail, the proliferative capacity of NSCs was significantly decreased in the presence of continual TSZ treatment, and the transcription of proinflammatory genes was upregulated, while the transcription of neurotrophic factors was inhibited. NSCs exhibited an obvious tendency to differentiate into glial cells under short-duration TSZ stimulation (6 h and 12 h); as the stimulus duration increased (24 h), the differentiation ability of the NSCs was significantly inhibited. These phenotypic changes are not conducive to neural cell survival and neural repair. Moreover, we examined the effect of necroptosis inhibitors on TSZ-treated NSCs. Necrostatin-1 and necrosulfonamide significantly reduced the necroptosis of NSCs after TSZ treatment and improved the phenotypic function of NSCs under TSZ stimulation. In additional in vivo experiments, after 2 weeks of administration, the necroptosis inhibitors reduced the necroptosis of NSCs and improved functional recovery in SCI mice. Taken together, these data indicate that the inhibition of NSC necroptosis with necroptosis inhibitors facilitates survival and phenotype maintenance in vitro and contributes to neuroprotection and repair in vivo. Our findings suggest that blocking necroptosis of eNSCs may be a potential therapeutic strategy for treating SCI.
Collapse
|
10
|
Rouchka EC, de Almeida C, House RB, Daneshmand JC, Chariker JH, Saraswat-Ohri S, Gomes C, Sharp M, Shum-Siu A, Cesarz GM, Petruska JC, Magnuson DS. Construction of a searchable database for gene expression changes in spinal cord injury experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526630. [PMID: 36778366 PMCID: PMC9915599 DOI: 10.1101/2023.02.01.526630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a debilitating disease resulting in an estimated 18,000 new cases in the United States on an annual basis. Significant behavioral research on animal models has led to a large amount of data, some of which has been catalogued in the Open Data Commons for Spinal Cord Injury (ODC-SCI). More recently, high throughput sequencing experiments have been utilized to understand molecular mechanisms associated with SCI, with nearly 6,000 samples from over 90 studies available in the Sequence Read Archive. However, to date, no resource is available for efficiently mining high throughput sequencing data from SCI experiments. Therefore, we have developed a protocol for processing RNA-Seq samples from high-throughput sequencing experiments related to SCI resulting in both raw and normalized data that can be efficiently mined for comparisons across studies as well as homologous discovery across species. We have processed 1,196 publicly available RNA-seq samples from 50 bulk RNA-Seq studies across nine different species, resulting in an SQLite database that can be used by the SCI research community for further discovery. We provide both the database as well as a web-based front-end that can be used to query the database for genes of interest, differential gene expression, genes with high variance, and gene set enrichments.
Collapse
Affiliation(s)
- Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, University of Louisville, Louisville, KY USA
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville School of Medicine, 522 East Gray Street, Louisville, KY USA 40202
- Bioinformatics Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
| | - Carlos de Almeida
- Translational Neuroscience Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
| | - Randi B. House
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY
| | - Jonah C. Daneshmand
- Bioinformatics Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
| | - Julia H. Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville School of Medicine, 522 East Gray Street, Louisville, KY USA 40202
- Department of Neuroscience Training, School of Medicine, University of Louisville, Louisville, KY
| | - Sujata Saraswat-Ohri
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
| | - Cynthia Gomes
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY
| | - Morgan Sharp
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
| | - Alice Shum-Siu
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
| | - Greta M. Cesarz
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
| | - Jeffrey C. Petruska
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY
| | - David S.K. Magnuson
- Translational Neuroscience Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
11
|
Tsujioka H, Yamashita T. Utilization of ethanolamine phosphate phospholyase as a unique astrocytic marker. Front Cell Neurosci 2023; 17:1097512. [PMID: 36794261 PMCID: PMC9922850 DOI: 10.3389/fncel.2023.1097512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
Astrocytes play diverse roles in the central nervous system (CNS) in both physiological and pathological conditions. Previous studies have identified many markers of astrocytes to analyze their complicated roles. Recently, closure of the critical period by mature astrocytes has been revealed, and the need for finding mature astrocyte-specific markers has been growing. We previously found that Ethanolamine phosphate phospholyase (Etnppl) was almost not expressed in the developing neonatal spinal cord, and its expression level slightly decreased after pyramidotomy in adult mice, which showed weak axonal sprouting, suggesting that its expression level negatively correlates with axonal elongation. Although the expression of Etnppl in astrocytes in adult is known, its utility as an astrocytic marker has not yet been investigated in detail. Here, we showed that Etnppl was selectively expressed in astrocytes in adult. Re-analyses using published RNA-sequencing datasets revealed changes in Etnppl expression in spinal cord injury, stroke, or systemic inflammation models. We produced high-quality monoclonal antibodies against ETNPPL and characterized ETNPPL localization in neonatal and adult mice. Expression of ETNPPL was very weak in neonatal mice, except in the ventricular and subventricular zones, and it was heterogeneously expressed in adult mice, with the highest expression in the cerebellum, olfactory bulb, and hypothalamus and the lowest in white matter. Subcellular localization of ETNPPL was dominant in the nuclei with weak expression in the cytosol in the minor population. Using the antibody, astrocytes in adult were selectively labeled in the cerebral cortex or spinal cord, and changes in astrocytes were detected in the spinal cord after pyramidotomy. ETNPPL is expressed in a subset of Gjb6 + astrocytes in the spinal cord. The monoclonal antibodies we created, as well as fundamental knowledge characterized in this study, will be valuable resources in the scientific community and will expand our understanding of astrocytes and their complicated responses in many pathological conditions in future analyses.
Collapse
Affiliation(s)
- Hiroshi Tsujioka
- Graduate School of Medicine, Osaka University, Osaka, Japan,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan,*Correspondence: Hiroshi Tsujioka,
| | - Toshihide Yamashita
- Graduate School of Medicine, Osaka University, Osaka, Japan,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka, Japan,Toshihide Yamashita,
| |
Collapse
|
12
|
Specific Blood RNA Profiles in Individuals with Acute Spinal Cord Injury as Compared with Trauma Controls. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1485135. [PMID: 36686379 PMCID: PMC9851797 DOI: 10.1155/2023/1485135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
Background Spinal cord injury (SCI) is known to cause a more robust systemic inflammatory response than general trauma without CNS injury, inducing severe secondary organ damage, especially the lung and liver. Related studies are principally focused on the mechanisms underlying repair and regeneration in the injured spinal cord tissue. However, the specific mechanism of secondary injury after acute SCI is widely overlooked, compared with general trauma. Methods Two datasets of GSE151371 and GSE45376 related to the blood samples and spinal cord after acute SCI were selected to identify the differentially expressed genes (DEGs). In GSE151371, functional enrichment analysis on specific DEGs of blood samples was performed. And the top 15 specific hub genes were identified from intersectional genes between the specific upregulated DEGs of blood samples in GSE151371 and the upregulated DEGs of the spinal cord in GSE45376. The specific functional enrichment analysis and the drug candidates of the hub genes and the miRNAs-targeted hub genes were also analyzed and predicted. Results DEGs were identified, and a total of 64 specific genes were the intersection of upregulated genes of the spinal cord in GSE45376 and upregulated genes of human blood samples in GSE151371. The top 15 hub genes including HP, LCN2, DLGAP5, CEP55, HMMR, CDKN3, PRTN3, SKA3, MPO, LTF, CDC25C, MMP9, NEIL3, NUSAP1, and CD163 were calculated from the 64 specific genes. Functional enrichment analysis of the top 15 hub genes revealed inflammation-related pathways. The predicted miRNAs-targeted hub genes and drug candidates of hub genes were also performed to put forward reasonable treatment strategies. Conclusion The specific hub genes of acute SCI as compared with trauma without CNS injury were identified. The functional enrichment analysis of hub genes showed a specific immune response. Several predicted drugs of hub genes were also obtained. The hub genes and the predicted miRNAs may be potential biomarkers and therapeutic targets and require further validation.
Collapse
|
13
|
Cao Y, Zhu S, Yu B, Yao C. Single-cell RNA sequencing for traumatic spinal cord injury. FASEB J 2022; 36:e22656. [PMID: 36374259 DOI: 10.1096/fj.202200943r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/28/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Traumatic spinal cord injury (tSCI) is a severe injury of the central nervous system (CNS) with complicated pathological microenvironment that results in hemorrhage, inflammation, and scar formation. The microenvironment of the injured spinal cord comprises heterogeneous neurons, glial cells, inflammatory cells, and stroma-related cells. Increasing evidence has indicated that the altered cellular and molecular microenvironment following tSCI is a key factor impeding functional recovery. Single-cell RNA sequencing (scRNA-seq) has provided deep insights into the dynamic cellular and molecular changes in the microenvironment by comprehensively characterizing the diversity of spinal cord cell types. Specifically, scRNA-seq enables the exploration of the molecular mechanisms underlying tSCI by elucidating intercellular communication in spinal cord samples between normal and injury conditions at a single-cell resolution. Here, we first described the pathological and physiological processes after tSCI and gave a brief introduction of the scRNA-seq technology. We then focused on the recent scRNA-seq researches in tSCI, which characterized diverse cell-type populations and specific cell-cell interactions in tSCI. In addition, we also highlighted some potential directions for the research of scRNA-seq in tSCI in the future.
Collapse
Affiliation(s)
- Yuqi Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shunxing Zhu
- Laboratory Animals Center, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
14
|
Cruz-González S, Quesada-Díaz E, Miranda-Negrón Y, García-Rosario R, Ortiz-Zuazaga H, García-Arrarás JE. The Stress Response of the Holothurian Central Nervous System: A Transcriptomic Analysis. Int J Mol Sci 2022; 23:ijms232113393. [PMID: 36362181 PMCID: PMC9657328 DOI: 10.3390/ijms232113393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Injury to the central nervous system (CNS) results in permanent damage and lack of function in most vertebrate animals, due to their limited regenerative capacities. In contrast, echinoderms can fully regenerate their radial nerve cord (RNC) following transection, with little to no scarring. Investigators have associated the regenerative capacity of some organisms to the stress response and inflammation produced by the injury. Here, we explore the gene activation profile of the stressed holothurian CNS. To do this, we performed RNA sequencing on isolated RNC explants submitted to the stress of transection and enzyme dissection and compared them with explants kept in culture for 3 days following dissection. We describe stress-associated genes, including members of heat-shock families, ubiquitin-related pathways, transposons, and apoptosis that were differentially expressed. Surprisingly, the stress response does not induce apoptosis in this system. Other genes associated with stress in other animal models, such as hero proteins and those associated with the integrated stress response, were not found to be differentially expressed either. Our results provide a new viewpoint on the stress response in the nervous system of an organism with amazing regenerative capacities. This is the first step in deciphering the molecular processes that allow echinoderms to undergo fully functional CNS regeneration, and also provides a comparative view of the stress response in other organisms.
Collapse
Affiliation(s)
- Sebastián Cruz-González
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Eduardo Quesada-Díaz
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Yamil Miranda-Negrón
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Raúl García-Rosario
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Humberto Ortiz-Zuazaga
- Department of Computer Science, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - José E. García-Arrarás
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
- Correspondence:
| |
Collapse
|
15
|
Wang S, Qian W, Chen S, Xian S, Jin M, Liu Y, Zhang H, Qin H, Zhang X, Zhu J, Yue X, Shi C, Yan P, Huang R, Huang Z. Bibliometric analysis of research on gene expression in spinal cord injury. Front Mol Neurosci 2022; 15:1023692. [PMID: 36385766 PMCID: PMC9661966 DOI: 10.3389/fnmol.2022.1023692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Spinal cord injury (SCI) is a severe disease with motor and sensory function being destroyed, which leads to a poor prognosis and a serious financial burden. It is urgent to figure out the molecular and pathological mechanisms of SCI to develop feasible therapeutic strategies. This article aims to review documents focused on gene expression in SCI and summarize research hotspots and the development process in this field. Methods Publications of SCI-related studies from 2000 to 2022 were retrieved from the Web of Science Core Collection database. Biblioshiny was used to evaluate the research performance, core authors, journals and contributed countries, together with trend topics, hotspots in the field, and keyword co-occurrence analysis. Visualized images were obtained to help comprehension. Results Among 351 documents, it was found that the number of annual publications increased in general. The most productive country was China, followed by the United States with the highest influence and the most international cooperation. Plos One was the journal of the maximum publications, while Journal of Neuroscience was the most influential one. According to keyword co-occurrence and trend topics analysis, these articles mainly focused on molecular and pathological mechanisms as well as novel therapies for SCI. Neuropathic pain, axonal regeneration and messenger RNA are significant and promising research areas. Conclusion As the first bibliometric study focused on gene expression in SCI, we demonstrated the evolution of the field and provided future research directions like mechanisms and treatments of SCI with great innovativeness and clinical value. Further studies are recommended to develop more viable therapeutic methods for SCI.
Collapse
Affiliation(s)
- Siqiao Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Shanghai, China
| | - Weijin Qian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaofeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shuyuan Xian
- Tongji University School of Medicine, Shanghai, China
| | - Minghao Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Orthopedics, Naval Medical Center of PLA, Second Military Medical University Shanghai, Shanghai, China
| | - Hengwei Qin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinkun Zhang
- Tongji University School of Medicine, Shanghai, China
| | - Jiwen Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Yue
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaofeng Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zongqiang Huang, ; Runzhi Huang, ; Penghui Yan,
| | - Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Zongqiang Huang, ; Runzhi Huang, ; Penghui Yan,
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zongqiang Huang, ; Runzhi Huang, ; Penghui Yan,
| |
Collapse
|
16
|
Sabirov D, Ogurcov S, Baichurina I, Blatt N, Rizvanov A, Mukhamedshina Y. Molecular diagnostics in neurotrauma: Are there reliable biomarkers and effective methods for their detection? Front Mol Biosci 2022; 9:1017916. [PMID: 36250009 PMCID: PMC9557129 DOI: 10.3389/fmolb.2022.1017916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
To date, a large number of studies are being carried out in the field of neurotrauma, researchers not only establish the molecular mechanisms of the course of the disorders, but are also involved in the search for effective biomarkers for early prediction of the outcome and therapeutic intervention. Particular attention is paid to traumatic brain injury and spinal cord injury, due to the complex cascade of reactions in primary and secondary injury that affect pathophysiological processes and regenerative potential of the central nervous system. Despite a wide range of methods available methods to study biomarkers that correlate with the severity and degree of recovery in traumatic brain injury and spinal cord injury, development of reliable test systems for clinical use continues. In this review, we evaluate the results of recent studies looking for various molecules acting as biomarkers in the abovementioned neurotrauma. We also summarize the current knowledge of new methods for studying biological molecules, analyzing their sensitivity and limitations, as well as reproducibility of results. In this review, we also highlight the importance of developing reliable and reproducible protocols to identify diagnostic and prognostic biomolecules.
Collapse
Affiliation(s)
- Davran Sabirov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sergei Ogurcov
- Neurosurgical Department No. 2, Republic Clinical Hospital, Kazan, Russia
| | - Irina Baichurina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- *Correspondence: Irina Baichurina,
| | - Nataliya Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yana Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Histology, Cytology, and Embryology, Kazan State Medical University, Kazan, Russia
| |
Collapse
|
17
|
Mun S, Han K, Hyun JK. The Time Sequence of Gene Expression Changes after Spinal Cord Injury. Cells 2022; 11:cells11142236. [PMID: 35883679 PMCID: PMC9324287 DOI: 10.3390/cells11142236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 02/01/2023] Open
Abstract
Gene expression changes following spinal cord injury (SCI) are time-dependent, and an accurate understanding of these changes can be crucial in determining time-based treatment options in a clinical setting. We performed RNA sequencing of the contused spinal cord of rats at five different time points from the very acute to chronic stages (1 hour, 1 day, 1 week, 1 month, and 3 months) following SCI. We identified differentially expressed genes (DEGs) and Gene Ontology (GO) terms at each time point, and 14,257 genes were commonly expressed at all time points. The biological process of the inflammatory response was increased at 1 hour and 1 day, and the cellular component of the integral component of the synaptic membrane was increased at 1 day. DEGs associated with cell activation and the innate immune response were highly enriched at 1 week and 1 month, respectively. A total of 2841 DEGs were differentially expressed at any of the five time points, and 18 genes (17 upregulated and 1 downregulated) showed common expression differences at all time points. We found that interleukin signaling, neutrophil degranulation, eukaryotic translation, collagen degradation, LGI–ADAM interactions, GABA receptor, and L1CAM-ankyrin interactions were prominent after SCI depending on the time post injury. We also performed gene–drug network analysis and found several potential antagonists and agonists which can be used to treat SCI. We expect to discover effective treatments in the clinical field through further studies revealing the efficacy and safety of potential drugs.
Collapse
Affiliation(s)
- Seyoung Mun
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea;
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea;
| | - Kyudong Han
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea;
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea
| | - Jung Keun Hyun
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea;
- Department of Rehabilitation Medicine, College of Medicine, Dankook University, Cheonan 31116, Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Correspondence: ; Tel.: +82-10-2293-3415
| |
Collapse
|
18
|
Baratta AM, Brandner AJ, Plasil SL, Rice RC, Farris SP. Advancements in Genomic and Behavioral Neuroscience Analysis for the Study of Normal and Pathological Brain Function. Front Mol Neurosci 2022; 15:905328. [PMID: 35813067 PMCID: PMC9259865 DOI: 10.3389/fnmol.2022.905328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Psychiatric and neurological disorders are influenced by an undetermined number of genes and molecular pathways that may differ among afflicted individuals. Functionally testing and characterizing biological systems is essential to discovering the interrelationship among candidate genes and understanding the neurobiology of behavior. Recent advancements in genetic, genomic, and behavioral approaches are revolutionizing modern neuroscience. Although these tools are often used separately for independent experiments, combining these areas of research will provide a viable avenue for multidimensional studies on the brain. Herein we will briefly review some of the available tools that have been developed for characterizing novel cellular and animal models of human disease. A major challenge will be openly sharing resources and datasets to effectively integrate seemingly disparate types of information and how these systems impact human disorders. However, as these emerging technologies continue to be developed and adopted by the scientific community, they will bring about unprecedented opportunities in our understanding of molecular neuroscience and behavior.
Collapse
Affiliation(s)
- Annalisa M. Baratta
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Adam J. Brandner
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sonja L. Plasil
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rachel C. Rice
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sean P. Farris
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Extended intergenic DNA contributes to neuron-specific expression of neighboring genes in the mammalian nervous system. Nat Commun 2022; 13:2733. [PMID: 35585070 PMCID: PMC9117226 DOI: 10.1038/s41467-022-30192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/20/2022] [Indexed: 11/08/2022] Open
Abstract
Mammalian genomes comprise largely intergenic noncoding DNA with numerous cis-regulatory elements. Whether and how the size of intergenic DNA affects gene expression in a tissue-specific manner remain unknown. Here we show that genes with extended intergenic regions are preferentially expressed in neural tissues but repressed in other tissues in mice and humans. Extended intergenic regions contain twice as many active enhancers in neural tissues compared to other tissues. Neural genes with extended intergenic regions are globally co-expressed with neighboring neural genes controlled by distinct enhancers in the shared intergenic regions. Moreover, generic neural genes expressed in multiple tissues have significantly longer intergenic regions than neural genes expressed in fewer tissues. The intergenic regions of the generic neural genes have many tissue-specific active enhancers containing distinct transcription factor binding sites specific to each neural tissue. We also show that genes with extended intergenic regions are enriched for neural genes only in vertebrates. The expansion of intergenic regions may reflect the regulatory complexity of tissue-type-specific gene expression in the nervous system.
Collapse
|
20
|
Hart SN, Patel SP, Michael FM, Stoilov P, Leow CJ, Hernandez AG, Jolly A, de la Grange P, Rabchevsky AG, Stamm S. Rat Spinal Cord Injury Associated with Spasticity Leads to Widespread Changes in the Regulation of Retained Introns. Neurotrauma Rep 2022; 3:105-121. [PMID: 35403103 PMCID: PMC8985541 DOI: 10.1089/neur.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Samantha N. Hart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Samir P. Patel
- Department of Physiology and Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, USA
| | - Felicia M. Michael
- Department of Physiology and Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, USA
| | - Peter Stoilov
- Department of Biochemistry, University West Virginia, Morgantown, West Virginia, USA
| | - Chi Jing Leow
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | - Alexander G. Rabchevsky
- Department of Physiology and Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, USA
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
21
|
Wu X, Wei H, Wu JQ. Coding and long non-coding gene expression changes in the CNS traumatic injuries. Cell Mol Life Sci 2022; 79:123. [PMID: 35129669 PMCID: PMC8907010 DOI: 10.1007/s00018-021-04092-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) and spinal cord injury (SCI) are two main central nervous system (CNS) traumas, caused by external physical insults. Both injuries have devastating effects on the quality of life, and there is no effective therapy at present. Notably, gene expression profiling using bulk RNA sequencing (RNA-Seq) and single-cell RNA-Seq (scRNA-Seq) have revealed significant changes in many coding and non-coding genes, as well as important pathways in SCI and TBI. Particularly, recent studies have revealed that long non-coding RNAs (lncRNAs) with lengths greater than 200 nucleotides and without protein-coding potential have tissue- and cell type-specific expression pattern and play critical roles in CNS injury by gain- and loss-of-function approaches. LncRNAs have been shown to regulate protein-coding genes or microRNAs (miRNAs) directly or indirectly, participating in processes including inflammation, glial activation, cell apoptosis, and vasculature events. Therefore, lncRNAs could serve as potential targets for the diagnosis, treatment, and prognosis of SCI and TBI. In this review, we highlight the recent progress in transcriptome studies of SCI and TBI and insights into molecular mechanisms.
Collapse
Affiliation(s)
- Xizi Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA.
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Cao TT, Chen H, Pang M, Xu SS, Wen HQ, Liu B, Rong LM, Li MM. Dose optimization of intrathecal administration of human umbilical cord mesenchymal stem cells for the treatment of subacute incomplete spinal cord injury. Neural Regen Res 2022; 17:1785-1794. [PMID: 35017439 PMCID: PMC8820722 DOI: 10.4103/1673-5374.332151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) are a promising candidate for spinal cord injury (SCI) repair owing to their advantages of low immunogenicity and easy accessibility over other MSC sources. However, modest clinical efficacy hampered the progression of these cells to clinical translation. This discrepancy may be due to many variables, such as cell source, timing of implantation, route of administration, and relevant efficacious cell dose, which are critical factors that affect the efficacy of treatment of patients with SCI. Previously, we have evaluated the safety and efficacy of 4 × 106 hUC-MSCs/kg in the treatment of subacute SCI by intrathecal implantation in rat models. To search for a more accurate dose range for clinical translation, we compared the effects of three different doses of hUC-MSCs – low (0.25 × 106 cells/kg), medium (1 × 106 cells/kg) and high (4 × 106 cells/kg) – on subacute SCI repair through an elaborate combination of behavioral analyses, anatomical analyses, magnetic resonance imaging-diffusion tensor imaging (MRI-DTI), biotinylated dextran amine (BDA) tracing, electrophysiology, and quantification of mRNA levels of ion channels and neurotransmitter receptors. Our study demonstrated that the medium dose, but not the low dose, is as efficient as the high dose in producing the desired therapeutic outcomes. Furthermore, partial restoration of the γ-aminobutyric acid type A (GABAA) receptor expression by the effective doses indicates that GABAA receptors are possible candidates for therapeutic targeting of dormant relay pathways in injured spinal cord. Overall, this study revealed that intrathecal implantation of 1 × 106 hUC-MSCs/kg is an alternative approach for treating subacute SCI.
Collapse
Affiliation(s)
- Ting-Ting Cao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Huan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| | - Si-Si Xu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hui-Quan Wen
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| | - Li-Min Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| | - Mang-Mang Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
23
|
Chevreau R, Ghazale H, Ripoll C, Chalfouh C, Delarue Q, Hemonnot-Girard AL, Mamaeva D, Hirbec H, Rothhut B, Wahane S, Perrin FE, Noristani HN, Guerout N, Hugnot JP. RNA Profiling of Mouse Ependymal Cells after Spinal Cord Injury Identifies the Oncostatin Pathway as a Potential Key Regulator of Spinal Cord Stem Cell Fate. Cells 2021; 10:cells10123332. [PMID: 34943841 PMCID: PMC8699053 DOI: 10.3390/cells10123332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 01/31/2023] Open
Abstract
Ependymal cells reside in the adult spinal cord and display stem cell properties in vitro. They proliferate after spinal cord injury and produce neurons in lower vertebrates but predominantly astrocytes in mammals. The mechanisms underlying this glial-biased differentiation remain ill-defined. We addressed this issue by generating a molecular resource through RNA profiling of ependymal cells before and after injury. We found that these cells activate STAT3 and ERK/MAPK signaling post injury and downregulate cilia-associated genes and FOXJ1, a central transcription factor in ciliogenesis. Conversely, they upregulate 510 genes, seven of them more than 20-fold, namely Crym, Ecm1, Ifi202b, Nupr1, Rbp1, Thbs2 and Osmr—the receptor for oncostatin, a microglia-specific cytokine which too is strongly upregulated after injury. We studied the regulation and role of Osmr using neurospheres derived from the adult spinal cord. We found that oncostatin induced strong Osmr and p-STAT3 expression in these cells which is associated with reduction of proliferation and promotion of astrocytic versus oligodendrocytic differentiation. Microglial cells are apposed to ependymal cells in vivo and co-culture experiments showed that these cells upregulate Osmr in neurosphere cultures. Collectively, these results support the notion that microglial cells and Osmr/Oncostatin pathway may regulate the astrocytic fate of ependymal cells in spinal cord injury.
Collapse
Affiliation(s)
- Robert Chevreau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Hussein Ghazale
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Chantal Ripoll
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Chaima Chalfouh
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Quentin Delarue
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Anne Laure Hemonnot-Girard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Daria Mamaeva
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, 34295 Montpellier, France;
| | - Helene Hirbec
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Bernard Rothhut
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Shalaka Wahane
- Departments of Neurobiology and Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Florence Evelyne Perrin
- Department of Biology, University of Montpellier, INSERM MMDN, EPHE, 34295 Montpellier, France;
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Harun Najib Noristani
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Nicolas Guerout
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Jean Philippe Hugnot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
- Correspondence:
| |
Collapse
|
24
|
Liu W, Yu J, Wang YF, Shan QQ, Wang YX. Selection of suitable internal controls for gene expression normalization in rats with spinal cord injury. Neural Regen Res 2021; 17:1387-1392. [PMID: 34782586 PMCID: PMC8643046 DOI: 10.4103/1673-5374.327350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
There is a lack of systematic research on the expression of internal control genes used for gene expression normalization in real-time reverse transcription polymerase chain reaction in spinal cord injury research. In this study, we used rat models of spinal cord hemisection to analyze the expression stability of 13 commonly applied reference genes: Actb, Ankrd27, CypA, Gapdh, Hprt1, Mrpl10, Pgk1, Rictor, Rn18s, Tbp, Ubc, Ubxn11, and Ywhaz. Our results show that the expression of Ankrd27, Ubc, and Tbp were stable after spinal cord injury, while Actb was the most unstable internal control gene. Ankrd27, Ubc, Tbp, and Actb were consequently used to investigate the effects of internal control genes with differing stabilities on the normalization of target gene expression. Target gene expression levels and changes over time were similar when Ankrd27, Ubc, and Tbp were used as internal controls but different when Actb was used as an internal control. We recommend that Ankrd27, Ubc, and Tbp are used as internal control genes for real-time reverse transcription polymerase chain reaction in spinal cord injury research. This study was approved by the Administration Committee of Experimental Animals, Jiangsu Province, China (approval No. 20180304-008) on March 4, 2018.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Jie Yu
- Department of Nursing, The Affiliated Hospital of Nantong University; Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Yi-Fan Wang
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Qian-Qian Shan
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ya-Xian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
25
|
Milich LM, Choi JS, Ryan C, Cerqueira SR, Benavides S, Yahn SL, Tsoulfas P, Lee JK. Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord. J Exp Med 2021; 218:e20210040. [PMID: 34132743 PMCID: PMC8212781 DOI: 10.1084/jem.20210040] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
The wound healing process that occurs after spinal cord injury is critical for maintaining tissue homeostasis and limiting tissue damage, but eventually results in a scar-like environment that is not conducive to regeneration and repair. A better understanding of this dichotomy is critical to developing effective therapeutics that target the appropriate pathobiology, but a major challenge has been the large cellular heterogeneity that results in immensely complex cellular interactions. In this study, we used single-cell RNA sequencing to assess virtually all cell types that comprise the mouse spinal cord injury site. In addition to discovering novel subpopulations, we used expression values of receptor-ligand pairs to identify signaling pathways that are predicted to regulate specific cellular interactions during angiogenesis, gliosis, and fibrosis. Our dataset is a valuable resource that provides novel mechanistic insight into the pathobiology of not only spinal cord injury but also other traumatic disorders of the CNS.
Collapse
Affiliation(s)
- Lindsay M. Milich
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
- University of Miami Neuroscience Graduate Program, Miami, FL
| | - James S. Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| | - Christine Ryan
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
- University of Miami Neuroscience Graduate Program, Miami, FL
| | - Susana R. Cerqueira
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| | - Sofia Benavides
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| | - Stephanie L. Yahn
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
- University of Miami Neuroscience Graduate Program, Miami, FL
| | - Pantelis Tsoulfas
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| | - Jae K. Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| |
Collapse
|
26
|
Tran AP, Warren PM, Silver J. New insights into glial scar formation after spinal cord injury. Cell Tissue Res 2021; 387:319-336. [PMID: 34076775 PMCID: PMC8975767 DOI: 10.1007/s00441-021-03477-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Severe spinal cord injury causes permanent loss of function and sensation throughout the body. The trauma causes a multifaceted torrent of pathophysiological processes which ultimately act to form a complex structure, permanently remodeling the cellular architecture and extracellular matrix. This structure is traditionally termed the glial/fibrotic scar. Similar cellular formations occur following stroke, infection, and neurodegenerative diseases of the central nervous system (CNS) signifying their fundamental importance to preservation of function. It is increasingly recognized that the scar performs multiple roles affecting recovery following traumatic injury. Innovative research into the properties of this structure is imperative to the development of treatment strategies to recover motor function and sensation following CNS trauma. In this review, we summarize how the regeneration potential of the CNS alters across phyla and age through formation of scar-like structures. We describe how new insights from next-generation sequencing technologies have yielded a more complex portrait of the molecular mechanisms governing the astrocyte, microglial, and neuronal responses to injury and development, especially of the glial component of the scar. Finally, we discuss possible combinatorial therapeutic approaches centering on scar modulation to restore function after severe CNS injury.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Philippa Mary Warren
- Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London Bridge, London, UK
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
27
|
Patel M, Li Y, Anderson J, Castro-Pedrido S, Skinner R, Lei S, Finkel Z, Rodriguez B, Esteban F, Lee KB, Lyu YL, Cai L. Gsx1 promotes locomotor functional recovery after spinal cord injury. Mol Ther 2021; 29:2469-2482. [PMID: 33895323 PMCID: PMC8353206 DOI: 10.1016/j.ymthe.2021.04.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/01/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Promoting residential cells, particularly endogenous neural stem and progenitor cells (NSPCs), for tissue regeneration represents a potential strategy for the treatment of spinal cord injury (SCI). However, adult NSPCs differentiate mainly into glial cells and contribute to glial scar formation at the site of injury. Gsx1 is known to regulate the generation of excitatory and inhibitory interneurons during embryonic development of the spinal cord. In this study, we show that lentivirus-mediated expression of Gsx1 increases the number of NSPCs in a mouse model of lateral hemisection SCI during the acute stage. Subsequently, Gsx1 expression increases the generation of glutamatergic and cholinergic interneurons and decreases the generation of GABAergic interneurons in the chronic stage of SCI. Importantly, Gsx1 reduces reactive astrogliosis and glial scar formation, promotes serotonin (5-HT) neuronal activity, and improves the locomotor function of the injured mice. Moreover, RNA sequencing (RNA-seq) analysis reveals that Gsx1-induced transcriptome regulation correlates with NSPC signaling, NSPC activation, neuronal differentiation, and inhibition of astrogliosis and scar formation. Collectively, our study provides molecular insights for Gsx1-mediated functional recovery and identifies the potential of Gsx1 gene therapy for injuries in the spinal cord and possibly other parts of the central nervous system.
Collapse
Affiliation(s)
- Misaal Patel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Ying Li
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Jeremy Anderson
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Sofia Castro-Pedrido
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Ryan Skinner
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Shunyao Lei
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Zachary Finkel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Brianna Rodriguez
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Fatima Esteban
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Yi Lisa Lyu
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
28
|
Wheaton BJ, Sena J, Sundararajan A, Umale P, Schilkey F, Miller RD. Identification of regenerative processes in neonatal spinal cord injury in the opossum (Monodelphis domestica): A transcriptomic study. J Comp Neurol 2021; 529:969-986. [PMID: 32710567 PMCID: PMC7855507 DOI: 10.1002/cne.24994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
This study investigates the response to spinal cord injury in the gray short‐tailed opossum (Monodelphis domestica). In opossums spinal injury early in development results in spontaneous axon growth through the injury, but this regenerative potential diminishes with maturity until it is lost entirely. The mechanisms underlying this regeneration remain unknown. RNA sequencing was used to identify differential gene expression in regenerating (SCI at postnatal Day 7, P7SCI) and nonregenerating (SCI at Day 28, P28SCI) cords +1d, +3d, and +7d after complete spinal transection, compared to age‐matched controls. Genes showing significant differential expression (log2FC ≥ 1, Padj ≤ 0.05) were used for downstream analysis. Across all time‐points 233 genes altered expression after P7SCI, and 472 genes altered expression after P28SCI. One hundred and forty‐seven genes altered expression in both injury ages (63% of P7SCI data set). The majority of changes were gene upregulations. Gene ontology overrepresentation analysis in P7SCI gene‐sets showed significant overrepresentations only in immune‐associated categories, while P28SCI gene‐sets showed overrepresentations in these same immune categories, along with other categories such as “cell proliferation,” “cell adhesion,” and “apoptosis.” Cell‐type–association analysis suggested that, regardless of injury age, injury‐associated gene transcripts were most strongly associated with microglia and endothelial cells, with strikingly fewer astrocyte, oligodendrocyte and neuron‐related genes, the notable exception being a cluster of mostly downregulated oligodendrocyte‐associated genes in the P7SCI + 7d gene‐set. Our findings demonstrate a more complex transcriptomic response in nonregenerating cords, suggesting a strong influence of non‐neuronal cells in the outcome after injury and providing the largest survey yet of the transcriptomic changes occurring after SCI in this model.
Collapse
Affiliation(s)
- Benjamin J Wheaton
- Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden.,Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Johnny Sena
- National Center for Genome Resources, Santa Fe, New Mexico, USA
| | | | - Pooja Umale
- National Center for Genome Resources, Santa Fe, New Mexico, USA
| | - Faye Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, USA
| | - Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
29
|
Wei H, Wu X, You Y, Duran RCD, Zheng Y, Narayanan KL, Hai B, Li X, Tallapragada N, Prajapati TJ, Kim DH, Deneen B, Cao QL, Wu JQ. Systematic analysis of purified astrocytes after SCI unveils Zeb2os function during astrogliosis. Cell Rep 2021; 34:108721. [PMID: 33535036 PMCID: PMC7920574 DOI: 10.1016/j.celrep.2021.108721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 10/27/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most devastating neural injuries without effective therapeutic solutions. Astrocytes are the predominant component of the scar. Understanding the complex contributions of reactive astrocytes to SCI pathophysiologies is fundamentally important for developing therapeutic strategies. We have studied the molecular changes in the injury environment and the astrocyte-specific responses by astrocyte purification from injured spinal cords from acute to chronic stages. In addition to protein-coding genes, we have systematically analyzed the expression profiles of long non-coding RNAs (lncRNAs) (>200 bp), which are regulatory RNAs that play important roles in the CNS. We have identified a highly conserved lncRNA, Zeb2os, and demonstrated using functional assays that it plays an important role in reactive astrogliosis through the Zeb2os/Zeb2/Stat3 axis. These studies provide valuable insights into the molecular basis of reactive astrogliosis and fill the knowledge gap regarding the function(s) of lncRNAs in astrogliosis and SCI.
Collapse
Affiliation(s)
- Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Xizi Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Yanan You
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Raquel Cuevas-Diaz Duran
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L. 64710, Mexico
| | - Yiyan Zheng
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - K Lakshmi Narayanan
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Bo Hai
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Xu Li
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | | | | | - Dong H Kim
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qi-Lin Cao
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Niu SP, Zhang YJ, Han N, Yin XF, Zhang DY, Kou YH. Identification of four differentially expressed genes associated with acute and chronic spinal cord injury based on bioinformatics data. Neural Regen Res 2021; 16:865-870. [PMID: 33229721 PMCID: PMC8178775 DOI: 10.4103/1673-5374.297087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Complex pathological changes occur during the development of spinal cord injury (SCI), and determining the underlying molecular events that occur during SCI is necessary for the development of promising molecular targets and therapeutic strategies. This study was designed to explore differentially expressed genes (DEGs) associated with the acute and chronic stages of SCI using bioinformatics analysis. Gene expression profiles (GSE45006, GSE93249, and GSE45550) were downloaded from the Gene Expression Omnibus database. SCI-associated DEGs from rat samples were identified, and Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. In addition, a protein-protein interaction network was constructed. Approximately 66 DEGs were identified in GSE45550 between 3–14 days after SCI, whereas 2418 DEGs were identified in GSE45006 1–56 days after SCI. Moreover, 1263, 195, and 75 overlapping DEGs were identified between these two expression profiles, 3, 7/8, and 14 days after SCI, respectively. Additionally, 16 overlapping DEGs were obtained in GSE45006 1–14 days after SCI, including Pank1, Hn1, Tmem150c, Rgd1309676, Lpl, Mdh1, Nnt, Loc100912219, Large1, Baiap2, Slc24a2, Fundc2, Mrps14, Slc16a7, Obfc1, and Alpk3. Importantly, 3882 overlapping DEGs were identified in GSE93249 1–6 months after SCI, including 3316 protein-coding genes and 567 long non-coding RNA genes. A comparative analysis between GSE93249 and GSE45006 resulted in the enrichment of 1135 overlapping DEGs. The significant functions of these 1135 genes were correlated with the response to the immune effector process, the innate immune response, and cytokine production. Moreover, the biological processes and KEGG pathways of the overlapping DEGs were significantly enriched in immune system-related pathways, osteoclast differentiation, the nuclear factor-κB signaling pathway, and the chemokine signaling pathway. Finally, an analysis of the overlapping DEGs associated with both acute and chronic SCI, assessed using the expression profiles GSE93249 and GSE45006, identified four overlapping DEGs: Slc16a7, Alpk3, Lpl and Nnt. These findings may be useful for revealing the biological processes associated with SCI and the development of targeted intervention strategies.
Collapse
Affiliation(s)
- Su-Ping Niu
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Office of Academic Research, Peking University People's Hospital, Beijing, China
| | - Ya-Jun Zhang
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Trauma Medicine Center, Peking University People's Hospital, Beijing, China
| | - Na Han
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Office of Academic Research, Peking University People's Hospital, Beijing, China
| | - Xiao-Feng Yin
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Dian-Ying Zhang
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Yu-Hui Kou
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
31
|
Pathophysiology, Biomarkers, and Therapeutic Modalities Associated with Skeletal Muscle Loss Following Spinal Cord Injury. Brain Sci 2020; 10:brainsci10120933. [PMID: 33276534 PMCID: PMC7761577 DOI: 10.3390/brainsci10120933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022] Open
Abstract
A spinal cord injury (SCI) may lead to loss of strength, sensation, locomotion and other body functions distal to the lesion site. Individuals with SCI also develop secondary conditions due to the lack of skeletal muscle activity. As SCI case numbers increase, recent studies have attempted to determine the best options to salvage affected musculature before it is lost. These approaches include pharmacotherapeutic options, immunosuppressants, physical activity or a combination thereof. Associated biomarkers are increasingly used to determine if these treatments aid in the protection and reconstruction of affected musculature.
Collapse
|
32
|
Gong L, Lv Y, Li S, Feng T, Zhou Y, Sun Y, Mi D. Changes in transcriptome profiling during the acute/subacute phases of contusional spinal cord injury in rats. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1682. [PMID: 33490194 PMCID: PMC7812200 DOI: 10.21037/atm-20-6519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Spinal cord injuries (SCIs), along with subsequent secondary injuries, often result in irreversible damage to both sensory and motor functions. However, a thorough view of the underlying pathological mechanisms of SCIs, especially in a temporal-spatial manner, is still lacking. Methods To obtain a comprehensive, real-time view of multiple subsets of the cellular mechanisms involved in SCIs, we applied RNA-sequencing technology to characterize the temporal changes in gene expression around the lesion site of contusion SCI in rats. First, we identified the differentially expressed genes (DEGs) in contrast to sham controls at 1, 4, and 7 days post SCI. Through bioinformatics analysis, including Pathway analysis, Gene-act-net, and Pathway-act-net, we screened and verified potential key pathways and genes associated with either the acute or subacute stages of SCI pathology. Results The top three overrepresented pathways were associated with cytokine-cytokine receptor interaction, TNF signaling pathway, and cell cycle at day 1; lysosome, cytokine-cytokine receptor interaction, phagosome at day 4; and phagosome, lysosome, cytokine-cytokine receptor interaction at day 7 post injury. Further, we identified uniquely enriched genes at each time point, such as Ccr1 and Nos2 at day 1; as well as Mgst2, and Pla2g3 at 4 and 7 days post-injury. Conclusions Our pathway analysis suggested a transition from inflammatory responses to multiple forms of cell death processes from the acute to subacute stages of SCI. Further, our results revealed a continuous transformation from a more inflammatory to an apoptotic/self-repairing transcriptome following the time-course of SCIs. Our research provides novel insights into the molecular mechanisms of SCI pathophysiology and identifies potential targets for therapeutic intervention after SCI.
Collapse
Affiliation(s)
- Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yehua Lv
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| | - Shenglong Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tao Feng
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| | - Yi Zhou
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| | - Yuyu Sun
- Department of Orthopedic, Nantong Third People's Hospital, Nantong University, Nantong, China
| | - Daguo Mi
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| |
Collapse
|
33
|
Chen J, Chen YQ, Wang SN, Duan FX, Shi YJ, Ding SQ, Hu JG, Lü HZ. Effect of VX‑765 on the transcriptome profile of mice spinal cords with acute injury. Mol Med Rep 2020; 22:33-42. [PMID: 32377730 PMCID: PMC7248530 DOI: 10.3892/mmr.2020.11129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Previous studies have shown that caspase-1 plays an important role in the acute inflammatory response of spinal cord injury (SCI). VX‑765, a novel and irreversible caspase‑1 inhibitor, has been reported to effectively intervene in inflammation. However, the effect of VX‑765 on genome‑wide transcription in acutely injured spinal cords remains unknown. Therefore, in the present study, RNA‑sequencing (RNA‑Seq) was used to analyze the effect of VX‑765 on the local expression of gene transcription 8 h following injury. The differentially expressed genes (DEGs) underwent enrichment analysis of functions and pathways by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, respectively. Parallel analysis of western blot confirmed that VX‑765 can effectively inhibit the expression and activation of caspase‑1. RNA‑Seq showed that VX‑765 treatment resulted in 1,137 upregulated and 1,762 downregulated DEGs. These downregulated DEGs and their associated signaling pathways, such as focal adhesion, cytokine‑cytokine receptor interaction, leukocyte transendothelial migration, extracellular matrix‑receptor interaction, phosphatidylinositol 3‑kinase‑protein kinase B, Rap1 and hypoxia inducible factor‑1 signaling pathway, are mainly associated with inflammatory response, local hypoxia, macrophage differentiation, adhesion migration and apoptosis of local cells. This suggests that the application of VX‑765 in the acute phase can improve the local microenvironment of SCI by inhibiting caspase‑1. However, whether VX‑765 can be used as a therapeutic drug for SCI requires further exploration. The sequence data have been deposited into the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/PRJNA548970).
Collapse
Affiliation(s)
- Jing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yu-Qing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Sai-Nan Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Fei-Xiang Duan
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yu-Jiao Shi
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
34
|
Huang R, Meng T, Zhu R, Zhao L, Song D, Yin H, Huang Z, Cheng L, Zhang J. The Integrated Transcriptome Bioinformatics Analysis Identifies Key Genes and Cellular Components for Spinal Cord Injury-Related Neuropathic Pain. Front Bioeng Biotechnol 2020; 8:101. [PMID: 32140464 PMCID: PMC7042182 DOI: 10.3389/fbioe.2020.00101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/03/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is one of the most devastating diseases with a high incidence rate around the world. SCI-related neuropathic pain (NeP) is a common complication, whereas its pathomechanism is still unclear. The purpose of this study is to identify key genes and cellular components for SCI-related NeP by an integrated transcriptome bioinformatics analysis. METHODS The gene expression profile of 25 peripheral blood samples from chronic phase SCI patients (E-GEOD-69901) and 337 normal peripheral blood samples were downloaded from ArrayExpress and Genotype-Tissue Expression Portal (GTEx), respectively. A total of 3,368 normal peripheral blood mononuclear cells (PBMC) were download from Sequence Read Archive (SRA713577). Non-parametric tests were used to evaluate the association between all of differential expression genes (DEGs) and SCI-related NeP. CellPhoneDB algorithm was performed to identify the ligand-receptor interactions and their cellular localization among single PBMCs. Transcription factor (TF) enrichment analysis and Gene Set Variation Analysis (GSVA) were used to identify the potential upstream regulatory TFs and downstream signaling pathways, respectively. Co-expression analysis among significantly enriched TFs, key cellular communication genes and differentially expressed signaling pathways were performed to identify key genes and cellular components for SCI-related NeP. RESULTS A total of 2,314 genes were identified as DEGs between the experimental and the control group. Five proteins (ADRB2, LGALS9, PECAM1, HAVCR2, LRP1) were identified in the overlap of proteins in the significant ligand-receptor interactions of PBMCs and protein-protein interaction (PPI) network based on the DEGs. Only HAVCR2 was significantly associated with NeP (P = 0.005). Besides, the co-expression analysis revealed that TF YY1 had significantly co-expression pattern with cellular communication receptor HAVCR2 (R = -0.54, P < 0.001) in NK cells while HAVCR2 was also co-expressed with mTOR signaling pathway (R = 0.57, P < 0.001). The results of RT-qPCR and external dataset validation supported the signaling axis with the most significant co-expression patterns. CONCLUSION In peripheral blood of chronic SCI, HAVCR2 might act as a key receptor on the surface of NK cells and interact with ligand LGALS9 secreted by CD14+ monocytes, inhibiting NK cells through mTOR signaling pathway and ultimately predicting the occurrence of SCI-related NeP. This hypothetical signaling axis may provide prognostic biomarkers and therapeutic targets for SCI-related NeP.
Collapse
Affiliation(s)
- Runzhi Huang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lijuan Zhao
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Zhang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Prevention, Tongji University School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
35
|
Zhang YX, Wang SN, Chen J, Hu JG, Lü HZ. A transcriptomic study of probenecid on injured spinal cords in mice. PeerJ 2020; 8:e8367. [PMID: 31921518 PMCID: PMC6944129 DOI: 10.7717/peerj.8367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/06/2019] [Indexed: 11/20/2022] Open
Abstract
Background Recent studies have found that probenecid has neuroprotective and reparative effects on central nervous system injuries. However, its effect on genome-wide transcription in acute spinal cord injury (SCI) remains unknown. In the present study, RNA sequencing (RNA-Seq) is used to analyze the effect of probenecid on the local expression of gene transcription 8 h after spinal injury. Methods An Infinite Horizon impactor was used to perform contusive SCI in mice. The SCI model was made by using a rod (1.3 mm diameter) with a force of 50 Kdynes. Sham-operated mice only received a laminectomy without contusive injury. The injured mice were randomly assigned into either the control (SCI_C) or probenecid injection (SCI_P) group. In the latter group, the probenecid drug was intraperitoneally injected (0.5 mg/kg) immediately following injury. Eight hours after the injury or laminectomy, the spinal cords were removed from the mice in both groups. The total RNAs were extracted and purified for library preparation and transcriptome sequencing. Differential gene expressions (DEGs) of the three groups-sham, SCI_C and SCI_P-were analyzed using a DESeq software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs were performed using a GOseq R package and KOBAS software. Real-time quantitative reverse-transcriptase polymerase chain reaction was used to validate RNA-Seq results. Results RNA-Seq showed that, compared to the SCI_C group, the number of DEGs was 641 in the SCI_P group (286 upregulated and 355 downregulated). According to GO analysis, DEGs were most enriched in extracellular matrix (ECM), collagen trimer, protein bounding and sequence specific DNA binding. KEGG analysis showed that the most enriched pathways included: cell adhesion molecules, Leukocyte transendothelial migration, ECM-receptor interactions, PI3K-Akt signaling pathways, hematopoietic cell lineages, focal adhesions, the Rap1 signaling pathway, etc. The sequence data have been deposited into the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/PRJNA554464).
Collapse
Affiliation(s)
- Yu-Xin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, China
| | - Sai-Nan Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
36
|
Koehn LM. ABC efflux transporters at blood-central nervous system barriers and their implications for treating spinal cord disorders. Neural Regen Res 2020; 15:1235-1242. [PMID: 31960802 PMCID: PMC7047801 DOI: 10.4103/1673-5374.272568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The barriers present in the interfaces between the blood and the central nervous system form a major hurdle for the pharmacological treatment of central nervous system injuries and diseases. The family of ATP-binding cassette (ABC) transporters has been widely studied regarding efflux of medications at blood-central nervous system barriers. These efflux transporters include P-glycoprotein (abcb1), 'breast cancer resistance protein' (abcg2) and the various 'multidrug resistance-associated proteins' (abccs). Understanding which efflux transporters are present at the blood-spinal cord, blood-cerebrospinal fluid and cerebrospinal fluid-spinal cord barriers is necessary to determine their involvement in limiting drug transfer from blood to the spinal cord tissue. Recent developments in the blood-brain barrier field have shown that barrier systems are dynamic and the profile of barrier defenses can alter due to conditions such as age, disease and environmental challenge. This means that a true understanding of ABC efflux transporter expression and localization should not be one static value but instead a range that represents the complex patient subpopulations that exist. In the present review, the blood-central nervous system barrier literature is discussed with a focus on the impact of ABC efflux transporters on: (i) protecting the spinal cord from adverse effects of systemically directed drugs, and (ii) limiting centrally directed drugs from accessing their active sites within the spinal cord.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, the University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
37
|
Yu B, Yao C, Wang Y, Mao S, Wang Y, Wu R, Feng W, Chen Y, Yang J, Xue C, Liu D, Ding F, Gu X. The Landscape of Gene Expression and Molecular Regulation Following Spinal Cord Hemisection in Rats. Front Mol Neurosci 2019; 12:287. [PMID: 31824262 PMCID: PMC6883948 DOI: 10.3389/fnmol.2019.00287] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/12/2019] [Indexed: 01/25/2023] Open
Abstract
Spinal cord injury (SCI) is a challenging clinical problem worldwide. The cellular state and molecular expression in spinal cord tissue after injury are extremely complex and closely related to functional recovery. However, the spatial and temporal changes of gene expression and regulation in various cell types after SCI are still unclear. Here, we collected the rostral and caudal regions to the lesion at 11 time points over a period of 28 days after rat hemisection SCI. Combining whole-transcriptome sequencing and bioinformatic analysis, we identified differentially expressed genes (DEGs) between spinal cord tissue from injured and sham-operated animals. Significantly altered biological processes were enriched from DEGs in astrocytes, microglia, oligodendrocytes, immune cells, and vascular systems after SCI. We then identified dynamic trends in these processes using the average expression profiles of DEGs. Gene expression and regulatory networks for selected biological processes were also constructed to illustrate the complicate difference between rostral and caudal tissues. Finally, we validated the expressions of some key genes from these networks, including α-synuclein, heme oxygenase 1, bone morphogenetic protein 2, activating transcription factor 3, and leukemia inhibitory factor. Collectively, we provided a comprehensive network of gene expression and regulation to shed light on the molecular characteristics of critical biological processes that occur after SCI, which will broaden the understanding of SCI and facilitate clinical therapeutics for SCI.
Collapse
Affiliation(s)
- Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yanping Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chengbin Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dong Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
38
|
Duran RCD, Wei H, Kim DH, Wu JQ. Invited Review: Long non-coding RNAs: important regulators in the development, function and disorders of the central nervous system. Neuropathol Appl Neurobiol 2019; 45:538-556. [PMID: 30636336 PMCID: PMC6626588 DOI: 10.1111/nan.12541] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023]
Abstract
Genome-wide transcriptional studies have demonstrated that tens of thousands of long non-coding RNAs (lncRNA) genes are expressed in the central nervous system (CNS) and that they exhibit tissue- and cell-type specificity. Their regulated and dynamic expression and their co-expression with protein-coding gene neighbours have led to the study of the functions of lncRNAs in CNS development and disorders. In this review, we describe the general characteristics, localization and classification of lncRNAs. We also elucidate the examples of the molecular mechanisms of nuclear and cytoplasmic lncRNA actions in the CNS and discuss common experimental approaches used to identify and unveil the functions of lncRNAs. Additionally, we provide examples of lncRNA studies of cell differentiation and CNS disorders including CNS injuries and neurodegenerative diseases. Finally, we review novel lncRNA-based therapies. Overall, this review highlights the important biological roles of lncRNAs in CNS functions and disorders.
Collapse
Affiliation(s)
- Raquel Cuevas-Diaz Duran
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., 64710, Mexico
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Dong H. Kim
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| |
Collapse
|
39
|
Lewis ER, Geisbüsch S, Chang YJ, Costa V, Husain S, Soteropoulos P, Griepp RB, Di Luozzo G. Paraspinous muscle gene expression profiling following simulated staged endovascular repair of thoracoabdominal aortic aneurysm: exploring potential therapeutic pathways. Eur J Cardiothorac Surg 2019; 57:30-38. [DOI: 10.1093/ejcts/ezz113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 02/01/2023] Open
Abstract
Abstract
OBJECTIVES
Thoracic endovascular techniques for aneurysm repair offer less invasive alternatives to open strategies. Both approaches, however, are associated with the risk for neurological complications. Despite adjuncts to maintain spinal cord perfusion, ischaemia and paraplegia continue to occur during thoracoabdominal aortic aneurysm (TAAA) repair. Staging of such extensive procedures has been proven to decrease the risk for spinal cord injury. Archived biopsy specimens may offer insight into the molecular signature of the reorganization and expansion of the spinal collateral network during staged endovascular interventions in the setting of TAAA.
METHODS
Biological replicates of total RNA were isolated from existing paraspinous muscle samples from 22 Yorkshire pigs randomized to 1 of 3 simulated TAAA repair strategies as part of a previous study employing coil embolization of spinal segmental arteries within the thoracic and lumbar spine. Gene expression profiling was performed using the Affymetrix GeneChip Porcine array.
RESULTS
Microarray analysis identified 649 differentially expressed porcine genes (≥1.3-fold change, P ≤ 0.05) when comparing paralysed and non-paralysed subjects. Of these, 355 were available for further analysis. When mapped to the human genome, 169 Homo sapiens orthologues were identified. Integrated interpretation of gene expression profiles indicated the significant regulation of transcriptional regulators (such as nuclear factor кB), cytokine (including CXCL12) elements contributing to hypoxia signalling in the cardiovascular system (vascular endothelial growth factor and UBE2) and cytoskeletal elements (like dystrophin (DMD) and matrix metallopeptidase (MMP)).
CONCLUSIONS
This study demonstrates the ability of microarray-based platforms to detect the differential expression of genes in paraspinous muscle during staged TAAA repair. Pathway enrichment analysis detected subcellular actors accompanying the neuroprotective effects of staged endovascular coiling. These observations provide new insight into the potential prognostic and therapeutic value of gene expression profiling in monitoring and modulating the arteriolar remodelling in the collateral network.
Collapse
Affiliation(s)
- Erin R Lewis
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Sarah Geisbüsch
- Department of Cardiovascular Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yun-Juan Chang
- Office of Advanced Research Computing, Rutgers University, Newark, NJ, USA
| | - Victor Costa
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Seema Husain
- Genomics Center, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | | | - Randall B Griepp
- Department of Cardiovascular Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriele Di Luozzo
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, USA
- Department of Cardiovascular Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
40
|
Zhu W, Chen X, Ning L, Jin K. Network Analysis Reveals TNF as a Major Hub of Reactive Inflammation Following Spinal Cord Injury. Sci Rep 2019; 9:928. [PMID: 30700814 PMCID: PMC6354014 DOI: 10.1038/s41598-018-37357-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) leads to reactive inflammation and other harmful events that limit spinal cord regeneration. We propose an approach for studying the mechanisms at the levels of network topology, gene ontology, signaling pathways, and disease inference. We treated inflammatory mediators as toxic chemicals and retrieved the genes and interacting proteins associated with them via a set of biological medical databases and software. We identified >10,000 genes associated with SCI. Tumor necrosis factor (TNF) had the highest scores, and the top 30 were adopted as core data. In the core interacting protein network, TNF and other top 10 nodes were the major hubs. The core members were involved in cellular responses and metabolic processes, as components of the extracellular space and regions, in protein-binding and receptor-binding functions, as well as in the TNF signaling pathway. In addition, both seizures and SCI were highly associated with TNF levels; therefore, for achieving a better curative effect on SCI, TNF and other major hubs should be targeted together according to the theory of network intervention, rather than a single target such as TNF alone. Furthermore, certain drugs used to treat epilepsy could be used to treat SCI as adjuvants.
Collapse
Affiliation(s)
- Weiping Zhu
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072, P. R. China.
| | - Xuning Chen
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072, P. R. China
| | - Le Ning
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072, P. R. China
| | - Kan Jin
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072, P. R. China
| |
Collapse
|
41
|
Li Y, Chen Y, Li X, Wu J, Pan JY, Cai RX, Yang RY, Wang XD. RNA sequencing screening of differentially expressed genes after spinal cord injury. Neural Regen Res 2019; 14:1583-1593. [PMID: 31089057 PMCID: PMC6557110 DOI: 10.4103/1673-5374.255994] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the search for a therapeutic schedule for spinal cord injury, it is necessary to understand key genes and their corresponding regulatory networks involved in the spinal cord injury process. However, ad hoc selection and analysis of one or two genes cannot fully reveal the complex molecular biological mechanisms of spinal cord injury. The emergence of second-generation sequencing technology (RNA sequencing) has provided a better method. In this study, RNA sequencing technology was used to analyze differentially expressed genes at different time points after spinal cord injury in rat models established by contusion of the eighth thoracic segment. The numbers of genes that changed significantly were 944, 1362 and 1421 at 1, 4 and 7 days after spinal cord injury respectively. After gene ontology analysis and temporal expression analysis of the differentially expressed genes, C5ar1, Socs3 and CCL6 genes were then selected and identified by real-time polymerase chain reaction and western blot assay. The mRNA expression trends of C5ar1, Socs3 and CCL6 genes were consistent with the RNA sequencing results. Further verification and analysis of C5ar1 indicate that the level of protein expression of C5ar1 was consistent with its nucleic acid level after spinal cord injury. C5ar1 was mainly expressed in neurons and astrocytes. Finally, the gene Itgb2, which may be related to C5ar1, was found by Chilibot database and literature search. Immunofluorescence histochemical results showed that the expression of Itgb2 was highly consistent with that of C5ar1. Itgb2 was expressed in astrocytes. RNA sequencing technology can screen differentially expressed genes at different time points after spinal cord injury. Through analysis and verification, genes strongly associated with spinal cord injury can be screened. This can provide experimental data for further determining the molecular mechanism of spinal cord injury, and also provide possible targets for the treatment of spinal cord injury. This study was approved ethically by the Laboratory Animal Ethics Committee of Jiangsu Province, China (approval No. 2018-0306-001) on March 6, 2018.
Collapse
Affiliation(s)
- Yi Li
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou; Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Ying Chen
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Xiang Li
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Wu
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Jing-Ying Pan
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Ri-Xin Cai
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Ri-Yun Yang
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Dong Wang
- Department of Histology and Embryology, Medical College, Nantong University; Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
42
|
Garcia VB, Abbinanti MD, Harris-Warrick RM, Schulz DJ. Effects of Chronic Spinal Cord Injury on Relationships among Ion Channel and Receptor mRNAs in Mouse Lumbar Spinal Cord. Neuroscience 2018; 393:42-60. [PMID: 30282002 DOI: 10.1016/j.neuroscience.2018.09.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 01/08/2023]
Abstract
Spinal cord injury (SCI) causes widespread changes in gene expression of the spinal cord, even in the undamaged spinal cord below the level of the lesion. Less is known about changes in the correlated expression of genes after SCI. We investigated gene co-expression networks among voltage-gated ion channel and neurotransmitter receptor mRNA levels using quantitative RT-PCR in longitudinal slices of the mouse lumbar spinal cord in control and chronic SCI animals. These longitudinal slices were made from the ventral surface of the cord, thus forming slices relatively enriched in motor neurons or interneurons. We performed absolute quantitation of mRNA copy number for 50 ion channel or receptor transcripts from each sample, and used multiple correlation analyses to detect patterns in correlated mRNA levels across all pairs of genes. The majority of channels and receptors changed in expression as a result of chronic SCI, but did so differently across slice levels. Furthermore, motor neuron-enriched slices experienced an overall loss of correlated channel and receptor expression, while interneuron slices showed a dramatic increase in the number of positively correlated transcripts. These correlation profiles suggest that spinal cord injury induces distinct changes across cell types in the organization of gene co-expression networks for ion channels and transmitter receptors.
Collapse
Affiliation(s)
- Virginia B Garcia
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Matthew D Abbinanti
- Department of Neurobiology and Behavior, Cornell University, Ithaca NY 14853, USA
| | | | - David J Schulz
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
43
|
Zhang C, Zhu Y, Wang S, Zachory Wei Z, Jiang MQ, Zhang Y, Pan Y, Tao S, Li J, Wei L. Temporal Gene Expression Profiles after Focal Cerebral Ischemia in Mice. Aging Dis 2018; 9:249-261. [PMID: 29896414 PMCID: PMC5963346 DOI: 10.14336/ad.2017.0424] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/24/2017] [Indexed: 01/27/2023] Open
Abstract
A cascade of pathological processes is triggered in the lesion area after ischemic stroke. Unfortunately, our understanding of these complicated molecular events is incomplete. In this investigation, we sought to better understand the detailed molecular and inflammatory events occurring after ischemic stroke. RNA-seq technology was used to identify whole gene expression profiles at days (D1, D3, D7, D14, D21) after focal cerebral ischemia in mice. Enrichment analyses based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms for the differentially expressed genes (DEGs) were then analyzed. Inflammation-related genes that were significantly expressed after stroke were selected for analysis and the temporal expression patterns of pro-inflammatory and anti-inflammatory genes were reported. These data illustrated that the number of DEGs increased accumulatively after cerebral ischemia. In summary, there were 1967 DEGs at D1, 2280 DEGs at D3, 2631 DEGs at D7, 5516 DEGs at D14 and 7093 DEGs at D21. The significantly enriched GO terms also increased. 58 GO terms and 18 KEGG pathways were significantly enriched at all inspected time points. We identified 87 DEGs which were functionally related to inflammatory responses. The expression levels of pro-inflammation related genes CD16, CD32, CD86, CD11b, Tumour necrosis factor α (TNF-α), Interleukin 1β (IL-1β) increased over time and peaked at D14. Anti-inflammation related genes Arginase 1 (Arg1) and Chitinase-like 3 (Ym1) peaked at D1 while IL-10, Transforming growth factor β (TGF-β) and CD206, which were induced at 1 day after cerebral ischemia, peaked by 7 to 14 days. These gene profile changes were potentially linked to microglia/macrophage phenotype changes and could play a role in astroglial activation. This study supplies new insights and detailed information on the molecular events and pathological mechanisms that occur after experimental ischemic stroke.
Collapse
Affiliation(s)
- Chengjie Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Yanbing Zhu
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Song Wang
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Zheng Zachory Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Yuhualei Pan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Shaoxin Tao
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Jimei Li
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Ling Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
44
|
Gal-Mark N, Shallev L, Sweetat S, Barak M, Billy Li J, Levanon EY, Eisenberg E, Behar O. Abnormalities in A-to-I RNA editing patterns in CNS injuries correlate with dynamic changes in cell type composition. Sci Rep 2017; 7:43421. [PMID: 28266523 PMCID: PMC5339895 DOI: 10.1038/srep43421] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/24/2017] [Indexed: 11/10/2022] Open
Abstract
Adenosine to Inosine (A-to-I) RNA editing is a co- or post-transcriptional mechanism that modifies genomically encoded nucleotides at the RNA level. A-to-I RNA editing is abundant in the brain, and altered editing levels have been reported in various neurological pathologies and following spinal cord injury (SCI). The prevailing concept is that the RNA editing process itself is dysregulated by brain pathologies. Here we analyzed recent RNA-seq data, and found that, except for few mammalian conserved editing sites, editing is significantly higher in neurons than in other cell populations of the brain. We studied A-to-I RNA editing in stab wound injury (SWI) and SCI models and showed that the apparent under-editing observed after injury correlates with an approximately 20% reduction in the relative density of neurons, due to cell death and immune cell infiltration that may account for the observed under-editing. Studies of neuronal and astrocyte cultures and a computational analysis of SCI RNA-seq data further supported the possibility that a reduction in neuronal density is responsible for alterations in the tissue-wide editing patterns upon injury. Thus, our data suggest that the case for a mechanistic linkage between A-to-I RNA editing and brain pathologies should be revisited.
Collapse
Affiliation(s)
- Nurit Gal-Mark
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Lea Shallev
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Sahar Sweetat
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Michal Barak
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oded Behar
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
45
|
Liu Y, Zheng Y, Li S, Xue H, Schmitt K, Hergenroeder GW, Wu J, Zhang Y, Kim DH, Cao Q. Human neural progenitors derived from integration-free iPSCs for SCI therapy. Stem Cell Res 2017; 19:55-64. [PMID: 28073086 PMCID: PMC5629634 DOI: 10.1016/j.scr.2017.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/19/2016] [Accepted: 01/03/2017] [Indexed: 01/16/2023] Open
Abstract
As a potentially unlimited autologous cell source, patient induced pluripotent stem cells (iPSCs) provide great capability for tissue regeneration, particularly in spinal cord injury (SCI). However, despite significant progress made in translation of iPSC-derived neural progenitor cells (NPCs) to clinical settings, a few hurdles remain. Among them, non-invasive approach to obtain source cells in a timely manner, safer integration-free delivery of reprogramming factors, and purification of NPCs before transplantation are top priorities to overcome. In this study, we developed a safe and cost-effective pipeline to generate clinically relevant NPCs. We first isolated cells from patients' urine and reprogrammed them into iPSCs by non-integrating Sendai viral vectors, and carried out experiments on neural differentiation. NPCs were purified by A2B5, an antibody specifically recognizing a glycoganglioside on the cell surface of neural lineage cells, via fluorescence activated cell sorting. Upon further in vitro induction, NPCs were able to give rise to neurons, oligodendrocytes and astrocytes. To test the functionality of the A2B5+ NPCs, we grafted them into the contused mouse thoracic spinal cord. Eight weeks after transplantation, the grafted cells survived, integrated into the injured spinal cord, and differentiated into neurons and glia. Our specific focus on cell source, reprogramming, differentiation and purification method purposely addresses timing and safety issues of transplantation to SCI models. It is our belief that this work takes one step closer on using human iPSC derivatives to SCI clinical settings.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yiyan Zheng
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shenglan Li
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Haipeng Xue
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Karl Schmitt
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Georgene W Hergenroeder
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jiaqian Wu
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest Health Sciences, 391 Technology Way, Winston-Salem, NC 27101, USA
| | - Dong H Kim
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Qilin Cao
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
46
|
Shi LL, Zhang N, Xie XM, Chen YJ, Wang R, Shen L, Zhou JS, Hu JG, Lü HZ. Transcriptome profile of rat genes in injured spinal cord at different stages by RNA-sequencing. BMC Genomics 2017; 18:173. [PMID: 28201982 PMCID: PMC5312572 DOI: 10.1186/s12864-017-3532-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
Background Spinal cord injury (SCI) results in fatal damage and currently has no effective treatment. The pathological mechanisms of SCI remain unclear. In this study, genome-wide transcriptional profiling of spinal cord samples from injured rats at different time points after SCI was performed by RNA-Sequencing (RNA-Seq). The transcriptomes were systematically characterized to identify the critical genes and pathways that are involved in SCI pathology. Results RNA-Seq results were obtained from total RNA harvested from the spinal cords of sham control rats and rats in the acute, subacute, and chronic phases of SCI (1 day, 6 days and 28 days after injury, respectively; n = 3 in every group). Compared with the sham-control group, the number of differentially expressed genes was 1797 in the acute phase (1223 upregulated and 574 downregulated), 6590 in the subacute phase (3460 upregulated and 3130 downregulated), and 3499 in the chronic phase (1866 upregulated and 1633 downregulated), with an adjusted P-value <0.05 by DESeq. Gene ontology (GO) enrichment analysis showed that differentially expressed genes were most enriched in immune response, MHC protein complex, antigen processing and presentation, translation-related genes, structural constituent of ribosome, ion gated channel activity, small GTPase mediated signal transduction and cytokine and/or chemokine activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the most enriched pathways included ribosome, antigen processing and presentation, retrograde endocannabinoid signaling, axon guidance, dopaminergic synapses, glutamatergic synapses, GABAergic synapses, TNF, HIF-1, Toll-like receptor, NF-kappa B, NOD-like receptor, cAMP, calcium, oxytocin, Rap1, B cell receptor and chemokine signaling pathway. Conclusions This study has not only characterized changes in global gene expression through various stages of SCI progression in rats, but has also systematically identified the critical genes and signaling pathways in SCI pathology. These results will expand our understanding of the complex molecular mechanisms involved in SCI and provide a foundation for future studies of spinal cord tissue damage and repair. The sequence data from this study have been deposited into Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra; accession number PRJNA318311). Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3532-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling-Ling Shi
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China.,Department of Immunology, Bengbu Medical College, Anhui, 233030, People's Republic of China
| | - Nan Zhang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Xiu-Mei Xie
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Yue-Juan Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Lin Shen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Jian-Sheng Zhou
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China. .,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China.
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China. .,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China. .,Department of Immunology, Bengbu Medical College, Anhui, 233030, People's Republic of China.
| |
Collapse
|
47
|
Valentin-Kahan A, García-Tejedor GB, Robello C, Trujillo-Cenóz O, Russo RE, Alvarez-Valin F. Gene Expression Profiling in the Injured Spinal Cord of Trachemys scripta elegans: An Amniote with Self-Repair Capabilities. Front Mol Neurosci 2017; 10:17. [PMID: 28223917 PMCID: PMC5293771 DOI: 10.3389/fnmol.2017.00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
Abstract
Slider turtles are the only known amniotes with self-repair mechanisms of the spinal cord that lead to substantial functional recovery. Their strategic phylogenetic position makes them a relevant model to investigate the peculiar genetic programs that allow anatomical reconnection in some vertebrate groups but are absent in others. Here, we analyze the gene expression profile of the response to spinal cord injury (SCI) in the turtle Trachemys scripta elegans. We found that this response comprises more than 1000 genes affecting diverse functions: reaction to ischemic insult, extracellular matrix re-organization, cell proliferation and death, immune response, and inflammation. Genes related to synapses and cholesterol biosynthesis are down-regulated. The analysis of the evolutionary distribution of these genes shows that almost all are present in most vertebrates. Additionally, we failed to find genes that were exclusive of regenerating taxa. The comparison of expression patterns among species shows that the response to SCI in the turtle is more similar to that of mice and non-regenerative Xenopus than to Xenopus during its regenerative stage. This observation, along with the lack of conserved “regeneration genes” and the current accepted phylogenetic placement of turtles (sister group of crocodilians and birds), indicates that the ability of spinal cord self-repair of turtles does not represent the retention of an ancestral vertebrate character. Instead, our results suggest that turtles developed this capability from a non-regenerative ancestor (i.e., a lineage specific innovation) that was achieved by re-organizing gene expression patterns on an essentially non-regenerative genetic background. Among the genes activated by SCI exclusively in turtles, those related to anoxia tolerance, extracellular matrix remodeling, and axonal regrowth are good candidates to underlie functional recovery.
Collapse
Affiliation(s)
- Adrián Valentin-Kahan
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Gabriela B García-Tejedor
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Carlos Robello
- Molecular Biology Unit, Institut Pasteur de MontevideoMontevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la RepublicaMontevideo, Uruguay
| | - Omar Trujillo-Cenóz
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Raúl E Russo
- Department of Cellular and Molecular Neurophysiology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Fernando Alvarez-Valin
- Sección Biomatemática, Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| |
Collapse
|
48
|
Kwan T, Floyd CL, Kim S, King PH. RNA Binding Protein Human Antigen R Is Translocated in Astrocytes following Spinal Cord Injury and Promotes the Inflammatory Response. J Neurotrauma 2017; 34:1249-1259. [PMID: 27852147 DOI: 10.1089/neu.2016.4757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inflammation plays a prominent role in the events following traumatic injury to the central nervous system (CNS). The initial inflammatory response is driven by mediators such as tumor necrosis factor α and interleukin 1β, which are produced by activated astrocytes and microglia at the site of injury. These factors are regulated post-transcriptionally by RNA binding proteins (RBP) that interact with adenylate and uridylate-rich elements (ARE) in the 3'-untranslated region of the messenger RNA (mRNA). Human antigen R (HuR) is one of these RBPs and generally functions as a positive regulator of ARE-containing mRNAs. Here, we hypothesized that HuR plays an important role in the induction of cytokine and chemokines in astrocytes following traumatic injury. Using a mouse model of spinal cord injury, we found HuR to be extensively translocated to the cytoplasm in astrocytes at the level of injury, consistent with its activation. In an in vitro stretch injury model of CNS trauma, we observed a similar cytoplasmic shift of HuR in astrocytes and an attenuation of cytokine induction with HuR knockdown. RNA kinetics and luciferase assays suggested that the effect was more related to transcription than RNA destabilization. A small molecule inhibitor of HuR suppressed cytokine induction of injured astrocytes and reduced chemoattraction for neutrophils and microglia. In summary, HuR is activated in astrocytes in the early stages of CNS trauma and positively regulates the molecular response of key inflammatory mediators in astrocytes. Our findings suggest that HuR may be a therapeutic target in acute CNS trauma for blunting secondary tissue injury triggered by the inflammatory response.
Collapse
Affiliation(s)
- Thaddaeus Kwan
- 1 Department of Neurology, University of Alabama , Birmingham, Alabama
| | - Candace L Floyd
- 2 Department of Physical Medicine and Rehabilitation, University of Alabama , Birmingham, Alabama
| | - Soojin Kim
- 1 Department of Neurology, University of Alabama , Birmingham, Alabama.,4 Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| | - Peter H King
- 1 Department of Neurology, University of Alabama , Birmingham, Alabama.,3 Department of Cell, Developmental and Integrative Biology, University of Alabama , Birmingham, Alabama.,4 Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| |
Collapse
|
49
|
The systematic analysis of coding and long non-coding RNAs in the sub-chronic and chronic stages of spinal cord injury. Sci Rep 2017; 7:41008. [PMID: 28106101 PMCID: PMC5247719 DOI: 10.1038/srep41008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) remains one of the most debilitating neurological disorders and the majority of SCI patients are in the chronic phase. Previous studies of SCI have usually focused on few genes and pathways at a time. In particular, the biological roles of long non-coding RNAs (lncRNAs) have never been characterized in SCI. Our study is the first to comprehensively investigate alterations in the expression of both coding and long non-coding genes in the sub-chronic and chronic stages of SCI using RNA-Sequencing. Through pathway analysis and network construction, the functions of differentially expressed genes were analyzed systematically. Furthermore, we predicted the potential regulatory function of non-coding transcripts, revealed enriched motifs of transcription factors in the upstream regulatory regions of differentially expressed lncRNAs, and identified differentially expressed lncRNAs homologous to human genomic regions which contain single-nucleotide polymorphisms associated with diseases. Overall, these results revealed critical pathways and networks that exhibit sustained alterations at the sub-chronic and chronic stages of SCI, highlighting the temporal regulation of pathological processes including astrogliosis. This study also provided an unprecedented resource and a new catalogue of lncRNAs potentially involved in the regulation and progression of SCI.
Collapse
|
50
|
He D, Wang J, Lu Y, Deng Y, Zhao C, Xu L, Chen Y, Hu YC, Zhou W, Lu QR. lncRNA Functional Networks in Oligodendrocytes Reveal Stage-Specific Myelination Control by an lncOL1/Suz12 Complex in the CNS. Neuron 2016; 93:362-378. [PMID: 28041882 DOI: 10.1016/j.neuron.2016.11.044] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/09/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators of cellular functions, but their roles in oligodendrocyte myelination remain undefined. Through de novo transcriptome reconstruction, we establish dynamic expression profiles of lncRNAs at different stages of oligodendrocyte development and uncover a cohort of stage-specific oligodendrocyte-restricted lncRNAs, including a conserved chromatin-associated lncOL1. Co-expression network analyses further define the association of distinct oligodendrocyte-expressing lncRNA clusters with protein-coding genes and predict lncRNA functions in oligodendrocyte myelination. Overexpression of lncOL1 promotes precocious oligodendrocyte differentiation in the developing brain, whereas genetic inactivation of lncOL1 causes defects in CNS myelination and remyelination following injury. Functional analyses illustrate that lncOL1 interacts with Suz12, a component of polycomb repressive complex 2, to promote oligodendrocyte maturation, in part, through Suz12-mediated repression of a differentiation inhibitory network that maintains the precursor state. Together, our findings reveal a key lncRNA epigenetic circuitry through interaction with chromatin-modifying complexes in control of CNS myelination and myelin repair.
Collapse
Affiliation(s)
- Danyang He
- Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Integrative Biology Graduate Training Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jincheng Wang
- Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Yulan Lu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Yaqi Deng
- Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chuntao Zhao
- Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lingli Xu
- Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Yinhuai Chen
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Q Richard Lu
- Divisions of Experimental Hematology and Cancer Biology & Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Integrative Biology Graduate Training Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, 201102 Shanghai, China.
| |
Collapse
|