1
|
Keskin Yilmaz N, Shimura T, Koerig Schuster A, Cureoglu S, Monsanto RDC. Relationship Between Cochlear Lateral Wall Changes and Endolymphatic Hydrops in Otitis Media. Laryngoscope 2024. [PMID: 38958129 DOI: 10.1002/lary.31626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVES Despite otitis media and various disease processes being associated with endolymphatic hydrops (EH), an exact explanation of the pathophysiology has yet to be reported. This study aimed to investigate the changes in the cochlear lateral wall structures and their potential correlation with the presence and severity of cochlear EH in acute and chronic otitis media cases. The investigations were conducted in both chinchilla animal model and human temporal bone specimens. METHODS We studied a total of 15 chinchilla and 25 human temporal bones from our collection, which were categorized into acute otitis media, chronic otitis media (COM), and control groups. Through quantitative analysis, we measured the area of cochlear lateral wall structures and observed the presence and the degree of EH using light microscopy. RESULTS No significant changes were determined in the area of the spiral ligament (p > 0.05) across the species. However, a significant (p < 0.05) decrease in the mean area of the stria vascularis in the basal turn was identified in COM groups compared to controls of both species. Chinchilla model additionally exhibited pathology extending to the lower mid turn. A negative correlation was found between the mean strial area and the severity of EH in both the animal model and human samples. CONCLUSIONS COM associated with significant changes in the stria vascularis that may lead to significant increase in the degree of EH. The presented animal model exhibited parallel findings with human samples, suggesting its viability as a valuable model for future studies. LEVEL OF EVIDENCE N/A Laryngoscope, 2024.
Collapse
Affiliation(s)
- Nevra Keskin Yilmaz
- Department of Otolaryngology Head & Neck Surgery, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Internal Medicine, Faculty of Veterinary Medicine, Ankara University, Ankara, Türkiye
| | - Tomotaka Shimura
- Department of Otolaryngology Head & Neck Surgery, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Otorhinolaryngology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Artur Koerig Schuster
- Postgraduate Program in Medicine: Surgical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre Rs, Brazil
| | - Sebahattin Cureoglu
- Department of Otolaryngology Head & Neck Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rafael da Costa Monsanto
- Department of Otolaryngology Head & Neck Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Son YL, Pak K, Muradagha N, Heo KW, Leichtle A, Kurabi A. Resolution of otitis media in a humanized mouse model. Front Genet 2022; 13:958540. [PMID: 36437913 PMCID: PMC9682244 DOI: 10.3389/fgene.2022.958540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/20/2022] [Indexed: 12/19/2023] Open
Abstract
Otitis media (OM) is one of the largest public health problems of children and has devastating impacts in developing countries. The substantial medical and human costs involved have led to research to understand the disease and improve treatment. Animal models of OM have yielded critical information about the immune, inflammatory and genetic mechanisms of OM. However, it is important to link animal studies to human immune and inflammatory responses. In recent years, "humanized" mice have become a valuable tool to study the human immune system in an animal model. Here we describe the first use of humanized mice to study OM. We demonstrate that humanized mice with a sufficient degree of engraftment recapitulate a normal middle ear (ME) inflammatory response to bacterial infection, including the recruitment of human immune cells, and exhibit normal recovery. Moreover, these animals exhibit regulated expression of human-specific immune and inflammatory genes in the ME. In contrast, mice with insufficient engraftment fail to resolve OM. This model has many potential uses in OM research, including using hematopoietic stem cells from patients with differing degrees of OM susceptibility, to understand the role of human immune responses in proneness to this common childhood disease.
Collapse
Affiliation(s)
- Ye Lin Son
- Department of Surgery/Otolaryngology, School of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Kwang Pak
- Department of Surgery/Otolaryngology, School of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Nada Muradagha
- Department of Surgery/Otolaryngology, School of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Kyung Wook Heo
- Department of Otorhinolaryngology, Head and Neck Surgery, Inje University Busan Paik Hospital, Busan, Korea
| | - Anke Leichtle
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Arwa Kurabi
- Department of Surgery/Otolaryngology, School of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
3
|
Azar A, Bhutta MF, Del-Pozo J, Milne E, Cheeseman M. Trans-cortical vessels in the mouse temporal bulla bone are a means to recruit myeloid cells in chronic otitis media and limit peripheral leukogram changes. Front Genet 2022; 13:985214. [PMID: 36246635 PMCID: PMC9555619 DOI: 10.3389/fgene.2022.985214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic otitis media, inflammation of the middle ear, is a sequel to acute otitis media in ∼8% of children. Chronic otitis media with effusion is the most common cause of childhood deafness and is characterised by effusion of white blood cells into the auditory bulla cavity. Skull flat bones have trans-cortical vessels which are responsible for the majority of blood flow in and out of the bone. In experimental models of stroke and aseptic meningitis there is preferential recruitment of myeloid cells (neutrophils and monocytes) from the marrow in skull flat bones. We report trans-cortical vessels in the mouse temporal bone connect to the bulla mucosal vasculature and potentially represent a means to recruit myeloid cells directly into the inflamed bulla. The mutant mouse strains Junbo (MecomJbo/+) and Jeff (Fbxo11Jf/+) develop chronic otitis spontaneously; MecomJbo/+ mice have highly cellular neutrophil (90%) rich bulla exudates whereas Fbxo11Jf/+ mice have low cellularity serous effusions (5% neutrophils) indicating differing demand for neutrophil recruitment. However we found peripheral leukograms of MecomJbo/+ and Fbxo11Jf/+ mice are similar to their respective wild-type littermate controls with healthy bullae and infer preferential mobilization of myeloid cells from temporal bulla bone marrow may mitigate the need for a systemic inflammatory reaction. The cytokines, chemokines and haematopoietic factors found in the inflamed bulla represent candidate signalling molecules for myeloid cell mobilization from temporal bone marrow. The density of white blood cells in the bulla cavity is positively correlated with extent of mucosal thickening in MecomJbo/+, Fbxo11Jf/+, and EdaTa mice and is accompanied by changes in epithelial populations and bone remodelling. In MecomJbo/+ mice there was a positive correlation between bulla cavity WBC numbers and total bacterial load. The degree of inflammation varies between contralateral bullae and between mutant mice of different ages suggesting inflammation may wax and wane and may be re-initiated by a new wave of bacterial infection. Clearance of white blood cells and inflammatory stimuli from the bulla cavity is impaired and this may create a pro-inflammatory feedback loop which further exacerbates otitis media and delays its resolution.
Collapse
Affiliation(s)
- Ali Azar
- Developmental Biology Division, Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mahmood F. Bhutta
- Brighton and Sussex Medical School, Brighton, United Kingdom
- Department of ENT, Royal Sussex County Hospital, Brighton, United Kingdom
| | - Jorge Del-Pozo
- Veterinary Pathology, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Elspeth Milne
- Veterinary Pathology, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Michael Cheeseman
- Developmental Biology Division, Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Comparative Pathology, Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- *Correspondence: Michael Cheeseman,
| |
Collapse
|
4
|
Tailor BV, Phillips JS, Nunney I, Yung MW, Doruk C, Kara H, Kong T, Quaranta N, Peñaranda A, Bernardeschi D, Dai C, Kania R, Denoyelle F, Tono T. Presentation of dizziness in individuals with chronic otitis media: data from the multinational collaborative COMQ-12 study. Eur Arch Otorhinolaryngol 2022; 279:2857-2863. [PMID: 34291348 PMCID: PMC8294833 DOI: 10.1007/s00405-021-06993-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In chronic otitis media (COM), disease chronicity and severity of middle ear inflammation may influence the development of inner ear deficits, increasing the risk of vestibular impairment. This secondary analysis of the multinational collaborative Chronic Otitis Media Questionnaire-12 (COMQ-12) dataset sought to determine the prevalence of vestibular symptoms in patients with COM and identify associated disease-related characteristics. METHODS Adult patients with a diagnosis of COM in outpatient settings at nine otology referral centers across eight countries were included. We investigated the presence of vestibular symptoms (dizziness and/or disequilibrium) using participant responses to item 6 of a native version of the COMQ-12. Audiometric data and otoscopic assessment were also recorded. RESULTS This analysis included 477 participants suffering from COM, with 56.2% (n = 268) reporting at least mild inconvenience related to dizziness or disequilibrium. There was a significant association between air conduction thresholds in the worse hearing ear and presence of dizziness [adjusted odds ratio (AOR), 1.01; 95% CI 1.00-1.02; p = 0.0177]. Study participants in European countries (AOR 1.53; 95% CI 1.03-2.28; p = 0.0344) and Colombia (AOR 2.48; 95% CI 1.25-4.92; p = 0.0096) were more likely to report dizziness than participants in Asian countries. However, ear discharge and cholesteatoma showed no association with dizziness in the adjusted analyses. CONCLUSION Vestibular symptoms contribute to burden of disease in patients with COM and associates with hearing disability in the worse hearing ear. Geographical variation in presentation of dizziness may reflect financial barriers to treatment or cultural differences in how patients reflect on their health state.
Collapse
Affiliation(s)
- Bhavesh V Tailor
- Department of Otolaryngology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Colney Lane, Norwich, NR4 7UY, Norfolk, UK.
| | - John S Phillips
- Department of Otolaryngology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Colney Lane, Norwich, NR4 7UY, Norfolk, UK
| | - Ian Nunney
- Norwich Clinical Trials Unit, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Matthew W Yung
- Department of Otolaryngology, The Ipswich Hospital NHS Trust, Ipswich, UK
| | - Can Doruk
- Department of Otolaryngology-Head and Neck Surgery, Istanbul University, Istanbul, Turkey
| | - Hakan Kara
- Department of Otolaryngology-Head and Neck Surgery, Istanbul University, Istanbul, Turkey
| | - Taehoon Kong
- Department of Otolaryngology-Head and Neck Surgery, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, South Korea
| | - Nicola Quaranta
- Otolaryngology Unit, Department of Biomedical Sciences, Neuroscience and Sensory Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Augusto Peñaranda
- Fundacion Santa Fe de Bogota, Universidad de Los Andes School of Medicine, Bogota, Colombia
| | | | - Chunfu Dai
- Department of Otology and Skull Base Surgery, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Romain Kania
- Department of Otolaryngology, Lariboisière University Hospital, Paris, France
| | - Françoise Denoyelle
- Department of Otolaryngology-Head and Neck Surgery, Necker-Enfants Malades Hospital, Paris, France
| | - Tetsuya Tono
- Department of Otolaryngology-Head and Neck Surgery, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
5
|
Rao Y, Zhong D, Qiu K, Cheng D, Li L, Zhang Y, Mao M, Pang W, Li D, Song Y, Li J, Dong Y, Zhang W, Yu H, Ren J, Zhao Y. Single-Cell Transcriptome Profiling Identifies Phagocytosis-Related Dual-Feature Cells in A Model of Acute Otitis Media in Rats. Front Immunol 2021; 12:760954. [PMID: 34759932 PMCID: PMC8572853 DOI: 10.3389/fimmu.2021.760954] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
Background The molecular mechanisms of acute otitis media (AOM) development, and the intercellular crosstalk within the multicellular ecosystem of AOM, are not clear. Methods We established a model of AOM in rats (with normal rats as controls) and undertook single-cell RNA sequencing (scRNA-seq) for the middle-ear mucosa (MEM). Cell clustering and trajectory analyses were undertaken using Seurat and Monocle 2 packages in R software. Pathway analyses were done by gene set enrichment analysis (GSEA). Cell-cell interactions were inferred by CellChat. Cell scores were calculated to identify cells with dual-feature. Results A total of 7023 cells from three samples of inflamed MEM and 5258 cells from three samples of healthy MEM underwent scRNA-seq, which identified 20 cell clusters belonging to eight major cell types. After exposure to lipopolysaccharide, the MEM underwent significant conversion of cell types characterized by rapid infiltration of macrophages and neutrophils. M2 macrophages seemed to play a key part in inflammatory intercellular crosstalk, which facilitated the maintenance and proliferation of macrophages, cell chemotaxis, and regulation of the proinflammatory activities of cytokines. Three rare cell clusters with phagocytosis-related dual-feature were also identified. They coexisted with professional phagocytes in the MEM, and displayed distinct immunoregulatory functions by maintaining a normal immune microenvironment or influencing inflammation progression. Conclusions Macrophages might be the "master" initiators and regulators of the inflammatory response of the MEM to external stimuli. And their functions are fulfilled by a specific polarization status (M2) and sophisticated intercellular crosstalk via certain signaling pathways. Besides, the coexistence of professional phagocytes and non-professional phagocytes as well as their interplay in the MEM provides new clues for deciphering the underlying pathogenic mechanisms of AOM.
Collapse
Affiliation(s)
- Yufang Rao
- Department of Otolaryngology-Head and Neck Surgery, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dalin Zhong
- Department of Otolaryngology-Head and Neck Surgery, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Qiu
- Department of Otolaryngology-Head and Neck Surgery, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Danni Cheng
- Department of Otolaryngology-Head and Neck Surgery, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Minzi Mao
- Department of Otolaryngology-Head and Neck Surgery, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wendu Pang
- Department of Otolaryngology-Head and Neck Surgery, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Daibo Li
- Department of Otolaryngology-Head and Neck Surgery, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Song
- Department of Otolaryngology-Head and Neck Surgery, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Li
- Department of Otolaryngology-Head and Neck Surgery, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yijun Dong
- Department of Otolaryngology-Head and Neck Surgery, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Medical Big Data Center, Sichuan University, Chengdu, China
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Medical Big Data Center, Sichuan University, Chengdu, China
| | - Jianjun Ren
- Department of Otolaryngology-Head and Neck Surgery, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Medical Big Data Center, Sichuan University, Chengdu, China
| | - Yu Zhao
- Department of Otolaryngology-Head and Neck Surgery, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Medical Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Abstract
OBJECTIVES The pathogenesis of chronic suppurative otitis media (CSOM) includes complex interactions between microbial, immunologic, and genetic factors. To our knowledge, no study has focused on the association between childhood otitis media, immune regulation, inflammatory conditions, and chronic disease in adulthood. The present study aims to assess whether CSOM in childhood predicts immune-related inflammatory disorders or cardiovascular disease in adulthood. Another aim is to assess the association with oto-vestibular diseases in adulthood. DESIGN Population cohort study in Norway comprised 51,626 participants (mean age 52 years) who underwent a hearing investigation at 7 to 13 years of age where 189 were diagnosed with CSOM (otorhinolaryngologist diagnose) and 51,437 had normal hearing thresholds (controls). Data on adult disease were obtained from the Norwegian Patient Registry (ICD-10 codes from the specialist health services). We estimated associations with logistic regression analyses. RESULTS The associations between CSOM in childhood and disease in adulthood were as follows: chronic sinusitis (odds ratio 3.13, 95% confidence interval 1.15 to 8.52); cardiovascular disease (1.38, 1.01 to 1.88); hearing loss (5.58, 3.78 to 8.22); tinnitus (2.62, 1.07 to 6.41). The adult hearing loss among cases with childhood CSOM was most frequently registered as sensorineural. There was no statistically significant increased risk of later asthma (1.84 [0.98 to 3.48]), inflammatory bowel disease, inflammatory joint disease, systemic tissue disease, or vestibulopathy. The estimates were adjusted for age, sex, socio-economic status, and smoking. CONCLUSION Our large cohort study, which is the first to focus on the link between otitis media in childhood and immune-related inflammatory disorders later in life, does not confer a clear association. CSOM in childhood was strongly related to adult tinnitus and hearing loss, which was most frequently registered as sensorineural.
Collapse
|
7
|
Okada M, Welling DB, Liberman MC, Maison SF. Chronic Conductive Hearing Loss Is Associated With Speech Intelligibility Deficits in Patients With Normal Bone Conduction Thresholds. Ear Hear 2021; 41:500-507. [PMID: 31490800 PMCID: PMC7056594 DOI: 10.1097/aud.0000000000000787] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The main objective of this study is to determine whether chronic sound deprivation leads to poorer speech discrimination in humans. DESIGN We reviewed the audiologic profile of 240 patients presenting normal and symmetrical bone conduction thresholds bilaterally, associated with either an acute or chronic unilateral conductive hearing loss of different etiologies. RESULTS Patients with chronic conductive impairment and a moderate, to moderately severe, hearing loss had lower speech recognition scores on the side of the pathology when compared with the healthy side. The degree of impairment was significantly correlated with the speech recognition performance, particularly in patients with a congenital malformation. Speech recognition scores were not significantly altered when the conductive impairment was acute or mild. CONCLUSIONS This retrospective study shows that chronic conductive hearing loss was associated with speech intelligibility deficits in patients with normal bone conduction thresholds. These results are as predicted by a recent animal study showing that prolonged, adult-onset conductive hearing loss causes cochlear synaptopathy.
Collapse
Affiliation(s)
- Masahiro Okada
- Department of Otolaryngology, Head and Neck Surgery, Ehime University Graduate School of Medicine, Toon Ehime, Japan
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| | - D. Bradley Welling
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| | - M. Charles Liberman
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| | - Stéphane F. Maison
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| |
Collapse
|
8
|
Mulay A, Chowdhury MMK, James CT, Bingle L, Bingle CD. The transcriptional landscape of the cultured murine middle ear epithelium in vitro. Biol Open 2021; 10:258492. [PMID: 33913472 PMCID: PMC8084567 DOI: 10.1242/bio.056564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
Otitis media (OM) is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology, it is clear that epithelial abnormalities underpin the disease. The mechanisms underpinning epithelial remodelling in OM remain unclear. We recently described a novel in vitro model of mouse middle ear epithelial cells (mMEECs) that undergoes mucociliary differentiation into the varied epithelial cell populations seen in the middle ear cavity. We now describe genome wide gene expression profiles of mMEECs as they undergo differentiation. We compared the gene expression profiles of original (uncultured) middle ear cells, confluent cultures of undifferentiated cells and cells that had been differentiated for 7 days at an air liquid interface (ALI). >5000 genes were differentially expressed among the three groups of cells. Approximately 4000 genes were differentially expressed between the original cells and day 0 of ALI culture. The original cell population was shown to contain a mix of cell types, including contaminating inflammatory cells that were lost on culture. Approximately 500 genes were upregulated during ALI induced differentiation. These included some secretory genes and some enzymes but most were associated with the process of ciliogenesis. The data suggest that the in vitro model of differentiated murine middle ear epithelium exhibits a transcriptional profile consistent with the mucociliary epithelium seen within the middle ear. Knowledge of the transcriptional landscape of this epithelium will provide a basis for understanding the phenotypic changes seen in murine models of OM. Summary: This paper presents a genome wide transcriptional analysis of murine middle ear epithelial cells as they undergo differentiation to a mucociliary phenotype representative of the native middle ear epithelium.
Collapse
Affiliation(s)
- Apoorva Mulay
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Md Miraj K Chowdhury
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Cameron T James
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Lynne Bingle
- Oral and Maxillofacial Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Colin D Bingle
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.,The Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield S102TN, UK
| |
Collapse
|
9
|
Bodmer D, Kern P, Bächinger D, Monge Naldi A, Levano Huaman S. STAT1 deficiency predisposes to spontaneous otitis media. PLoS One 2020; 15:e0239952. [PMID: 32991625 PMCID: PMC7523960 DOI: 10.1371/journal.pone.0239952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/15/2020] [Indexed: 01/19/2023] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) is known to be an important player in inflammatory responses. STAT1 as a transcription factor regulates the expression of multiple proinflammatory genes. Inflammatory response is one of the common effects of ototoxicity. Our group reported that hair cells of STAT1 knockout (STAT1-KO) mice are less sensitive to ototoxic agents in-vitro. The effect of inflammatory responses in STAT1-KO mice has primarily been studied challenging them with several pathogens and analyzing different organs of those mice. However, the effect of STAT1 ablation in the mouse inner ear has not been reported. Therefore, we evaluated the cochlear function of wild type and STAT1-KO mice via auditory brain stem response (ABR) and performed histopathologic analysis of their temporal bones. We found ABR responses were affected in STAT1-KO mice with cases of bilateral and unilateral hearing impairment. Histopathologic examination of the middle and inner ears showed bilateral and unilateral otitis media. Otitis media was characterized by effusion of middle and inner ear that varied between the mice in volume and inflammatory cell content. In addition, the thickness of the middle ear mucosae in STAT1-KO mice were more pronounced than those in wild type mice. The degree of middle and inner ear inflammation correlated with ABR threshold elevation in STAT1-KO mice. It appears that a number of mice with inflammation underwent spontaneous resolution. The ABR thresholds were variable and showed a tendency to increase in homozygous and heterozygous STAT1-KO mice. These findings suggest that STAT1 ablation confers an increased susceptibility to otitis media leading to hearing impairment. Thus, the study supports the new role of STAT1 as otitis media predisposition gene.
Collapse
Affiliation(s)
- Daniel Bodmer
- Department of Biomedicine and Clinic for Otolaryngology, Head and Neck Surgery, University Basel Hospital, Basel, Switzerland
| | - Peter Kern
- Department of Biomedicine and Clinic for Otolaryngology, Head and Neck Surgery, University Basel Hospital, Basel, Switzerland
| | - David Bächinger
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Arianne Monge Naldi
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Soledad Levano Huaman
- Department of Biomedicine and Clinic for Otolaryngology, Head and Neck Surgery, University Basel Hospital, Basel, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Monsanto RDC, Penido NDO, Uchiyama M, Schachern P, Paparella MM, Cureoglu S. Quantitative assessment of cochlear and vestibular ganglion neurons in temporal bones with chronic otitis media. Eur Arch Otorhinolaryngol 2020; 278:331-338. [PMID: 32488375 PMCID: PMC10123924 DOI: 10.1007/s00405-020-06094-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/26/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE In this study, we aimed to determine whether or not COM leads to loss of spiral and Scarpa ganglion neurons. METHODS From the human temporal bone (HTB) collection at the University of Minnesota we selected human temporal bones with COM, defined as the presence of clinically intractable tissue abnormalities in the middle ear (cholesteatoma, perforation of the eardrum, granulation tissue, fibrosis, tympanosclerosis, and cholesterol granuloma). We also selected HTBs from donors with no ear diseases as controls. We quantitatively analyzed the number of spiral and Scarpa ganglion cells and compared the results obtained in the control and study groups. RESULTS In both COM and control groups we observed a significant negative correlation between age and number of both spiral (R = -0.632; P < 0.001; 95% CI - 0.766 to - 0.434) and Scarpa ganglion (R = - 0.404; P = 0.008; 95% CI - 0.636 to - 0.051) cells. We did not find any significant differences in the number of spiral ganglion cells (in total or per segment) or in the density of Scarpa ganglion cells (in each vestibular nerve or both) in the COM group as compared with controls (P > 0.05). CONCLUSIONS AND RELEVANCE Our results did not demonstrate significant loss of cochlear or vestibular peripheral ganglion neuron loss in HTBs with COM as compared with controls.
Collapse
Affiliation(s)
- Rafael da Costa Monsanto
- Department of Otolaryngology Head and Neck Surgery, Universidade Federal de São Paulo/Escola Paulista de Medicina (UNIFESP/EPM), R dos Otonis, 700 - piso superior - Vila Clementino, São Paulo, SP, 04037-004, Brazil.
| | - Norma de Oliveira Penido
- Department of Otolaryngology Head and Neck Surgery, Universidade Federal de São Paulo/Escola Paulista de Medicina (UNIFESP/EPM), R dos Otonis, 700 - piso superior - Vila Clementino, São Paulo, SP, 04037-004, Brazil
| | - Mio Uchiyama
- Department of Otolaryngology, Showa University, Tokyo, Japan.,Department of Otolaryngology Head and Neck Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Patricia Schachern
- Department of Otolaryngology Head and Neck Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Michael M Paparella
- Department of Otolaryngology Head and Neck Surgery, University of Minnesota, Minneapolis, MN, USA.,Paparella Ear Head and Neck Institute, Minneapolis, MN, USA
| | - Sebahattin Cureoglu
- Department of Otolaryngology Head and Neck Surgery, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Ryan AF, Nasamran CA, Pak K, Draf C, Fisch KM, Webster N, Kurabi A. Single-Cell Transcriptomes Reveal a Complex Cellular Landscape in the Middle Ear and Differential Capacities for Acute Response to Infection. Front Genet 2020; 11:358. [PMID: 32351546 PMCID: PMC7174727 DOI: 10.3389/fgene.2020.00358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/24/2020] [Indexed: 12/30/2022] Open
Abstract
Single-cell transcriptomics was used to profile cells of the normal murine middle ear. Clustering analysis of 6770 transcriptomes identified 17 cell clusters corresponding to distinct cell types: five epithelial, three stromal, three lymphocyte, two monocyte, two endothelial, one pericyte and one melanocyte cluster. Within some clusters, cell subtypes were identified. While many corresponded to those cell types known from prior studies, several novel types or subtypes were noted. The results indicate unexpected cellular diversity within the resting middle ear mucosa. The resolution of uncomplicated, acute, otitis media is too rapid for cognate immunity to play a major role. Thus innate immunity is likely responsible for normal recovery from middle ear infection. The need for rapid response to pathogens suggests that innate immune genes may be constitutively expressed by middle ear cells. We therefore assessed expression of innate immune genes across all cell types, to evaluate potential for rapid responses to middle ear infection. Resident monocytes/macrophages expressed the most such genes, including pathogen receptors, cytokines, chemokines and chemokine receptors. Other cell types displayed distinct innate immune gene profiles. Epithelial cells preferentially expressed pathogen receptors, bactericidal peptides and mucins. Stromal and endothelial cells expressed pathogen receptors. Pericytes expressed pro-inflammatory cytokines. Lymphocytes expressed chemokine receptors and antimicrobials. The results suggest that tissue monocytes, including macrophages, are the master regulators of the immediate middle ear response to infection, but that virtually all cell types act in concert to mount a defense against pathogens.
Collapse
Affiliation(s)
- Allen F. Ryan
- Departments of Surgery/Otolaryngology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States
| | - Chanond A. Nasamran
- Medicine/Center for Computational Biology & Bioinformatics, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States
| | - Kwang Pak
- Departments of Surgery/Otolaryngology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States
| | - Clara Draf
- Departments of Surgery/Otolaryngology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States
| | - Kathleen M. Fisch
- Medicine/Center for Computational Biology & Bioinformatics, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States
| | - Nicholas Webster
- Medicine/Endocrinology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States
| | - Arwa Kurabi
- Departments of Surgery/Otolaryngology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States
| |
Collapse
|
12
|
Geng R, Wang Q, Chen E, Zheng QY. Current Understanding of Host Genetics of Otitis Media. Front Genet 2020; 10:1395. [PMID: 32117425 PMCID: PMC7025460 DOI: 10.3389/fgene.2019.01395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of otitis media (OM), an inflammatory disease of the middle ear (ME), involves interplay between many different factors, including the pathogenicity of infectious pathogens, host immunological status, environmental factors, and genetic predisposition, which is known to be a key determinant of OM susceptibility. Animal models and human genetics studies have identified many genes and gene variants associated with OM susceptibility: genes that encode components of multiple signaling pathways involved in host immunity and inflammatory responses of the ME mucosa; genes involved in cellular function, such as mucociliary transport, mucin production, and mucous cell metaplasia; and genes that are essential for Eustachian tube (ET) development, ME cavitation, and homeostasis. Since our last review, several new mouse models with mutations in genes such as CCL3, IL-17A, and Nisch have been reported. Moreover, genetic variants and polymorphisms in several genes, including FNDC1, FUT2, A2ML1, TGIF1, CD44, and IL1-RA variable number tandem repeat (VNTR) allele 2, have been identified as being significantly associated with OM. In this review, we focus on the current understanding of the role of host genetics in OM, including recent discoveries and future research prospects. Further studies on the genes identified thus far and the discovery of new genes using advanced technologies such as gene editing, next generation sequencing, and genome-wide association studies, will advance our understanding of the molecular mechanism underlying the pathogenesis of OM and provide new avenues for early screening and developing effective preventative and therapeutic strategies to treat OM.
Collapse
Affiliation(s)
- Ruishuang Geng
- College of Special Education, Binzhou Medical University, Yantai, China
| | - Qingzhu Wang
- College of Special Education, Binzhou Medical University, Yantai, China.,Department of Otolaryngology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Eileen Chen
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| | - Qing Yin Zheng
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
13
|
Larson ED, Magno JPM, Steritz MJ, Llanes EGDV, Cardwell J, Pedro M, Roberts TB, Einarsdottir E, Rosanes RAQ, Greenlee C, Santos RAP, Yousaf A, Streubel SO, Santos ATR, Ruiz AG, Lagrana-Villagracia SM, Ray D, Yarza TKL, Scholes MA, Anderson CB, Acharya A, Gubbels SP, Bamshad MJ, Cass SP, Lee NR, Shaikh RS, Nickerson DA, Mohlke KL, Prager JD, Cruz TLG, Yoon PJ, Abes GT, Schwartz DA, Chan AL, Wine TM, Cutiongco-de la Paz EM, Friedman N, Kechris K, Kere J, Leal SM, Yang IV, Patel JA, Tantoco MLC, Riazuddin S, Chan KH, Mattila PS, Reyes-Quintos MRT, Ahmed ZM, Jenkins HA, Chonmaitree T, Hafrén L, Chiong CM, Santos-Cortez RLP. A2ML1 and otitis media: novel variants, differential expression, and relevant pathways. Hum Mutat 2019; 40:1156-1171. [PMID: 31009165 DOI: 10.1002/humu.23769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/26/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022]
Abstract
A genetic basis for otitis media is established, however, the role of rare variants in disease etiology is largely unknown. Previously a duplication variant within A2ML1 was identified as a significant risk factor for otitis media in an indigenous Filipino population and in US children. In this report exome and Sanger sequencing was performed using DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US probands, Finnish, and Pakistani families with otitis media. Sixteen novel, damaging A2ML1 variants identified in otitis media patients were rare or low-frequency in population-matched controls. In the indigenous population, both gingivitis and A2ML1 variants including the known duplication variant and the novel splice variant c.4061 + 1 G>C were independently associated with otitis media. Sequencing of salivary RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression according to the carriage of A2ML1 variants. Sequencing of additional salivary RNA samples from US patients with otitis media revealed differentially expressed genes that are highly correlated with A2ML1 expression levels. In particular, RND3 is upregulated in both A2ML1 variant carriers and high-A2ML1 expressors. These findings support a role for A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media pathology and the potential application of ROCK inhibition in otitis media.
Collapse
Affiliation(s)
- Eric D Larson
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jose Pedrito M Magno
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines
| | - Matthew J Steritz
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Erasmo Gonzalo D V Llanes
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Jonathan Cardwell
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Melquiadesa Pedro
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Tori Bootpetch Roberts
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Rose Anne Q Rosanes
- Department of Community Dentistry, College of Dentistry, University of the Philippines Manila, Manila, Philippines
| | - Christopher Greenlee
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | | | - Ayesha Yousaf
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sven-Olrik Streubel
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | | | - Amanda G Ruiz
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Sheryl Mae Lagrana-Villagracia
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Dylan Ray
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Talitha Karisse L Yarza
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines
| | - Melissa A Scholes
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Catherine B Anderson
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Anushree Acharya
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Samuel P Gubbels
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Stephen P Cass
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, Inc. and Department of Anthropology, Sociology and History, University of San Carlos, Cebu, Philippines
| | - Rehan S Shaikh
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Jeremy D Prager
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Teresa Luisa G Cruz
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Patricia J Yoon
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Generoso T Abes
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Abner L Chan
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Todd M Wine
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Eva Maria Cutiongco-de la Paz
- Philippine Genome Center, University of the Philippines, Quezon City, Philippines.,University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Norman Friedman
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Katerina Kechris
- Department of Biostatistics and Bioinformatics, Colorado School of Public Health, Aurora, Colorado
| | - Juha Kere
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ivana V Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Janak A Patel
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Ma Leah C Tantoco
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Saima Riazuddin
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenny H Chan
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Petri S Mattila
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Rina T Reyes-Quintos
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines.,University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Zubair M Ahmed
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Herman A Jenkins
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Tasnee Chonmaitree
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Lena Hafrén
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Charlotte M Chiong
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines
| | - Regie Lyn P Santos-Cortez
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Center for Children's Surgery, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
14
|
Trune DR, Shives KD, Hausman F, Kempton JB, MacArthur CJ, Choi D. Intratympanically Delivered Steroids Impact Thousands More Inner Ear Genes Than Systemic Delivery. Ann Otol Rhinol Laryngol 2019; 128:134S-138S. [DOI: 10.1177/0003489419837562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: Glucocorticoids are given for sensorineural hearing loss, but little is known of their molecular impact on the inner ear. Furthermore, in spite of claims of improved hearing recovery with intratympanic delivery of steroids, no studies have actually documented the inner ear molecular functions that are enhanced with this delivery method. Methods: To assess steroid-driven processes in the inner ear, gene chip analyses were conducted on mice treated systemically with the glucocorticoids prednisolone or dexamethasone or the mineralocorticoid aldosterone. Other mice were given the same steroids intratympanically. Inner ears were harvested at 6 hours and processed on the Affymetrix 430 2.0 Gene Chip for expression of its 34 000 genes. Results were statistically analyzed for up or down expression of each gene against control (untreated) mice. Results: Analyses showed approximately 17 500 genes are normally expressed in the inner ear and steroids alter expression of 55% to 82% of these. Dexamethasone changed expression of 9424 (53.9%) inner ear genes following systemic injection but 14 899 ear genes (85%) if given intratympanically. A similar pattern was seen with prednisolone, as 7560 genes were impacted by oral delivery and 11 164 genes (63.8%) when given intratympanically. The mineralocorticoid aldosterone changed expression of only 268 inner ear genes if given orally, but this increased to 10 124 genes (57.9%) if injected intratympanically. Furthermore, the glucocorticoids given actually impacted more inner ear genes via the mineralocorticoid receptor than the glucocorticoid receptor. Conclusions: Thousands of inner ear genes were affected by steroids, and this number increased significantly if steroids were delivered intratympanically. Also, the impact of glucocorticoids on inner ear mineralocorticoid functions is more substantial than previously known. Thus, the application of therapeutic steroids for hearing loss needs to be reassessed in light of their more comprehensive impact on inner ear genes. Furthermore, simply ascribing the efficacy of steroids to immunosuppression no longer appears to be warranted.
Collapse
Affiliation(s)
- Dennis R. Trune
- Oregon Hearing Research Center, Department of Otolaryngology-Head & Neck Surgery, OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Katherine D. Shives
- Oregon Hearing Research Center, Department of Otolaryngology-Head & Neck Surgery, OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, USA
- Sartorius-Stedim North America, Arvada, CO, USA
| | - Fran Hausman
- Oregon Hearing Research Center, Department of Otolaryngology-Head & Neck Surgery, OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - J. Beth Kempton
- Oregon Hearing Research Center, Department of Otolaryngology-Head & Neck Surgery, OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Carol J. MacArthur
- Oregon Hearing Research Center, Department of Otolaryngology-Head & Neck Surgery, OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Dongseok Choi
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
15
|
Animal models of acute otitis media - A review with practical implications for laboratory research. Eur Ann Otorhinolaryngol Head Neck Dis 2018; 135:183-190. [PMID: 29656888 DOI: 10.1016/j.anorl.2017.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 11/23/2022]
Abstract
Considerable animal research has focused on developing new strategies for the prevention and treatment of acute otitis media (AOM). Several experimental models of AOM have thus been developed. A PubMed search of the English literature was conducted from 1975 to July 2016 using the search terms "animal model" and "otitis media" from which 91 published studies were included for analysis, yielding 123 animal models. The rat, mouse and chinchilla are the preferred animals for experimental AOM models with their individual advantages and disadvantages. The most common pathogens used to create AOM are Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis. Streptococcus pneumoniae (types 3, 23 and 6A) and non-typeable Haemophilus influenzae (NTHi) are best options for inoculation into rat and mouse models. Adding viral pathogens such as RSV and Influenza A virus, along with creating ET dysfunction, are useful adjuncts in animal models of AOM. Antibiotic prophylaxis may interfere with the inflammatory response without a significant reduction in animal mortality.
Collapse
|
16
|
Otitis Media and Nasopharyngeal Colonization in ccl3-/- Mice. Infect Immun 2017; 85:IAI.00148-17. [PMID: 28847849 DOI: 10.1128/iai.00148-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/09/2017] [Indexed: 11/20/2022] Open
Abstract
We previously found CC chemokine ligand 3 (CCL3) to be a potent effector of inflammation during otitis media (OM): exogenous CCL3 rescues the OM phenotype of tumor necrosis factor-deficient mice and the function of macrophages deficient in several innate immune molecules. To further delineate the role of CCL3 in OM, we evaluated middle ear (ME) responses of ccl3-/-mice to nontypeable Haemophilus influenzae (NTHi). CCL chemokine gene expression was evaluated in wild-type (WT) mice during the complete course of acute OM. OM was induced in ccl3-/- and WT mice, and infection and inflammation were monitored for 21 days. Phagocytosis and killing of NTHi by macrophages were evaluated by an in vitro assay. The nasopharyngeal bacterial load was assessed in naive animals of both strains. Many CCL genes showed increased expression levels during acute OM, with CCL3 being the most upregulated, at levels 600-fold higher than the baseline. ccl3-/- deletion compromised ME bacterial clearance and prolonged mucosal hyperplasia. ME recruitment of leukocytes was delayed but persisted far longer than in WT mice. These events were linked to a decrease in the macrophage capacity for NTHi phagocytosis and increased nasopharyngeal bacterial loads in ccl3-/- mice. The generalized impairment in inflammatory cell recruitment was associated with compensatory changes in the expression profiles of CCL2, CCL7, and CCL12. CCL3 plays a significant role in the clearance of infection and resolution of inflammation and contributes to mucosal host defense of the nasopharyngeal niche, a reservoir for ME and upper respiratory infections. Therapies based on CCL3 could prove useful in treating or preventing persistent disease.
Collapse
|
17
|
Samuels TL, Yan JC, Khampang P, Dettmar PW, MacKinnon A, Hong W, Johnston N, Papsin BC, Chun RH, McCormick ME, Kerschner JE. Association of Gel-Forming Mucins and Aquaporin Gene Expression With Hearing Loss, Effusion Viscosity, and Inflammation in Otitis Media With Effusion. JAMA Otolaryngol Head Neck Surg 2017; 143:810-817. [PMID: 28594978 DOI: 10.1001/jamaoto.2017.0386] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Persistent, viscous middle ear effusion in pediatric otitis media (OM) contributes to increased likelihood of anesthesia and surgery, conductive hearing loss, and subsequent developmental delays. Biomarkers of effusion viscosity and hearing loss have not yet been identified despite the potential that such markers hold for targeted therapy and screening. Objective To investigate the association of gel-forming mucins and aquaporin 5 (AQP5) gene expression with inflammation, effusion viscosity, and hearing loss in pediatric OM with effusion (OME). Design, Setting, and Participants Case-control study of 31 pediatric patients (aged 6 months to 12 years) with OME undergoing tympanostomy tube placement and control individuals (aged 1 to 10 years) undergoing surgery for cochlear implantation from February 1, 2013, through November 30, 2014. Those with 1 or more episodes of OM in the previous 12 months, immunologic abnormality, anatomical or physiologic ear defect, OM-associated syndrome (ie, Down syndrome, cleft palate), chronic mastoiditis, or history of cholesteatoma were excluded from the study. All patients with OME and 1 control were recruited from Children's Hospital of Wisconsin, Milwaukee. The remainder of the controls were recruited from Sick Kids Hospital in Toronto, Ontario, Canada. Main Outcomes and Measures Two to 3 middle ear biopsy specimens, effusions, and preoperative audiometric data (obtained <3 weeks before surgery) were collected from patients; only biopsy specimens were collected from controls. Expression of the mucin 2 (MUC2), mucin 5AC (MUC5AC), mucin 5B (MUC5B), and AQP5 genes were assayed in middle ear biopsy specimens by quantitative polymerase chain reaction. One middle ear biopsy specimen was sectioned for histopathologic analysis. Reduced specific viscosity of effusions was assayed using rheometry. Results Of the 31 study participants, 24 patients had OME (mean [SD] age, 50.4 [31.9] months; 15 [62.5%] male; 16 [66.7%] white) and 7 acted as controls (mean [SD] age, 32.6 [24.4] months; 2 [26.6%] male; 6 [85.7%] white). Mucins and AQP5 gene expression were significantly higher in patients with OME relative to controls (MUC2: ratio, 127.6 [95% CI, 33.7-482.7]; MUC5AC: ratio, 3748.8 [95% CI, 558.1-25 178.4]; MUC5B: ratio, 471.1 [95% CI, 130.7-1697.4]; AQP5: ratio, 2.4 [95% CI, 1.1-5.6]). A 2-fold increase in MUC5B correlated with increased hearing loss (air-bone gap: 7.45 dB [95% CI, 2.65-12.24 dB]; sound field: 6.66 dB [95% CI, 6.63-6.69 dB]), effusion viscosity (2.75 mL/mg; 95% CI, 0.89-4.62 mL/mg), middle ear epithelial thickness (3.5 μm; 95% CI, 1.96-5.13 μm), and neutrophil infiltration (odds ratio, 1.7; 95% CI, 1.07-2.72). A 2-fold increase in AQP5 correlated with increased effusion viscosity (1.94 mL/mg; 95% CI, 0.08-3.80 mL/mg). Conclusions and Relevance Further exploration of the role of MUC5B in the pathophysiology of OME holds promise for development of novel, targeted therapies to reduce effusion viscosity, facilitation of effusion clearance, and prevention of disease chronicity and hearing loss in patients with OME.
Collapse
Affiliation(s)
- Tina L Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee
| | - Justin C Yan
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee
| | - Pawjai Khampang
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee
| | | | | | - Wenzhou Hong
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee.,Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee
| | - Blake C Papsin
- Archie's Cochlear Implant Laboratory, Department of Otolaryngology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robert H Chun
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee
| | - Michael E McCormick
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee
| | - Joseph E Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee.,Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
18
|
Preciado D, Granath A, Lin J, Val S, Kurabi A, Johnston N, Vijayasekaran S, Valdez T, Depireux D, Hermansson A. Panel 8: Report on Recent Advances in Molecular and Cellular Biochemistry. Otolaryngol Head Neck Surg 2017; 156:S106-S113. [PMID: 28372528 DOI: 10.1177/0194599816658290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives To update the medical literature on recent cellular and molecular advances in otitis media disease models with a principal focus on developments in the past 5 years. We also aim to explain recent translational advances in cellular and molecular biology that have influenced our understanding and management of otitis media. Data Sources PubMed-indexed peer-reviewed articles. Review Methods A comprehensive review of the literature was conducted with the term otitis media and the following search terms: molecular biology, cell biology, innate immunity, oxidative stress, mucins, molecular diagnostics. Included articles were published in the English language from January 1, 2010, to July 31, 2015. Implications for Practice The molecular understanding of otitis media disease progression has rapidly advanced over the last 5 years. The roles of inflammation, mucins, and cell signaling mechanisms have been elucidated and defined. Advances in the field provide a plethora of opportunities for innovative molecular targeting in the development of novel therapeutic strategies for otitis media.
Collapse
Affiliation(s)
- Diego Preciado
- 1 Shiekh Zayed Institute for Pediatric Surgical Innovation, Pediatric Otolaryngology, Children's National Health System, Washington, DC, USA
| | - Anna Granath
- 2 Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Jizhen Lin
- 3 Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stéphanie Val
- 1 Shiekh Zayed Institute for Pediatric Surgical Innovation, Pediatric Otolaryngology, Children's National Health System, Washington, DC, USA
| | - Arwa Kurabi
- 4 Division of Otolaryngology, Department of Surgery, University of California, San Diego, California, USA
| | - Nikki Johnston
- 5 Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shyan Vijayasekaran
- 6 Department of Surgery, Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Tulio Valdez
- 7 Division of Pediatric Otolaryngology, Connecticut Children's Hospital, Hartford, Connecticut, USA
| | - Didier Depireux
- 8 Institute for Systems Research, University of Maryland, College Park, Maryland, USA
| | - Ann Hermansson
- 9 Departments of Otolaryngology, Oral and Maxillofacial Surgery, and Pediatrics, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Kyd JM, Hotomi M, Kono M, Kurabi A, Pichichero M, Ryan A, Swords WE, Thornton R. Panel 5: Immunology. Otolaryngol Head Neck Surg 2017; 156:S63-S75. [DOI: 10.1177/0194599816663886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective To perform a state-of-the-art review of the literature from January 2012 through May 2015 on studies that advanced our knowledge of the innate and adaptive immunology related to otitis media. This review also proposes future directions for research in this area. Data Sources PubMed database of the National Library of Medicine. Review Methods Three subpanels comprising experts in the field focused on sections relevant to cytokines, innate immunity, and adaptive immunity. The review focused on animal, cell line, and human studies and was critical in relation to the recommendations from the previous publication and for determination of the proposed goals and priorities. The panel met at the 18th International Symposium on Recent Advances in Otitis Media in June 2015 to consolidate its prior search results and discuss, plan, and refine the review. The panel approved the final draft. Conclusion From 2012 to 2014, tremendous progresses in immunology of otitis media were established—especially in the areas of innate immunity associated with the pathogenesis of otitis media. Implications for Practice The advances of the past 4 years formed the basis for a series of short- and long-term research goals in an effort to guide the field. Accomplishing these goals will provide opportunities for the development of novel interventions, including new ways to better treat and prevent otitis media, especially for recurrent otitis media.
Collapse
Affiliation(s)
| | | | | | - Arwa Kurabi
- University of California, San Diego, California, USA
| | | | - Allen Ryan
- University of California, San Diego, California, USA
| | - W. Edward Swords
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | |
Collapse
|
20
|
Lin J, Hafrén H, Kerschner J, Jian-Dong L, Brown S, Zheng QY, Preciado D, Nakamura Y, Huang Q, Zhang Y. Panel 3: Genetics and Precision Medicine of Otitis Media. Otolaryngol Head Neck Surg 2017; 156:S41-S50. [PMID: 28372532 PMCID: PMC6211190 DOI: 10.1177/0194599816685559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/01/2016] [Indexed: 12/31/2022]
Abstract
Objective The objective is to perform a comprehensive review of the literature up to 2015 on the genetics and precision medicine relevant to otitis media. Data Sources PubMed database of the National Library of Medicine. Review Methods Two subpanels were formed comprising experts in the genetics and precision medicine of otitis media. Each of the panels reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a merged draft was created. The entire panel met at the 18th International Symposium on Recent Advances in Otitis Media in June 2015 and discussed the review and refined the content. A final draft was made, circulated, and approved by the panel members. Conclusion Many genes relevant to otitis media have been identified in the last 4 years in advancing our knowledge regarding the predisposition of the middle ear mucosa to commensals and pathogens. Advances include mutant animal models and clinical studies. Many signaling pathways are involved in the predisposition of otitis media. Implications for Practice New knowledge on the genetic background relevant to otitis media forms a basis of novel potential interventions, including potential new ways to treat otitis media.
Collapse
Affiliation(s)
- Jizhen Lin
- Department of Otolaryngology–Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hena Hafrén
- Departments of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Joseph Kerschner
- Department of Otorhinolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Li Jian-Dong
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Steve Brown
- Medical Research Council Harwell Institute, Oxfordshire, UK
| | - Qing Y. Zheng
- Department of Otolaryngology–Head and Neck Surgery, Case Western University, Cleveland, Ohio, USA
| | - Diego Preciado
- Shiekh Zayed Institute for Pediatric Surgical Innovation, Pediatric Otolaryngology, Children’s National Health System, Washington, DC, USA
| | | | - Qiuhong Huang
- Department of Otolaryngology, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhang
- Department of Otolaryngology, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
21
|
Ishihara H, Kariya S, Okano M, Zhao P, Maeda Y, Nishizaki K. Expression of macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in lipopolysaccharide-induced otitis media. Acta Otolaryngol 2016; 136:1011-6. [PMID: 27181906 DOI: 10.1080/00016489.2016.1179786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONCLUSION Significant expression of macrophage migration inhibitory factor and its receptor (CD74) was observed in both the middle ear and inner ear in experimental otitis media in mice. Modulation of macrophage migration inhibitory factor and its signaling pathway might be useful in the management of inner ear inflammation due to otitis media. OBJECTIVES Inner ear dysfunction secondary to otitis media has been reported. However, the specific mechanisms involved are not clearly understood. The aim of this study is to investigate the expression of macrophage migration inhibitory factor and CD74 in the middle ear and inner ear in lipopolysaccharide-induced otitis media. METHOD BALB/c mice received a transtympanic injection of either lipopolysaccharide or phosphate-buffered saline (PBS). The mice were sacrificed 24 h after injection, and temporal bones were processed for polymerase chain reaction (PCR) analysis, histologic examination, and immunohistochemistry. RESULTS PCR examination revealed that the lipopolysaccharide-injected mice showed a significant up-regulation of macrophage migration inhibitory factor in both the middle ear and inner ear as compared with the PBS-injected control mice. The immunohistochemical study showed positive reactions for macrophage migration inhibitory factor and CD74 in infiltrating inflammatory cells, middle ear mucosa, and inner ear in the lipopolysaccharide-injected mice.
Collapse
Affiliation(s)
- Hisashi Ishihara
- Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Kariya
- Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuhiro Okano
- Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Pengfei Zhao
- Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yukihide Maeda
- Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazunori Nishizaki
- Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
22
|
Konduru AS, Lee BC, Li JD. Curcumin suppresses NTHi-induced CXCL5 expression via inhibition of positive IKKβ pathway and up-regulation of negative MKP-1 pathway. Sci Rep 2016; 6:31695. [PMID: 27538525 PMCID: PMC4990917 DOI: 10.1038/srep31695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/25/2016] [Indexed: 11/09/2022] Open
Abstract
Otitis media (OM) is the most common childhood bacterial infection, and leading cause of conductive hearing loss. Nontypeable Haemophilus influenzae (NTHi) is a major bacterial pathogen for OM. OM characterized by the presence of overactive inflammatory responses is due to the aberrant production of inflammatory mediators including C-X-C motif chemokine ligand 5 (CXCL5). The molecular mechanism underlying induction of CXCL5 by NTHi is unknown. Here we show that NTHi up-regulates CXCL5 expression by activating IKKβ-IκBα and p38 MAPK pathways via NF-κB nuclear translocation-dependent and -independent mechanism in middle ear epithelial cells. Current therapies for OM are ineffective due to the emergence of antibiotic-resistant NTHi strains and risk of side effects with prolonged use of immunosuppressant drugs. In this study, we show that curcumin, derived from Curcuma longa plant, long known for its medicinal properties, inhibited NTHi-induced CXCL5 expression in vitro and in vivo. Curcumin suppressed CXCL5 expression by direct inhibition of IKKβ phosphorylation, and inhibition of p38 MAPK via induction of negative regulator MKP-1. Thus, identification of curcumin as a potential therapeutic for treating OM is of particular translational significance due to the attractiveness of targeting overactive inflammation without significant adverse effects.
Collapse
Affiliation(s)
- Anuhya S. Konduru
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Byung-Cheol Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jian-Dong Li
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
23
|
Intratympanic Steroid Treatments May Improve Hearing via Ion Homeostasis Alterations and Not Immune Suppression. Otol Neurotol 2016; 36:1089-95. [PMID: 25692799 DOI: 10.1097/mao.0000000000000725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS The inner ear (IE) endothelium is capable of responding to therapeutic steroids by altering the local expression of cytokine and ion homeostasis genes that impact inflammation and fluid regulation. BACKGROUND Glucocorticoids are often given transtympanically for hearing disorders because of their anti-inflammatory effects, but their direct impact on IE ion homeostasis and cytokine gene expression has not been studied. METHODS The middle ears of Balb/c mice were transtympanically injected with 5 μL of phosphate-buffered saline, prednisolone (Pred), or dexamethasone (Dex). Untreated mice were used as controls. Mice were euthanized at 6, 24, and 72 hours; the cochleas were harvested; and total RNA was isolated from the IE tissues. Expression of eight cytokine genes and 24 ion homeostasis genes was analyzed with quantitative real time reverse transcription polymerase chain reaction. RESULTS Phosphate-buffered saline caused upregulation of inflammatory cytokine genes that peaked at 6 hours. Surprisingly, Pred and Dex also caused upregulation of most cytokine genes. Interestingly, ion homeostasis genes were predominantly upregulated with Dex and Pred, with Pred having a larger effect. CONCLUSION In the murine model, intratympanic steroids caused an initial upregulation of inflammatory cytokine genes in the IE, as well as predominant upregulation of ion homeostasis genes. These findings suggest that glucocorticoids do not suppress IE inflammation but rather cause an initial inflammatory response in the IE. Thus, inflammatory gene suppression is not a likely mechanism for their hearing restorative effects. On the other hand, these steroids have a significant mineralocorticoid function, as demonstrated by increased function of ion homeostasis genes, implicating their ionic and fluid regulatory properties as a mechanism for their therapeutic effects.
Collapse
|
24
|
Trune DR, Kempton B, Hausman FA, Larrain BE, MacArthur CJ. Correlative mRNA and protein expression of middle and inner ear inflammatory cytokines during mouse acute otitis media. Hear Res 2015; 326:49-58. [PMID: 25922207 DOI: 10.1016/j.heares.2015.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/23/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022]
Abstract
Although the inner ear has long been reported to be susceptible to middle ear disease, little is known of the inflammatory mechanisms that might cause permanent sensorineural hearing loss. Recent studies have shown inner ear tissues are capable of expressing inflammatory cytokines during otitis media. However, little quantitative information is available concerning cytokine gene expression in the inner ear and the protein products that result. Therefore, this study was conducted of mouse middle and inner ear during acute otitis media to measure the relationship between inflammatory cytokine genes and their protein products with quantitative RT-PCR and ELISA, respectively. Balb/c mice were inoculated transtympanically with heat-killed Haemophilus influenzae and middle and inner ear tissues collected for either quantitative RT-PCR microarrays or ELISA multiplex arrays. mRNA for several cytokine genes was significantly increased in both the middle and inner ear at 6 h. In the inner ear, these included MIP-2 (448 fold), IL-6 (126 fold), IL-1β (7.8 fold), IL-10 (10.7 fold), TNFα (1.8 fold), and IL-1α (1.5 fold). The 24 h samples showed a similar pattern of gene expression, although generally at lower levels. In parallel, the ELISA showed the related cytokines were present in the inner ear at concentrations higher by 2-122 fold higher at 18 h, declining slightly from there at 24 h. Immunohistochemistry with antibodies to a number of these cytokines demonstrated they occurred in greater amounts in the inner ear tissues. These findings demonstrate considerable inflammatory gene expression and gene products in the inner ear following acute otitis media. These higher cytokine levels suggest one potential mechanism for the permanent hearing loss seen in some cases of acute and chronic otitis media.
Collapse
Affiliation(s)
- Dennis R Trune
- Oregon Hearing Research Center, Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA.
| | - Beth Kempton
- Oregon Hearing Research Center, Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Frances A Hausman
- Oregon Hearing Research Center, Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Barbara E Larrain
- Oregon Hearing Research Center, Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Carol J MacArthur
- Oregon Hearing Research Center, Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
25
|
Hernandez M, Leichtle A, Pak K, Webster NJ, Wasserman SI, Ryan AF. The transcriptome of a complete episode of acute otitis media. BMC Genomics 2015; 16:259. [PMID: 25888408 PMCID: PMC4394589 DOI: 10.1186/s12864-015-1475-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/20/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Otitis media is the most common disease of childhood, and represents an important health challenge to the 10-15% of children who experience chronic/recurrent middle ear infections. The middle ear undergoes extensive modifications during otitis media, potentially involving changes in the expression of many genes. Expression profiling offers an opportunity to discover novel genes and pathways involved in this common childhood disease. The middle ears of 320 WBxB6 F1 hybrid mice were inoculated with non-typeable Haemophilus influenzae (NTHi) or PBS (sham control). Two independent samples were generated for each time point and condition, from initiation of infection to resolution. RNA was profiled on Affymetrix mouse 430 2.0 whole-genome microarrays. RESULTS Approximately 8% of the sampled transcripts defined the signature of acute NTHi-induced otitis media across time. Hierarchical clustering of signal intensities revealed several temporal gene clusters. Network and pathway enrichment analysis of these clusters identified sets of genes involved in activation of the innate immune response, negative regulation of immune response, changes in epithelial and stromal cell markers, and the recruitment/function of neutrophils and macrophages. We also identified key transcriptional regulators related to events in otitis media, which likely determine the expression of these gene clusters. A list of otitis media susceptibility genes, derived from genome-wide association and candidate gene studies, was significantly enriched during the early induction phase and the middle re-modeling phase of otitis but not in the resolution phase. Our results further indicate that positive versus negative regulation of inflammatory processes occur with highly similar kinetics during otitis media, underscoring the importance of anti-inflammatory responses in controlling pathogenesis. CONCLUSIONS The results characterize the global gene response during otitis media and identify key signaling and transcription factor networks that control the defense of the middle ear against infection. These networks deserve further attention, as dysregulated immune defense and inflammatory responses may contribute to recurrent or chronic otitis in children.
Collapse
Affiliation(s)
- Michelle Hernandez
- Divisions of Surgery / Otolaryngology, University of California, San Diego, La Jolla, CA, USA. .,Department of Pediatrics, Division of Allergy, Immunology, Rheumatology, and Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - Anke Leichtle
- Divisions of Surgery / Otolaryngology, University of California, San Diego, La Jolla, CA, USA. .,Department of Otolaryngology, University of Lübeck, Lübeck, Germany.
| | - Kwang Pak
- Divisions of Surgery / Otolaryngology, University of California, San Diego, La Jolla, CA, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| | - Nicholas J Webster
- Medicine / Endocrinology, University of California, San Diego, La Jolla, CA, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| | - Stephen I Wasserman
- Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA.
| | - Allen F Ryan
- Divisions of Surgery / Otolaryngology, University of California, San Diego, La Jolla, CA, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
26
|
Control of middle ear inflammatory and ion homeostasis genes by transtympanic glucocorticoid and mineralocorticoid treatments. PLoS One 2015; 10:e0119228. [PMID: 25811752 PMCID: PMC4374692 DOI: 10.1371/journal.pone.0119228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/29/2015] [Indexed: 11/19/2022] Open
Abstract
HYPOTHESIS Transtympanic steroid treatment will induce changes in ion homeostasis and inflammatory gene expression to decrease middle ear inflammation due to bacterial inoculation. BACKGROUND Otitis media is common, but treatment options are limited to systemic antibiotic therapy or surgical intervention. Systemic glucocorticoid treatment of mice decreases inflammation and improves fluid clearance. However, transtympanic delivery of glucocorticoids or mineralocorticoid has not been explored to determine if direct steroid application is beneficial. METHODS Balb/c mice received transtympanic inoculation of heat-killed Haemophilus influenzae (H flu), followed by transtympanic treatment with either prednisolone or aldosterone. Mice given PBS instead of steroid and untreated mice were used as controls. Four hours after steroid treatment, middle ears were harvested for mRNA extraction and 24 hours after inoculation middle ears were harvested and examined for measures of inflammation. RESULTS H flu inoculation caused the increased expression of nearly all inflammatory cytokine genes and induced changes in expression of several genes related to cellular junctions and transport channels. Both steroids generally reversed the expression of inflammatory genes and caused ion and water regulatory genes to return to normal or near normal levels. Histologic evaluation of middle ears showed improved fluid and inflammatory cell clearance. CONCLUSION Improvement in middle ear inflammation was noted with both the glucocorticoid prednisolone and the mineralocorticoid aldosterone. This was due to reversal of inflammation-induced changes in middle ear cytokine genes, as well as those involved in ion and water homeostasis. Because glucocorticoids bind to the mineralocorticoid receptor, but not the reverse, it is concluded that much of the reduction of fluid and other inflammation measures was due to these steroids impact on ion and water transport channels. Further research is necessary to determine if this alternative mineralocorticoid treatment for otitis media will be clinically effective with fewer side effects than glucocorticoids.
Collapse
|