1
|
Marques IS, Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, de Melo IG, Assis J, Pereira D, Medeiros R. Long Non-Coding RNAs: Bridging Cancer-Associated Thrombosis and Clinical Outcome of Ovarian Cancer Patients. Int J Mol Sci 2023; 25:140. [PMID: 38203310 PMCID: PMC10778953 DOI: 10.3390/ijms25010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer (OC) and venous thromboembolism (VTE) have a close relationship, in which tumour cells surpass the haemostatic system to drive cancer progression. Long non-coding RNAs (lncRNAs) have been implicated in VTE pathogenesis, yet their roles in cancer-associated thrombosis (CAT) and their prognostic value are unexplored. Understanding how these lncRNAs influence venous thrombogenesis and ovarian tumorigenesis may lead to the identification of valuable biomarkers for VTE and OC management. Thus, this study evaluated the impact of five lncRNAs, namely MALAT1, TUG1, NEAT1, XIST and MEG8, on a cohort of 40 OC patients. Patients who developed VTE after OC diagnosis had worse overall survival compared to their counterparts (log-rank test, p = 0.028). Elevated pre-chemotherapy MEG8 levels in peripheral blood cells (PBCs) predicted VTE after OC diagnosis (Mann-Whitney U test, p = 0.037; Χ2 test, p = 0.033). In opposition, its low levels were linked to a higher risk of OC progression (adjusted hazard ratio (aHR) = 3.00; p = 0.039). Furthermore, low pre-chemotherapy NEAT1 levels in PBCs were associated with a higher risk of death (aHR = 6.25; p = 0.008). As for the remaining lncRNAs, no significant association with VTE incidence, OC progression or related mortality was observed. Future investigation with external validation in larger cohorts is needed to dissect the implications of the evaluated lncRNAs in OC patients.
Collapse
Affiliation(s)
- Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Sciences of the University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Joana Savva-Bordalo
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Mariana Rei
- Department of Gynaecology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - Joana Liz-Pimenta
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508 Vila Real, Portugal
| | - Inês Guerra de Melo
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal;
| | - Deolinda Pereira
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (I.G.d.M.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
2
|
Kumar A, Hollar L, McGill JB, Thaker PH, Salam M. MODY5 and Serous Ovarian Carcinoma in 17q12 Recurrent Deletion Syndrome. AACE Clin Case Rep 2023; 9:112-115. [PMID: 37520763 PMCID: PMC10382612 DOI: 10.1016/j.aace.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 08/01/2023] Open
Abstract
Background/Objective Maturity-onset diabetes of the young type 5 (MODY5) is caused by a hepatocyte nuclear factor 1β (HNF1β) gene mutation on chromosome 17q12. HNF1β mutations have also been found in ovarian clear cell carcinoma, whereas ovarian non-clear cell carcinoma expresses this mutation rarely. 17q12 recurrent deletion syndrome features include MODY5, urogenital anomalies, and psychiatric and neurodevelopmental disorders. This is a report of a patient with 17q12 recurrent deletion syndrome with MODY5, uterine abnormalities, and low-grade serous ovarian cancer. Case Report A 25-year-old woman with recently diagnosed stage IIIC low-grade serous ovarian carcinoma was evaluated at the endocrinology clinic for diabetes, which was diagnosed at the age of 12 years. C-peptide level was detectable and T1DM antibodies were negative. The mother had diabetes, partially septated uterus, and solitary kidney. Abdominal computed tomography showed pancreatic atrophy, ascites, omental and peritoneal nodularity, and calcifications. Laparoscopy revealed bicornuate uterus, 2 cervices, and vaginal septum. The patient underwent total abdominal hysterectomy and bilateral salpingo-oophorectomy, lymph node dissection, and omentectomy. Chromosomal microarray analysis revealed a pathogenic ∼1.8 Mb loss of 17q12, denoted arr[hg19]17q12(34477479_36283807)x1. Discussion 17q12deletion has been described as a susceptibility locus in some ovarian cancers. However, to our knowledge, predisposition to ovarian cancer as a feature of 17q12 recurrent deletion syndrome or MODY5 was not reported previously. Conclusion The disease association reported suggests that medical providers should periodically evaluate for ovarian cancer, gut, and urogenital abnormalities in individuals with MODY5. Likewise, individuals with diabetes plus urogenital tract abnormalities or 17q12deletion in an ovarian tumor should undergo genetic testing for MODY5.
Collapse
Affiliation(s)
| | - Laura Hollar
- Department of Endocrinology, Heritage Medical Associates, Nashville, Tennessee
| | - Janet B. McGill
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Premal H. Thaker
- Division of Gynecologic Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Maamoun Salam
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| |
Collapse
|
3
|
Gambella A, Kalantari S, Cadamuro M, Quaglia M, Delvecchio M, Fabris L, Pinon M. The Landscape of HNF1B Deficiency: A Syndrome Not Yet Fully Explored. Cells 2023; 12:cells12020307. [PMID: 36672242 PMCID: PMC9856658 DOI: 10.3390/cells12020307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The hepatocyte nuclear factor 1β (HNF1B) gene is involved in the development of specialized epithelia of several organs during the early and late phases of embryogenesis, performing its function mainly by regulating the cell cycle and apoptosis pathways. The first pathogenic variant of HNF1B (namely, R177X) was reported in 1997 and is associated with the maturity-onset diabetes of the young. Since then, more than 230 different HNF1B variants have been reported, revealing a multifaceted syndrome with complex and heterogenous genetic, pathologic, and clinical profiles, mainly affecting the pediatric population. The pancreas and kidneys are the most frequently affected organs, resulting in diabetes, renal cysts, and a decrease in renal function, leading, in 2001, to the definition of HNF1B deficiency syndrome, including renal cysts and diabetes. However, several other organs and systems have since emerged as being affected by HNF1B defect, while diabetes and renal cysts are not always present. Especially, liver involvement has generally been overlooked but recently emerged as particularly relevant (mostly showing chronically elevated liver enzymes) and with a putative relation with tumor development, thus requiring a more granular analysis. Nowadays, HNF1B-associated disease has been recognized as a clinical entity with a broader and more variable multisystem phenotype, but the reasons for the phenotypic heterogeneity are still poorly understood. In this review, we aimed to describe the multifaceted nature of HNF1B deficiency in the pediatric and adult populations: we analyzed the genetic, phenotypic, and clinical features of this complex and misdiagnosed syndrome, covering the most frequent, unusual, and recently identified traits.
Collapse
Affiliation(s)
- Alessandro Gambella
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Division of Liver and Transplant Pathology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Silvia Kalantari
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Marco Quaglia
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Maurizio Delvecchio
- Metabolic Disease and Genetics Unit, Giovanni XXIII Children’s Hospital, AOU Policlinico di Bari, 70124 Bari, Italy
- Correspondence:
| | - Luca Fabris
- Department of Molecular Medicine, University of Padova, 35121 Padua, Italy
- Liver Center, Digestive Disease Section, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Michele Pinon
- Pediatric Gastroenterology Unit, Regina Margherita Children’s Hospital, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
4
|
Nameki R, Shetty A, Dareng E, Tyrer J, Lin X, Pharoah P, Corona RI, Kar S, Lawrenson K. chromMAGMA: regulatory element-centric interrogation of risk variants. Life Sci Alliance 2022; 5:e202201446. [PMID: 35777959 PMCID: PMC9251535 DOI: 10.26508/lsa.202201446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
Candidate causal risk variants from genome-wide association studies reside almost exclusively in noncoding regions of the genome and innovative approaches are necessary to understand their biological function. Multi-marker analysis of genomic annotation (MAGMA) is a widely used program that nominates candidate risk genes by mapping single-nucleotide polymorphism summary statistics from genome-wide association studies to gene bodies. We augmented MAGMA to create chromatin-MAGMA (chromMAGMA), a method to nominate candidate risk genes based on the presence of risk variants within noncoding regulatory elements (REs). We applied chromMAGMA to a genetic susceptibility dataset for epithelial ovarian cancer (EOC), a rare gynecologic malignancy characterized by high mortality. This identified 155 unique candidate EOC risk genes across five EOC histotypes; 83% (105/127) of high-grade serous ovarian cancer risk genes had not previously been implicated in this EOC histotype. Risk genes nominated by chromMAGMA converged on mRNA splicing and transcriptional dysregulation pathways. chromMAGMA is a pipeline that nominates candidate risk genes through a gene regulation-focused approach and helps interpret the biological mechanism of noncoding risk variants for complex diseases.
Collapse
Affiliation(s)
- Robbin Nameki
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anamay Shetty
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Eileen Dareng
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Xianzhi Lin
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Rosario I Corona
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Siddhartha Kar
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kate Lawrenson
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Prevention and Control Program, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
5
|
Arner EN, Rathmell WK. Mutation and tissue lineage lead to organ-specific cancer. Nature 2022; 606:871-872. [PMID: 35676353 DOI: 10.1038/d41586-022-01535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Tamura R, Yoshihara K, Enomoto T. Therapeutic Strategies Focused on Cancer-Associated Hypercoagulation for Ovarian Clear Cell Carcinoma. Cancers (Basel) 2022; 14:2125. [PMID: 35565252 PMCID: PMC9099459 DOI: 10.3390/cancers14092125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is associated with chemotherapy resistance and poor prognosis, especially in advanced cases. Although comprehensive genomic analyses have clarified the significance of genomic alterations such as ARID1A and PIK3CA mutations in OCCC, therapeutic strategies based on genomic alterations have not been confirmed. On the other hand, OCCC is clinically characterized by a high incidence of thromboembolism. Moreover, OCCC specifically shows high expression of tissue factor and interleukin-6, which play a critical role in cancer-associated hypercoagulation and may be induced by OCCC-specific genetic alterations or the endometriosis-related tumor microenvironment. In this review, we focused on the association between cancer-associated hypercoagulation and molecular biology in OCCC. Moreover, we reviewed the effectiveness of candidate drugs targeting hypercoagulation, such as tissue factor- or interleukin-6-targeting drugs, anti-inflammatory drugs, anti-hypoxia signaling drugs, anticoagulants, and combined immunotherapy with these drugs for OCCC. This review is expected to contribute to novel basic research and clinical trials for the prevention, early detection, and treatment of OCCC focused on hypercoagulation.
Collapse
Affiliation(s)
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (R.T.); (T.E.)
| | | |
Collapse
|
7
|
Ma Y, Guo J, Li D, Cai X. Identification of potential key genes and functional role of CENPF in osteosarcoma using bioinformatics and experimental analysis. Exp Ther Med 2021; 23:80. [PMID: 34934449 PMCID: PMC8652394 DOI: 10.3892/etm.2021.11003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma, which arises from bone tissue, is considered to be one of the most common types of cancer in children and teenagers. As the etiology of osteosarcoma has not been fully elucidated, the overall prognosis for patients is generally poor. In recent years, the development of bioinformatical technology has allowed researchers to identify numerous molecular biological characteristics associated with the prognosis of osteosarcoma using online databases. In the present study, Gene Expression Omnibus (GEO) database was used and three microarray datasets were obtained. The GEO2R web tool was utilized and differentially expressed genes (DEGs) in osteosarcoma tissue were identified. Venn analysis was performed to determine the intersection of the DEG profiles. DEGs were analyzed by Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Protein-protein interactions (PPIs) between these DEGs were analyzed using the Search Tool for the Retrieval of Interacting Genes database, and the PPI network was then visualized using Cytoscape software. The top ten genes were identified based on measurement of degree, density of maximum neighborhood component, maximal clique centrality and mononuclear cell counts in the PPI network, and five overlapping genes [origin recognition complex subunit 6 (ORC6), IGF-binding protein 5 (IGFBP5), minichromosome maintenance 10 replication initiation factor (MCM10), MET proto-oncogene, receptor tyrosine kinase (MET) and centromere protein F (CENPF)] were identified. Additionally, three module networks were analyzed by Molecular Complex Detection (MCODE), and six key genes [ORC6, MCM10, DEP domain containing 1 (DEPDC1), CENPF, TIMELESS interacting protein (TIPIN) and shugoshin 1 (SGOL1)] were screened. Combined with the results from Cytoscape and MCODE, eight hub genes (ORC6, MCM10, DEPDC1, CENPF, TIPIN, SGOL1, MET and IGFBP5) were obtained. Furthermore, Kaplan-Meier plotter survival analysis was used to evaluate the prognostic value of these eight hub genes in patients with osteosarcoma. Oncomine and GEPIA databases were applied to further confirm the expression levels of hub genes in tissue. Finally, the functional roles of the core gene CENPF were investigated using Cell Counting Kit-8, wound healing and Transwell assays, which indicated that CENPF knockdown inhibited the proliferation, migration and invasion of osteosarcoma cells. These results provided potential prognostic markers, as well as a basis for further investigation of the mechanism underlying osteosarcoma.
Collapse
Affiliation(s)
- Yihui Ma
- Department of Stomatology, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Jiaping Guo
- Department of Stomatology, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Da Li
- Department of Stomatology, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Xianhua Cai
- Department of Orthopedics, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
8
|
Wong OGW, Li J, Cheung ANY. Targeting DNA Damage Response Pathway in Ovarian Clear Cell Carcinoma. Front Oncol 2021; 11:666815. [PMID: 34737943 PMCID: PMC8560708 DOI: 10.3389/fonc.2021.666815] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is one of the major types of ovarian cancer and is of higher relative prevalence in Asians. It also shows higher possibility of resistance to cisplatin-based chemotherapy leading to poor prognosis. This may be attributed to the relative lack of mutations and aberrations in homologous recombination-associated genes, which are crucial in DNA damage response (DDR), such as BRCA1, BRCA2, p53, RAD51, and genes in the Fanconi anemia pathway. On the other hand, OCCC is characterized by a number of genetic defects rendering it vulnerable to DDR-targeting therapy, which is emerging as a potent treatment strategy for various cancer types. Mutations of ARID1A, PIK3CA, PTEN, and catenin beta 1 (CTNNB1), as well as overexpression of transcription factor hepatocyte nuclear factor-1β (HNF-1β), and microsatellite instability are common in OCCC. Of particular note is the loss-of-function mutations in ARID1A, which is found in approximately 50% of OCCC. ARID1A is crucial for processing of DNA double-strand break (DSB) and for sustaining DNA damage signaling, rendering ARID1A-deficient cells prone to impaired DNA damage checkpoint regulation and hence sensitive to poly ADP ribose polymerase (PARP) inhibitors. However, while preclinical studies have demonstrated the possibility to exploit DDR deficiency in OCCC for therapeutic purpose, progress in clinical application is lagging. In this review, we will recapitulate the preclinical studies supporting the potential of DDR targeting in OCCC treatment, with emphasis on the role of ARID1A in DDR. Companion diagnostic tests (CDx) for predicting susceptibility to PARP inhibitors are rapidly being developed for solid tumors including ovarian cancers and may readily be applicable on OCCC. The potential of various available DDR-targeting drugs for treating OCCC by drawing analogies with other solid tumors sharing similar genetic characteristics with OCCC will also be discussed.
Collapse
|
9
|
Acquired Evolution of Mitochondrial Metabolism Regulated by HNF1B in Ovarian Clear Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13102413. [PMID: 34067626 PMCID: PMC8157013 DOI: 10.3390/cancers13102413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/11/2023] Open
Abstract
Clear cell carcinoma (CCC) of the ovary exhibits a unique morphology and clinically malignant behavior. The eosinophilic cytoplasm includes abundant glycogen. Although the growth is slow, the prognosis is poor owing to resistance to conventional chemotherapies. CCC often arises in endometriotic cysts and is accompanied by endometriosis. Based on these characteristics, three clinical questions are considered: why does ovarian cancer, especially CCC and endometrioid carcinoma, frequently occur in endometriotic cysts, why do distinct histological subtypes (CCC and endometrioid carcinoma) arise in the endometriotic cyst, and why does ovarian CCC possess unique characteristics? Mutations in AT-rich interacting domain-containing protein 1A and phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit alpha genes may contribute to the carcinogenesis of ovarian CCC, whereas hepatocyte nuclear factor-1-beta (HNF1B) plays crucial roles in sculpting the unique characteristics of ovarian CCC through metabolic alterations. HNF1B increases glutathione synthesis, activates anaerobic glycolysis called the Warburg effect, and suppresses mitochondria. These metabolic changes may be induced in stressful environments. Life has evolved to utilize and control energy; eukaryotes require mitochondria to transform oxygen reduction into useful energy. Because mitochondrial function is suppressed in ovarian CCC, these cancer cells probably acquired further metabolic evolution during the carcinogenic process in order to survive stressful environments.
Collapse
|
10
|
Quilichini E, Fabre M, Nord C, Dirami T, Le Marec A, Cereghini S, Pasek RC, Gannon M, Ahlgren U, Haumaitre C. Insights into the etiology and physiopathology of MODY5/HNF1B pancreatic phenotype with a mouse model of the human disease. J Pathol 2021; 254:31-45. [PMID: 33527355 PMCID: PMC8251562 DOI: 10.1002/path.5629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Maturity-onset diabetes of the young type 5 (MODY5) is due to heterozygous mutations or deletion of HNF1B. No mouse models are currently available to recapitulate the human MODY5 disease. Here, we investigate the pancreatic phenotype of a unique MODY5 mouse model generated by heterozygous insertion of a human HNF1B splicing mutation at the intron-2 splice donor site in the mouse genome. This Hnf1bsp2/+ model generated with targeted mutation of Hnf1b mimicking the c.544+1G>T (T) mutation identified in humans, results in alternative transcripts and a 38% decrease of native Hnf1b transcript levels. As a clinical feature of MODY5 patients, the hypomorphic mouse model Hnf1bsp2/+ displays glucose intolerance. Whereas Hnf1bsp2/+ isolated islets showed no altered insulin secretion, we found a 65% decrease in pancreatic insulin content associated with a 30% decrease in total large islet volume and a 20% decrease in total β-cell volume. These defects were associated with a 30% decrease in expression of the pro-endocrine gene Neurog3 that we previously identified as a direct target of Hnf1b, showing a developmental etiology. As another clinical feature of MODY5 patients, the Hnf1bsp2/+ pancreases display exocrine dysfunction with hypoplasia. We observed chronic pancreatitis with loss of acinar cells, acinar-to-ductal metaplasia, and lipomatosis, with upregulation of signaling pathways and impaired acinar cell regeneration. This was associated with ductal cell deficiency characterized by shortened primary cilia. Importantly, the Hnf1bsp2/+ mouse model reproduces the pancreatic features of the human MODY5/HNF1B disease, providing a unique in vivo tool for molecular studies of the endocrine and exocrine defects and to advance basic and translational research. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Evans Quilichini
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
| | - Mélanie Fabre
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
| | | | - Thassadite Dirami
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
- Sorbonne UniversitéUMR7622‐IBPSParisFrance
| | - Axelle Le Marec
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
- Sorbonne UniversitéUMR7622‐IBPSParisFrance
| | - Silvia Cereghini
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
- Sorbonne UniversitéUMR7622‐IBPSParisFrance
| | - Raymond C Pasek
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Maureen Gannon
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Ulf Ahlgren
- Umeå Centre for Molecular MedicineUmeå UniversityUmeåSweden
| | - Cécile Haumaitre
- Centre National de la Recherche Scientifique (CNRS)UMR7622, Institut de Biologie Paris‐Seine (IBPS)ParisFrance
- Sorbonne UniversitéUMR7622‐IBPSParisFrance
| |
Collapse
|
11
|
Zhu C, Xu Z, Zhang T, Qian L, Xiao W, Wei H, Jin T, Zhou Y. Updates of Pathogenesis, Diagnostic and Therapeutic Perspectives for Ovarian Clear Cell Carcinoma. J Cancer 2021; 12:2295-2316. [PMID: 33758607 PMCID: PMC7974897 DOI: 10.7150/jca.53395] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a special pathological type of epithelial ovarian carcinoma (EOC) and has a high prevalence in Asia without specific molecular subtype classification. Endometriosis is a recognized precancerous lesion that carries 3-fold increased risk of OCCC. Ovarian endometrioid carcinoma, which also originates from endometriosis, shares several features with OCCC, including platinum resistance and younger age at diagnosis. Patients with OCCC have about a 2.5 to 4 times greater risk of having a venous thromboembolism (VTE) compared with other EOC, and OCCC tends to metastasize through lymphatic vesicular and peritoneal spread as opposed to hematogenous metastasis. There is only mild elevation of the conventional biomarker CA125. Staging surgery or optimal cytoreduction combined with chemotherapy is a common therapeutic strategy for OCCC. However, platinum resistance commonly portends a poor prognosis, so novel treatments are urgently needed. Targeted therapy and immunotherapy are currently being studied, including PARP, EZH2, and ATR inhibitors combined with the synthetic lethality of ARID1A-dificiency, and MAPK/PI3K/HER2, VEGF/bFGF/PDGF, HNF1β, and PD-1/PD-L1 inhibitors. Advanced stage, suboptimal cytoreduction, platinum resistance, lymph node metastasis, and VTE are major prognostic predictors for OCCC. We focus on update pathogenesis, diagnostic methods and therapeutic approaches to provide future directions for clinical diagnosis and treatment of OCCC.
Collapse
Affiliation(s)
- Chenchen Zhu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital, Anhui Medical University, Hefei, 230001, China
| | - Zhihao Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Tianjiao Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lili Qian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Weihua Xiao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital, Anhui Medical University, Hefei, 230001, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
12
|
Chandra S, Srinivasan S, Batra J. Hepatocyte nuclear factor 1 beta: A perspective in cancer. Cancer Med 2021; 10:1791-1804. [PMID: 33580750 PMCID: PMC7940219 DOI: 10.1002/cam4.3676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte nuclear factor 1 beta (HNF1 β/B) exists as a homeobox transcription factor having a vital role in the embryonic development of organs mainly liver, kidney and pancreas. Initially described as a gene causing maturity‐onset diabetes of the young (MODY), HNF1β expression deregulation and single nucleotide polymorphisms in HNF1β have now been associated with several tumours including endometrial, prostate, ovarian, hepatocellular, renal and colorectal cancers. Its function has been studied either as homodimer or heterodimer with HNF1α. In this review, the role of HNF1B in different cancers will be discussed along with the role of its splice variants, and its emerging role as a potential biomarker in cancer.
Collapse
Affiliation(s)
- Shubhra Chandra
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Srilakshmi Srinivasan
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Jyotsna Batra
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
13
|
Nameki R, Chang H, Reddy J, Corona RI, Lawrenson K. Transcription factors in epithelial ovarian cancer: histotype-specific drivers and novel therapeutic targets. Pharmacol Ther 2020; 220:107722. [PMID: 33137377 DOI: 10.1016/j.pharmthera.2020.107722] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Transcription factors (TFs) are major contributors to cancer risk and somatic development. In preclinical and clinical studies, direct or indirect inhibition of TF-mediated oncogenic gene expression profiles have proven to be effective in many tumor types, highlighting this group of proteins as valuable therapeutic targets. In spite of this, our understanding of TFs in epithelial ovarian cancer (EOC) is relatively limited. EOC is a heterogeneous disease composed of five major histologic subtypes; high-grade serous, low-grade serous, endometrioid, clear cell and mucinous. Each histology is associated with unique clinical etiologies, sensitivity to therapies, and molecular signatures - including diverse transcriptional regulatory programs. While some TFs are shared across EOC subtypes, a set of TFs are expressed in a histotype-specific manner and likely explain part of the histologic diversity of EOC subtypes. Targeting TFs present with unique opportunities for development of novel precision medicine strategies for ovarian cancer. This article reviews the critical TFs in EOC subtypes and highlights the potential of exploiting TFs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Robbin Nameki
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Heidi Chang
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica Reddy
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosario I Corona
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Analysis of expression, epigenetic, and genetic changes of HNF1B in 130 kidney tumours. Sci Rep 2020; 10:17151. [PMID: 33051485 PMCID: PMC7555858 DOI: 10.1038/s41598-020-74059-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022] Open
Abstract
Hepatocyte nuclear factor 1 beta (HNF1B) is a transcription factor which plays a crucial role in nephronogenesis, and its germline mutations have been associated with kidney developmental disorders. However, the effects of HNF1B somatic exonic mutations and its role in the pathogenesis of kidney tumours has not yet been elucidated. Depending on the type of the tumour HNF1B may act as a tumour suppressor or oncogene, although the exact mechanism by which HNF1B participates in the process of cancerogenesis is unknown. Using an immunohistochemical approach, and methylation and mutation analysis, we have investigated the expression, epigenetic, and genetic changes of HNF1B in 130 cases of renal tumours (121 renal cell carcinomas, 9 oncocytomas). In the subset of clear cell renal cell carcinoma (ccRCC), decreased HNF1B expression was associated with a higher tumour grade and higher T stage. The mutation analysis revealed no mutations in the analysed samples. Promoter methylation was detected in two ccRCCs and one oncocytoma. The results of our work on a limited sample set suggest that while in papillary renal cell carcinoma HNF1B functions as an oncogene, in ccRCC and chRCC it may act in a tumour suppressive fashion.
Collapse
|
15
|
Meta-Analysis of VTE Risk: Ovarian Cancer Patients by Stage, Histology, Cytoreduction, and Ascites at Diagnosis. Obstet Gynecol Int 2020; 2020:2374716. [PMID: 32963543 PMCID: PMC7486642 DOI: 10.1155/2020/2374716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Venous thromboembolisms (VTEs) have been a leading secondary cause of death among ovarian cancer patients, prompting multiple studies of risk factors. The objective of this meta-analysis is to quantify the associations between VTE and the most commonly reported risk factors among ovarian cancer patients. PubMed, Embase, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) were used to identify observational studies. Two reviewers independently abstracted data and assessed quality via the Newcastle–Ottawa tool. A random effects model was used to calculate the pooled odds ratios for VTE with each of the following exposures: advanced cancer stage, clear cell histology, serous histology, ascites at diagnosis, and complete cytoreduction. The I2 and Q tests were used to evaluate heterogeneity. Twenty cohort studies with 6,324 total ovarian cancer patients, 769 of whom experienced a VTE, were included. The odds of VTE in ovarian cancer patients were higher among patients with cancer stage III/IV (versus cancer stage I/II, pooled odds ratio (OR) 2.73; 95% CI 1.84–4.06; I2= 64%), clear cell (versus nonclear cell) histology (OR 2.11; 95% CI 1.55–2.89; I2 = 6%), and ascites (versus no ascites) at diagnosis (OR 2.12; 95% CI 1.51–2.96; I2 = 32%). Serous (versus nonserous) histology (OR 1.26; 95% CI 0.91–1.75; I2 = 42%) and complete (versus incomplete) cytoreduction (OR 1.05; 95% CI 0.27–4.11; I2 = 88%) were not associated with VTE. This meta-analysis quantifies the significantly elevated odds of VTE in ovarian cancer patients with advanced stage at diagnosis, clear cell histology, and ascites at diagnosis. Further studies are needed to account for confounders and inform clinical decision-making tools.
Collapse
|
16
|
Expression Patterns of Coagulation Factor XIII Subunit A on Leukemic Lymphoblasts Correlate with Clinical Outcome and Genetic Subtypes in Childhood B-cell Progenitor Acute Lymphoblastic Leukemia. Cancers (Basel) 2020; 12:cancers12082264. [PMID: 32823516 PMCID: PMC7463512 DOI: 10.3390/cancers12082264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Based on previous retrospective results, we investigated the association of coagulation FXIII subunit A (FXIII-A) expression pattern on survival and correlations with known prognostic factors of B-cell progenitor (BCP) childhood acute lymphoblastic leukemia (ALL) as a pilot study of the prospective multi-center BFM ALL-IC 2009 clinical trial. METHODS The study included four national centers (n = 408). Immunophenotyping by flow cytometry and cytogenetic analysis were performed by standard methods. Copy number alteration was studied in a subset of patients (n = 59). Survival rates were estimated by Kaplan-Meier analysis. Correlations between FXIII-A expression patterns and risk factors were investigated with Cox and logistic regression models. RESULTS Three different patterns of FXIII-A expression were observed: negative (<20%), dim (20-79%), and bright (≥80%). The FXIII-A dim expression group had significantly higher 5-year event-free survival (EFS) (93%) than the FXIII-A negative (70%) and FXIII-A bright (61%) groups. Distribution of intermediate genetic risk categories and the "B-other" genetic subgroup differed significantly between the FXIII-A positive and negative groups. Multivariate logistic regression confirmed independent association between the FXIII-A negative expression characteristics and the prevalence of intermediate genetic risk group. CONCLUSIONS FXIII-A negativity is associated with dismal survival in children with BCP-ALL and is an indicator for the presence of unfavorable genetic alterations.
Collapse
|
17
|
Quilichini E, Fabre M, Dirami T, Stedman A, De Vas M, Ozguc O, Pasek RC, Cereghini S, Morillon L, Guerra C, Couvelard A, Gannon M, Haumaitre C. Pancreatic Ductal Deletion of Hnf1b Disrupts Exocrine Homeostasis, Leads to Pancreatitis, and Facilitates Tumorigenesis. Cell Mol Gastroenterol Hepatol 2019; 8:487-511. [PMID: 31229598 PMCID: PMC6722301 DOI: 10.1016/j.jcmgh.2019.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS The exocrine pancreas consists of acinar cells that produce digestive enzymes transported to the intestine through a branched ductal epithelium. Chronic pancreatitis is characterized by progressive inflammation, fibrosis, and loss of acinar tissue. These changes of the exocrine tissue are risk factors for pancreatic cancer. The cause of chronic pancreatitis cannot be identified in one quarter of patients. Here, we investigated how duct dysfunction could contribute to pancreatitis development. METHODS The transcription factor Hnf1b, first expressed in pancreatic progenitors, is strictly restricted to ductal cells from late embryogenesis. We previously showed that Hnf1b is crucial for pancreas morphogenesis but its postnatal role still remains unelucidated. To investigate the role of pancreatic ducts in exocrine homeostasis, we inactivated the Hnf1b gene in vivo in mouse ductal cells. RESULTS We uncovered that postnatal Hnf1b inactivation in pancreatic ducts leads to chronic pancreatitis in adults. Hnf1bΔduct mutants show dilatation of ducts, loss of acinar cells, acinar-to-ductal metaplasia, and lipomatosis. We deciphered the early events involved, with down-regulation of cystic disease-associated genes, loss of primary cilia, up-regulation of signaling pathways, especially the Yap pathway, which is involved in acinar-to-ductal metaplasia. Remarkably, Hnf1bΔduct mutants developed pancreatic intraepithelial neoplasia and promote pancreatic intraepithelial neoplasia progression in concert with KRAS. We further showed that adult Hnf1b inactivation in pancreatic ducts is associated with impaired regeneration after injury, with persistent metaplasia and initiation of neoplasia. CONCLUSIONS Loss of Hnf1b in ductal cells leads to chronic pancreatitis and neoplasia. This study shows that Hnf1b deficiency may contribute to diseases of the exocrine pancreas and gains further insight into the etiology of pancreatitis and tumorigenesis.
Collapse
Affiliation(s)
- Evans Quilichini
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Mélanie Fabre
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Thassadite Dirami
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Aline Stedman
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Matias De Vas
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Ozge Ozguc
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Raymond C. Pasek
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Silvia Cereghini
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Lucie Morillon
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France
| | - Carmen Guerra
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Anne Couvelard
- Hôpital Bichat, Département de Pathologie, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Paris, France
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cécile Haumaitre
- UMR7622 Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Paris, France,Correspondence Address correspondence to: Cecile Haumaitre, PhD, Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, 9 Quai Saint-Bernard, Batiment C-7eme Etage-Case 24, 75252 Paris Cedex 05, France. fax: (33) 1-44-27-34-45.
| |
Collapse
|
18
|
Ducat A, Vargas A, Doridot L, Bagattin A, Lerner J, Vilotte JL, Buffat C, Pontoglio M, Miralles F, Vaiman D. Low-dose aspirin protective effects are correlated with deregulation of HNF factor expression in the preeclamptic placentas from mice and humans. Cell Death Discov 2019; 5:94. [PMID: 31098302 PMCID: PMC6510804 DOI: 10.1038/s41420-019-0170-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 01/07/2023] Open
Abstract
Aspirin (acetyl-salicylic acid) is one of the most ancient drugs of the human pharmacopeia. Nonetheless, its action at low doses is not well understood at the molecular level. One of the applications of low-dose aspirin treatment is the prevention of preeclampsia (PE) in patients at risk. Foeto-placental overexpression of the STOX1A transcription factor in mice triggers PE symptoms. Transcriptomic analysis of the placentas, showed that aspirin massively down-regulates genes of the coagulation and complement cascade, as well as genes involved in lipid transport. The genes modified by aspirin treatment are not the ones that are modified by STOX1 overexpression, suggesting that aspirin could act downstream, symptomatically on the preeclamptic disease. Bioinformatics analysis of the promoters of the deregulated genes showed that they are strongly enriched in HNF transcription factors-binding sites, in accordance with existing literature showing their roles as regulators of coagulation. Two of these transcription factors, Hnf1β and Hnf4α are found down-regulated by aspirin treatment. In parallel, we show that in human patient placentas, aspirin-induced deregulations of genes of the coagulation cascade are also observed. Finally, the expression of Hnf1β target sequences (Kif12, F2, Hnf4α promoters and a synthetic concatemer of the Hnf1β-binding site) were investigated by transfection in trophoblast cell models, with or without aspirin treatment and with or without STOX1A overexpression. In this model we observed that STOX1A and aspirin tended to synergize in the down-regulation of Hnf1β target genes in trophoblasts.
Collapse
Affiliation(s)
- Aurélien Ducat
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Alexandra Vargas
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
- Epigenetics and Cell Signaling, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ludivine Doridot
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Alessia Bagattin
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Jonathan Lerner
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Jean-Luc Vilotte
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Christophe Buffat
- Department of Neonatology, Hôpital La Conception, 147 Boulevard Baille, 13005 Marseille, France
| | - Marco Pontoglio
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Francisco Miralles
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Daniel Vaiman
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France
| |
Collapse
|
19
|
High-grade Endometrial Carcinomas: Morphologic and Immunohistochemical Features, Diagnostic Challenges and Recommendations. Int J Gynecol Pathol 2019; 38 Suppl 1:S40-S63. [PMID: 30550483 PMCID: PMC6296248 DOI: 10.1097/pgp.0000000000000491] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This review of challenging diagnostic issues concerning high-grade endometrial carcinomas is derived from the authors' review of the literature followed by discussions at the Endometrial Cancer Workshop sponsored by the International Society of Gynecological Pathologists in 2016. Recommendations presented are evidence-based, insofar as this is possible, given that the levels of evidence are weak or moderate due to small sample sizes and nonuniform diagnostic criteria used in many studies. High-grade endometrioid carcinomas include FIGO grade 3 endometrioid carcinomas, serous carcinomas, clear cell carcinomas, undifferentiated carcinomas, and carcinosarcomas. FIGO grade 3 endometrioid carcinoma is diagnosed when an endometrioid carcinoma exhibits >50% solid architecture (excluding squamous areas), or when an architecturally FIGO grade 2 endometrioid carcinoma exhibits marked cytologic atypia, provided that a glandular variant of serous carcinoma has been excluded. The most useful immunohistochemical studies to make the distinction between these 2 histotypes are p53, p16, DNA mismatch repair proteins, PTEN, and ARID1A. Endometrial clear cell carcinomas must display prototypical architectural and cytologic features for diagnosis. Immunohistochemical stains, including, Napsin A and p504s can be used as ancillary diagnostic tools; p53 expression is aberrant in a minority of clear cell carcinomas. Of note, clear cells are found in all types of high-grade endometrial carcinomas, leading to a tendency to overdiagnose clear cell carcinoma. Undifferentiated carcinoma (which when associated with a component of low-grade endometrioid carcinoma is termed "dedifferentiated carcinoma") is composed of sheets of monotonous, typically dyscohesive cells, which can have a rhabdoid appearance; they often exhibit limited expression of cytokeratins and epithelial membrane antigen, are usually negative for PAX8 and hormone receptors, lack membranous e-cadherin and commonly demonstrate loss of expression of DNA mismatch repair proteins and SWI-SNF chromatin remodeling proteins. Carcinosarcomas must show unequivocal morphologic evidence of malignant epithelial and mesenchymal differentiation.
Collapse
|
20
|
Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, Tseng YY, Deasy R, Kost-Alimova M, Dančík V, Leshchiner ES, Viswanathan VS, Signoretti S, Choueiri TK, Boehm JS, Wagner BK, Doench JG, Clish CB, Clemons PA, Schreiber SL. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun 2019; 10:1617. [PMID: 30962421 PMCID: PMC6453886 DOI: 10.1038/s41467-019-09277-9] [Citation(s) in RCA: 550] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
Clear-cell carcinomas (CCCs) are a histological group of highly aggressive malignancies commonly originating in the kidney and ovary. CCCs are distinguished by aberrant lipid and glycogen accumulation and are refractory to a broad range of anti-cancer therapies. Here we identify an intrinsic vulnerability to ferroptosis associated with the unique metabolic state in CCCs. This vulnerability transcends lineage and genetic landscape, and can be exploited by inhibiting glutathione peroxidase 4 (GPX4) with small-molecules. Using CRISPR screening and lipidomic profiling, we identify the hypoxia-inducible factor (HIF) pathway as a driver of this vulnerability. In renal CCCs, HIF-2α selectively enriches polyunsaturated lipids, the rate-limiting substrates for lipid peroxidation, by activating the expression of hypoxia-inducible, lipid droplet-associated protein (HILPDA). Our study suggests targeting GPX4 as a therapeutic opportunity in CCCs, and highlights that therapeutic approaches can be identified on the basis of cell states manifested by morphological and metabolic features in hard-to-treat cancers.
Collapse
Affiliation(s)
- Yilong Zou
- The Broad Institute, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | - Amy A Deik
- The Broad Institute, Cambridge, MA, 02142, USA
| | - Haoxin Li
- The Broad Institute, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | - Wenyu Wang
- The Broad Institute, Cambridge, MA, 02142, USA
| | | | | | | | | | | | | | - Sabina Signoretti
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | | | | | | | | | | | - Stuart L Schreiber
- The Broad Institute, Cambridge, MA, 02142, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
21
|
Napsin A, Hepatocyte Nuclear Factor-1-Beta (HNF-1β), Estrogen and Progesterone Receptors Expression in Arias-Stella Reaction. Am J Surg Pathol 2019; 43:325-333. [DOI: 10.1097/pas.0000000000001212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Lopes‐Coelho F, Silva F, Hipólito A, Cardoso BA, Serpa J. Acetylation drives hepatocyte nuclear factor 1β stability by blocking proteasome‐mediated degradation. J Cell Biochem 2018; 120:9337-9344. [DOI: 10.1002/jcb.28209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Filipa Lopes‐Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria Lisboa Portugal
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG) Lisboa Portugal
| | - Fernanda Silva
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria Lisboa Portugal
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG) Lisboa Portugal
| | - Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria Lisboa Portugal
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG) Lisboa Portugal
| | - Bruno A. Cardoso
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria Lisboa Portugal
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG) Lisboa Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria Lisboa Portugal
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG) Lisboa Portugal
| |
Collapse
|
23
|
Ji JX, Wang YK, Cochrane DR, Huntsman DG. Clear cell carcinomas of the ovary and kidney: clarity through genomics. J Pathol 2018; 244:550-564. [PMID: 29344971 DOI: 10.1002/path.5037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/19/2022]
Abstract
Clear cell ovarian carcinoma (CCOC) and clear cell renal cell carcinoma (ccRCC) both feature clear cytoplasm, owing to the accumulation of cytoplasmic glycogen. Genomic studies have demonstrated several mutational similarities between these two diseases, including frequent alterations in the chromatin remodelling SWI-SNF and cellular proliferation phosphoinositide 3-kinase-mammalian target of rapamycin pathways, as well as a shared hypoxia-like mRNA expression signature. Although many targeted treatment options have been approved for advanced-stage ccRCC, CCOC patients are still treated with conventional platinum and taxane chemotherapy, to which they are resistant. To determine the extent of similarity between these malignancies, we performed unsupervised clustering of mRNA expression data from these cancers. This review highlights the similarities and differences between these two clear cell carcinomas to facilitate knowledge translation within future research efforts. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jennifer X Ji
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yi Kan Wang
- Department of Molecular Oncology, British Columbia Cancer Agency, BC, Canada
| | - Dawn R Cochrane
- Department of Molecular Oncology, British Columbia Cancer Agency, BC, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, British Columbia Cancer Agency, BC, Canada
| |
Collapse
|
24
|
Bártů M, Dundr P, Němejcová K, Tichá I, Hojný H, Hájková N. The Role of HNF1B in Tumorigenesis of Solid Tumours: a Review of Current Knowledge. Folia Biol (Praha) 2018; 64:71-83. [PMID: 30394265 DOI: 10.14712/fb2018064030071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hepatocyte nuclear factor 1-β is a transcription factor which plays a crucial role during ontogenesis in the differentiation of visceral endoderm from primitive endoderm, and is especially important for the normal development of the kidney, urogenital tract, gastrointestinal tract, liver, and pancreas. Despite the growing knowledge about the potential involvement of hepatocyte nuclear factor 1-β in the process of carcinogenesis, the exact underlying mechanism that would explain its rather varied effects in different tumours has not been sufficiently investigated. Most of the data regarding the significance of hepatocyte nuclear factor 1-β arise from genome- wide association studies and is concerned with the influence of single-nucleotide polymorphisms of hepatocyte nuclear factor 1-β on either the increased or decreased susceptibility to certain types of cancer. However, the influence of both the germinal and somatic mutations of this gene on the process of carcinogenesis is still poorly understood. According to current data, in some tumours hepatocyte nuclear factor 1-β acts as a protooncogene, while in others as a tumour suppressor gene, although the reasons for this are not clear. The exact incidence of hepatocyte nuclear factor 1-β mutations and the spectrum of tumours in which they may play a role in the process of carcinogenesis remain unknown. From the practical point of view, immunohistochemical expression of hepatocyte nuclear factor 1-β can be used in differential diagnostics of certain tumours, especially clear cell carcinoma. In our article we review the current knowledge regarding the significance of hepatocyte nuclear factor 1-β in carcinogenesis.
Collapse
Affiliation(s)
- M Bártů
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - P Dundr
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - K Němejcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - I Tichá
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - H Hojný
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - N Hájková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
25
|
Sneha P, Thirumal Kumar D, Lijo J, Megha M, Siva R, George Priya Doss C. Probing the Protein-Protein Interaction Network of Proteins Causing Maturity Onset Diabetes of the Young. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:167-202. [PMID: 29412996 DOI: 10.1016/bs.apcsb.2017.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein-protein interactions (PPIs) play vital roles in various cellular pathways. Most of the proteins perform their responsibilities by interacting with an enormous number of proteins. Understanding these interactions of the proteins and their interacting partners has shed light toward the field of drug discovery. Also, PPIs enable us to understand the functions of a protein by understanding their interacting partners. Consequently, in the current study, PPI network of the proteins causing MODY (Maturity Onset Diabetes of the Young) was drawn, and their correlation in causing a disease condition was marked. MODY is a monogenic type of diabetes caused by autosomal dominant inheritance. Extensive research on transcription factor and their corresponding genetic pathways have been studied over the last three decades, yet, very little is understood about the molecular modalities of highly dynamic interactions between transcription factors, genomic DNA, and the protein partners. The current study also reveals the interacting patterns of the various transcription factors. Consequently, in the current work, we have devised a PPI analysis to understand the plausible pathway through which the protein leads to a deformity in glucose uptake.
Collapse
Affiliation(s)
- P Sneha
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - D Thirumal Kumar
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Jose Lijo
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - M Megha
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - R Siva
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
26
|
Marvel SW, Rotroff DM, Wagner MJ, Buse JB, Havener TM, McLeod HL, Motsinger-Reif AA. Common and rare genetic markers of lipid variation in subjects with type 2 diabetes from the ACCORD clinical trial. PeerJ 2017; 5:e3187. [PMID: 28480134 PMCID: PMC5417062 DOI: 10.7717/peerj.3187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 03/15/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Individuals with type 2 diabetes are at an increased risk of cardiovascular disease. Alterations in circulating lipid levels, total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglycerides (TG) are heritable risk factors for cardiovascular disease. Here we conduct a genome-wide association study (GWAS) of common and rare variants to investigate associations with baseline lipid levels in 7,844 individuals with type 2 diabetes from the ACCORD clinical trial. METHODS DNA extracted from stored blood samples from ACCORD participants were genotyped using the Affymetrix Axiom Biobank 1 Genotyping Array. After quality control and genotype imputation, association of common genetic variants (CV), defined as minor allele frequency (MAF) ≥ 3%, with baseline levels of TC, LDL, HDL, and TG was tested using a linear model. Rare variant (RV) associations (MAF < 3%) were conducted using a suite of methods that collapse multiple RV within individual genes. RESULTS Many statistically significant CV (p < 1 × 10-8) replicate findings in large meta-analyses in non-diabetic subjects. RV analyses also confirmed findings in other studies, whereas significant RV associations with CNOT2, HPN-AS1, and SIRPD appear to be novel (q < 0.1). DISCUSSION Here we present findings for the largest GWAS of lipid levels in people with type 2 diabetes to date. We identified 17 statistically significant (p < 1 × 10-8) associations of CV with lipid levels in 11 genes or chromosomal regions, all of which were previously identified in meta-analyses of mostly non-diabetic cohorts. We also identified 13 associations in 11 genes based on RV, several of which represent novel findings.
Collapse
Affiliation(s)
- Skylar W Marvel
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States of America
| | - Daniel M Rotroff
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States of America.,Department of Statistics, North Carolina State University, Raleigh, NC, United States of America
| | - Michael J Wagner
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - John B Buse
- Division of Endocrinology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Tammy M Havener
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | | | - Alison A Motsinger-Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States of America.,Department of Statistics, North Carolina State University, Raleigh, NC, United States of America
| | | |
Collapse
|
27
|
Sneha P, Doss C. Elucidating the Mutational Landscape in Hepatocyte Nuclear Factor 1β (HNF1B) by Computational Approach. CHROMATIN PROTEINS AND TRANSCRIPTION FACTORS AS THERAPEUTIC TARGETS 2017; 107:283-306. [DOI: 10.1016/bs.apcsb.2016.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Swier N, Versteeg HH. Reciprocal links between venous thromboembolism, coagulation factors and ovarian cancer progression. Thromb Res 2016; 150:8-18. [PMID: 27988375 DOI: 10.1016/j.thromres.2016.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/23/2016] [Accepted: 12/03/2016] [Indexed: 02/06/2023]
Abstract
Ovarian cancer is the most lethal gynecological malignancy, which is due to late presentation. Treating advanced stage ovarian cancer is difficult, and tumor recurrence and chemoresistance frequently occur. In addition, early detection remains a major challenge as there are no early warning signs and no appropriate biomarkers. To reduce mortality rates of ovarian cancer patients, novel drug targets and biomarkers are needed. We postulate that hemostatic keyplayers are of importance when combatting ovarian cancer. The majority of ovarian cancer patients have abnormal hemostatic blood serum marker levels, which indicate an activated coagulation system. This makes patients more prone to experiencing venous thromboembolism (VTE), and the occurrence of VTE in ovarian cancer patients adversely affects survival. Coagulation activation also promotes tumor progression as it influences tumor biology at several stages and the decreased survival rates associated with ovarian cancer-associated thrombosis are more likely due to cancer metastasis rather than to fatal thromboembolic events. In this review, we will discuss; (1) Population studies that address the bidirectional relationship between VTE and ovarian cancer, and the most important risk factors involved; (2) The mechanisms of coagulation factors and platelets that are critically involved in the development of VTE, and the progression of ovarian cancer; (3) Roles and future directions of coagulation factors in ovarian cancer therapy, and in diagnosis and prognosis of ovarian cancer as biomarkers.
Collapse
Affiliation(s)
- Nathalie Swier
- Department of Internal Medicine, Thrombosis and Hemostasis Division, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Henri H Versteeg
- Department of Internal Medicine, Thrombosis and Hemostasis Division, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
29
|
Janky R, Binda MM, Allemeersch J, Van den Broeck A, Govaere O, Swinnen JV, Roskams T, Aerts S, Topal B. Prognostic relevance of molecular subtypes and master regulators in pancreatic ductal adenocarcinoma. BMC Cancer 2016; 16:632. [PMID: 27520560 PMCID: PMC4983037 DOI: 10.1186/s12885-016-2540-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022] Open
Abstract
Background Pancreatic cancer is poorly characterized at genetic and non-genetic levels. The current study evaluates in a large cohort of patients the prognostic relevance of molecular subtypes and key transcription factors in pancreatic ductal adenocarcinoma (PDAC). Methods We performed gene expression analysis of whole-tumor tissue obtained from 118 surgically resected PDAC and 13 histologically normal pancreatic tissue samples. Cox regression models were used to study the effect on survival of molecular subtypes and 16 clinicopathological prognostic factors. In order to better understand the biology of PDAC we used iRegulon to identify transcription factors (TFs) as master regulators of PDAC and its subtypes. Results We confirmed the PDAssign gene signature as classifier of PDAC in molecular subtypes with prognostic relevance. We found molecular subtypes, but not clinicopathological factors, as independent predictors of survival. Regulatory network analysis predicted that HNF1A/B are among thousand TFs the top enriched master regulators of the genes expressed in the normal pancreatic tissue compared to the PDAC regulatory network. On immunohistochemistry staining of PDAC samples, we observed low expression of HNF1B in well differentiated towards no expression in poorly differentiated PDAC samples. We predicted IRF/STAT, AP-1, and ETS-family members as key transcription factors in gene signatures downstream of mutated KRAS. Conclusions PDAC can be classified in molecular subtypes that independently predict survival. HNF1A/B seem to be good candidates as master regulators of pancreatic differentiation, which at the protein level loses its expression in malignant ductal cells of the pancreas, suggesting its putative role as tumor suppressor in pancreatic cancer. Trial registration The study was registered at ClinicalTrials.gov under the number NCT01116791 (May 3, 2010). Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2540-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rekin's Janky
- Laboratory of Computational Biology, KU Leuven Center for Human Genetics, Herestraat 49, 3000, Leuven, Belgium.
| | - Maria Mercedes Binda
- Department of Abdominal Surgical Oncology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Joke Allemeersch
- Nucleomics Core, Flanders Institute for Biotechnology (VIB), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Anke Van den Broeck
- Department of Abdominal Surgical Oncology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Olivier Govaere
- Department of Pathology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI-Leuven Cancer Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Tania Roskams
- Department of Pathology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, KU Leuven Center for Human Genetics, Herestraat 49, 3000, Leuven, Belgium.
| | - Baki Topal
- Department of Abdominal Surgical Oncology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
30
|
Gounaris I, Brenton JD. Molecular pathogenesis of ovarian clear cell carcinoma. Future Oncol 2016; 11:1389-405. [PMID: 25952785 DOI: 10.2217/fon.15.45] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ovarian clear cell carcinoma is a distinct subtype of epithelial ovarian cancer, characterized by an association with endometriosis, glycogen accumulation and resistance to chemotherapy. Key driver events, including ARID1A mutations and HNF1B overexpression, have been recently identified and their functional characterization is ongoing. Additionally, the role of glycogen in promoting the malignant phenotype is coming under scrutiny. Appreciation of the notion that ovarian clear cell carcinoma is essentially an ectopic uterine cancer will hopefully lead to improved animal models of the disease, in turn paving the way for effective treatments.
Collapse
Affiliation(s)
- Ioannis Gounaris
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | | |
Collapse
|
31
|
Abu Saadeh F, Langhe R, Galvin DM, O Toole SA, O'Donnell DM, Gleeson N, Norris LA. Procoagulant activity in gynaecological cancer patients; the effect of surgery and chemotherapy. Thromb Res 2016; 139:135-41. [PMID: 26916311 DOI: 10.1016/j.thromres.2016.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/18/2015] [Accepted: 01/31/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Gynaecological cancers are associated with high rates of venous thromboembolism (VTE). Studies on ambulatory cancer patients do not support thromboprophylaxis during chemotherapy. Approximately 6-7% of gynaecological cancer patients suffer a postoperative VTE despite Low Molecular Weight Heparin prophylaxis (LMWH). Large cancer studies have shown that Calibrated Automated Thrombogram (CAT) and Microparticles (MP) assays may be useful in predicting VTE but data on gynaecological cancer patients is scarce. OBJECTIVE Our objective was to identify whether the CAT assay and MP functional assays have potential as biomarkers predictive of VTE in gynaecological cancer patients. PATIENTS AND METHODS Gynaecological cancer patients were investigated before surgery (n=146) and at 5, 14 and 42days post-surgery (n=78). Fourteen additional patients were investigated before chemotherapy and after 3 and 6 cycles of therapy. Thrombin generation was measured before and after addition of thrombomodulin. RESULTS Patients with clear cell cancer (CCC) of the ovary and patients with endometrial cancer had higher ETP and peak thrombin compared with patients with benign disease. Patients who developed VTE (n=8) following surgery had enhanced thrombin generation prior to surgery which persisted during the post-operative period despite LMWH prophylaxis. Both neoadjuvant and adjuvant chemotherapy showed increased thrombin generation following addition of thrombomodulin. There were no differences in MP levels during the study. CONCLUSIONS CAT assay shows potential as a promising biomarker for the prediction of VTE in gynaecological cancer patients. The identification of high risk patients combined with individualised LMWH prophylaxis might reduce VTE in this high risk group.
Collapse
Affiliation(s)
- F Abu Saadeh
- Department of Gynaecology Oncology, St James's Hospital, Dublin 8, Ireland.
| | - R Langhe
- Trinity College Department of Obstetrics and Gynaecology, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - D M Galvin
- Department of Gynaecology Oncology, St James's Hospital, Dublin 8, Ireland
| | - S A O Toole
- Trinity College Department of Obstetrics and Gynaecology, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - D M O'Donnell
- Department of Medical Oncology, St James's Hospital, Dublin 8, Ireland
| | - N Gleeson
- Department of Gynaecology Oncology, St James's Hospital, Dublin 8, Ireland; Trinity College Department of Obstetrics and Gynaecology, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - L A Norris
- Trinity College Department of Obstetrics and Gynaecology, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| |
Collapse
|
32
|
Voevoda MI, Ivanova AA, Shakhtshneider EV, Ovsyannikova AK, Mikhailova SV, Astrakova KS, Voevoda SM, Rymar OD. Molecular genetics of maturity-onset diabetes of the young. TERAPEVT ARKH 2016. [DOI: 10.17116/terarkh2016884117-124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Verhave JC, Bech AP, Wetzels JFM, Nijenhuis T. Hepatocyte Nuclear Factor 1β-Associated Kidney Disease: More than Renal Cysts and Diabetes. J Am Soc Nephrol 2015; 27:345-53. [PMID: 26319241 DOI: 10.1681/asn.2015050544] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatocyte nuclear factor 1β (HNF1β)-associated disease is a recently recognized clinical entity with a variable multisystem phenotype. Early reports described an association between HNF1B mutations and maturity-onset diabetes of the young. These patients often presented with renal cysts and renal function decline that preceded the diabetes, hence it was initially referred to as renal cysts and diabetes syndrome. However, it is now evident that many more symptoms occur, and diabetes and renal cysts are not always present. The multisystem phenotype is probably attributable to functional promiscuity of the HNF1β transcription factor, involved in the development of the kidney, urogenital tract, pancreas, liver, brain, and parathyroid gland. Nephrologists might diagnose HNF1β-associated kidney disease in patients referred with a suspected diagnosis of autosomal dominant polycystic kidney disease, medullary cystic kidney disease, diabetic nephropathy, or CKD of unknown cause. Associated renal or extrarenal symptoms should alert the nephrologist to HNF1β-associated kidney disease. A considerable proportion of these patients display hypomagnesemia, which sometimes mimics Gitelman syndrome. Other signs include early onset diabetes, gout and hyperparathyroidism, elevated liver enzymes, and congenital anomalies of the urogenital tract. Because many cases of this disease are probably undiagnosed, this review emphasizes the clinical manifestations of HNF1β-associated disease for the nephrologist.
Collapse
Affiliation(s)
- Jacobien C Verhave
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anneke P Bech
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack F M Wetzels
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Fadare O. Clear cell carcinomas of the gynecologic tract and thromboembolic events: what do we know so far? ACTA ACUST UNITED AC 2015; 10:479-81. [PMID: 25335536 DOI: 10.2217/whe.14.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Kobayashi H, Sugimoto H, Onishi S, Nakano K. Novel biomarker candidates for the diagnosis of ovarian clear cell carcinoma. Oncol Lett 2015; 10:612-618. [PMID: 26622542 DOI: 10.3892/ol.2015.3367] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 05/27/2015] [Indexed: 02/07/2023] Open
Abstract
Ovarian clear cell carcinoma can arise from endometriosis; however, it is distinct from other types of epithelial ovarian carcinoma in terms of its clinicopathological and molecular features. Cancer antigen 125 lacks the sensitivity and specificity required for accurate clinical diagnosis of clear cell carcinoma. Therefore, the aim of the current review was to identify novel biomarker candidates for the immunohistochemical and serological diagnosis of clear cell carcinoma. A search of the relevant English language literature published between 1966 and 2014 was conducted using the PubMed MEDLINE online database. High-throughput tissue microarray technology and proteomic screening combined with mass spectrometry may provide additional information regarding diagnostic biomarker candidates for ovarian clear cell carcinoma. The present review summarizes the characteristics of potential genomic alterations that activate cancer signaling pathways and, thus, contribute to carcinogenesis. The major signaling pathways activated in clear cell carcinoma are associated with cell cycle regulation (hepatitis A virus cellular receptor 1 and tumor protein D52), growth factor signaling (insulin-like growth factor binding protein 1; KiSS-1 metastasis-suppressor; erb-b2 receptor tyrosine kinase 2; and fibroblast growth factor receptor 2), anti-apoptosis and survival pathways [sialidase 3 (membrane sialidase)], metabolism (γ-glutamyltransferase 1), chemoresistance (napsin A aspartic peptidase, glutathione peroxidase 3; and aldehyde dehydrogenase 1 family, member A1), coagulation [coagulation factor III (thromboplastin, tissue factor); and tissue factor pathway inhibitor 2], signaling (lectin, galactoside-binding and soluble, 3), and adhesion and the extracellular matrix [cadherin 1, type 1, E-cadherin (epithelial); versican; and laminin, α 5]. The present review of the relevant literature may provide a basis for additional clinical investigation of the ovarian clear cell carcinoma serum biomarker candidate proteins identified herein.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hitomi Sugimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shunsuke Onishi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kazutoshi Nakano
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
36
|
Kobayashi H, Shigetomi H, Yoshimoto C. Checkpoint kinase 1 inhibitors as targeted molecular agents for clear cell carcinoma of the ovary. Oncol Lett 2015; 10:571-576. [PMID: 26622535 DOI: 10.3892/ol.2015.3268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/29/2015] [Indexed: 12/12/2022] Open
Abstract
In clear cell carcinoma of the ovary, chemoresistance frequently results in treatment failure. The present study aimed to review the potential association of transcription factor hepatocyte nuclear factor (HNF)-1β with cell cycle checkpoint machinery, as a mechanism for chemoresistance. The English-language literature on the subject was reviewed to identify genomic alterations and aberrant molecular pathways interacting with chemoresistance in clear cell carcinoma. Oxidative stress induced by repeated hemorrhage induces greater susceptibility of endometriotic cells to DNA damage, and subsequent malignant transformation results in endometriosis-associated ovarian cancer. Molecular changes, including those in HNF-1β and checkpoint kinase 1 (Chk1), may be a manifestation of essential alterations in cell cycle regulation, detoxification and chemoresistance in clear cell carcinoma. Chk1 is a critical signal transducer in the cell cycle checkpoint machinery. DNA damage, in turn, increases persistent phosphorylation of Chk1 and induction of G2/M phase cell cycle arrest in cells overexpressing HNF-1β. HNF-1β deletion induces apoptosis, suggesting that enhanced levels of HNF-1β may be associated with chemoresistance. Targeted therapy with Chk1 inhibitors may be explored as a potential treatment modality for patients with clear cell carcinoma. This provides a novel direction for combination therapy, including targeting of Chk1, which may overcome drug resistance and improve treatment efficacy.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
37
|
Mandato VD, Farnetti E, Torricelli F, Abrate M, Casali B, Ciarlini G, Pirillo D, Gelli MC, Nicoli D, Grassi M, LA Sala GB, Palomba S. HNF1B polymorphism influences the prognosis of endometrial cancer patients: a cohort study. BMC Cancer 2015; 15:229. [PMID: 25885815 PMCID: PMC4403886 DOI: 10.1186/s12885-015-1246-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/23/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND HNF1B (formerly known as TCF2) gene encodes for a transcription factor that regulates gene expression involved in normal mesodermal and endodermal developments. A close association between rs4430796 polymorphism of HNF1B gene and decreased endometrial cancer (EC) risk has been demonstrated. The aim of the current study was to test the hypothesis that rs4430796 polymorphism can influence the prognosis of EC patients. METHODS Retrospective cohort study. Clinical and pathological data were extrapolated and genotypes were assessed on formalin-fixed and paraffin-embedded non-tumour tissues. The influence of patients' genotype on overall survival and progression free survival were our main outcome measures. RESULTS A total of 191 EC patients were included in the final analysis. Overall survival differed significantly (P = 0.003) among genotypes. At multivariate analysis, a significant (P < 0.05) effect on overall survival was detected for FIGO stage, and rs4430796 polymorphism of HNF1B gene. After grouping EC patients according to adjuvant treatment, rs4430796 polymorphism resulted significantly (P < 0.001) related to overall survival only in subjects who received radiotherapy plus chemotherapy. A significant (P = 0.014) interaction between rs4430796 polymorphism and chemo-radiotherapy was also detected. Finally, only a trend (P = 0.090) towards significance was observed for rs4430796 polymorphism effect on progression free survival. CONCLUSIONS rs4430796 polymorphism of HNF1B gene influences independently the prognosis of EC patients with a potential effect on tumor chemo-sensitivity.
Collapse
Affiliation(s)
- Vincenzo Dario Mandato
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Enrico Farnetti
- Laboratory of Molecular Biology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Federica Torricelli
- Laboratory of Molecular Biology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Martino Abrate
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Bruno Casali
- Laboratory of Molecular Biology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Gino Ciarlini
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Debora Pirillo
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | | | - Davide Nicoli
- Laboratory of Molecular Biology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Mario Grassi
- Department of Brain and Behavioral Science, Medical and Genomics Statistics Unit, University of Pavia, Pavia, Italy.
| | - Giovanni Battista LA Sala
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
- University of Modena and Reggio Emilia, Modena, Italy.
| | - Stefano Palomba
- Unit of Gynecologic Oncology, IRCCS-CROB, Rionero in Vulture (Potenza), Potenza, Italy.
| |
Collapse
|
38
|
Painter JN, O'Mara TA, Batra J, Cheng T, Lose FA, Dennis J, Michailidou K, Tyrer JP, Ahmed S, Ferguson K, Healey CS, Kaufmann S, Hillman KM, Walpole C, Moya L, Pollock P, Jones A, Howarth K, Martin L, Gorman M, Hodgson S, De Polanco MME, Sans M, Carracedo A, Castellvi-Bel S, Rojas-Martinez A, Santos E, Teixeira MR, Carvajal-Carmona L, Shu XO, Long J, Zheng W, Xiang YB, Montgomery GW, Webb PM, Scott RJ, McEvoy M, Attia J, Holliday E, Martin NG, Nyholt DR, Henders AK, Fasching PA, Hein A, Beckmann MW, Renner SP, Dörk T, Hillemanns P, Dürst M, Runnebaum I, Lambrechts D, Coenegrachts L, Schrauwen S, Amant F, Winterhoff B, Dowdy SC, Goode EL, Teoman A, Salvesen HB, Trovik J, Njolstad TS, Werner HMJ, Ashton K, Proietto T, Otton G, Tzortzatos G, Mints M, Tham E, Hall P, Czene K, Liu J, Li J, Hopper JL, Southey MC, Ekici AB, Ruebner M, Johnson N, Peto J, Burwinkel B, Marme F, Brenner H, Dieffenbach AK, Meindl A, Brauch H, Lindblom A, Depreeuw J, Moisse M, Chang-Claude J, Rudolph A, Couch FJ, Olson JE, Giles GG, Bruinsma F, Cunningham JM, Fridley BL, Børresen-Dale AL, Kristensen VN, Cox A, Swerdlow AJ, Orr N, Bolla MK, Wang Q, Weber RP, Chen Z, Shah M, French JD, Pharoah PDP, Dunning AM, Tomlinson I, Easton DF, Edwards SL, Thompson DJ, Spurdle AB. Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk. Hum Mol Genet 2015; 24:1478-92. [PMID: 25378557 PMCID: PMC4321445 DOI: 10.1093/hmg/ddu552] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 12/14/2022] Open
Abstract
Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression.
Collapse
Affiliation(s)
- Jodie N Painter
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tracy A O'Mara
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation, and School of Biomedical Science and
| | - Timothy Cheng
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Felicity A Lose
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care and
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care and
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Shahana Ahmed
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Kaltin Ferguson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Catherine S Healey
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Susanne Kaufmann
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Carina Walpole
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation, and School of Biomedical Science and
| | - Leire Moya
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation, and School of Biomedical Science and
| | - Pamela Pollock
- Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jones
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kimberley Howarth
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lynn Martin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Maggie Gorman
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Shirley Hodgson
- Department of Clinical Genetics, St George's Hospital Medical School, London, UK
| | | | - Monica Sans
- Department of Biological Anthropology, College of Humanities and Educational Sciences, University of the Republic, Magallanes, Montevideo, Uruguay
| | - Angel Carracedo
- Grupo de Medicina Xenómica, Fundación Galega de Medicina Xenómica (SERGAS) and CIBERER, Universidade de Santiago de Compostela, Santiago de Compostela, Spain, Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, KSA
| | - Sergi Castellvi-Bel
- Genetic Predisposition to Colorectal Cancer Group, Gastrointestinal & Pancreatic Oncology Team, IDIBAPS/CIBERehd/Hospital Clínic, Centre Esther Koplowitz (CEK), Barcelona, Spain
| | - Augusto Rojas-Martinez
- Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de Los Garza, Nuevo León, Mexico
| | | | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal, Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Luis Carvajal-Carmona
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK, Grupo de Investigación Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima, Ibagué, Tolima, Colombia, Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Xiao-Ou Shu
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | | | - Penelope M Webb
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rodney J Scott
- Hunter Medical Research Institute and, Hunter Area Pathology Service, John Hunter Hospital, Newcastle, NSW, Australia, Centre for Information Based Medicine and School of Biomedical Science and Pharmacy
| | - Mark McEvoy
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health
| | - John Attia
- Hunter Medical Research Institute and, Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health
| | - Elizabeth Holliday
- Hunter Medical Research Institute and, Centre for Information Based Medicine and School of Medicine and Public Health
| | | | - Dale R Nyholt
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Anjali K Henders
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Peter A Fasching
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Alexander Hein
- University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias W Beckmann
- University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan P Renner
- University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Peter Hillemanns
- Clinics of Gynaecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Matthias Dürst
- Dept. of Gynaecology, Friedrich Schiller University Jena, Jena, Germany
| | - Ingo Runnebaum
- Dept. of Gynaecology, Friedrich Schiller University Jena, Jena, Germany
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium, Department of Oncology, Laboratory for Translational Genetics
| | - Lieve Coenegrachts
- Division of Gynaecological Oncology, Department of Oncology, University Hospital Leuven, KU Leuven, Belgium
| | - Stefanie Schrauwen
- Division of Gynaecological Oncology, Department of Oncology, University Hospital Leuven, KU Leuven, Belgium
| | - Frederic Amant
- Division of Gynaecological Oncology, Department of Oncology, University Hospital Leuven, KU Leuven, Belgium
| | - Boris Winterhoff
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology
| | - Sean C Dowdy
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology
| | - Ellen L Goode
- Division of Epidemiology, Department of Health Science Research and
| | - Attila Teoman
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology
| | - Helga B Salvesen
- Department of Clinical Science, Centre for Cancerbiomarkers, The University of Bergen, Norway, Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Jone Trovik
- Department of Clinical Science, Centre for Cancerbiomarkers, The University of Bergen, Norway, Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Tormund S Njolstad
- Department of Clinical Science, Centre for Cancerbiomarkers, The University of Bergen, Norway, Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Henrica M J Werner
- Department of Clinical Science, Centre for Cancerbiomarkers, The University of Bergen, Norway, Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Katie Ashton
- Hunter Area Pathology Service, John Hunter Hospital, Newcastle, NSW, Australia, Faculty of Health, Centre for Information Based Medicine and the Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy and
| | - Tony Proietto
- Faculty of Health, School of Medicine and Public Health, University of Newcastle, NSW, Australia
| | - Geoffrey Otton
- Faculty of Health, School of Medicine and Public Health, University of Newcastle, NSW, Australia
| | | | | | - Emma Tham
- Department of Molecular Medicine and Surgery and
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Singapore
| | - Jingmei Li
- Human Genetics, Genome Institute of Singapore, Singapore
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health and
| | - Melissa C Southey
- Department of Pathology, Genetic Epidemiology Laboratory, The University of Melbourne, Melbourne, VIC, Australia
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital, Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Ruebner
- University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Julian Peto
- London School of Hygiene and Tropical Medicine, London, UK
| | - Barbara Burwinkel
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, Molecular Epidemiology, C080
| | - Frederik Marme
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Aida K Dieffenbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Alfons Meindl
- Division of Tumor Genetics, Department of Obstetrics and Gynecology, Technical University of Munich, Munich, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology Stuttgart, University of Tuebingen, Germany
| | | | | | | | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Rudolph
- Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Fergus J Couch
- Departments of Laboratory Medicine and Pathology, and Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Janet E Olson
- Division of Epidemiology, Department of Health Science Research and
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health and Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, VIC, Australia, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Fiona Bruinsma
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, VIC, Australia
| | - Julie M Cunningham
- Departments of Laboratory Medicine and Pathology, and Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Brooke L Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway, Faculty of Medicine, The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vessela N Kristensen
- Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway, Faculty of Medicine, The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway, Division of Medicine, Department of Clinical Molecular Oncology, Akershus University Hospital, Ahus, Norway
| | - Angela Cox
- Department of Oncology, Sheffield Cancer Research Centre, University of Sheffield, Sheffield, UK
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology and, Division of Breast Cancer Research, Institute of Cancer Research, London, UK
| | - Nicholas Orr
- Division of Breast Cancer Research, Institute of Cancer Research, London, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care and
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care and
| | - Rachel Palmieri Weber
- Department of Community and Family Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Zhihua Chen
- Division of Population Sciences, Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Juliet D French
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care and Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Stacey L Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Amanda B Spurdle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,
| |
Collapse
|
39
|
Yamaguchi K, Matsumura N, Mandai M, Baba T, Konishi I, Murphy SK. Epigenetic and genetic dispositions of ovarian carcinomas. Oncoscience 2014; 1:574-9. [PMID: 25594067 PMCID: PMC4278339 DOI: 10.18632/oncoscience.82] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 12/17/2022] Open
Abstract
Ovarian clear cell carcinoma has unique clinical characteristics with slow growth and a stress-resistant phenotype that is epigenetically induced during cancer progression in an inflammatory microenvironment. We refer to this as an epigenetic disposition, which is frequently associated with unique biomolecular features including prominent alterations in methylation, microsatellite instability and ARID1A mutations. This characteristic methylation profile also affects glucose metabolism, commonly known as the Warburg effect. In contrast, high-grade ovarian serous adenocarcinoma has a genetic disposition that is accompanied by rapid growth, TP53 mutations and chromosomal instability. The concept of epigenetic and genetic dispositions is applicable to various malignancies, including gastric and colorectal cancers. These disposition classifications are based on fundamental characteristics of malignancies and may provide a new vantage point for development of individualized therapies.
Collapse
Affiliation(s)
- Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Noriomi Matsumura
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Masaki Mandai
- Department of Obstetrics and Gynecology, Kinki University, Faculty of Medicine, Osakasayama, Osaka, 589-8511 Japan
| | - Tsukasa Baba
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham NC, 27708 USA
| |
Collapse
|
40
|
Bioenergetic analysis of ovarian cancer cell lines: profiling of histological subtypes and identification of a mitochondria-defective cell line. PLoS One 2014; 9:e98479. [PMID: 24858344 PMCID: PMC4032324 DOI: 10.1371/journal.pone.0098479] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/02/2014] [Indexed: 12/17/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal of all gynecological cancers, and encompasses distinct histological subtypes that have specific genetic and tissues-of-origin differences. Ovarian clear cell carcinoma (OCCC) represents approximately 10% of cases and has been termed a stress responsive cancer. OCCC is characterized by increased expression of oxidative stress and glycolysis-related genes. In the present study, we hypothesized that bioenergetic profiling might uniquely distinguish OCCC from other EOC histological subtypes. Using an extracellular flux analyzer, OCCC lines (ES-2, TOV-21-G) were shown to be highly metabolically active, with high oxygen consumption rate (OCR) and high extracellular acidification rate (ECAR), indicative of enhanced mitochondrial oxidative phosphorylation and glycolytic rate, respectively. A high bioenergetics profile was associated with the cell lines' ability to form anchorage independent spheroids. Given their high glycolytic and mitochondrial activity, OCCC cells displayed strong sensitivity to 2-deoxy-D-glucose and Rotenone growth inhibition, although this chemosensitivity profile was not specific to only OCCC cells. Bioenergetic profiling also identified a non-OCCC cell line, OVCA420, to have severely compromised mitochondrial function, based on low OCR and a lack of stimulation of maximal respiration following application of the uncoupler FCCP. This was accompanied by mitochondrial morphology changes indicative of enhanced fission, increased expression of the mitochondrial fission protein Drp1, a loss of mitochondrial membrane potential and dependence on glycolysis. Importantly, this loss of mitochondrial function was accompanied by the inability of OVCA420 cells to cope with hypoxic stress, and a compromised ability to stabilize HIF-1α in response to 1% O2 hypoxia. This knowledge may be imperative for researchers planning to utilize this cell line for further studies of metabolism and hypoxia, and suggests that altered mitochondrial fission dynamics represents a phenotype of a subpopulation of EOCs.
Collapse
|