1
|
Shen D, Xia Y, Fu Y, Cao Q, Chen W, Zhu Y, Guo K, Sun L. Hedgehog pathway and cancer: A new area (Review). Oncol Rep 2024; 52:116. [PMID: 38994763 PMCID: PMC11267502 DOI: 10.3892/or.2024.8775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
In years of research on classical pathways, the composition, information transmission mechanism, crosstalk with other pathways, and physiological and pathological effects of hedgehog (HH) pathway have been gradually clarified. HH also plays a critical role in tumor formation and development. According to the update of interpretation of tumor phenotypes, the latest relevant studies have been sorted out, to explore the specific mechanism of HH pathway in regulating different tumor phenotypes through gene mutation and signal regulation. The drugs and natural ingredients involved in regulating HH pathway were also reviewed; five approved drugs and drugs under research exert efficacy by blocking HH pathway, and at least 22 natural components have potential to treat tumors by HH pathway. Nevertheless, there is a deficiency of existing studies. The present review confirmed the great potential of HH pathway in future cancer treatment with factual basis.
Collapse
Affiliation(s)
- Deyi Shen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Yuwei Xia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yuhan Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Qiaochang Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Wenqian Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Ying Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Kaibo Guo
- Department of Cancer Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Leitao Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
2
|
Bardwell AJ, Wu B, Sarin KY, Waterman ML, Atwood SX, Bardwell L. ERK2 MAP kinase regulates SUFU binding by multisite phosphorylation of GLI1. Life Sci Alliance 2022; 5:e202101353. [PMID: 35831023 PMCID: PMC9279676 DOI: 10.26508/lsa.202101353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Crosstalk between the Hedgehog and MAPK signaling pathways occurs in several types of cancer and contributes to clinical resistance to Hedgehog pathway inhibitors. Here we show that MAP kinase-mediated phosphorylation weakens the binding of the GLI1 transcription factor to its negative regulator SUFU. ERK2 phosphorylates GLI1 on three evolutionarily conserved target sites (S102, S116, and S130) located near the high-affinity binding site for SUFU; these phosphorylations cooperate to weaken the affinity of GLI1-SUFU binding by over 25-fold. Phosphorylation of any one, or even any two, of the three sites does not result in the level of SUFU release seen when all three sites are phosphorylated. Tumor-derived mutations in R100 and S105, residues bordering S102, also diminish SUFU binding, collectively defining a novel evolutionarily conserved SUFU affinity-modulating region. In cultured mammalian cells, GLI1 variants containing phosphomimetic substitutions of S102, S116, and S130 displayed an increased ability to drive transcription. We conclude that multisite phosphorylation of GLI1 by ERK2 or other MAP kinases weakens GLI1-SUFU binding, thereby facilitating GLI1 activation and contributing to both physiological and pathological crosstalk.
Collapse
Affiliation(s)
- A Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Beibei Wu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| |
Collapse
|
3
|
Nicheperovich A, Townsend-Nicholson A. Towards Precision Oncology: The Role of Smoothened and Its Variants in Cancer. J Pers Med 2022; 12:jpm12101648. [PMID: 36294790 PMCID: PMC9605185 DOI: 10.3390/jpm12101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
The G protein-coupled receptor Smoothened (Smo) is a central signal transducer of the Hedgehog (Hh) pathway which has been linked to diverse forms of tumours. Stimulated by advancements in structural and functional characterisation, the Smo receptor has been recognised as an important therapeutic target in Hh-driven cancers, and several Smo inhibitors have now been approved for cancer therapy. This receptor is also known to be an oncoprotein itself and its gain-of-function variants have been associated with skin, brain, and liver cancers. According to the COSMIC database, oncogenic mutations of Smo have been identified in various other tumours, although their oncogenic effect remains unknown in these tissues. Drug resistance is a common challenge in cancer therapies targeting Smo, and data analysis shows that healthy individuals also harbour resistance mutations. Based on the importance of Smo in cancer progression and the high incidence of resistance towards Smo inhibitors, this review suggests that detection of Smo variants through tumour profiling could lead to increased precision and improved outcomes of anti-cancer treatments.
Collapse
|
4
|
Villarinho NJ, Vasconcelos FDC, Mazzoccoli L, da Silva Robaina MC, Pessoa LS, Siqueira PET, Maia RC, de Oliveira DM, Leite de Sampaio E Spohr TC, Lopes GF. Effects of long-term exposure to MST-312 on lung cancer cells tumorigenesis: Role of SHH/GLI-1 axis. Cell Biol Int 2022; 46:1468-1479. [PMID: 35811464 DOI: 10.1002/cbin.11843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/12/2022]
Abstract
Replicative immortality is a key feature of cancer cells and it is maintained by the expression of telomerase, a promising target of novel therapies. Long-term telomerase inhibition can induce resistance, but the mechanisms underlying this process remain unclear. The Sonic hedgehog pathway (SHH) is an embryogenic pathway involved in tumorigenesis and modulates the transcription of telomerase. We evaluated the effects of long-term treatment of the telomerase inhibitor MST-312 in morphology, proliferation, resistance, and in the SHH pathway molecules expression levels in lung cancer cells. Cells treated for 12 weeks with MST-312 showed changes in morphology, such as spindle-shaped cells, and a shift in the distribution of F-ACTIN from cortical to diffuse. Treatment also significantly reduced cells' efficiency to form spheroids and their clonogenic potential, independently of the cell cycle and telomeric DNA content. Moreover, GLI-1 expression levels were significantly reduced after 12 weeks of MST-312 treatment, indicating a possible inhibition of this signaling axis in the SHH pathway, without hindering NANOG and OCT4 expression. Here, we described a novel implication of long-term treatment with MST-312 functionally and molecularly, shedding new light on the molecular mechanisms of this drug in vitro.
Collapse
Affiliation(s)
- Nicolas Jones Villarinho
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer IECPN, Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia da Cunha Vasconcelos
- Laboratório de Hemato-oncologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano Mazzoccoli
- Laboratório de Hemato-oncologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Cristina da Silva Robaina
- Laboratório de Hemato-oncologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Santos Pessoa
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer IECPN, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pablo Enrique Torres Siqueira
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer IECPN, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Ciuvalschi Maia
- Laboratório de Hemato-oncologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Madureira de Oliveira
- Departamento de Bases Biológicas da Saúde, Universidade Federal de Brasília-Campus Ceilândia, Brasilia, Brazil
| | - Tania Cristina Leite de Sampaio E Spohr
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer IECPN, Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselle Faria Lopes
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Hemato-oncologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brazil.,Divisão de Bioprodutos, Departamento de Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM), Arraial do Cabo, Brazil
| |
Collapse
|
5
|
Yoon JH, Choi BJ, Nam SW, Park WS. Gastric cancer exosomes contribute to the field cancerization of gastric epithelial cells surrounding gastric cancer. Gastric Cancer 2022; 25:490-502. [PMID: 34993738 DOI: 10.1007/s10120-021-01269-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND A dynamic molecular interaction between cancer and the surrounding normal cells is mediated through exosomes. We investigated whether exosomes derived from gastric cancer cells affected the fate of the surrounding gastric epithelial cells. METHODS We analyzed the cell viability and immortalization of primary normal stomach epithelial cells (PNSECs) after treatment with exosomes derived from AGS gastric cancer cells and/or H. pylori CagA. Cell proliferation and apoptosis were analyzed by BrdU incorporation, flow-cytometry, and colony formation assays. We examined telomere length, expression and activity of telomerase, and expression of telomere-related genes in PNSECs treated with cancer exosomes, and in 60 gastric cancer and corresponding mucosal tissues. The differentially expressed genes and transcriptional regulation of telomere-related genes were verified using real-time qPCR and ChIP analyses, respectively. RESULTS Gastric cancer exosomes increased cell viability and the population-doubling levels but inhibited the cellular senescence and apoptosis of PNSECs. The internalization of cancer exosomes in PNSECs dramatically increased the number of surviving colonies and induced a multilayer growth and invasion into the scaffold. Treatment of PNSECs with cancer exosomes markedly increased the expression and activity of telomerase and the T/S ratio and regulated the expression of the telomere-associated genes, heat-shock genes, and hedgehog genes. Compared to gastric mucosae, gastric cancer showed increased hTERT expression, which was positively correlated with telomere length. Interestingly, seven (46.7%) of 15 non-cancerous gastric mucosae demonstrated strong telomerase activity. CONCLUSION These results suggest that gastric cancer exosomes induced the transformation and field cancerization of the surrounding non-cancerous gastric epithelial cells.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.,Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Byung Joon Choi
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.,Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea. .,Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
6
|
Li J, Liu HT, Zhao J, Chen HJ. Telomerase reverse transcriptase (TERT) promotes neurogenesis after hypoxic-ischemic brain damage in neonatal rats. Neurol Res 2022; 44:819-829. [PMID: 35400306 DOI: 10.1080/01616412.2022.2056339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jiao Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Ting Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hong-Ju Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Transcription Factors with Targeting Potential in Gliomas. Int J Mol Sci 2022; 23:ijms23073720. [PMID: 35409080 PMCID: PMC8998804 DOI: 10.3390/ijms23073720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022] Open
Abstract
Gliomas portray a large and heterogeneous group of CNS tumors, encompassing a wide range of low- to high-grade tumors, as defined by histological and molecular characteristics. The identification of signature mutations and other molecular abnormalities has largely impacted tumor classification, diagnosis, and therapy. Transcription factors (TFs) are master regulators of gene expression programs, which ultimately shape cell fate and homeostasis. A variety of TFs have been detected to be aberrantly expressed in brain tumors, being highly implicated in critical pathological aspects and progression of gliomas. Herein, we describe a selection of oncogenic (GLI-1/2/3, E2F1–8, STAT3, and HIF-1/2) and tumor suppressor (NFI-A/B, TBXT, MYT1, and MYT1L) TFs that are deregulated in gliomas and are subsequently associated with tumor development, progression, and migratory potential. We further discuss the current targeting options against these TFs, including chemical (Bortezomib) and natural (Plumbagin) compounds, small molecules, and inhibitors, and address their potential implications in glioma therapy.
Collapse
|
8
|
Maeso‐Díaz R, Dalton GD, Oh S, Du K, Tang L, Chen T, Dutta RK, Hartman JH, Meyer JN, Diehl A. Aging reduces liver resiliency by dysregulating Hedgehog signaling. Aging Cell 2022; 21:e13530. [PMID: 34984806 PMCID: PMC8844109 DOI: 10.1111/acel.13530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/02/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022] Open
Abstract
Older age is a major risk factor for damage to many tissues, including liver. Aging undermines resiliency and impairs liver regeneration. The mechanisms whereby aging reduces resiliency are poorly understood. Hedgehog is a signaling pathway with critical mitogenic and morphogenic functions during development. Recent studies indicate that Hedgehog regulates metabolic homeostasis in adult liver. The present study evaluates the hypothesis that Hedgehog signaling becomes dysregulated in hepatocytes during aging, resulting in decreased resiliency and therefore, impaired regeneration and enhanced vulnerability to damage. Partial hepatectomy (PH) was performed on young and old wild‐type mice and Smoothened (Smo)‐floxed mice treated with viral vectors to conditionally delete Smo and disrupt Hedgehog signaling specifically in hepatocytes. Changes in signaling were correlated with changes in regenerative responses and compared among groups. Old livers had fewer hepatocytes proliferating after PH. RNA sequencing identified Hedgehog as a top downregulated pathway in old hepatocytes before and after the regenerative challenge. Deleting Smo in young hepatocytes before PH prevented Hedgehog pathway activation after PH and inhibited regeneration. Gene Ontogeny analysis demonstrated that both old and Smo‐deleted young hepatocytes had activation of pathways involved in innate immune responses and suppression of several signaling pathways that control liver growth and metabolism. Hedgehog inhibition promoted telomere shortening and mitochondrial dysfunction in hepatocytes, consequences of aging that promote inflammation and impair tissue growth and metabolic homeostasis. Hedgehog signaling is dysregulated in old hepatocytes. This accelerates aging, resulting in decreased resiliency and therefore, impaired liver regeneration and enhanced vulnerability to damage.
Collapse
Affiliation(s)
- Raquel Maeso‐Díaz
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| | - George D. Dalton
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| | - Sehhoon Oh
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| | - Kuo Du
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| | - Linda Tang
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| | - Tianyi Chen
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| | - Rajesh K. Dutta
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| | - Jessica H. Hartman
- Nicholas School of the Environment Duke University Durham North Carolina USA
| | - Joel N. Meyer
- Nicholas School of the Environment Duke University Durham North Carolina USA
| | - Anna Mae Diehl
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| |
Collapse
|
9
|
Papavassiliou KA, Papavassiliou AG. Transcription factors in glioblastoma - Molecular pathogenesis and clinical implications. Biochim Biophys Acta Rev Cancer 2021; 1877:188667. [PMID: 34894431 DOI: 10.1016/j.bbcan.2021.188667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is one of the most lethal human cancers, however, the molecular mechanisms driving GBM remain largely elusive. Recent studies have revealed that transcription factors are significantly involved in GBM biology. Transcription factors (TFs), which are proteins that bind DNA to regulate gene expression, have critical roles at focal points in signaling pathways, orchestrating many cellular processes, such as cell growth and proliferation, differentiation, apoptosis, immune responses, and metabolism. Dysregulated or mutated TFs are common in GBM, resulting in aberrant gene expression that promotes tumor initiation, progression, and resistance to conventional therapies. In the present Review, we focus on TFs that are implicated in GBM pathogenesis, highlighting their oncogenic or tumor suppressive functions and describing the molecular mechanisms underlying their effect on GBM cells. We also discuss their use as biomarkers for GBM prognosis and therapeutic response, as well as their targeting with drugs for GBM treatment. Deciphering the role of TFs in the biology of GBM will provide new insights into the pathological mechanisms and reveal novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Athens, Greece.
| |
Collapse
|
10
|
Human telomerase reverse transcriptase (hTERT) synergistic with Sp1 upregulate Gli1 expression and increase gastric cancer invasion and metastasis. J Mol Histol 2021; 52:1165-1175. [PMID: 34601664 DOI: 10.1007/s10735-021-10019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/14/2021] [Indexed: 11/12/2022]
Abstract
Abnormal expression of human telomerase reverse transcriptase (hTERT) has been widely identified in tumors, but the relevant mechanism is not well known. This study aims to investigate the role and mechanism of hTERT in gastric cancer metastasis. Gastric cancer and adjacent non-tumor tissues were collected and the expression levels of hTERT and Gli1 were detected by immunohistochemistry. The results demonstrated that hTERT and Gli1 expression levels in gastric cancer tissue were significantly higher than adjacent non-tumor tissues. Western blot and quantitative real-time PCR were used to an identified expression of the related protein in BGC-823 and SGC-7901 cells. The interactions between hTERT and Sp1 were tested by co-immunoprecipitation experiments. Chromatin immunoprecipitation was performed to confirm that Sp1 and hTERT could bind to the Gli1 promoter. Chromatin reimmunoprecipitation assay further demonstrated that both hTERT and Sp1 bind to the Sp1 site of the Gli1 promoter. Moreover, the hTERT, Sp1, and Gli1 were upregulate was verified in human gastric cancer tissues. These results showed that the expression levels of hTERT in GC tissues were strongly closed to the depth of invasion, lymph node metastasis, TNM (tumor, node, metastasis) stage, and distant metastasis. By combining Sp1 and Gli1 promoter, hTERT upregulated Gli1 expression and promoted invasion and metastasis of GC cells. Overall, these data provide a new molecular mechanism of hTERT to promotes gastric cancer progression. Targeting the hTERT/Sp1/Gli1 axis may represent a new therapeutic strategy.
Collapse
|
11
|
Abstract
Background: The hedgehog pathway (HH) is one of the key regulators involved in many biological events. Malfunction of this pathway is associated with a variety of diseases including several types of cancers. Methods: We collected data from public databases and conducted a comprehensive search linking the HH pathway with female cancers. In addition, we overviewed clinical trials of targeting HH pathway in female cancers. Results: The activation of HH pathway and its role in female cancers, including breast cancer, ovarian cancer, cervical cancer, endometrial cancer, and uterine leiomyosarcoma were summarized. Treatment options targeting SMO and GLI in HH pathway were reviewed and discussed. Conclusions: The hedgehog pathway was shown to be activated in several types of female cancers. Therefore, targeting HH pathway may be considered as a therapeutic option to be acknowledged in the treatment of female cancers.
Collapse
Affiliation(s)
| | | | | | - Qiwei Yang
- Corresponding Author: Dr. Qiwei Yang, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, USA, Tel: 312-996-5689;
| |
Collapse
|
12
|
Bellei B, Caputo S, Carbone A, Silipo V, Papaccio F, Picardo M, Eibenschutz L. The Role of Dermal Fibroblasts in Nevoid Basal Cell Carcinoma Syndrome Patients: An Overview. Int J Mol Sci 2020; 21:E720. [PMID: 31979112 PMCID: PMC7037136 DOI: 10.3390/ijms21030720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS), also named Gorlin syndrome, is a rare multisystem genetic disorder characterized by marked predisposition to basal cell carcinomas (BCCs), childhood medulloblastomas, maxillary keratocysts, celebral calcifications, in addition to various skeletal and soft tissue developmental abnormalities. Mutations in the tumor suppressor gene PATCHED1 (PTCH1) have been found to be associated in the majority of NBCCS cases. PATCH1 somatic mutations and loss of heterozygosity are also very frequent in sporadic BCCs. Unlike non-syndromic patients, NBCCS patients develop multiple BCCs in sun-protected skin area starting from early adulthood. Recent studies suggest that dermo/epidermal interaction could be implicated in BCC predisposition. According to this idea, NBCCS fibroblasts, sharing with keratinocytes the same PTCH1 germline mutation and consequent constitutive activation of the Hh pathway, display features of carcinoma-associated fibroblasts (CAF). This phenotypic traits include the overexpression of growth factors, specific microRNAs profile, modification of extracellular matrix and basement membrane composition, increased cytokines and pro-angiogenic factors secretion, and a complex alteration of the Wnt/-catenin pathway. Here, we review studies about the involvement of dermal fibroblasts in BCC predisposition of Gorlin syndrome patients. Further, we matched the emerged NBCCS fibroblast profile to those of CAF to compare the impact of cell autonomous "pre-activated state" due to PTCH1 mutations to those of skin tumor stroma.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Anna Carbone
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00100 Rome, Italy; (A.C.); (V.S.); (L.E.)
| | - Vitaliano Silipo
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00100 Rome, Italy; (A.C.); (V.S.); (L.E.)
| | - Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Laura Eibenschutz
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00100 Rome, Italy; (A.C.); (V.S.); (L.E.)
| |
Collapse
|
13
|
FEZF1-AS1: a novel vital oncogenic lncRNA in multiple human malignancies. Biosci Rep 2019; 39:BSR20191202. [PMID: 31175144 PMCID: PMC6591563 DOI: 10.1042/bsr20191202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) refer to the RNA with a length of >200 nucleotides, which lack or have no open reading coding frame and have higher tissue and organ specificity compared with the protein coding genes. A surging number of studies have shown that lncRNA is involved in numerous essential regulatory processes, such as X chromosome silencing, genomic imprinting, chromatin modification, transcriptional activation, transcriptional interference and nuclear transport, which are closely related to the occurrence and development of human malignancies. FEZ family Zinc Finger 1-Antisense RNA 1 (FEZF1-AS1) of FEZ family is a recently discovered lncRNA. FEZF1-AS1 is highly expressed in pancreatic cancer, colorectal cancer, lung adenocarcinoma and other human malignancies, and is associated with poor prognosis. As an oncogene, it plays crucial role in the proliferation, migration, invasion and Warburg effect of various tumor cells. In addition, FEZF1-AS1 is also involved in the regulation of multiple signal pathways such as epithelial–mesenchymal transition (EMT), signal transducer and activator of transcription 3 (STAT3) and Wnt/ β-catenin. In this paper, the recent research progress of FEZF1-AS1 in tumorigenesis and development is reviewed systematically.
Collapse
|
14
|
Girardi D, Barrichello A, Fernandes G, Pereira A. Targeting the Hedgehog Pathway in Cancer: Current Evidence and Future Perspectives. Cells 2019; 8:cells8020153. [PMID: 30759860 PMCID: PMC6406365 DOI: 10.3390/cells8020153] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/05/2023] Open
Abstract
The Hedgehog pathway (HhP) plays an important role in normal embryonic development and its abnormal function has been linked to a variety of neoplasms. Recently, the complex mechanisms involved in this pathway have been deciphered and the cross talks with other important pathways involved in carcinogenesis have been characterized. This knowledge has led to the development of targeted therapies against key components of HhP, which culminated in the approval of vismodegib for the treatment of advanced basal cell carcinoma in 2012. Since then, other compounds have been developed and evaluated in preclinical and clinical studies with interesting results. Today, several medications against components of the HhP have demonstrated clinical activity as monotherapies and in combination with cytotoxic treatment or other targeted therapies against mitogenic pathways that are linked to the HhP. This review aims to clarify the mechanism of the HhP and the complex crosstalk with others pathways involved in carcinogenesis and to discuss both the evidence associated with the growing number of medications and combined therapies addressing this pathway and future perspectives.
Collapse
Affiliation(s)
- Daniel Girardi
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| | - Adriana Barrichello
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| | - Gustavo Fernandes
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| | - Allan Pereira
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| |
Collapse
|
15
|
Volnitskiy A, Shtam T, Burdakov V, Kovalev R, Konev A, Filatov M. Abnormal activity of transcription factors gli in high-grade gliomas. PLoS One 2019; 14:e0211980. [PMID: 30730955 PMCID: PMC6366868 DOI: 10.1371/journal.pone.0211980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
Malignant transformation is associated with loss of cell differentiation, anaplasia. Transcription factors gli, required for embryonic development, may be involved in this process. We studied the activity of transcription factors gli in high-grade gliomas and their role in maintenance of stem cell state and glioma cell survival. 20 glioma cell lines and a sample of a normal adult brain tissue were used in the present study. We found the expression of gli target genes, including GLI1 and FOXM1, in all tested glioma cell lines, but not in the normal tissue. Interestingly, the expression of gli target genes in some glioma cell lines was observed together with a high level of their transcriptional repressor, Gli3R. Knockdown of GLI3 in one of these lines resulted in decrease of gli target gene expression. These data suggest that Gli3R does not prevent the gli target genes transcription, and gli3 acts in glioma cells more as an activator, than a repressor of transcription. We observed that gli regulated the expression of such genes, as SOX2 or OCT4 that maintain stem cell state, and TET1, involving in DNA demethylation. Treatment with GANT61 or siRNA against GLI1, GLI2, or GLI3 could result in complete glioma cell death, while cyclopamine had a weaker and line-specific effect on glioma cell survival. Thus, the gli transcription factors are abnormally active in high-grade gliomas, regulate expression of genes, maintaining the stem cell state, and contribute to glioma cell survival.
Collapse
Affiliation(s)
- Andrey Volnitskiy
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russia
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russia
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Pesochnyj, Leningradskaya, Russia
| | - Vladimir Burdakov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russia
| | - Roman Kovalev
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russia
| | - Alexander Konev
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russia
| | - Michael Filatov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russia
| |
Collapse
|
16
|
Sabol M, Trnski D, Musani V, Ozretić P, Levanat S. Role of GLI Transcription Factors in Pathogenesis and Their Potential as New Therapeutic Targets. Int J Mol Sci 2018; 19:E2562. [PMID: 30158435 PMCID: PMC6163343 DOI: 10.3390/ijms19092562] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 02/05/2023] Open
Abstract
GLI transcription factors have important roles in intracellular signaling cascade, acting as the main mediators of the HH-GLI signaling pathway. This is one of the major developmental pathways, regulated both canonically and non-canonically. Deregulation of the pathway during development leads to a number of developmental malformations, depending on the deregulated pathway component. The HH-GLI pathway is mostly inactive in the adult organism but retains its function in stem cells. Aberrant activation in adult cells leads to carcinogenesis through overactivation of several tightly regulated cellular processes such as proliferation, angiogenesis, EMT. Targeting GLI transcription factors has recently become a major focus of potential therapeutic protocols.
Collapse
Affiliation(s)
- Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Diana Trnski
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vesna Musani
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
17
|
Geng L, Lu K, Li P, Li X, Zhou X, Li Y, Wang X. GLI1 inhibitor GANT61 exhibits antitumor efficacy in T-cell lymphoma cells through down-regulation of p-STAT3 and SOCS3. Oncotarget 2018; 8:48701-48710. [PMID: 27275540 PMCID: PMC5564718 DOI: 10.18632/oncotarget.9792] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/04/2016] [Indexed: 12/03/2022] Open
Abstract
T-cell lymphomas are lymphoid malignancies with aggressive clinical course and poor prognosis. Increasing evidences suggest that deregulation of signal transducer and activator of transcription-3 (STAT3) and suppressor of cytokine signaling 3 (SOCS3) is associated with the pathogenesis of T-cell lymphomas. The hedgehog (Hh)/glioma-associated oncogene-1 (GLI1) pathway, aberrantly activated in a number of tumors, has also been extensively studied. We found that protein expressions of GL11, p-STAT3, STAT3, and SOCS3 were up-regulated in T-cell lymphoma tissues and cell lines. Moreover, the protein expressions of p-STAT3 and SOCS3 were positively correlated with GLI1 in T-cell lymphomas. GLI1 inhibitor GANT61 and lentivirus-mediated siGLI1 exhibited inhibitory effects in the three T-cell lines (Jurkat, Karpass299 and Myla3676 cells). The protein expressions of p-STAT3 and SOCS3 were decreased accompanied with the inhibition of GLI1. These findings indicated that GANT61 is a promising agent against T-cell lymphoma and the antitumor activity might be partly mediated by down-regulating p-STAT3 and SOCS3.
Collapse
Affiliation(s)
- Lingyun Geng
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| | - Kang Lu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| | - Peipei Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| | - Xinyu Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, P.R. China
| |
Collapse
|
18
|
Sleightholm RL, Neilsen BK, Li J, Steele MM, Singh RK, Hollingsworth MA, Oupicky D. Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol Ther 2017; 179:158-170. [PMID: 28549596 DOI: 10.1016/j.pharmthera.2017.05.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemokine networks regulate a variety of cellular, physiological, and immune processes. These normal functions can become appropriated by cancer cells to facilitate a more hospitable niche for aberrant cells by enhancing growth, proliferation, and metastasis. This is especially true in pancreatic cancer, where chemokine signaling is a vital component in the development of the supportive tumor microenvironment and the signaling between the cancer cells and surrounding stromal cells. Although expression patterns vary among cancer types, the chemokine receptor CXCR4 has been implicated in nearly every major malignancy and plays a prominent role in pancreatic cancer development and progression. This receptor, in conjunction with its primary chemokine ligand CXCL12, promotes pancreatic cancer development, invasion, and metastasis through the management of the tumor microenvironment via complex crosstalk with other pathways. Thus, CXCR4 likely contributes to the poor prognoses observed in patients afflicted with this malignancy. Recent exploration of combination therapies with CXCR4 antagonists have demonstrated improved outcomes, and abolishing the contribution of this pathway may prove crucial to effectively treat pancreatic cancer at both the primary tumor and metastases.
Collapse
Affiliation(s)
- Richard L Sleightholm
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA
| | - Beth K Neilsen
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Jing Li
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA
| | - David Oupicky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
19
|
Kurebayashi J, Koike Y, Ohta Y, Saitoh W, Yamashita T, Kanomata N, Moriya T. Anti-cancer stem cell activity of a hedgehog inhibitor GANT61 in estrogen receptor-positive breast cancer cells. Cancer Sci 2017; 108:918-930. [PMID: 28211214 PMCID: PMC5448645 DOI: 10.1111/cas.13205] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/09/2017] [Accepted: 02/12/2017] [Indexed: 12/28/2022] Open
Abstract
Estradiol (E2) increases not only the cell growth but also the cancer stem cell (CSC) proportion in estrogen receptor (ER)‐positive breast cancer cells. It has been suggested that the non‐canonical hedgehog (Hh) pathway activated by E2 plays an important role in the regulation of CSC proportion in ER‐positive breast cancer cells. We studied anti‐CSC activity of a non‐canonical Hh inhibitor GANT61 in ER‐positive breast cancer cells. Effects of GANT61 on the cell growth, cell cycle progression, apoptosis and CSC proportion were investigated in four ER‐positive breast cancer cell lines. CSC proportion was measured using either the mammosphere assay or CD44/CD24 assay. Expression levels of pivotal molecules in the Hh pathway were measured. Combined effects of GANT61 with antiestrogens on the anti‐cell growth and anti‐CSC activities were investigated. E2 significantly increased the cell growth and CSC proportion in all ER‐positive cell lines. E2 increased the expression levels of glioma‐associated oncogene (GLI) 1 and/or GLI2. GANT61 decreased the cell growth in association with a G1‐S cell cycle retardation and increased apoptosis. GANT61 decreased the E2‐induced CSC proportion measured by the mammosphere assay in all cell lines. Antiestrogens also decreased the E2‐induced cell growth and CSC proportion. Combined treatments of GANT61 with antiestrogens additively enhanced anti‐cell growth and/or anti‐CSC activities in some ER‐positive cell lines. In conclusion, the non‐canonical Hh inhibitor GANT61 inhibited not only the cell growth but also the CSC proportion increased by E2 in ER‐positive breast cancer cells. GANT61 enhanced anti‐cell growth and/or anti‐CSC activities of antiestrogens in ER‐positive cell lines.
Collapse
Affiliation(s)
- Junichi Kurebayashi
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshikazu Koike
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yusuke Ohta
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Wataru Saitoh
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tetsumasa Yamashita
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kanomata
- Department of Pathology 2, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takuya Moriya
- Department of Pathology 2, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
20
|
Kasai K. GLI1, a master regulator of the hallmark of pancreatic cancer. Pathol Int 2016; 66:653-660. [PMID: 27862693 DOI: 10.1111/pin.12476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/24/2022]
Abstract
Hedgehog signaling is highly conserved across species and governs proper embryonic development. Germline gene mutations that reduce this signaling activity cause a variety of developmental abnormalities such as holoprosencephaly, while those that enhance Hedgehog signaling activity induce a tumor-predisposition condition Nevoid basal cell carcinoma syndrome. Furthermore, dysregulated activation of Hedgehog signaling has been recognized in various sporadic malignancies, including pancreatic adenocarcinoma. Pancreatic adenocarcinoma develops through a multistep carcinogenesis starting with oncogenic mutation of the KRAS gene. During this process, precancerous or cancer cells secrete Hedgehog ligand proteins to promote characteristic desmoplastic stroma around the cells, which in turn activates the expression of the downstream transcription factor GLI1 inside the cells. The quantitative and spatiotemporal dysregulation of GLI1 subsequently leads to the expression of transcriptional target genes of GLI1 that govern the hallmark of malignant properties. Here, after a brief introductory outline, a perspective is offered of Hedgehog signaling with a special focus on the role of GLI1 in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
21
|
Transcription Regulation of the Human Telomerase Reverse Transcriptase (hTERT) Gene. Genes (Basel) 2016; 7:genes7080050. [PMID: 27548225 PMCID: PMC4999838 DOI: 10.3390/genes7080050] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells and induced pluripotent stem cells have the ability to maintain their telomere length via expression of an enzymatic complex called telomerase. Similarly, more than 85%–90% of cancer cells are found to upregulate the expression of telomerase, conferring them with the potential to proliferate indefinitely. Telomerase Reverse Transcriptase (TERT), the catalytic subunit of telomerase holoenzyme, is the rate-limiting factor in reconstituting telomerase activity in vivo. To date, the expression and function of the human Telomerase Reverse Transcriptase (hTERT) gene are known to be regulated at various molecular levels (including genetic, mRNA, protein and subcellular localization) by a number of diverse factors. Among these means of regulation, transcription modulation is the most important, as evident in its tight regulation in cancer cell survival as well as pluripotent stem cell maintenance and differentiation. Here, we discuss how hTERT gene transcription is regulated, mainly focusing on the contribution of trans-acting factors such as transcription factors and epigenetic modifiers, as well as genetic alterations in hTERT proximal promoter.
Collapse
|
22
|
Gonnissen A, Isebaert S, Haustermans K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget 2016; 6:13899-913. [PMID: 26053182 PMCID: PMC4546439 DOI: 10.18632/oncotarget.4224] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022] Open
Abstract
An essential role for Hedgehog (Hh) signaling in human cancer has been established beyond doubt. At present, targeting Hh signaling has mainly been investigated with SMO inhibitors. Unfortunately, resistance against currently used SMO inhibitors has already been observed in basal cell carcinoma (BCC) patients. Therefore, the use of Hh inhibitors targeting the signaling cascade more downstream of SMO could represent a more promising strategy. Furthermore, besides the classical canonical way of Hh signaling activation, non-canonical activation of the GLI transcription factors by multiple important signaling pathways (e.g. MAPK, PI3K, TGFβ) has also been described, pinpointing the importance of targeting the transcription factors GLI1/2. The most promising agent in this context is probably the GLI1/2 inhibitor GANT61 which has been investigated preclinically in numerous tumor types in the last few years. In this review, the emerging role of Hh signaling in cancer is critically evaluated focusing on the potential of targeting Hh signaling more downstream of SMO, i.e. at the level of the GLI transcription factors. Furthermore, the working mechanism and therapeutic potential of the most extensively studied GLI inhibitor in human cancer, i.e. GANT61, is discussed in detail. In conclusion, GANT61 appears to be highly effective against human cancer cells and in xenograft mouse models, targeting almost all of the classical hallmarks of cancer and could hence represent a promising treatment option for human cancer.
Collapse
Affiliation(s)
- Annelies Gonnissen
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Sofie Isebaert
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Karin Haustermans
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium.,University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| |
Collapse
|
23
|
Abstract
Cancer poses a serious health problem in society and is increasingly surpassing cardiovascular disease as the leading cause of mortality in the United States. Current therapeutic strategies for cancer are extreme and harsh to patients and often have limited success; the danger of cancer is intensified as it metastasizes to secondary locations such as lung, bone, and liver, posing a dire threat to patient treatment and survival. Hedgehog signaling is an important pathway for normal development. Initially identified in Drosophila, the vertebrate and mammalian equivalent of the pathway has been studied extensively for its role in cancer development and progression. As this pathway regulates key target genes involved in development, its action also allows for the modulation of the microenvironment to prepare a tumor-suitable niche by manipulating tumor cell growth, differentiation, and immune regulation, thus creating an enabling environment for progression and metastasis. In this review, we will summarize recent scientific discoveries reporting the impact of the Hedgehog signaling pathway on the tumor initiation process and metastatic cascade, shedding light on the ability of the tumor to take over a mechanism crucially intended for development and normal function.
Collapse
Affiliation(s)
- Ann Hanna
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, Wallace Tumor Institute 320D, 1824 6th Avenue South, Birmingham, 35233, Alabama, USA
| | - Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, Wallace Tumor Institute 320D, 1824 6th Avenue South, Birmingham, 35233, Alabama, USA.
| |
Collapse
|
24
|
Hanna A, Shevde LA. Hedgehog signaling: modulation of cancer properies and tumor mircroenvironment. Mol Cancer 2016; 15:24. [PMID: 26988232 PMCID: PMC4797362 DOI: 10.1186/s12943-016-0509-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/11/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer poses a serious health problem in society and is increasingly surpassing cardiovascular disease as the leading cause of mortality in the United States. Current therapeutic strategies for cancer are extreme and harsh to patients and often have limited success; the danger of cancer is intensified as it metastasizes to secondary locations such as lung, bone, and liver, posing a dire threat to patient treatment and survival. Hedgehog signaling is an important pathway for normal development. Initially identified in Drosophila, the vertebrate and mammalian equivalent of the pathway has been studied extensively for its role in cancer development and progression. As this pathway regulates key target genes involved in development, its action also allows for the modulation of the microenvironment to prepare a tumor-suitable niche by manipulating tumor cell growth, differentiation, and immune regulation, thus creating an enabling environment for progression and metastasis. In this review, we will summarize recent scientific discoveries reporting the impact of the Hedgehog signaling pathway on the tumor initiation process and metastatic cascade, shedding light on the ability of the tumor to take over a mechanism crucially intended for development and normal function.
Collapse
Affiliation(s)
- Ann Hanna
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, Wallace Tumor Institute 320D, 1824 6th Avenue South, Birmingham, 35233, Alabama, USA
| | - Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, Wallace Tumor Institute 320D, 1824 6th Avenue South, Birmingham, 35233, Alabama, USA.
| |
Collapse
|
25
|
Vlčková K, Ondrušová L, Vachtenheim J, Réda J, Dundr P, Zadinová M, Žáková P, Poučková P. Survivin, a novel target of the Hedgehog/GLI signaling pathway in human tumor cells. Cell Death Dis 2016; 7:e2048. [PMID: 26775700 PMCID: PMC4816174 DOI: 10.1038/cddis.2015.389] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
Abstract
Survivin, an important antiapoptotic protein, is expressed in tumors, whereas in normal tissues the expression of this protein is extremely low, defining a role for survivin as a cancer gene. Survivin exhibits multifunctional activity in tumor cells. However, why survivin expression is sharply and invariably restricted to tumor tissue remains unclear. Here, we identified 11 putative consensus binding sites for GLI transcription factors in the survivin promoter and characterized the promoter activity. Inhibitors of the Hedgehog/GLI pathway, cyclopamine and GANT61, decreased the promoter activity in reporter assays. ΔNGLI2 (which lacks the repressor domain) was the most potent vector in activating the survivin promoter–reporter. Moreover, GANT61, a GLI1/2 inhibitor, repressed endogenous survivin protein and mRNA expression in most cells across a large panel of tumor cell lines. Chromatin immunoprecipitation showed GLI2 binding to the survivin promoter. The ectopic GLI2-evoked expression of endogenous survivin was observed in normal human fibroblasts. GANT61 decreased survivin level in nude mice tumors, mimicking the activity of GANT61 in cultured cells. The immunohistochemistry and double immunofluorescence of human tumors revealed a correlation between the tissue regions showing high GLI2 and survivin positivity. Thus, these results demonstrated that survivin is a classical transcriptional target of GLI2, a Hedgehog pathway signaling effector. This potentially reflects the high expression of survivin in human tumor cells. As the Hedgehog pathway is upregulated in virtually all types of cancer cells, these findings substantially contribute to the explanation of uniform survivin expression in tumors as a potential target for the development of a more effective treatment of cancers through the inhibition of GLI2 to restrain survivin activity.
Collapse
Affiliation(s)
- K Vlčková
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - L Ondrušová
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - J Vachtenheim
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - J Réda
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - P Dundr
- Institute of Pathology, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - M Zadinová
- Institute of Biophysics and Informatics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - P Žáková
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - P Poučková
- Institute of Biophysics and Informatics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| |
Collapse
|
26
|
Aberrant GLI1 Activation in DNA Damage Response, Carcinogenesis and Chemoresistance. Cancers (Basel) 2015; 7:2330-51. [PMID: 26633513 PMCID: PMC4695894 DOI: 10.3390/cancers7040894] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/12/2015] [Accepted: 11/20/2015] [Indexed: 12/18/2022] Open
Abstract
The canonical hedgehog (HH) pathway is a multicomponent signaling cascade (HH, protein patched homolog 1 (PTCH1), smoothened (SMO)) that plays a pivotal role during embryonic development through activation of downstream effector molecules, namely glioma-associated oncogene homolog 1 (GLI1), GLI2 and GLI3. Activation of GLIs must be tightly regulated as they modulate target genes which control tissue patterning, stem cell maintenance, and differentiation during development. However, dysregulation or mutations in HH signaling leads to genomic instability (GI) and various cancers, for example, germline mutation in PTCH1 lead to Gorlin syndrome, a condition where patients develop numerous basal cell carcinomas and rarely rhabdomyosarcoma (RMS). Activating mutations in SMO have also been recognized in sporadic cases of medulloblastoma and SMO is overexpressed in many other cancers. Recently, studies in several human cancers have shown that GLI1 expression is independent from HH ligand and canonical intracellular signaling through PTCH and SMO. In fact, this aberrantly regulated GLI1 has been linked to several non-canonical oncogenic growth signals such as Kirsten rat sarcoma viral oncogene homolog (KRAS), avian myelocytomatosis virus oncogene cellular homolog (C-MYC), transforming growth factor β (TGFβ), wingless-type MMTV integration site family (WNT) and β-catenin. Recent studies from our lab and other independent studies demonstrate that aberrantly expressed GLI1 influences the integrity of several DNA damage response and repair signals, and if altered, these networks can contribute to GI and impact tumor response to chemo- and radiation therapies. Furthermore, the ineffectiveness of SMO inhibitors in clinical studies argues for the development of GLI1-specific inhibitors in order to develop effective therapeutic modalities to treat these tumors. In this review, we focus on summarizing current understanding of the molecular, biochemical and cellular basis for aberrant GLI1 expression and discuss GLI1-mediated HH signaling on DNA damage responses, carcinogenesis and chemoresistance.
Collapse
|
27
|
Jackson DA, Smith TD, Amarsaikhan N, Han W, Neil MS, Boi SK, Vrabel AM, Tolosa EJ, Almada LL, Fernandez-Zapico ME, Elsawa SF. Modulation of the IL-6 Receptor α Underlies GLI2-Mediated Regulation of Ig Secretion in Waldenström Macroglobulinemia Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:2908-16. [PMID: 26238488 DOI: 10.4049/jimmunol.1402974] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 07/14/2015] [Indexed: 12/15/2022]
Abstract
Ig secretion by terminally differentiated B cells is an important component of the immune response to foreign pathogens. Its overproduction is a defining characteristic of several B cell malignancies, including Waldenström macroglobulinemia (WM), where elevated IgM is associated with significant morbidity and poor prognosis. Therefore, the identification and characterization of the mechanisms controlling Ig secretion are of great importance for the development of future therapeutic approaches for this disease. In this study, we define a novel pathway involving the oncogenic transcription factor GLI2 modulating IgM secretion by WM malignant cells. Pharmacological and genetic inhibition of GLI2 in WM malignant cells resulted in a reduction in IgM secretion. Screening for a mechanism identified the IL-6Rα (gp80) subunit as a downstream target of GLI2 mediating the regulation of IgM secretion. Using a combination of expression, luciferase, and chromatin immunoprecipitation assays we demonstrate that GLI2 binds to the IL-6Rα promoter and regulates its activity as well as the expression of this receptor. Additionally, we were able to rescue the reduction in IgM secretion in the GLI2 knockdown group by overexpressing IL-6Rα, thus defining the functional significance of this receptor in GLI2-mediated regulation of IgM secretion. Interestingly, this occurred independent of Hedgehog signaling, a known regulator of GLI2, as manipulation of Hedgehog had no effect on IgM secretion. Given the poor prognosis associated with elevated IgM in WM patients, components of this new signaling axis could be important therapeutic targets.
Collapse
Affiliation(s)
- David A Jackson
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115; and
| | - Timothy D Smith
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115; and
| | - Nansalmaa Amarsaikhan
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115; and
| | - Weiguo Han
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115; and
| | - Matthew S Neil
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115; and
| | - Shannon K Boi
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115; and
| | - Anne M Vrabel
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905
| | - Ezequiel J Tolosa
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905
| | - Luciana L Almada
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905
| | | | - Sherine F Elsawa
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115; and
| |
Collapse
|
28
|
Akıncılar SC, Low KC, Liu CY, Yan TD, Oji A, Ikawa M, Li S, Tergaonkar V. Quantitative assessment of telomerase components in cancer cell lines. FEBS Lett 2015; 589:974-84. [PMID: 25749370 DOI: 10.1016/j.febslet.2015.02.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/06/2015] [Accepted: 02/26/2015] [Indexed: 12/22/2022]
Abstract
Besides its canonical function of catalyzing the formation of telomeric repeats, many groups have recently reported non-canonical functions of hTERT in particular, and telomerase in general. Regulating transcription is the central basis of non-canonical functions of telomerase. However, unlike reverse transcriptase activity of telomerase that requires only a few molecules of enzymatically active hTERT, non-canonical functions of hTERT or other telomerase components theoretically require several hundred copies. Here, we provide the first direct quantification of all the telomerase components in human cancer cell lines. We demonstrate that telomerase components do not exist in a 1:1 stoichiometric ratio, and there are several hundred copies of hTERT in cells. This provides the molecular basis of hTERT to function in other signaling cascades, including transcription.
Collapse
Affiliation(s)
- Semih Can Akıncılar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Kee Chung Low
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Chia Yi Liu
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Ting Dong Yan
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Asami Oji
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shang Li
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
| |
Collapse
|
29
|
Alternative lengthening of telomeres is enriched in, and impacts survival of TP53 mutant pediatric malignant brain tumors. Acta Neuropathol 2014; 128:853-62. [PMID: 25315281 DOI: 10.1007/s00401-014-1348-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 12/18/2022]
Abstract
Although telomeres are maintained in most cancers by telomerase activation, a subset of tumors utilize alternative lengthening of telomeres (ALT) to sustain self-renewal capacity. In order to study the prevalence and significance of ALT in childhood brain tumors we screened 517 pediatric brain tumors using the novel C-circle assay. We examined the association of ALT with alterations in genes found to segregate with specific histological phenotypes and with clinical outcome. ALT was detected almost exclusively in malignant tumors (p = 0.001). ALT was highly enriched in primitive neuroectodermal tumors (12 %), choroid plexus carcinomas (23 %) and high-grade gliomas (22 %). Furthermore, in contrast to adult gliomas, pediatric low grade gliomas which progressed to high-grade tumors did not exhibit the ALT phenotype. Somatic but not germline TP53 mutations were highly associated with ALT (p = 1.01 × 10(-8)). Of the other alterations examined, only ATRX point mutations and reduced expression were associated with the ALT phenotype (p = 0.0005). Interestingly, ALT attenuated the poor outcome conferred by TP53 mutations in specific pediatric brain tumors. Due to very poor prognosis, one year overall survival was quantified in malignant gliomas, while in children with choroid plexus carcinoma, five year overall survival was investigated. For children with TP53 mutant malignant gliomas, one year overall survival was 63 ± 12 and 23 ± 10 % for ALT positive and negative tumors, respectively (p = 0.03), while for children with TP53 mutant choroid plexus carcinomas, 5 years overall survival was 67 ± 19 and 27 ± 13 % for ALT positive and negative tumors, respectively (p = 0.07). These observations suggest that the presence of ALT is limited to a specific group of childhood brain cancers which harbor somatic TP53 mutations and may influence the outcome of these patients. Analysis of ALT may contribute to risk stratification and targeted therapies to improve outcome for these children.
Collapse
|