1
|
Rana S, Sultana A, Bhatti AA. Effect of interaction between obesity-promoting genetic variants and behavioral factors on the risk of obese phenotypes. Mol Genet Genomics 2021; 296:919-938. [PMID: 33966103 DOI: 10.1007/s00438-021-01793-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/22/2021] [Indexed: 01/28/2023]
Abstract
The studies investigating gene-gene and gene-environment (or gene-behavior) interactions provide valuable insight into the pathomechanisms underlying obese phenotypes. The Pakistani population due to its unique characteristics offers numerous advantages for conducting such studies. In this view, the current study was undertaken to examine the effects of gene-gene and gene-environment/behavior interactions on the risk of obesity in a sample of Pakistani population. A total of 578 adult participants including 290 overweight/obese cases and 288 normal-weight controls were involved. The five key obesity-associated genetic variants namely MC4R rs17782313, BDNF rs6265, FTO rs1421085, TMEM18 rs7561317, and NEGR1 rs2815752 were genotyped using the TaqMan allelic discrimination assays. The data related to behavioral factors, such as eating pattern, diet consciousness, the tendency toward fat-dense food (TFDF), sleep duration, sleep-wake cycle (SWC), shift work (SW), and physical activity levels were collected via a questionnaire. Gene-gene and gene-behavior interactions were analyzed by multifactor dimensionality reduction and linear regression, respectively. In our study, only TMEM18 rs7561317 was found to be significantly associated with anthropometric traits with no significant effect of gene-gene interactions were observed on obesity-related phenotypes. However, the genetic variants were found to interact with the behavioral factors to significantly influence various obesity-related anthropometric traits including BMI, waist circumference, hip circumference, waist-to-hip ratio, waist-to-height ratio, and percentage of body fat. In conclusion, the interaction between genetic architecture and behavior/environment determines the outcome of obesity-related anthropometric phenotypes. Thus, gene-environment/behavior interaction studies should be promoted to explore the risk of complex and multifactorial disorders, such as obesity.
Collapse
Affiliation(s)
- Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - Ayesha Sultana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Adil Anwar Bhatti
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
2
|
Libowitz MR, Nurmi EL. The Burden of Antipsychotic-Induced Weight Gain and Metabolic Syndrome in Children. Front Psychiatry 2021; 12:623681. [PMID: 33776816 PMCID: PMC7994286 DOI: 10.3389/fpsyt.2021.623681] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic medications are critical to child and adolescent psychiatry, from the stabilization of psychotic disorders like schizophrenia, bipolar disorder, and psychotic depression to behavioral treatment of autism spectrum disorder, tic disorders, and pediatric aggression. While effective, these medications carry serious risk of adverse events-most commonly, weight gain and cardiometabolic abnormalities. Negative metabolic consequences affect up to 60% of patients and present a major obstacle to long-term treatment. Since antipsychotics are often chronically prescribed beginning in childhood, cardiometabolic risk accumulates. An increased susceptibility to antipsychotic-induced weight gain (AIWG) has been repeatedly documented in children, particularly rapid weight gain. Associated cardiometabolic abnormalities include central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Lifestyle interventions and medications such as metformin have been proposed to reduce risk but remain limited in efficacy. Furthermore, antipsychotic medications touted to be weight-neutral in adults can cause substantial weight gain in children. A better understanding of the biological underpinnings of AIWG could inform targeted and potentially more fruitful treatments; however, little is known about the underlying mechanism. As yet, modest genetic studies have nominated a few risk genes that explain only a small percentage of the risk. Recent investigations have begun to explore novel potential mechanisms of AIWG, including a role for gut microbiota and microbial metabolites. This article reviews the problem of AIWG and AP metabolic side effects in pediatric populations, proposed mechanisms underlying this serious side effect, and strategies to mitigate adverse impact. We suggest future directions for research efforts that may advance the field and lead to improved clinical interventions.
Collapse
Affiliation(s)
| | - Erika L. Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Sneller MH, de Boer N, Everaars S, Schuurmans M, Guloksuz S, Cahn W, Luykx JJ. Clinical, Biochemical and Genetic Variables Associated With Metabolic Syndrome in Patients With Schizophrenia Spectrum Disorders Using Second-Generation Antipsychotics: A Systematic Review. Front Psychiatry 2021; 12:625935. [PMID: 33868046 PMCID: PMC8044798 DOI: 10.3389/fpsyt.2021.625935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/24/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Individuals with severe mental illness experience increased morbidity and mortality compared to the general population. Adverse effects of antipsychotics, including weight gain, may contribute to the development of metabolic syndrome (MetS), which is associated with increased risks of all-cause and cardiovascular disease mortality. We aim to provide a comprehensive overview of clinical, biochemical and genetic factors associated with MetS among patients with schizophrenia spectrum disorders using second-generation antipsychotics (SGA). Methods: A literature search was performed in Pubmed and Embase to identify all cohort studies, cross-sectional studies and clinical trials investigating associations with MetS in patients with schizophrenia spectrum disorders using SGAs. We extracted and enumerated clinical, biochemical and genetic factors reported to be associated with MetS. We defined factors associated with MetS as factors being reported as associated with MetS in two or more studies. Results: 58 studies were included in this review (n = 12,123). In total, 62 factors were found to be associated with increased risk of MetS. Thirty one out of 58 studies investigated factors that were reported as associated with MetS in two or more studies. With regard to clinical factors, we found gender, higher age, concomitant use of mood stabilizers, higher baseline and current BMI, earlier SGA exposure, higher dose, longer duration of treatment, psychosis and tobacco smoking to be significantly associated with MetS. Furthermore, the biochemical factors hypo-adiponectinemia, elevated levels of C-reactive protein (CRP) and higher white blood cell (WBC) count were identified as factors associated with MetS. Among pharmacogenetic factors, the rs1414334 C-allele of the HTR2C-gene was associated with MetS in patients using SGA. Conclusion: In this systematic review investigating clinical, biochemical and genetic factors associated with MetS in patients using SGAs we found that higher age, higher baseline BMI, higher current BMI and male as well as female gender were positively associated with MetS across all antipsychotics. This study may set the stage for the application of clinical, biochemical and genetic factors to predict the risk of developing MetS in patients using SGAs. Future research is needed to determine which patients using SGAs are at risk to develop MetS in clinical practice.
Collapse
Affiliation(s)
- Marius H Sneller
- Faculty of Biomedical Sciences, Utrecht University, Utrecht, Netherlands
| | - Nini de Boer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sophie Everaars
- Faculty of Medicine, Utrecht University, Utrecht, Netherlands
| | - Max Schuurmans
- Faculty of Medicine, Utrecht University, Utrecht, Netherlands
| | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, Netherlands.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Altrecht Mental Health, Utrecht, Netherlands
| | - Jurjen J Luykx
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,GGNet Mental Health, Apeldoorn, Netherlands
| |
Collapse
|
4
|
Li N, Cao T, Wu X, Tang M, Xiang D, Cai H. Progress in Genetic Polymorphisms Related to Lipid Disturbances Induced by Atypical Antipsychotic Drugs. Front Pharmacol 2020; 10:1669. [PMID: 32116676 PMCID: PMC7011106 DOI: 10.3389/fphar.2019.01669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Metabolic side effects such as weight gain and disturbed lipid metabolism are often observed in the treatment of atypical antipsychotic drugs (AAPDs), which contribute to an excessive prevalence of metabolic syndrome among schizophrenic patients. Great individual differences are observed but the underlying mechanisms are still uncertain. Research on pharmacogenomics indicates that gene polymorphisms involved in the pathways controlling food intake and lipid metabolism may play a significant role. In this review, relevant genes (HTR2C, DRD2, LEP, NPY, MC4R, BDNF, MC4R, CNR1, INSIG2, ADRA2A) and genetic polymorphisms related to metabolic side effects of AAPDs especially dyslipidemia were summarized. Apart from clinical studies, in vitro and in vivo evidence is also analyzed to support related theories. The association of central and peripheral mechanisms is emphasized, enabling the possibility of using peripheral gene expression to predict the central status. Novel methodological development of pharmacogenomics is in urgent need, so as to provide references for individualized medication and further to shed some light on the mechanisms underlying AAPD-induced lipid disturbances.
Collapse
Affiliation(s)
- Nana Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiangxin Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
5
|
Martin S, Colle R, El Asmar K, Rigal A, Vievard A, Feve B, Becquemont L, Verstuyft C, Corruble E. HOMA-IR increase after antidepressant treatment in depressed patients with the Met allele of the Val66Met BDNF genetic polymorphism. Psychol Med 2019; 49:2364-2369. [PMID: 30526722 DOI: 10.1017/s0033291718003240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with response to antidepressant drugs in depressed patients and with metabolic side effects after antipsychotic treatment. This study aims to assess the association between this polymorphism and insulin resistance after antidepressant treatment in depressed patients. METHODS One hundred forty-eight Caucasian patients with a current unipolar major depressive episode (DSM IV-TR) were genotyped for the BDNF Val66Met polymorphism and assessed at baseline and after 3 and 6 months of antidepressant treatment for the 'Homoeostasis model assessment of insulin resistance' (HOMA-IR) index, a valid measure of insulin resistance based on fasting plasma insulinaemia and glycaemia. Because validity assumptions were fulfilled, data were analysed using analysis of variance for repeated measures. RESULTS The 52 (35%) Met carriers and 96 (65%) Val/Val patients were not different at baseline for clinical characteristics and HOMA-IR. A significant Val66Met × time interaction (p = 0.02), a significant time effect (p = 0.03) and a significant Val66Met effect (p = 0.0497) were shown for HOMA-IR. A significant Val66Met × time interaction (p = 0.01) and a significant time effect (p = 0.003) were shown for fasting glycaemia. HOMA-IR and fasting glycaemia changes after antidepressant treatment were significantly higher in Met carrier than in Val/Val patients (HOMA-IR changes: Met: 0.71 ± 3.29 v. Val/Val: -0.16 ± 1.34, t = 2.3, df = 146, p = 0.02, glycaemia changes: Met: 0.09 ± 0.30 v. Val/Val: 0.02 ± 0.16, t = -2.0, df = 146, p = 0.045). CONCLUSIONS The Met allele of the Val66Met BDNF polymorphism confers to depressed patients a higher risk of insulin-resistance after antidepressant treatment. These patients could benefit from specific monitoring of metabolism and preventive measures.
Collapse
Affiliation(s)
- Séverine Martin
- INSERM UMR-1178, CESP, Equipe "Dépression et Antidépresseurs", Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Romain Colle
- INSERM UMR-1178, CESP, Equipe "Dépression et Antidépresseurs", Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Khalil El Asmar
- INSERM UMR-1178, CESP, Equipe "Dépression et Antidépresseurs", Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Adrien Rigal
- INSERM UMR-1178, CESP, Equipe "Dépression et Antidépresseurs", Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Albane Vievard
- INSERM UMR-1178, CESP, Equipe "Dépression et Antidépresseurs", Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Bruno Feve
- Service d'endocrinologie, Hôpital Saint-Antoine, Assistance Publique Hôpitaux de Paris, Paris, France
- Sorbonne Université, INSERM UMR S_938, Centre de Recherche Saint-Antoine, Paris, France
| | - Laurent Becquemont
- INSERM UMR-1178, CESP, Equipe "Dépression et Antidépresseurs", Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
- Centre de Recherche Clinique Paris Sud, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Céline Verstuyft
- INSERM UMR-1178, CESP, Equipe "Dépression et Antidépresseurs", Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Centre de Recherche Clinique Paris Sud, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- Centre de Ressources Biologiques Paris Sud, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- INSERM UMR-1178, CESP, Equipe "Dépression et Antidépresseurs", Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| |
Collapse
|
6
|
Rana S, Sultana A, Bhatti AA. Association of BDNF rs6265 and MC4R rs17782313 with metabolic syndrome in Pakistanis. J Biosci 2019. [DOI: 10.1007/s12038-019-9915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Rana S, Sultana A, Bhatti AA. Association of BDNF rs6265 and MC4R rs17782313 with metabolic syndrome in Pakistanis. J Biosci 2019; 44:95. [PMID: 31502573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The current case-control study sought the association of BDNF rs6265 and MC4R rs17782313 with metabolic syndrome (MetS), MetS components and other related metabolic parameters in a sample of Pakistani subjects. Fasting high-density lipoprotein cholesterol (HDL-C) and homeostatic model assessment of insulin sensitivity showed a significantly lower mean whereas body mass index (BMI), waist circumference, systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose, insulin, total cholesterol (TC), low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, triglycerides (TG), cholesterol to HDL-C ratio, TG to HDL-C ratio, homeostatic model assessment of insulin resistance, visceral adiposity index, lipid accumulation product and the product of TG and glucose showed a significantly higher mean in the presence of MetS. Reduced HDL-C appeared as the most frequent and hypertriglyceridemia as the least frequent component of MetS whereas clustering of reduced HDL-C + abdominal obesity (AO) + hyperglycemia appeared as the most prevalent combination of MetS components. Moreover, BDNF rs6265 showed BMI and gender independent association with increased risk of MetS in Pakistani individuals whereas MC4R rs17782313 showed BMI and gender dependent association with increased risk of MetS in Pakistani females. In addition, BDNF rs6265 and MC4R rs17782313 showed gender-dependent associations with decreased risk of having low HDL-C in males and increased risk of having abdominal obesity in females, respectively. However, no association was observed for metabolic variables other than components of MetS across genotypes of both BDNF rs6265 and MC4R rs17782313.
Collapse
Affiliation(s)
- Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | | | | |
Collapse
|
8
|
Effects of omega-3 fatty acids on metabolic syndrome in patients with schizophrenia: a 12-week randomized placebo-controlled trial. Psychopharmacology (Berl) 2019; 236:1273-1279. [PMID: 30519766 DOI: 10.1007/s00213-018-5136-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022]
Abstract
RATIONALE Individuals with schizophrenia are at increased risk of developing metabolic syndrome (MetS) due to their lifestyle and antipsychotic treatment. Our previous study showed that patients with both schizophrenia and MetS present an increased expression and production of tumor necrosis factor-alpha (TNF-alpha). Omega-3 fatty acids have a documented role in suppressing TNF-alpha; therefore, we hypothesized that they may be of value in relieving inflammation and improving metabolic disturbance in patients with both schizophrenia and MetS. OBJECTIVES This study employed a randomized placebo-controlled trial to investigate the effects of omega-3 fatty acids on MetS in patients with schizophrenia. METHODS We recruited 80 patients with both schizophrenia and MetS who received long-term olanzapine monotherapy. The patients were randomly assigned to the OMG-3 group (n = 40) or the placebo group (n = 40). RESULTS Patients with both schizophrenia and MetS had significantly higher levels of TNF-alpha than the control subjects (Z = - 4.37, P < 0.01). There was a significant correlation between omega-3 fatty acid treatment and reduced triglyceride (TG) levels (Fgroup × time = 13.42; df = 1, 66; P < 0.01) when the patients completed this study. Along with metabolic improvement, omega-3 fatty acids decreased TNF-alpha levels after 12 weeks of treatment (Fgroup × time = 6.71; df = 1, 66; P = 0.012). We also found that the extent of TNF-alpha decrease was significantly correlated with that of TG decrease (r = 0.38, P = 0.001). CONCLUSIONS Our findings provide suggestive evidence that omega-3 fatty acids have beneficial effects on TG metabolism in patients with both schizophrenia and MetS that parallel decreased inflammation levels.
Collapse
|
9
|
Fang X, Wang Y, Chen Y, Ren J, Zhang C. Association between IL-6 and metabolic syndrome in schizophrenia patients treated with second-generation antipsychotics. Neuropsychiatr Dis Treat 2019; 15:2161-2170. [PMID: 31534339 PMCID: PMC6681158 DOI: 10.2147/ndt.s202159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Second-generation antipsychotics (SGAs) have a high risk of causing metabolic syndrome (MetS). There is accumulating evidence supporting the fact that the activation of inflammatory pathway contributes to the development of MetS and further aggravates cognitive impairment. This study aimed to investigate the relationship between interleukin-6 (IL-6), cognitive function, and MetS in schizophrenia patients treated with SGAs. METHODS One hundred and seventy-four patients with schizophrenia using SGAs were divided into MetS and non-MetS group, based on the criteria of the National Cholesterol Education Program's Adult Treatment Panel III. Cognitive function was measured using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). A total of 138 patients and 29 healthy controls were examined in the plasma IL-6 levels. RESULTS The prevalence of MetS in schizophrenia patients treated with SGAs was 33% in this study. There were no significant differences in cognitive functions (both RBANS total score and subscale score) between MetS and non-Mets patients (P>0.05). Patients with MetS had higher plasma levels of IL-6 compared to non-MetS patients (P=0.019). However, such difference was only found in male patients (male: P=0.012; female: P=0.513). The partial correlational analysis further showed that IL-6 levels were notably negative related to the HDL levels in male schizophrenia patients after age, years of education, body mass index (BMI), age of onset, total disease course, and equal dose of olanzapine were controlled (male: P=0.009; female: P=0.450). In addition, the multiple regression analysis (stepwise model) performed in the male patient subgroup showed that IL-6 (beta =-0.283, t=-2.492, P=0.015) was an independent contributor to the HDL levels. However, the IL-6 was not an independent contributor to the HDL levels in female patients. CONCLUSION Our findings provide evidence suggesting that the immune-inflammatory effect of IL-6 on SGAs-induced MetS may be in a gender manner.
Collapse
Affiliation(s)
- Xinyu Fang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yewei Wang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Chen
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Juanjuan Ren
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Skibinska M, Kapelski P, Rajewska-Rager A, Szczepankiewicz A, Narozna B, Duda J, Budzinski B, Twarowska-Hauser J, Dmitrzak-Weglarz M, Pawlak J. Elevated brain-derived neurotrophic factor (BDNF) serum levels in an acute episode of schizophrenia in polish women: Correlation with clinical and metabolic parameters. Psychiatry Res 2019; 271:89-95. [PMID: 30472511 DOI: 10.1016/j.psychres.2018.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/31/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has been implicated in the pathogenesis of psychiatric disorders. Schizophrenia is associated with metabolic abnormalities and BDNF regulates energy homeostasis and glucose metabolism in peripheral tissues. The aim of this study was to examine serum levels of BDNF in schizophrenic women during 8 weeks of treatment and control group, and its correlation with clinical and metabolic parameters. The study was performed on a group of 96 women: 55 diagnosed with paranoid schizophrenia according to DSM-IV criteria, and 41 healthy controls. Positive and Negative Syndrome Scale (PANSS) was used to assess the severity of schizophrenia. BDNF serum levels and metabolic parameters: fasting serum glucose, total cholesterol, triglyceride (TG), high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C) were measured at baseline and week 8 of treatment. BDNF serum levels were significantly elevated in medicated patients with schizophrenia comparing to controls. After 8 weeks of antipsychotic treatment, BDNF levels did not significantly change. Increase in TG and TG/HDL-C ratio and a decrease in HDL-C was detected in medicated patients. Correlation between BDNF and lipid profile as well as symptoms severity was found. In our study we detected abnormalities in BDNF levels and lipid profile in medicated schizophrenic women in Polish population.
Collapse
Affiliation(s)
- Maria Skibinska
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland.
| | - Pawel Kapelski
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Rajewska-Rager
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szczepankiewicz
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Narozna
- Laboratory of Molecular and Cell Biology, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572, Poznan, Poland
| | - Joanna Duda
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartłomiej Budzinski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572, Poznan, Poland
| | - Joanna Twarowska-Hauser
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Monika Dmitrzak-Weglarz
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Pawlak
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
11
|
Zhang C, Mao Y, Song L. Precise treatments for schizophrenia: where is the way forward? Gen Psychiatr 2018; 31:e000002. [PMID: 30582112 PMCID: PMC6211279 DOI: 10.1136/gpsych-2018-000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/08/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yemeng Mao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisheng Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Zhang Y, Fang X, Fan W, Tang W, Cai J, Song L, Zhang C. Brain-derived neurotrophic factor as a biomarker for cognitive recovery in acute schizophrenia: 12-week results from a prospective longitudinal study. Psychopharmacology (Berl) 2018; 235:1191-1198. [PMID: 29392373 DOI: 10.1007/s00213-018-4835-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/14/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE It is generally accepted that impaired cognitive function is a core feature of schizophrenia. There is evidence for the role of brain-derived neurotrophic factor (BDNF) in cognitive function. Olanzapine was reported to yield cognitive improvement in patients with schizophrenia. OBJECTIVES In this study, we performed a prospective, open-label, 12-week observation trial to investigate whether peripheral BDNF may represent a potential biomarker for the effect of cognitive improvement induced by olanzapine in patients with schizophrenia. METHODS In total, 95 patients with acute schizophrenia were enrolled in the study. We also recruited 72 healthy individuals for a control group. The Positive and Negative Syndrome Scale (PANSS) was used to evaluate symptom severity and treatment response. Cognitive function was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Plasma BDNF levels were measured with an enzyme-linked immunosorbent assay. RESULTS Of the 95 patients consented into the study, 68 completed the 12-week follow up. Our results showed that schizophrenia patients with acute exacerbation had significantly poorer performance than that of the controls (Ps < 0.01). A significantly decreased plasma level of BDNF in patients was observed compared with the controls (F = 7.77, P = 0.006). A significant improvement in each PANSS subscore and total score was observed when the patients completed this study (Ps < 0.01). Additionally, 12-week olanzapine treatment exhibited significant improvements in RBANS immediate memory, attention, and total scores (P = 0.018, 0.001, and 0.007, respectively). Along with the clinical improvement, plasma BDNF levels after 12-week olanzapine monotherapy (4.67 ± 1.74 ng/ml) were also significantly increased compared with those at baseline (3.38 ± 2.11 ng/ml) (P < 0.01). Spearman's correlation analysis showed that the increase in plasma levels of BDNF is significantly correlated with the change in the RBANS total scores (r = 0.28, P = 0.02) but not with the change in the PANSS total scores (r = - 0.18, P = 0.13). There is a significant correlation of BDNF increase with the change of RBANS attention subscore (r = 0.27, P = 0.028). CONCLUSIONS Our findings suggest that olanzapine improves psychiatric symptoms and cognitive dysfunction, particularly attention and immediate memory, in patients with acute schizophrenia, in parallel with increased plasma BDNF levels. Plasma BDNF levels may be a potential biomarker for cognitive recovery in acute schizophrenia.
Collapse
Affiliation(s)
- Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Fang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, Zhejiang, China
| | - Wei Tang
- Department of Psychiatry, Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisheng Song
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Sukasem C, Vanwong N, Srisawasdi P, Ngamsamut N, Nuntamool N, Hongkaew Y, Puangpetch A, Chamkrachangpada B, Limsila P. Pharmacogenetics of Risperidone-Induced Insulin Resistance in Children and Adolescents with Autism Spectrum Disorder. Basic Clin Pharmacol Toxicol 2018; 123:42-50. [DOI: 10.1111/bcpt.12970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/15/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine; Department of Pathology; Faculty of Medicine Ramathibodi Hospital; Mahidol University; Bangkok Thailand
- Laboratory for Pharmacogenomics; Somdech Phra Debaratana Medical Center (SDMC); Ramathibodi Hospital; Bangkok Thailand
| | - Natchaya Vanwong
- Division of Pharmacogenomics and Personalized Medicine; Department of Pathology; Faculty of Medicine Ramathibodi Hospital; Mahidol University; Bangkok Thailand
- Laboratory for Pharmacogenomics; Somdech Phra Debaratana Medical Center (SDMC); Ramathibodi Hospital; Bangkok Thailand
| | - Pornpen Srisawasdi
- Division of Clinical Chemistry; Department of Pathology; Faculty of Medicine; Ramathibodi Hospital; Mahidol University; Bangkok Thailand
| | - Nattawat Ngamsamut
- Department of Mental Health Services; Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital; Ministry of Public Health; Samut Prakan Thailand
| | - Nopphadol Nuntamool
- Division of Pharmacogenomics and Personalized Medicine; Department of Pathology; Faculty of Medicine Ramathibodi Hospital; Mahidol University; Bangkok Thailand
- Laboratory for Pharmacogenomics; Somdech Phra Debaratana Medical Center (SDMC); Ramathibodi Hospital; Bangkok Thailand
- Molecular Medicine; Faculty of Science; Mahidol University; Bangkok Thailand
| | - Yaowaluck Hongkaew
- Division of Pharmacogenomics and Personalized Medicine; Department of Pathology; Faculty of Medicine Ramathibodi Hospital; Mahidol University; Bangkok Thailand
- Laboratory for Pharmacogenomics; Somdech Phra Debaratana Medical Center (SDMC); Ramathibodi Hospital; Bangkok Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine; Department of Pathology; Faculty of Medicine Ramathibodi Hospital; Mahidol University; Bangkok Thailand
- Laboratory for Pharmacogenomics; Somdech Phra Debaratana Medical Center (SDMC); Ramathibodi Hospital; Bangkok Thailand
| | - Bhunnada Chamkrachangpada
- Department of Mental Health Services; Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital; Ministry of Public Health; Samut Prakan Thailand
| | - Penkhae Limsila
- Department of Mental Health Services; Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital; Ministry of Public Health; Samut Prakan Thailand
| |
Collapse
|
14
|
Janicijevic SM, Dejanovic SD, Borovcanin M. Interplay of Brain-Derived Neurotrophic Factor and Cytokines in Schizophrenia. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2018. [DOI: 10.1515/sjecr-2017-0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family and plays an important role in neuroplasticity, differentiation and survival of neurons, as well as their function. Neuroinflammation has been explored in the pathophysiology of many mental disorders, such as schizophrenia. Cytokines representing different types of immune responses have an impact on neurogenesis and BDNF expression. Cross-regulation of BDNF and cytokines is accomplished through several signalling pathways. Also, typical and atypical antipsychotic drugs variously modulate the expression of BDNF and serum levels of cytokines, which can possibly be used in evaluation of therapy effectiveness. Comorbidity of metabolic syndrome and atopic diseases has been considered in the context of BDNF and cytokines interplay in schizophrenia.
Collapse
Affiliation(s)
- Slavica Minic Janicijevic
- Doctor of Medicine, PhD Student at the Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Slavica Djukic Dejanovic
- Department of Psychiatry, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Milica Borovcanin
- Department of Psychiatry, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| |
Collapse
|
15
|
de Luis DA, Fernández Ovalle H, Izaola O, Primo D, Aller R. RS 10767664 gene variant in Brain Derived Neurotrophic Factor (BDNF) affect metabolic changes and insulin resistance after a standard hypocaloric diet. J Diabetes Complications 2018; 32:216-220. [PMID: 29174117 DOI: 10.1016/j.jdiacomp.2017.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Role of BDNF variants on change in body weight and cardiovascular risk factors after weight loss remains unclear in obese patients. OBJECTIVE Our aim was to analyze the effects of rs10767664 BDNF gene polymorphism on body weight, cardiovascular risk factors and serum adipokine levels after a standard hypocaloric diet in obese subjects. DESIGN A Caucasian population of 80 obese patients was analyzed before and after 3months on a standard hypocaloric diet. RESULTS Fifty patients (62.5%) had the genotype AA and 30 (37.5%) subjects had the next genotypes; AT (25 patients, 31.3%) or TT (5 study subjects, 6.3%) (second group). In non T allele carriers, the decreases in weight-3.4±2.9kg (T allele group -1.7±2.0kg:p=0.01), BMI -1.5±0.2kg (T allele group -1.2±0.5kg:p=0.02), fat mass-2.3±1.1kg (T allele group -1.7±0.9kg:p=0.009), waist circumference-3.8±2.4cm (T allele group -2.1±3.1cm:p=0.008), triglycerides -13.2±7.5mg/dl (T allele group +2.8±1.2mg/dl:p=0.02), insulin -2.1±1.9mUI/L (T allele group -0.3±1.0mUI/L:p=0.01), HOMA-IR -0.9±0.4 (T allele group -0.1±0.8:p=0.01) and leptin -10.1±9.5ng/dl (T allele group -3.1±0.2ng/dl:p=0.01) were higher than T allele carriers. CONCLUSION rs10767664 variant of BDNF gene modify anthropometric and biochemical changes after weight loss with a hypocaloric diet.
Collapse
Affiliation(s)
- Daniel Antonio de Luis
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Dept. of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain.
| | - H Fernández Ovalle
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Dept. of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - O Izaola
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Dept. of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - D Primo
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Dept. of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Rocío Aller
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Dept. of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| |
Collapse
|
16
|
de Luis DA, Romero E, Izaola O, Primo D, Aller R. Cardiovascular Risk Factors and Insulin Resistance after Two Hypocaloric Diets with Different Fat Distribution in Obese Subjects: Effect of the rs10767664 Gene Variant in Brain-Derived Neurotrophic Factor. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2018; 10:163-171. [PMID: 29339649 DOI: 10.1159/000485248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/14/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND The role of brain-derived neurotrophic factor (BDNF) variants on change in body weight and cardiovascular risk factors after weight loss remains unclear in obese patients. OBJECTIVE Our aim was to analyze the effects of the rs10767664 BDNF gene polymorphism on body weight, cardiovascular risk factors, and serum adipokine levels after a high monounsaturated fatty acids (MUFAs) hypocaloric diet (diet M) versus a high polyunsaturated fatty acids (PUFAs) hypocaloric diet (diet P). METHODS A Caucasian population of 361 obese patients was enrolled. Subjects who met the inclusion criteria were randomly allocated to one of two diets for a period of 3 months. RESULTS Two hundred and sixteen subjects (59.8%) had the genotype AA (wild-type group), and 145 (40.2%) patients had the genotypes AT (122 patients, 33.8%) or TT (23 patients, 6.4%) (mutant-type group). After weight loss with diet P and diet M and in both genotype groups, body mass index, weight, fat mass, waist circumference, systolic blood pressure, serum leptin levels, low-density lipoprotein cholesterol, and total cholesterol decreased in a significant way. Secondary to weight loss with diet M and only in the wild-type group, insulin levels (-2.1 ± 2.0 vs. -0.7 ± 2.9 IU/L, p < 0.05) and homeostatic model assessment of insulin resistance (-0.7 ± 0.9 vs. -0.3 ± 1.0 U, p < 0.05) decreased. CONCLUSION Our data show that the rs10767664 variant of the BDNF gene modifies insulin resistance and insulin levels after weight loss with a hypocaloric diet enriched with MUFAs.
Collapse
Affiliation(s)
- Daniel Antonio de Luis
- Center of Investigation of Endocrinology and Nutrition, Medical School and Department of Endocrinology and Nutrition, Hospital Clínico Universitario, University of Valladolid, Simancas, Spain
| | | | | | | | | |
Collapse
|
17
|
Genetic variants impacting metabolic outcomes among people on clozapine: a systematic review and meta-analysis. Psychopharmacology (Berl) 2017; 234:2989-3008. [PMID: 28879574 DOI: 10.1007/s00213-017-4728-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/23/2017] [Indexed: 12/11/2022]
Abstract
Clozapine is the gold standard medication for treatment refractory schizophrenia, but unfortunately, its use is also associated with many adverse metabolic side effects. There may be a strong genetic component to the development of these adverse effects. We undertook a systematic review to examine the evidence for genetic variation being associated with secondary metabolic outcomes in patients with schizophrenia on clozapine, under both longitudinal and cross-sectional study designs. We limited studies to those examining patients definitely taking clozapine, unlike prior reviews that have examined metabolic effects of patients taking a range of antipsychotic medications. We found associations with outcomes such as increases in BMI and metabolic syndrome for variants in genes such as LEP and HTR2C. Meta-analysis of rs381328 in HTR2C revealed that the presence of the T allele led to a 0.63 kg/m2 (95% CI - 1.06 to - 0.19; p = 0.005) decrease in BMI compared to the C allele. Study and population heterogeneity and lack of statistical power among reviewed articles mean that evidence is lacking to warrant prophylactic genotyping of patients commencing clozapine to predict those at increased risk of developing adverse metabolic effects. Further efforts to establish collaborative consortia, consensus around study design and replication studies in independent populations should be encouraged.
Collapse
|
18
|
Zhang C, Fang X, Yao P, Mao Y, Cai J, Zhang Y, Chen M, Fan W, Tang W, Song L. Metabolic adverse effects of olanzapine on cognitive dysfunction: A possible relationship between BDNF and TNF-alpha. Psychoneuroendocrinology 2017; 81:138-143. [PMID: 28477447 DOI: 10.1016/j.psyneuen.2017.04.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/17/2017] [Accepted: 04/21/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVE There is accumulating evidence indicating that long-term treatment with second-generation antipsychotics (SGAs) results in metabolic syndrome (MetS) and cognitive impairment. This evidence suggests an intrinsic link between antipsychotic-induced MetS and cognitive dysfunction in schizophrenia patients. Olanzapine is a commonly prescribed SGA with a significantly higher MetS risk than that of most antipsychotics. In this study, we hypothesized that olanzapine-induced MetS may exacerbate cognitive dysfunction in patients with schizophrenia. METHODS A sample of 216 schizophrenia patients receiving long-term olanzapine monotherapy were divided into two groups, MetS and non-MetS, based on the diagnostic criteria of the National Cholesterol Education Program's Adult Treatment Panel III. We also recruited 72 healthy individuals for a control group. Cognitive function was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Plasma brain-derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-alpha) were measured by an enzyme-linked immunosorbent assay for 108 patients and 47 controls. RESULTS Among the 216 schizophrenia patients receiving olanzapine monotherapy, MetS was found in 95/216 (44%). Patients with MetS had more negative symptoms, higher total scores in PANSS (Ps<0.05) and lower immediate memory, attention, delayed memory and total scores in RBANS (Ps<0.01). Stepwise multivariate linear regression analysis revealed that increased glucose was the independent risk factor for cognitive dysfunction (t=-2.57, P=0.01). Patients with MetS had significantly lower BDNF (F=6.49, P=0.012) and higher TNF-alpha (F=5.08, P=0.026) levels than those without MetS. There was a negative correlation between the BDNF and TNF-alpha levels in the patients (r=-0.196, P=0.042). CONCLUSION Our findings provide evidence suggesting that the metabolic adverse effects of olanzapine may aggravate cognitive dysfunction in patients with schizophrenia through an interaction between BDNF and TNF-alpha.
Collapse
Affiliation(s)
- Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xinyu Fang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peifen Yao
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yemeng Mao
- Department of Pharmacology, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meijuan Chen
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, Zhejiang, China
| | - Wei Tang
- Department of Psychiatry, Wenzhou Kanging Hospital, Wenzhou, Zhejiang, China
| | - Lisheng Song
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
de Luis DA, Aller R, Izaola O, Primo D, Romero E. rs10767664 Gene Variant in Brain-Derived Neurotrophic Factor Is Associated with Diabetes Mellitus Type 2 in Caucasian Females with Obesity. ANNALS OF NUTRITION AND METABOLISM 2017; 70:286-292. [PMID: 28595187 DOI: 10.1159/000474956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of brain-derived neurotrophic factor (BDNF) variants on diabetes prevalence, basal adipokine levels, body weight, and cardiovascular risk factors remains unclear in obese patients. OBJECTIVE This study is aimed at analyzing the effects of rs10767664 BDNF gene polymorphism on diabetes mellitus prevalence, body weight, cardiovascular risk factors, and serum adipokine levels in obese female patients. DESIGN A total of 507 obese women were enrolled in a prospective way. Biochemical evaluation and anthropometric measures were recorded. RESULTS The frequency of diabetes mellitus in the group of patients with non-T allele was 20.1 and 28.3% in T-allele carriers. Logistic regression showed a risk of diabetes mellitus of 1.33 (95% CI 1.17-2.08) in subjects with T allele adjusted by age and body mass index (BMI). T-allele carriers with diabetes mellitus have a higher weight, BMI, waist circumference, blood pressure, glucose, homeostasis model assessment insulin resistance (HOMA-IR), insulin, and C-reactive protein (CRP) levels than non-T-allele carriers. CONCLUSION rs10767664 polymorphism of BDNF gene is associated with prevalence of diabetes mellitus in obese female patients. T-allele carriers with diabetes mellitus have a higher weight, fat mass, blood pressure, level of insulin, glucose, HOMA-IR, and CRP than non-T-allele carriers.
Collapse
Affiliation(s)
- Daniel Antonio de Luis
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | | | | | | | | |
Collapse
|
20
|
Peng JH, Liu CW, Pan SL, Wu HY, Liang QH, Gan RJ, Huang L, Ding Y, Bian ZY, Huang H, Lv ZP, Zhou XL, Yin RX. Potential unfavorable impacts of BDNF Val66Met polymorphisms on metabolic risks in average population in a longevous area. BMC Geriatr 2017; 17:4. [PMID: 28056856 PMCID: PMC5217242 DOI: 10.1186/s12877-016-0393-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF) has been implicated in cognitive performance and the modulation of several metabolic parameters in some disease models, but its potential roles in successful aging remain unclear. We herein sought to define the putative correlation between BDNF Val66Met and several metabolic risk factors including BMI, blood pressure, fasting plasma glucose (FPG) and lipid levels in a long-lived population inhabiting Hongshui River Basin in Guangxi. Methods BDNF Val66Met was typed by ARMS-PCR for 487 Zhuang long-lived individuals (age ≥ 90, long-lived group, LG), 593 of their offspring (age 60–77, offspring group, OG) and 582 ethnic-matched healthy controls (aged 60–75, control group, CG) from Hongshui River Basin. The correlations of genotypes with metabolic risks were then determined. Results As a result, no statistical difference was observed on the distribution of allelic and genotypic frequencies of BDNF Val66Met among the three groups (all P > 0.05) except that AA genotype was dramatically higher in females than in males of CG. The HDL-C level of A allele (GA/AA genotype) carriers was profoundly lower than was non-A (GG genotype) carriers in the total population and the CG (P = 0.009 and 0.006, respectively), which maintained in females, hyperglycemic and normolipidemic subgroup of CG after stratification by gender, BMI, glucose and lipid status. Furthermore, allele A carriers, with a higher systolic blood pressure, exhibited 1.63 folds higher risk than non-A carriers to be overweight in CG (OR = 1.63, 95% CI: 1.05 - 2.55, P = 0.012). Multiple regression analysis displayed that the TC level of LG reversely associated with BDNF Val66Met genotype. Conclusions These data suggested that BDNF 66Met may play unfavorable roles in blood pressure and lipid profiles in the general population in Hongshui River area which might in part underscore their poorer survivorship versus the successful aging individuals and their offspring. Electronic supplementary material The online version of this article (doi:10.1186/s12877-016-0393-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun-Hua Peng
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Human Development and Disease Research, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Cheng-Wu Liu
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Human Development and Disease Research, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shang-Ling Pan
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China. .,Guangxi Colleges and Universities Key Laboratory of Human Development and Disease Research, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Hua-Yu Wu
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qing-Hua Liang
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, 85 Hedi Road, Nanning, 530021, Guangxi, China
| | - Rui-Jing Gan
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Ling Huang
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yi Ding
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Zhang-Ya Bian
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Hao Huang
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Ze-Ping Lv
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, 85 Hedi Road, Nanning, 530021, Guangxi, China
| | - Xiao-Ling Zhou
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Rui-Xing Yin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| |
Collapse
|
21
|
de Luis DA, Izaola O, Primo D, Pacheco D. Effect of the rs10767664 Variant of the Brain-Derived Neurotrophic Factor Gene on Weight Change and Cardiovascular Risk Factors in Morbidly Obese Patients after Biliopancreatic Diversion Surgery. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2016; 9:116-122. [DOI: 10.1159/000448102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022]
|
22
|
Zhang C, Lu W, Wang Z, Ni J, Zhang J, Tang W, Fang Y. A comprehensive analysis of NDST3 for schizophrenia and bipolar disorder in Han Chinese. Transl Psychiatry 2016; 6:e701. [PMID: 26731438 PMCID: PMC5068873 DOI: 10.1038/tp.2015.199] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/09/2015] [Accepted: 10/22/2015] [Indexed: 01/08/2023] Open
Abstract
A novel susceptibility locus (rs11098403) for schizophrenia and bipolar disorder (BD) was identified in an Ashkenazi Jewish population by a recent large-scale genome-wide association study. The rs11098403 is located in the vicinity of the gene encoding N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 3, (NDST3). This study aimed to replicate the results in a Han Chinese population and then potentially extend these findings. We performed a two-stage study to investigate the association of NDST3 with the schizophrenia and BD risk in the Han Chinese. In stage 1, a total of 632 patients with schizophrenia, 654 patients with BD and 684 healthy controls were recruited from the Shanghai region. In stage 2, 522 schizophrenia patients and 547 normal subjects were enrolled from the Hangzhou region. Then, we conducted a meta-analysis based on the present literature. In stage 1, the single nucleotide polymorphism (SNP) rs11098403 showed a significant association with schizophrenia (corrected P=0.005). The frequency of the rs11098403 G allele was significantly lower among schizophrenia patients than among the controls (odds ratio (OR)=0.68, 95% confidence interval (CI): 0.55-0.84, corrected P=0.002). No significant difference was observed in individual SNP marker genotypes or allele distributions between the BD and control groups. In stage 2, the association of rs11098403 with schizophrenia could be validated (genotypic P=0.001 and allelic P=0.0003). After pooling all data from 1861 patients with schizophrenia and 2081 controls, we observed a significant association of the rs11098403 G allele with schizophrenia (Z=5.56, P<0.001), with an OR=0.70 (95% CI: 0.61-0.79). Then, we performed an expression quantitative trait loci analysis to investigate the functional effect of rs11098403 on NDST3 expression in the brain. We observed a significant association of rs11098403 with NDST3 expression in the hippocampus (P=0.027), although the significance did not survive after multiple testing correction. Our findings provided preliminary evidence that rs11098403 might modify the genetic risk of schizophrenia in the Han Chinese. Further investigations are warranted to identify the precise mechanism regulating brain NDST3 expression in the Han Chinese. These results would help to explain the pathophysiological mechanism of schizophrenia.
Collapse
Affiliation(s)
- C Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W Lu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Wang
- Department of Psychiatry, Hongkou Mental Health Center of Shanghai, Shanghai, China
| | - J Ni
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - J Zhang
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - W Tang
- Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Y Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Morales-Marín ME, Genis-Mendoza AD, Tovilla-Zarate CA, Lanzagorta N, Escamilla M, Nicolini H. Association between obesity and the brain-derived neurotrophic factor gene polymorphism Val66Met in individuals with bipolar disorder in Mexican population. Neuropsychiatr Dis Treat 2016; 12:1843-8. [PMID: 27524902 PMCID: PMC4966648 DOI: 10.2147/ndt.s104654] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The brain-derived neurotrophic factor (BDNF) has been considered as an important candidate gene in bipolar disorder (BD); this association has been derived from several genetic and genome-wide studies. A polymorphic variant of the BDNF (Val66Met) confers some differences in the clinical presentation of affective disorders. In this study, we evaluated a sample population from Mexico City to determine whether the BDNF (rs6265) Val66Met polymorphism is associated with the body mass index (BMI) of patients with BD. METHODS This association study included a sample population of 357 individuals recruited in Mexico City. A total of 139 participants were diagnosed with BD and 137 were classified as psychiatrically healthy controls (all individuals were interviewed and evaluated by the Diagnostic Interview for Genetic Studies). Genomic DNA was extracted from peripheral blood leukocytes. The quantitative polymerase chain reaction (qPCR) assay was performed in 96-well plates using the TaqMan Universal Thermal Cycling Protocol. After the PCR end point was reached, fluorescence intensity was measured in a 7,500 real-time PCR system and evaluated using the SDS v2.1 software, results were analyzed with Finetti and SPSS software. Concerning BMI stratification, random groups were defined as follows: normal <25 kg/m(2), overweight (Ow) =25.1-29.9 kg/m(2), and obesity (Ob) >30 kg/m(2). RESULTS In the present work, we report the association of a particular BMI phenotype with the presence of the Val66Met allele in patients with BD (P=0.0033 and odds ratio [95% confidence interval] =0.332 [157-0.703]), and correlated the risk for valine allele carriers with Ow and Ob in patients with BD. CONCLUSION We found that the methionine allele confers a lower risk of developing Ow and Ob in patients with BD. We also confirmed that the G polymorphism represents a risk of developing Ow and Ob in patients with BD. In future studies, the haplotype analysis should provide additional evidence that BDNF may be associated with BD and BMI within the Mexican population.
Collapse
Affiliation(s)
- Mirna Edith Morales-Marín
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), CDMX, Mexico
| | - Alma Delia Genis-Mendoza
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), CDMX, Mexico; Psychiatric Care Services, Child Psychiatric Hospital Dr Juan N Navarro, CDMX, Mexico
| | | | | | - Michael Escamilla
- Department of Psychiatry, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso TX, USA
| | - Humberto Nicolini
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), CDMX, Mexico; Carracci Medical Group, CDMX, Mexico
| |
Collapse
|
24
|
Han J. Rare Syndromes and Common Variants of the Brain-Derived Neurotrophic Factor Gene in Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:75-95. [DOI: 10.1016/bs.pmbts.2015.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Complement 3 and metabolic syndrome induced by clozapine: a cross-sectional study and retrospective cohort analysis. THE PHARMACOGENOMICS JOURNAL 2015; 17:92-97. [PMID: 26503818 DOI: 10.1038/tpj.2015.68] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/03/2015] [Accepted: 08/19/2015] [Indexed: 01/06/2023]
Abstract
Metabolic syndrome (MetS) is considered to be an adverse effect of long-term treatment with atypical antipsychotics, particularly clozapine. There is strong evidence that the activation of inflammatory pathways interferes with normal metabolism and contributes to the development of MetS. C3, which is an inflammation molecule, has been reported to be associated with MetS. Because C3 is a heritable trait, we accordingly hypothesized that the gene encoding C3 (C3) would be a candidate gene for inter-individual variation in clozapine-induced MetS. We recruited 576 schizophrenia patients taking clozapine and measured the serum levels of fasting metabolic parameters. We then examined C3 mRNA and genotyped seven polymorphisms in C3. The expression quantitative trait locus (eQTL) data available for tissues were extracted by the Genotype-Tissue Expression Portal. A total of 105 patients' medical records were retrospectively reviewed to obtain the metabolic parameters during the initial 2-year clozapine treatment. The relative expression levels of C3 mRNA in patients with MetS were significantly higher than in those without MetS (P=0.02). C3 single-nucleotide polymorphism (SNP) rs2277984 was marginally associated with MetS (allelic P=0.06, odds ratio=1.36, 95% confidence interval (CI): 1.07-1.72). We found a significant association of rs2277984 with fasting triglyceride (TG) levels (P=0.004). Further, eQTL analysis revealed that rs2277984 regulates C3 expression in the liver (P=0.002). Similar results were found in the retrospective cohort analysis. The receiver operating characteristic curve showed a significant effect of the rs2277984 G allele on the percentage change of TG levels, with an area under the curve of 0.71 (95% CI: 0.60-0.81). C3 is likely to enhance TG accumulation and to confer susceptibility to clozapine-induced MetS. The C3 SNP rs2277984 may be a potential biomarker for predicting MetS risk in patients receiving clozapine treatment.
Collapse
|
26
|
Sriretnakumar V, Huang E, Müller DJ. Pharmacogenetics of clozapine treatment response and side-effects in schizophrenia: an update. Expert Opin Drug Metab Toxicol 2015; 11:1709-31. [PMID: 26364648 DOI: 10.1517/17425255.2015.1075003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Clozapine (CLZ) is the most effective treatment for treatment-resistant schizophrenia (SCZ) patients, with potential added benefits of reduction in suicide risk and aggression. However, CLZ is also mainly underused due to its high risk for the potentially lethal side-effect of agranulocytosis as well as weight gain and related metabolic dysregulation. Pharmacogenetics promises to enable the prediction of patient treatment response and risk of adverse effects based on patients' genetics, paving the way toward individualized treatment. AREA COVERED This article reviews pharmacogenetics studies of CLZ response and side-effects with a focus on articles from January 2012 to February 2015, as an update to the previous reviews. Pharmacokinetic genes explored primarily include CYP1A2, while pharmacodynamic genes consisted of traditional pharmacogenetic targets such as brain-derived neurotrophic factor as well novel mitochondrial genes, NDUFS-1 and translocator protein. EXPERT OPINION Pharmacogenetics is a promising avenue for individualized medication of CLZ in SCZ, with several consistently replicated gene variants predicting CLZ response and side-effects. However, a large proportion of studies have yielded mixed results. Large-scale Genome-wide association studies (e.g., CRESTAR) and targeted gene studies with standardized designs (response measurements, treatment durations, plasma level monitoring) are required for further progress toward clinical translation. Additionally, in order to improve study quality, we recommend accounting for important confounders, including polypharmacy, baseline measurements, treatment duration, gender, and age at onset.
Collapse
Affiliation(s)
- Venuja Sriretnakumar
- a 1 Campbell Family Research Institute, Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health , Toronto, Ontario, Canada +1 416 535 8501 ; +1 416 979 4666 ; .,b 2 University of Toronto, Department of Laboratory Medicine and Pathobiology , Ontario, Canada
| | - Eric Huang
- a 1 Campbell Family Research Institute, Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health , Toronto, Ontario, Canada +1 416 535 8501 ; +1 416 979 4666 ; .,c 3 University of Toronto, Institute of Medical Sciences , Ontario, Canada
| | - Daniel J Müller
- a 1 Campbell Family Research Institute, Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health , Toronto, Ontario, Canada +1 416 535 8501 ; +1 416 979 4666 ; .,c 3 University of Toronto, Institute of Medical Sciences , Ontario, Canada.,d 4 University of Toronto, Department of Psychiatry , Ontario, Canada
| |
Collapse
|
27
|
Ni J, Hu S, Zhang J, Tang W, Lu W, Zhang C. A Preliminary Genetic Analysis of Complement 3 Gene and Schizophrenia. PLoS One 2015; 10:e0136372. [PMID: 26305563 PMCID: PMC4549269 DOI: 10.1371/journal.pone.0136372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/03/2015] [Indexed: 12/14/2022] Open
Abstract
Complement pathway activation was found to occur frequently in schizophrenia, and complement 3 (C3) plays a major role in this process. Previous studies have provided evidence for the possible role of C3 in the development of schizophrenia. In this study, we hypothesized that the gene encoding C3 (C3) may confer susceptibility to schizophrenia in Han Chinese. We analyzed 7 common single nucleotide polymorphisms (SNPs) of C3 in 647 schizophrenia patients and 687 healthy controls. Peripheral C3 mRNA expression level was measured in 23 drug-naïve patients with schizophrenia and 24 controls. Two SNPs (rs1047286 and rs2250656) that deviated from Hardy-Weinberg equilibrium were excluded for further analysis. Among the remaining 5 SNPs, there was no significant difference in allele and genotype frequencies between the patient and control groups. Logistic regression analysis showed no significant SNP-gender interaction in either dominant model or recessive model. There was no significant difference in the level of peripheral C3 expression between the drug-naïve schizophrenia patients and healthy controls. In conclusion, the results of this study do not support C3 as a major genetic susceptibility factor in schizophrenia. Other factors in AP may have critical roles in schizophrenia and be worthy of further investigation.
Collapse
Affiliation(s)
- Jianliang Ni
- Tongde Hospital of Zhejiang Province, Zhejiang, China
| | - Shuangfei Hu
- Zhejiang Provincial People’s Hospital, Zhejiang, China
| | | | - Wenxin Tang
- Hangzhou Seventh People’s Hospital, Zhejiang, China
| | - Weihong Lu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
28
|
Zhao D, Lin M, Chen J, Pedrosa E, Hrabovsky A, Fourcade HM, Zheng D, Lachman HM. MicroRNA Profiling of Neurons Generated Using Induced Pluripotent Stem Cells Derived from Patients with Schizophrenia and Schizoaffective Disorder, and 22q11.2 Del. PLoS One 2015; 10:e0132387. [PMID: 26173148 PMCID: PMC4501820 DOI: 10.1371/journal.pone.0132387] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/12/2015] [Indexed: 01/03/2023] Open
Abstract
We are using induced pluripotent stem cell (iPSC) technology to study neuropsychiatric disorders associated with 22q11.2 microdeletions (del), the most common known schizophrenia (SZ)-associated genetic factor. Several genes in the region have been implicated; a promising candidate is DGCR8, which codes for a protein involved in microRNA (miRNA) biogenesis. We carried out miRNA expression profiling (miRNA-seq) on neurons generated from iPSCs derived from controls and SZ patients with 22q11.2 del. Using thresholds of p<0.01 for nominal significance and 1.5-fold differences in expression, 45 differentially expressed miRNAs were detected (13 lower in SZ and 32 higher). Of these, 6 were significantly down-regulated in patients after correcting for genome wide significance (FDR<0.05), including 4 miRNAs that map to the 22q11.2 del region. In addition, a nominally significant increase in the expression of several miRNAs was found in the 22q11.2 neurons that were previously found to be differentially expressed in autopsy samples and peripheral blood in SZ and autism spectrum disorders (e.g., miR-34, miR-4449, miR-146b-3p, and miR-23a-5p). Pathway and function analysis of predicted mRNA targets of the differentially expressed miRNAs showed enrichment for genes involved in neurological disease and psychological disorders for both up and down regulated miRNAs. Our findings suggest that: i. neurons with 22q11.2 del recapitulate the miRNA expression patterns expected of 22q11.2 haploinsufficiency, ii. differentially expressed miRNAs previously identified using autopsy samples and peripheral cells, both of which have significant methodological problems, are indeed disrupted in neuropsychiatric disorders and likely have an underlying genetic basis.
Collapse
Affiliation(s)
- Dejian Zhao
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Jian Chen
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Anastasia Hrabovsky
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - H. Matthew Fourcade
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, United States of America
| |
Collapse
|
29
|
Exercise prevents downregulation of hippocampal presynaptic proteins following olanzapine-elicited metabolic dysregulation in rats: Distinct roles of inhibitory and excitatory terminals. Neuroscience 2015; 301:298-311. [PMID: 26086543 DOI: 10.1016/j.neuroscience.2015.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
Schizophrenia patients treated with olanzapine, or other second-generation antipsychotics, frequently develop metabolic side-effects, such as glucose intolerance and increased adiposity. We previously observed that modeling these adverse effects in rodents also resulted in hippocampal shrinkage. Here, we investigated the impact of olanzapine treatment, and the beneficial influence of routine exercise, on the neurosecretion machinery of the hippocampus. Immunodensities and interactions of three soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins (syntaxin-1, synaptosome-associated protein of 25kDa (SNAP-25) and vesicle-associated membrane protein (VAMP)), synaptotagmin and complexins-1/2 were quantified in the hippocampus of sedentary and exercising rats exposed over 9weeks to vehicle (n=28) or olanzapine (10mg/kg/day, n=28). In addition, brain sections from subgroups of sedentary animals (n=8) were co-immunolabeled with antibodies against vesicular GABA (VGAT) and glutamate (VGLUT1) transporters, along with syntaxin-1, and examined by confocal microscopy to detect selective olanzapine effects within inhibitory or excitatory terminals. Following olanzapine treatment, sedentary, but not exercising rats showed downregulated (33-50%) hippocampal densities of SNARE proteins and synaptotagmin, without altering complexin levels. Strikingly, these effects had no consequences on the amount of SNARE protein-protein interactions. Lower immunodensity of presynaptic proteins was associated with reduced CA1 volume and glucose intolerance. Syntaxin-1 depletion appeared more prominent in VGAT-positive terminals within the dentate gyrus, and in non-VGAT/VGLUT1-overlapping areas of CA3. The present findings suggest that chronic exposure to olanzapine may alter hippocampal connectivity, especially in inhibitory terminals within the dentate gyrus, and along the mossy fibers of CA3. Together with previous studies, we propose that exercise-based therapies might be beneficial for patients being treated with olanzapine.
Collapse
|
30
|
Wang S, Lu H, Ni J, Zhang J, Tang W, Lu W, Cai J, Zhang C. An evaluation of association between common variants in C4BPB/C4BPA genes and schizophrenia. Neurosci Lett 2015; 590:189-92. [DOI: 10.1016/j.neulet.2015.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/19/2015] [Accepted: 02/03/2015] [Indexed: 01/19/2023]
|
31
|
Identification of putative fertility markers in seminal plasma of crossbred bulls through differential proteomics. Theriogenology 2014; 82:1254-62.e1. [DOI: 10.1016/j.theriogenology.2014.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 12/30/2022]
|
32
|
Zhu Y, Wang Z, Ni J, Zhang Y, Chen M, Cai J, Li X, Zhang W, Zhang C. Genetic variant in NDUFS1 gene is associated with schizophrenia and negative symptoms in Han Chinese. J Hum Genet 2014; 60:11-6. [PMID: 25354934 DOI: 10.1038/jhg.2014.94] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022]
Abstract
Abnormalities in mitochondrial complex I, which is responsible for controlling mitochondrial function, have been implicated in a variety of diseases associated with mitochondrial dysfunction, potentially including schizophrenia. The NADH dehydrogenase Fe-S protein 1 (NDUFS1) is the largest subunit of complex I. To explore whether the encoding NDUFS1 gene confers susceptibility to schizophrenia or is associated with the severity of typical symptoms of schizophrenia, we recruited 519 stable schizophrenia patients receiving clozapine treatment and 594 healthy controls for genotyping to investigate the association of four selected tagging single-nucleotide polymorphisms (SNPs) of NDUFS1 and both schizophrenia risk and symptom severity. The severity of psychotic symptoms was evaluated using the Positive and Negative Syndrome Scale and then tested for association with the four SNPs. The SNP rs1044120 showed significant association with schizophrenia (adjusted P=0.032). The frequency of the G allele of rs1044120 was significantly higher in patients than among the healthy controls (adjusted P=0.008). Stratification by sex revealed a significant association between the rs1044120 polymorphism and schizophrenia among males (adjusted P=0.036 and 0.008 in genotypic and allelic comparisons, respectively). We also observed a significant difference in the negative symptom scores among the three genotypes among these males (adjusted P=0.036). Post hoc comparisons showed that rs1044120 G/G carriers had higher negative symptom scores than those with G/T and T/T carriers (raw P=0.035 and 0.005, respectively). Our findings suggest that NDUFS1 may confer susceptibility to schizophrenia in male subjects, acting as a causative factor for the severity of negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Yunlong Zhu
- Department of Psychiatry, The Third Hospital of Quzhou, Zhejiang, China
| | - Zhongliang Wang
- Department of Psychiatry, The Third Hospital of Quzhou, Zhejiang, China
| | - Jianliang Ni
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meijuan Chen
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Wen Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Metabolic syndrome in patients taking clozapine: prevalence and influence of catechol-O-methyltransferase genotype. Psychopharmacology (Berl) 2014; 231:2211-8. [PMID: 24448899 DOI: 10.1007/s00213-013-3410-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 11/23/2013] [Indexed: 12/31/2022]
Abstract
RATIONALE Metabolic syndrome (MetS) has consistently been identified as an adverse effect of long-term treatment with atypical antipsychotics (AAPs) such as clozapine. Elevated serum homocysteine concentration has been found to act as an independent risk factor for MetS, and catechol-O-methyltransferase (COMT) catalyzes the homocysteine metabolism. We accordingly hypothesized that COMT dysregulation may confer the susceptibility to MetS induced by AAPs, potentially in a gender-specific manner, because the interaction effects of COMT and gender have been consistently reported. OBJECTIVES This study aimed at determining the prevalence and influence of COMT on MetS among a population undergoing long-term clozapine treatment. METHODS A total of 468 schizophrenia patients taking clozapine were divided into two groups, those experiencing MetS and non-MetS. We genotyped three functional variants (rs4633, rs4680, and rs4818) in COMT and measured the serum levels of fasting homocysteine, glucose, triglyceride (TG), and high-density lipoprotein cholesterol. RESULTS MetS was found in 202/468 (43.2 %) of all the patients, with 40.2 % prevalence (138/343) in males and 51.2 % (64/125) in females. Patients with MetS had notably higher metabolic parameters than those without MetS. The mean levels of homocysteine in patients with MetS were significantly higher than those without MetS. We found a positive association between the rs4680 polymorphism and the serum triglyceride levels (corrected P = 0.024). Further analysis revealed that the rs4680 Met allele was significantly associated with increased triglyceride levels among female patients (P = 0.009), but not among males (P = 0.07). CONCLUSIONS Our findings suggest a potential association between rs4680 in COMT and elevated TG levels, particularly among female patients.
Collapse
|
34
|
Zhang C, Wu Z, Hong W, Wang Z, Peng D, Chen J, Yuan C, Yu S, Xu L, Fang Y. Influence of BCL2 gene in major depression susceptibility and antidepressant treatment outcome. J Affect Disord 2014; 155:288-94. [PMID: 24321200 DOI: 10.1016/j.jad.2013.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND Our recent work indicated that low-expression of the anti-apoptotic protein B-cell/lymphoma 2 (Bcl-2) mRNA was observed among untreated major depressive disorder (MDD) patients, and the subsequent altered level of Bcl-2 was found to be close to the antidepressant treatment outcome. The primary aim of this present study was to examine whether a particular gene, encoding Bcl-2 (BCL2) confers risk to MDD, and likewise to investigate whether this gene acts as an indicator of antidepressant treatment outcome. METHODS We enrolled 178 treatment-resistant depression (TRD) and 612 non-treatment-resistant depression (NTRD) patients as well as 725 healthy controls. In total, three selected tagging SNPs (tagSNPs) of BCL2 (rs2279115, rs1801018 and rs1564483) were genotyped to test for possible association. Using TaqMan relative quantitative real-time polymerase chain reaction (PCR), we analyzed leukocytic expression of BCL2 mRNA in 47 healthy subjects. RESULTS Of the three SNPs, we observed no significant differences in genotype and allele frequencies between the MDD and control groups as well as between the TRD and NTRD groups. However, we found a significant association between the rs2279115C allele and TRD in males (corrected P=0.048) but not in females. Further real-time quantitative PCR analysis in healthy subjects revealed that the rs2279115 polymorphism significantly influenced BCL2 mRNA expression (P=0.03). LIMITATIONS This is a preliminary investigation with relatively small sample size and cross-sectional design. CONCLUSIONS These initial findings strengthen the hypothesis that BCL2 may play an important role in mediating the outcome of antidepressant treatment, a result that may further be confirmed by future genetic studies from large-scale populations that can overcome the limited sample size of this preliminary finding.
Collapse
Affiliation(s)
- Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Zhiguo Wu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wu Hong
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuowei Wang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychiatry, Hongkou District Mental Health Center of Shanghai, Shanghai, China
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Chen
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengmei Yuan
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunying Yu
- Department of Genetics, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Numakawa T, Richards M, Nakajima S, Adachi N, Furuta M, Odaka H, Kunugi H. The role of brain-derived neurotrophic factor in comorbid depression: possible linkage with steroid hormones, cytokines, and nutrition. Front Psychiatry 2014; 5:136. [PMID: 25309465 PMCID: PMC4175905 DOI: 10.3389/fpsyt.2014.00136] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/12/2014] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence demonstrates a connection between growth factor function (including brain-derived neurotrophic factor, BDNF), glucocorticoid levels (one of the steroid hormones), and the pathophysiology of depressive disorders. Because both BDNF and glucocorticoids regulate synaptic function in the central nervous system, their functional interaction is of major concern. Interestingly, alterations in levels of estrogen, another steroid hormone, may play a role in depressive-like behavior in postpartum females with fluctuations of BDNF-related molecules in the brain. BDNF and cytokines, which are protein regulators of inflammation, stimulate multiple intracellular signaling cascades involved in neuropsychiatric illness. Pro-inflammatory cytokines may increase vulnerability to depressive symptoms, such as the increased risk observed in patients with cancer and/or autoimmune diseases. In this review, we discuss the possible relationship between inflammation and depression, in addition to the cross-talk among cytokines, BDNF, and steroids. Further, since nutritional status has been shown to affect critical pathways involved in depression through both BDNF function and the monoamine system, we also review current evidence surrounding diet and supplementation (e.g., flavonoids) on BDNF-mediated brain functions.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Misty Richards
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles , Los Angeles, CA , USA
| | - Shingo Nakajima
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Naoki Adachi
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Miyako Furuta
- Department of Physiology, St. Marianna University School of Medicine , Kanagawa , Japan
| | - Haruki Odaka
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| |
Collapse
|