1
|
Roy DG, De M, Bharatiya S, Khedekar DA, Datta K, Bhattacharjee S, Chinnaswamy S. Evidence for a sex-dependent effect modification in the association between IFN-λ DNA polymorphisms and expression of IFN-λ and interferon-stimulated genes in human PBMCs. Cytokine 2024; 184:156779. [PMID: 39423653 DOI: 10.1016/j.cyto.2024.156779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Human interferon (IFN) lambda (IFNL, IFN-L or IFN-λ) locus has several functional genetic variants but their role in regulating in vivo gene expression, and whether they associate with antiviral states in healthy individuals, is not clear. In this study, we recruited ∼550 healthy individuals belonging to both sexes, genotyped them for several IFNL genetic variants and measured, by qPCR, the expression of IFNL2/3, IFNL4 and four IFN-stimulated genes (ISGs) (MX1, OAS1, ISG15 and RSAD2) from their peripheral blood mononuclear cells (PBMC) both before and after stimulation with a viral mimic, poly I: C. We also measured secreted levels of several cytokines including IFN-λ1 and IFN-λ3 in poly I:C stimulated PBMCs. We found that males secrete higher levels of IFN-λs than females. The IFNL3/4 genetic variants significantly associated with secreted levels of both IFN-λ1 and IFN-λ3 in opposite directions, only in males. While the IFNL3/4 variants significantly associated with ISG expression either in basal or poly I:C induced or in both states, the direction of effect was opposite for the two sexes, suggesting that sex was a strong effect modifier. We did not see this trend in the association of ISG expression with the IFNL1 polymorphism, rs7247086, whose association with ISG expression and secreted IFN-λ3 levels was seen in females but not in males. Further, expression of several genes was associated with the IFN-λ4 activity-modifying variant rs117648444. However, we neither saw any strong correlation between levels of IFN-λ1/3 and ISG expression, nor did we see any strong evidence of IFNL4 expression that could be responsible for the association between ISG expression and IFNL genetic variants. These results suggest that there are complex interactions involving gender, IFN-λs, IFN-λ genetic variants and antiviral states in humans.
Collapse
Affiliation(s)
- Debarati Guha Roy
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India
| | - Manjarika De
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India
| | - Seema Bharatiya
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India
| | - Dhanashree A Khedekar
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India
| | - Kallol Datta
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India
| | - Samsiddhi Bhattacharjee
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India
| | - Sreedhar Chinnaswamy
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India; Biotechnology Research Innovation Council-National Institute of Animal Biotechnology (BRIC-NIAB), Hyderabad, India.
| |
Collapse
|
2
|
Roy DG, Singh L, Chaturvedi HK, Chinnaswamy S. Gender-dependent multiple cross-phenotype association of interferon lambda genetic variants with peripheral blood profiles in healthy individuals. Mol Genet Genomic Med 2024; 12:e2292. [PMID: 37795763 PMCID: PMC10767428 DOI: 10.1002/mgg3.2292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Type III interferons (IFN), also called as lambda IFNs (IFN-λs), are antiviral and immunomodulatory cytokines that are evolutionarily important in humans. Given their central roles in innate immunity, they could be influencing other aspects of human biology. This study aimed to examine the association of genetic variants that control the expression and/or activity of IFN-λ3 and IFN-λ4 with multiple phenotypes in blood profiles of healthy individuals. METHODS In a cohort of about 550 self-declared healthy individuals, after applying several exclusion criteria to determine their health status, we measured 30 blood parameters, including cellular, biochemical, and metabolic profiles. We genotyped them at rs12979860 and rs28416813 using competitive allele-specific PCR assays and tested their association with the blood profiles under dominant and recessive models for the minor allele. IFN-λ4 variants rs368234815 and rs117648444 were also genotyped or inferred. RESULTS We saw no association in the combined cohort under either of the models for any of the phenotypes. When we stratified the cohort based on gender, we saw a significant association only in males with monocyte (p = 1 × 10-3 ) and SGOT (p = 7 × 10-3 ) levels under the dominant model and with uric acid levels (p = 0.01) under the recessive model. When we tested the IFN-λ4 activity modifying variant within groupings based on absence or presence of one or two copies of IFN-λ4 and on different activity levels of IFN-λ4, we found significant (p < 0.05) association with several phenotypes like monocyte, triglyceride, VLDL, ALP, and uric acid levels, only in males. All the above significant associations did not show any confounding when we tested for the same with up to ten different demographic and lifestyle variables. CONCLUSIONS These results show that lambda interferons can have pleiotropic effects. However, gender seems to be an effect modifier, with males being more sensitive than females to the effect.
Collapse
Affiliation(s)
- Debarati Guha Roy
- Infectious Disease GeneticsNational Institute of Biomedical GenomicsKalyaniIndia
- Regional Centre for BiotechnologyFaridabadIndia
| | - Lucky Singh
- ICMR‐National Institute of Medical StatisticsNew DelhiIndia
| | | | - Sreedhar Chinnaswamy
- Infectious Disease GeneticsNational Institute of Biomedical GenomicsKalyaniIndia
- Regional Centre for BiotechnologyFaridabadIndia
| |
Collapse
|
3
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
4
|
Chen Q, Coto-Llerena M, Suslov A, Teixeira RD, Fofana I, Nuciforo S, Hofmann M, Thimme R, Hensel N, Lohmann V, Ng CKY, Rosenberger G, Wieland S, Heim MH. Interferon lambda 4 impairs hepatitis C viral antigen presentation and attenuates T cell responses. Nat Commun 2021; 12:4882. [PMID: 34385466 PMCID: PMC8360984 DOI: 10.1038/s41467-021-25218-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Genetic variants of the interferon lambda (IFNL) gene locus are strongly associated with spontaneous and IFN treatment-induced clearance of hepatitis C virus (HCV) infections. Individuals with the ancestral IFNL4-dG allele are not able to clear HCV in the acute phase and have more than a 90% probability to develop chronic hepatitis C (CHC). Paradoxically, the IFNL4-dG allele encodes a fully functional IFNλ4 protein with antiviral activity against HCV. Here we describe an effect of IFNλ4 on HCV antigen presentation. Only minor amounts of IFNλ4 are secreted, because the protein is largely retained in the endoplasmic reticulum (ER) where it induces ER stress. Stressed cells are significantly weaker activators of HCV specific CD8+ T cells than unstressed cells. This is not due to reduced MHC I surface presentation or extracellular IFNλ4 effects, since T cell responses are restored by exogenous loading of MHC with HCV antigens. Rather, IFNλ4 induced ER stress impairs HCV antigen processing and/or loading onto the MHC I complex. Our results provide a potential explanation for the IFNλ4-HCV paradox.
Collapse
Affiliation(s)
- Qian Chen
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Aleksei Suslov
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Isabel Fofana
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sandro Nuciforo
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Nina Hensel
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Centre for Integrative Infectious Disease Research (CIID), University of Heidelberg, Heidelberg, Germany
| | - Charlotte K Y Ng
- Department for BioMedical Research (DBMR), Oncogenomics Lab, University of Bern, Bern, Switzerland
| | | | - Stefan Wieland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus H Heim
- Department of Biomedicine, University of Basel, Basel, Switzerland. .,Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland.
| |
Collapse
|
5
|
De M, Bhushan A, Chinnaswamy S. Monocytes differentiated into macrophages and dendritic cells in the presence of human IFN-λ3 or IFN-λ4 show distinct phenotypes. J Leukoc Biol 2021; 110:357-374. [PMID: 33205487 PMCID: PMC7611425 DOI: 10.1002/jlb.3a0120-001rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Human IFN-λ4 is expressed by only a subset of individuals who possess the ΔG variant allele at the dinucleotide polymorphism rs368234815. Recent genetic studies have shown an association between rs368234815 and different infectious and inflammatory disorders. It is not known if IFN-λ4 has immunomodulatory activity. The expression of another type III IFN, IFN-λ3, is also controlled by genetic polymorphisms that are strongly linked to rs368234815. Therefore, it is of interest to compare these two IFNs for their effects on immune cells. Herein, using THP-1 cells, it was confirmed that IFN-λ4 could affect the differentiation status of macrophage-like cells and dendritic cells (DCs). The global gene expression changes induced by IFN-λ4 were also characterized in in vitro generated primary macrophages. Next, human PBMC-derived CD14+ monocytes were used to obtain M1 and M2 macrophages and DCs in the presence of IFN-λ3 or IFN-λ4. These DCs were cocultured with CD4+ Th cells derived from allogenic donors and their in vitro cytokine responses were measured. The specific activity of recombinant IFN-λ4 was much lower than that of IFN-λ3, as shown by induction of IFN-stimulated genes. M1 macrophages differentiated in the presence of IFN-λ4 showed higher IL-10 secretion than those differentiated in IFN-λ3. Coculture experiments suggested that IFN-λ4 could confer a Th2-biased phenotype to allogenic Th cells, wherein IFN-λ3, under similar circumstances, did not induce a significant bias toward either a Th1 or Th2 phenotype. This study shows for the first time that IFN-λ4 may influence immune responses by immunomodulation.
Collapse
Affiliation(s)
- Manjarika De
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
| | - Anand Bhushan
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
| | | |
Collapse
|
6
|
Roy S, Guha Roy D, Bhushan A, Bharatiya S, Chinnaswamy S. Functional genetic variants of the IFN-λ3 (IL28B) gene and transcription factor interactions on its promoter. Cytokine 2021; 142:155491. [PMID: 33725487 PMCID: PMC7611124 DOI: 10.1016/j.cyto.2021.155491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Interferon lambda 3 (IFN-λ3 or IFNL3, formerly IL28B), a type III interferon, modulates immune responses during infection/inflammation. Several human studies have reported an association of single nucleotide polymorphisms (SNP) in the IFNL3 locus with expression level of IFNL3. Previous genetic studies, in the context of hepatitis C virus infections, had predicted three regulatory SNPs: rs4803219, rs28416813 and rs4803217 that could have functional/causal roles. Subsequent studies confirmed this prediction for rs28416813 and rs4803217. A dinucleotide TA-repeat variant (rs72258881) has also been reported to be regulating the IFN-λ3 promoter. In this study, we tested all these genetic variants using a sensitive reporter assay. We show that the minor/ancestral alleles of both rs28416813 and rs4803217, together have a strong inhibitory effect on reporter gene expression. We also show an interaction between the two principal transcription factors regulating IFNL3 promoter: IRF7 and NF-kB RelA/p65. We show that IRF7 and p65 physically interact with each other. By using a transient ChIP assay, we show that presence of p65 increases the promoter occupancy of IRF7, thereby leading to synergistic activation of the IFNL3 promoter. We reason that, in contrast to p65, a unique nature of IRF7 binding to its specific DNA sequence makes it more sensitive to changes in DNA phasing. As a result, we see that IRF7, but not p65-mediated transcriptional activity is affected by the phase changes introduced by the TA-repeat polymorphism. Overall, we see that three genetic variants: rs28416813, rs4803217 and rs72258881 could have functional roles in controlling IFNL3 gene expression.
Collapse
Affiliation(s)
- Subhajit Roy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Debarati Guha Roy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Anand Bhushan
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Seema Bharatiya
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Sreedhar Chinnaswamy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India.
| |
Collapse
|
7
|
Grzegorzewska AE. Genetic Polymorphisms within Interferon-λ Region and Interferon-λ3 in the Human Pathophysiology: Their Contribution to Outcome, Treatment, and Prevention of Infections with Hepatotropic Viruses. Curr Med Chem 2019; 26:4832-4851. [DOI: 10.2174/0929867325666180719121142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 03/21/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
:
Genetic polymorphisms within the interferon λ (IFN-λ) chromosomal region,
mainly rs12979860 of IFN-λ4 gene (IFNL4), are known as associated with spontaneous hepatitis
C virus (HCV) resolution and sustained viral response to therapy with pegylated interferon-
α and ribavirin. Strong linkage disequilibrium of IFNL4 rs12979860 with IFNL4
rs368234815, which is casually associated with HCV spontaneous and therapeutical eradication,
at least partially explains favorable HCV outcomes attributed to major homozygosity in
rs12979860. Effects of IFN-based antiviral treatment are associated with pretreatment expression
of the IFN-λ1 receptor, expression of hepatic IFN-stimulated genes, production of IFN-
λ4, and preactivation of the JAK-STAT signaling. Nowadays direct-acting antivirals (DAAs)
became a potent tool in the treatment of hepatitis C, but IFN-λs are still under investigation as
potential antivirals and might be an option in HCV infection (DAA resistance, recurrent viremia,
adverse effects).
:
Patients with altered immunocompetence are especially prone to infections. In uremic subjects,
polymorphisms within the IFN-λ chromosomal region associate with spontaneous HCV
clearance, similarly like in the non-uremic population. Circulating IFN-λ3 shows a positive
correlation with plasma titers of antibodies to surface antigen of hepatitis B virus (anti-HBs),
which are crucial for protection against hepatitis B virus. More efficient anti-HBs production
in the presence of higher IFN-λ3 levels might occur due to IFN-λ3-induced regulation of indoleamine
2,3-dioxygenase (IDO) expression. IFN-stimulated response element is a part of
IDO gene promoter. It is worth further investigation whether IDO gene, circulating IDO, genetic
polymorphisms within the IFN-λ region, and circulating IFN-λ3 act in concordance in
immunological response to hepatotropic viruses.
Collapse
Affiliation(s)
- Alicja E. Grzegorzewska
- Chair and Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
8
|
Annibali O, Piccioni L, Tomarchio V, Circhetta E, Sarlo C, Franceschini L, Cantonetti M, Rizzo E, Angeletti S, Tirindelli MC, Scagnolari C, Statzu M, Avvisati G, Riva E. Impact of IFN lambda 3/4 single nucleotide polymorphisms on the cytomegalovirus reactivation in autologous stem cell transplant patients. PLoS One 2018; 13:e0200221. [PMID: 30036376 PMCID: PMC6056038 DOI: 10.1371/journal.pone.0200221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/21/2018] [Indexed: 12/14/2022] Open
Abstract
Cytomegalovirus (CMV) infection represents one of the main cause mortality after Stem Cell Transplantation. Recently, a protective effect of the T allele of rs12979860 IL28B Single Nucleotide Polymorphisms (SNPs) against CMV infection in the allogenic stem cell transplantation was suggested. We investigate whether the rs12979860 IL28B SNP and the relative rs368234815 (IFNλ4) genotype may affect the incidence of active CMV infection in Autologous stem cell transplantation (Auto-SCT) setting. The study included 99 patients who underwent to Auto-SCT. IL28 and IFNΔ4 SNPs were correlated with CMV reactivation along with other clinical and treatment parameters. CMV reactivation by CMV DNAemia was evaluated once a week until day 100 from Auto-SCT. CMV reactivation was documented in 50% (TT-ΔG/ΔG), 35% (CC-TT/TT) and 29.2% (CT-TT/ΔG) of the patients respectively. No differences in CMV copies number were recorded at reactivation between different IL28/IFNλ4 genotypes. The analysis of patients older than 60 years showed a significantly higher incidence of active CMV infection in the TT-ΔG/ΔG (83%) population with respect to CC-TT/TT (21%) and CT-TT/ΔG (40%) patients. Our data suggest a negative role of TT-ΔG/ΔG genotype in the CMV reactivation in Auto-SCT. The exposure to rituximab and the pre-infusion presence of anti CMV IgG also significantly influenced CMV reactivation.
Collapse
Affiliation(s)
- Ombretta Annibali
- Unit of Hematology, Stem Cell Transplantation, Campus Bio-Medico University, Rome, Italy
| | - Livia Piccioni
- Laboratory of Virology, Campus Bio-Medico University, Rome, Italy
| | - Valeria Tomarchio
- Unit of Hematology, Stem Cell Transplantation, Campus Bio-Medico University, Rome, Italy
| | - Erika Circhetta
- Unit of Hematology, Stem Cell Transplantation, Campus Bio-Medico University, Rome, Italy
| | - Chiara Sarlo
- Unit of Hematology, Stem Cell Transplantation, Campus Bio-Medico University, Rome, Italy
| | - Luca Franceschini
- Hematology and Stem Cell Transplant Unit, Tor Vergata University, Rome, Italy
| | - Maria Cantonetti
- Hematology and Stem Cell Transplant Unit, Tor Vergata University, Rome, Italy
| | - Emanuela Rizzo
- Hematology and Stem Cell Transplant Unit, Tor Vergata University, Rome, Italy
| | - Silvia Angeletti
- Laboratory of Pathology and Microbiology, Campus Bio-Medico University, Rome, Italy
| | | | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, “Sapienza” University, Rome, Italy
| | - Maura Statzu
- Department of Molecular Medicine, Laboratory of Virology, “Sapienza” University, Rome, Italy
| | - Giuseppe Avvisati
- Unit of Hematology, Stem Cell Transplantation, Campus Bio-Medico University, Rome, Italy
| | - Elisabetta Riva
- Laboratory of Virology, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
9
|
Bhushan A, Chinnaswamy S. Identifying causal variants at the interferon lambda locus in case-control studies: Utilizing non-synonymous variant rs117648444 to probe the role of IFN-λ4. Gene 2018; 664:168-180. [PMID: 29705128 DOI: 10.1016/j.gene.2018.04.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 02/08/2023]
Abstract
Genetic variants at the interferon lambda (IFNL) locus have been associated with several human phenotypes in both disease and health. In chronic hepatitis C virus (HCV) infections, where the IFNL variants were first identified to be associated with response to interferon-α-ribavirin therapy, the available data clearly suggests that the causal variant could be the dinucleotide polymorphism rs368234815 that causes an open reading frame-shift in the IFNL4 gene resulting in expression of a functional IFN-λ4, a new type III IFN. In other human diseases/phenotypes where IFNL variants have been recently associated with, the causal mechanism remains unclear. In vitro evidence has shown that other IFNL variants (rs28416813, rs4803217) may regulate expression of another type III IFN, IFN-λ3. Therefore, expression of a functional IFN-λ4 and quantitative differences in IFN-λ3 expression are two potential causal mechanisms behind the observed phenotypes. Since these two potential causal mechanisms involve features of mutual exclusivity and overlapping functions, it is difficult to differentiate one from the other, in vivo, in absence of other implicating evidences. In addition, the strong linkage disequilibrium (LD) observed in many populations at the IFNL locus makes it difficult to tease out the actual functional/causal variants responsible for the phenotypes. The non-synonymous single nucleotide polymorphism rs117648444 that alters the activity of IFN-λ4 and the LD structure in the IFNL region which leads to a confounding effect of rs117648444 on other IFNL variants, provide us with additional tools in case-control studies to probe the role of IFN-λ4.
Collapse
Affiliation(s)
- Anand Bhushan
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Sreedhar Chinnaswamy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India.
| |
Collapse
|
10
|
Aguado R, Páez-Vega A, Agüera ML, Montejo M, Guirado L, Fortún J, Suárez-Benjumea A, Len O, Fariñas MC, de Gracia C, Hernández D, Cobos-Ceballos MJ, Torre-Cisneros J, Cantisán S. Lack of evidence of association between IFNG and IL28B polymorphisms and QuantiFERON-CMV test results in seropositive transplant patients. Hum Immunol 2018; 79:499-505. [PMID: 29605690 DOI: 10.1016/j.humimm.2018.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022]
Abstract
The aim of this study was to analyze the relationship between the IFNG +874 T/A and IL28B (rs12979860) C/T polymorphisms and the secretion of IFNG by CD8+ T cells after stimulation with cytomegalovirus (CMV) peptides, measured using QuantiFERON-CMV (QF-CMV) assay. A total of 184 CMV-seropositive solid organ transplant patients (108 kidney, 68 liver and 8 lung) were recruited. Of them, 151 patients were QF-CMV Reactive (IFNG ≥ 0.2 UI/mL) and 33 were Non-reactive. Genotype frequencies in the study population were TT (26.6%), AT (50.0%) and AA (23.4%) for IFNG +874 and CC (52.7%), CT (39.1%) and TT (8.2%) for IL28B (rs12979860). These frequencies did not significantly differ between QF-CMV Reactive and Non-reactive patients. Nor were any significant differences observed in the quantitative IFNG level among the genotypes in either the IFNG or the IL28 genes. When we analyzed whether these polymorphisms had any impact on the risk of CMV replication after transplantation, the adjusted analysis showed no association. In summary, our results showed that IFNG +874 T/A and IL28B (rs12979860) C/T polymorphisms are not associated with the IFNG response to CMV measured by the QuantiFERON-CMV assay, although these results should be confirmed with a higher number of patients.
Collapse
Affiliation(s)
- Rocío Aguado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Reina Sofía University Hospital/University of Cordoba, (REIPI RD12/0015 and REIPI RD16/0016/0008), Cordoba, Spain
| | - Aurora Páez-Vega
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Reina Sofía University Hospital/University of Cordoba, (REIPI RD12/0015 and REIPI RD16/0016/0008), Cordoba, Spain
| | - María L Agüera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Reina Sofía University Hospital/University of Cordoba, (REIPI RD12/0015 and REIPI RD16/0016/0008), Cordoba, Spain; Department of Nephrology, Reina Sofia Hospital, (REDinREN RD16/0009/0034), Cordoba, Spain
| | - Miguel Montejo
- Infectious Diseases Unit, Cruces Hospital, Bilbao, Spain
| | - Lluis Guirado
- Department of Nephrology, Puigvert Fundació, (REDinREN RD16/0009/0019), Barcelona, Spain
| | - Jesús Fortún
- Infectious Diseases Unit, Ramón y Cajal Hospital, (REIPI RD16/0016/0011), Madrid, Spain
| | | | - Oscar Len
- Infectious Diseases Unit, Hospital Universitari Vall d'Hebron, (REIPI RD16/0016/0003), Barcelona, Spain
| | - María C Fariñas
- Infectious Diseases Unit, Marqués de Valdecilla Hospital, University of Cantabria, IDIVAL, (REIPI RD16/0016/0007), Santander, Spain
| | - Carmen de Gracia
- Department of Nephrology, Virgen de las Nieves Hospital, Granada, Spain
| | - Domingo Hernández
- Department of Nephrology, Carlos Haya Regional University Hospital, University of Malaga, IBIMA, (REDinREN RD16/0009/0006), Malaga, Spain
| | | | - Julián Torre-Cisneros
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Reina Sofía University Hospital/University of Cordoba, (REIPI RD12/0015 and REIPI RD16/0016/0008), Cordoba, Spain; Infectious Diseases Unit, Reina Sofía Hospital, Cordoba, Spain.
| | - Sara Cantisán
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Reina Sofía University Hospital/University of Cordoba, (REIPI RD12/0015 and REIPI RD16/0016/0008), Cordoba, Spain
| |
Collapse
|
11
|
Bhushan A, Ghosh S, Bhattacharjee S, Chinnaswamy S. Confounding by Single Nucleotide Polymorphism rs117648444 (P70S) Affects the Association of Interferon Lambda Locus Variants with Response to Interferon-α-Ribavirin Therapy in Patients with Chronic Genotype 3 Hepatitis C Virus Infection. J Interferon Cytokine Res 2017; 37:369-382. [PMID: 28727946 DOI: 10.1089/jir.2017.0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies discovered interferon lambda (IFNL or IFN-λ) locus on chromosome 19 to be involved in clearance of chronic hepatitis C virus (HCV) infection in patients following interferon-α-ribavirin (IFN-RBV) therapy. Subsequent studies established a dinucleotide polymorphism rs368234815, as the prime causal variant behind this association. The ΔG allele of this variant gives rise to a new IFNL gene, IFNL4, coding for IFN-λ4 whose activity paradoxically associates with lesser viral clearance rates. A low-frequency, nonsynonymous single nucleotide polymorphism (SNP) rs117648444 within the 2nd exon of IFNL4 changes the 70th amino acid from proline to serine resulting in lower activity of the functional IFN-λ4 protein, thereby increasing HCV clearance rates. In the present study, we used a cohort of genotype 3 HCV-infected patients, drawn from different geographical regions of India who underwent IFN-RBV therapy, to examine the association of several important IFNL locus SNPs/variants with sustained virological response (SVR). Intriguingly, the causal variant rs368234815 did not show the best strength and significance of association with SVR, while further analysis revealed that a negative confounding effect of rs117648444 was responsible for this phenomenon. Our results indicate that IFNL locus SNPs are subject to either a positive or a negative confounding effect by rs117648444; the nature of confounding depends on the linkage of the IFNL SNPs with the low-activity IFN-λ4-generating minor allele of rs117648444. Thus, our work demonstrates that the linkage disequilibrium structure of the IFNL region may confound the results of association studies. These results have implications for the design and understanding of future case-control studies involving IFNL locus SNPs/variants.
Collapse
Affiliation(s)
- Anand Bhushan
- National Institute of Biomedical Genomics , Kalyani, India
| | - Sumona Ghosh
- National Institute of Biomedical Genomics , Kalyani, India
| | | | | |
Collapse
|
12
|
Corrales I, Solano C, Amat P, Giménez E, de la Cámara R, Nieto J, López J, García-Noblejas A, Piñana JL, Navarro D. IL28B genetic variation and cytomegalovirus-specific T-cell immunity in allogeneic stem cell transplant recipients. J Med Virol 2017; 89:685-695. [PMID: 27591738 DOI: 10.1002/jmv.24676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/18/2022]
Abstract
A single nucleotide polymorphism (SNP), 3 kbp upstream of the IL28B gene (rs12979860; C/T), has been shown to influence the dynamics of cytomegalovirus (CMV) replication in allogeneic stem cell transplant recipients (Allo-SCT). We investigated whether this SNP had any effect on the dynamics of CMV-specific T-cell immunity in these patients. CMV pp65/IE-1 IFN-γ CD8+ and CD4+ T cells were enumerated by flow cytometry in 85 patients with no prior CMV DNAemia (group A) and in 57 after the onset of CMV DNAemia (group B). Donor IL28B genotype was determined by real-time PCR and plasma levels of IL-28B were quantitated by ELISA. CMV-specific T-cell counts and plasma IL-28B levels in patients in group A were not significantly different among the IL28B genotype groups. Patients harboring the donor IL28B T/T genotype appeared to expand CMV-specific IFN-γ CD8+ cells to a higher level in response to viral replication than their C/T and C/C counterparts. Fewer patients in the T/T group received pre-emptive antiviral therapy (P = 0.05). Overall, a significant inverse correlation was observed between median IL-28B levels measured prior to the CMV DNAemia onset and the level of CMV-specific CD8+ T cells enumerated after detection of CMV DNAemia (σ = -0.471; P = 0.013). In summary, the data suggested that the protective effect attributed to the rs12979860 SNP minor T allele could be mediated, at least in part, by eliciting robust CMV-specific T-cell responses. J. Med. Virol. 89:685-695, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Isabel Corrales
- Microbiology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
| | - Carlos Solano
- Hematology and Medical Oncology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - Paula Amat
- Hematology and Medical Oncology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
| | - Estela Giménez
- Microbiology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
| | | | - José Nieto
- Hematology Service, Hospital Morales Meseguer, Murcia, Spain
| | - Javier López
- Hematology Service, Hospital Ramón y Cajal, Madrid, Spain
| | | | - José Luis Piñana
- Hematology and Medical Oncology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
13
|
Syedbasha M, Egli A. Interferon Lambda: Modulating Immunity in Infectious Diseases. Front Immunol 2017; 8:119. [PMID: 28293236 PMCID: PMC5328987 DOI: 10.3389/fimmu.2017.00119] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/25/2017] [Indexed: 12/22/2022] Open
Abstract
Interferon lambdas (IFN-λs; IFNL1-4) modulate immunity in the context of infections and autoimmune diseases, through a network of induced genes. IFN-λs act by binding to the heterodimeric IFN-λ receptor (IFNLR), activating a STAT phosphorylation-dependent signaling cascade. Thereby hundreds of IFN-stimulated genes are induced, which modulate various immune functions via complex forward and feedback loops. When compared to the well-characterized IFN-α signaling cascade, three important differences have been discovered. First, the IFNLR is not ubiquitously expressed: in particular, immune cells show significant variation in the expression levels of and susceptibilities to IFN-λs. Second, the binding affinities of individual IFN-λs to the IFNLR varies greatly and are generally lower compared to the binding affinities of IFN-α to its receptor. Finally, genetic variation in the form of a series of single-nucleotide polymorphisms (SNPs) linked to genes involved in the IFN-λ signaling cascade has been described and associated with the clinical course and treatment outcomes of hepatitis B and C virus infection. The clinical impact of IFN-λ signaling and the SNP variations may, however, reach far beyond viral hepatitis. Recent publications show important roles for IFN-λs in a broad range of viral infections such as human T-cell leukemia type-1 virus, rotaviruses, and influenza virus. IFN-λ also potentially modulates the course of bacterial colonization and infections as shown for Staphylococcus aureus and Mycobacterium tuberculosis. Although the immunological processes involved in controlling viral and bacterial infections are distinct, IFN-λs may interfere at various levels: as an innate immune cytokine with direct antiviral effects; or as a modulator of IFN-α-induced signaling via the suppressor of cytokine signaling 1 and the ubiquitin-specific peptidase 18 inhibitory feedback loops. In addition, the modulation of adaptive immune functions via macrophage and dendritic cell polarization, and subsequent priming, activation, and proliferation of pathogen-specific T- and B-cells may also be important elements associated with infectious disease outcomes. This review summarizes the emerging details of the IFN-λ immunobiology in the context of the host immune response and viral and bacterial infections.
Collapse
Affiliation(s)
- Mohammedyaseen Syedbasha
- Applied Microbiology Research, Department of Biomedicine, University of Basel , Basel , Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Clinical Microbiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
14
|
Chinnaswamy S. Gene-disease association with human IFNL locus polymorphisms extends beyond hepatitis C virus infections. Genes Immun 2016; 17:265-75. [PMID: 27278127 PMCID: PMC7091887 DOI: 10.1038/gene.2016.24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/01/2016] [Accepted: 05/06/2016] [Indexed: 12/25/2022]
Abstract
Interferon (IFN) lambda (IFN-λ or type III IFN) gene polymorphisms were discovered in the year 2009 to have a strong association with spontaneous and treatment-induced clearance of hepatitis C virus (HCV) infection in human hosts. This landmark discovery also brought renewed interest in type III IFN biology. After more than half a decade since this discovery, we now have reports that show that genetic association of IFNL gene polymorphisms in humans is not limited only to HCV infections but extends beyond, to include varied diseases such as non-alcoholic fatty liver disease, allergy and several other viral diseases including that caused by the human immunodeficiency virus. Notably, all these conditions have strong involvement of host innate immune responses. After the discovery of a deletion polymorphism that leads to the expression of a functional IFN-λ4 as the prime 'functional' variant, the relevance of other polymorphisms regulating the expression of IFN-λ3 is in doubt. Herein, I seek to critically address these issues and review the current literature to provide a framework to help further understanding of IFN-λ biology.
Collapse
Affiliation(s)
- S Chinnaswamy
- National Institute of Biomedical Genomics, Kalyani, West Bengal India
- Department of Clinical Immunology, Rheumatology and Allergy, Healthy Ageing Research Centre, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
Kumar A, Gupta V, Sharma P, Bansal N, Singla V, Arora A. Association of Overt Diabetes Mellitus with the Non-CC but not the CC Genotype of Interleukin-28B in Hepatitis C Virus Infected Patients. J Clin Transl Hepatol 2016; 4:26-31. [PMID: 27047769 PMCID: PMC4807140 DOI: 10.14218/jcth.2016.00040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Interleukin-28B (IL-28B) polymorphism is an important predictor for hepatitis C virus (HCV) treatment response. Whether IL-28b genotypes also influence other nontreatment related clinical parameters is unclear. METHODS Patients with HCV-related chronic liver diseases who attended our department during 2012-2014 were retrospectively analyzed. The single nucleotide polymorphisms (SNPs) of rs12979860 (IL-28B) were correlated with various clinical parameters. We also compared these parameters in patients with and without overt diabetes to identify possible associations. RESULTS A total of 115 patients were included (median age 48, range 15-76 years; 70% males). Overall, 43/115 (37%) patients had chronic hepatitis, while the remaining 72/115 (63%) had cirrhosis. The most common IL-28B genotype was CC, which was found in 53% of patients (61/115), while the remaining 47% were nonCC [CT 42% (48/115) and TT 5% (6/115)]. Clinical and laboratory parameters like Hb, white blood cell (WBC), platelets, bilirubin, transaminases, and albumin were similar in the CC and nonCC genotypes. Overt diabetes mellitus was present in 22% (25/115) of patients. Patients with nonCC genotype had significantly higher prevalence of overt diabetes mellitus than patients with CC genotype (31% [17/54] versus 13% [8/61]; p < 0.05). When parameters were compared in patients with and without overt diabetes mellitus, only IL-28B and age were significantly associated with overt diabetes mellitus (p < 0.05). CONCLUSION In HCV patients, overt diabetes mellitus was more commonly associated with the nonCC genotype of IL-28B than the CC genotype. Carriers of the T-allele of SNP rs12979860 were more likely to have insulin resistance than CC homozygotes, and this finding may explain the higher prevalence of diabetes in non-CC genotypes. Thus, an IL-28B test may be useful in patients of HCV in order to determine their likelihood of developing diabetes mellitus.
Collapse
Affiliation(s)
- Ashish Kumar
- Institute of Liver, Gastroenterology, & Panceatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
- Correspondence to: Ashish Kumar, Institute of Liver, Gastroenterology, & Panceatico-Biliary Sciences, Ganga Ram Institute for Postgraduate Medical Education & Research (GRIPMER), Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India. Tel: +91-9312792573, Fax: +91-11-25861002,
| | - Varun Gupta
- Institute of Liver, Gastroenterology, & Panceatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Praveen Sharma
- Institute of Liver, Gastroenterology, & Panceatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Naresh Bansal
- Institute of Liver, Gastroenterology, & Panceatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Vikas Singla
- Institute of Liver, Gastroenterology, & Panceatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Anil Arora
- Institute of Liver, Gastroenterology, & Panceatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
16
|
Linnik JE, Egli A. Impact of host genetic polymorphisms on vaccine induced antibody response. Hum Vaccin Immunother 2016; 12:907-15. [PMID: 26809773 DOI: 10.1080/21645515.2015.1119345] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many host- and vaccine-specific factors modulate an antibody response. Host genetic polymorphisms, in particular, modulate the immune response in multiple ways on different scales. This review article describes how information on host genetic polymorphisms and corresponding immune cascades may be used to generate personalized vaccine strategies to optimize the antibody response.
Collapse
Affiliation(s)
- Janina E Linnik
- a Applied Microbiology Research , Department of Biomedicine, University Basel , Basel , Switzerland.,b Department of Biosystems Science and Engineering , ETH Zürich , Basel , Switzerland.,c Swiss Institute of Bioinformatics , Basel , Switzerland
| | - Adrian Egli
- a Applied Microbiology Research , Department of Biomedicine, University Basel , Basel , Switzerland.,d Clinical Microbiology, University Hospital Basel , Basel , Switzerland
| |
Collapse
|
17
|
Chinnaswamy S, Bhushan A, Behera AK, Ghosh S, Rampurkar V, Chandra V, Pandit B, Kundu TK. Roles for Transcription Factors Sp1, NF-κB, IRF3, and IRF7 in Expression of the Human IFNL4 Gene. Viral Immunol 2016; 29:49-63. [PMID: 26684959 DOI: 10.1089/vim.2015.0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The expression of a biologically active human IFNλ4 depends on the presence of a frameshift deletion polymorphism within the first exon of the interferon lambda 4 (IFNL4) gene. In this report, we use the lung carcinoma-derived cell line, A549, which is genetically viable to express a functional IFNλ4, to address transcriptional requirements of the IFNL4 gene. We show that the GC-rich DNA-binding transcription factor (TF) specificity protein 1 (Sp1) is recruited to the IFNL4 promoter and has a role in induction of gene expression upon stimulation with viral RNA mimic poly(I:C). By using RNAi and overexpression strategies, we also show key roles in IFNL4 gene expression for the virus-inducible TFs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), IFN regulatory factor 3 (IRF3), and IRF7. Interestingly, we also observe that overexpression of IFNλ4 influences IFNL4 promoter activity, which may further be dependent on the retinoic acid-inducible gene-I (RIG-I)-like receptor pathway. Together, our work for the first time reports on the functional characterization of the human IFNL4 promoter.
Collapse
Affiliation(s)
| | - Anand Bhushan
- 1 National Institute of Biomedical Genomics , Kalyani, West Bengal, India
| | - Amit K Behera
- 2 Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore, India
| | - Sumona Ghosh
- 1 National Institute of Biomedical Genomics , Kalyani, West Bengal, India
| | - Vijay Rampurkar
- 1 National Institute of Biomedical Genomics , Kalyani, West Bengal, India
| | - Vikas Chandra
- 1 National Institute of Biomedical Genomics , Kalyani, West Bengal, India
| | - Bhaswati Pandit
- 1 National Institute of Biomedical Genomics , Kalyani, West Bengal, India
| | - Tapas K Kundu
- 2 Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore, India
| |
Collapse
|
18
|
Jabłońska J, Pawłowski T, Laskus T, Zalewska M, Inglot M, Osowska S, Perlejewski K, Bukowska-Ośko I, Cortes KC, Pawełczyk A, Ząbek P, Radkowski M. The correlation between pretreatment cytokine expression patterns in peripheral blood mononuclear cells with chronic hepatitis C outcome. BMC Infect Dis 2015; 15:556. [PMID: 26637466 PMCID: PMC4670510 DOI: 10.1186/s12879-015-1305-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/01/2015] [Indexed: 12/24/2022] Open
Abstract
Backgroud Cytokine response against hepatitis C virus (HCV) is likely to determine the natural course of infection as well as the outcome of antiviral treatment. However, the role of particular cytokines remains unclear. The current study analyzed activation of cytokine response in chronic hepatitis C patients undergoing standard antiviral treatment. Methods Twenty-two patients were treated with pegylated interferon and ribavirin. Twenty-six different cytokine transcripts were measured quantitatively in peripheral blood mononuclear cells (PBMC) before and after therapy and correlated with therapy outcome as well as with clinical and liver histological data. Results We found that patients who achieved sustained virological response (SVR) showed higher pretreatment cytokine response when compared to subjects in whom therapy was unsuccessful. The differentially expressed factors included IL-8, IL-16, TNF-α, GM-CSF, MCP-2, TGF-β, and IP-10. Serum ALT activity and/or histological grading also positively correlated with the expression of IL-1α, IL-4, IL-6, IL-10, IL-12, IL-15, GM-CSF, M-CSF, MCP-2 and TGF-β. Conclusion Pretreatment activation of the immune system, as reflected by cytokines transcripts upregulation, positively correlates with treatment outcome and closely reflects liver inflammatory activity.
Collapse
Affiliation(s)
- Joanna Jabłońska
- Department of Hepatology and Acquired Immunodeficiences, Medical University of Warsaw, Warsaw, Poland.
| | - Tomasz Pawłowski
- Division of Psychotherapy and Psychosomatic Medicine, Wrocław Medical University, Wrocław, Poland.
| | - Tomasz Laskus
- Department of Immunopathology of Infectious Diseases, Medical University of Warsaw, Warsaw, Poland.
| | - Małgorzata Zalewska
- Department of Infectious Diseases, Hepatology and Acquired Immune Deficiences, Wrocław Medical University, Wrocław, Poland.
| | - Małgorzata Inglot
- Department of Infectious Diseases, Hepatology and Acquired Immune Deficiences, Wrocław Medical University, Wrocław, Poland.
| | - Sylwia Osowska
- Department of General Surgery and Clinical Nutrition, Medical University of Warsaw, Warsaw, Poland.
| | - Karol Perlejewski
- Department of Immunopathology of Infectious Diseases, Medical University of Warsaw, Warsaw, Poland.
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious Diseases, Medical University of Warsaw, Warsaw, Poland.
| | - Kamila Caraballo Cortes
- Department of Immunopathology of Infectious Diseases, Medical University of Warsaw, Warsaw, Poland.
| | - Agnieszka Pawełczyk
- Department of Immunopathology of Infectious Diseases, Medical University of Warsaw, Warsaw, Poland.
| | - Piotr Ząbek
- Municipal Hospital of Infectious Diseases, Warsaw, Poland.
| | - Marek Radkowski
- Department of Immunopathology of Infectious Diseases, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
19
|
Plauzolles A, Lucas M, Gaudieri S. Influence of host resistance on viral adaptation: hepatitis C virus as a case study. Infect Drug Resist 2015; 8:63-74. [PMID: 25897250 PMCID: PMC4396509 DOI: 10.2147/idr.s49891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic and cellular studies have shown that the host’s innate and adaptive immune responses are an important correlate of viral infection outcome. The features of the host’s immune response (host resistance) reflect the coevolution between hosts and pathogens that has occurred over millennia, and that has also resulted in a number of strategies developed by viruses to improve fitness and survival within the host (viral adaptation). In this review, we discuss viral adaptation to host immune pressure via protein–protein interactions and sequence-specific mutations. Specifically, we will present the “state of play” on viral escape mutations to host T-cell responses in the context of the hepatitis C virus, and their influence on infection outcome.
Collapse
Affiliation(s)
- Anne Plauzolles
- Centre for Forensic Science, University of Western Australia, Perth, WA, Australia
| | - Michaela Lucas
- School of Medicine and Pharmacology, Harry Perkins Institute, University of Western Australia, Perth, WA, Australia ; School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Silvana Gaudieri
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
20
|
Egli A, Levin A, Santer DM, Joyce M, O'Shea D, Thomas BS, Lisboa LF, Barakat K, Bhat R, Fischer KP, Houghton M, Tyrrell DL, Kumar D, Humar A. Immunomodulatory Function of Interleukin 28B during primary infection with cytomegalovirus. J Infect Dis 2014; 210:717-27. [PMID: 24620020 DOI: 10.1093/infdis/jiu144] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
BACKGROUND Feedback mechanisms between interferons α and λ (IFNs) may be affected by single nucleotide polymorphisms (SNP) in interleukin 28B (IL-28B; IFN-λ3) promoter region and may influence cytomegalovirus (CMV) replication. METHODS We associated IL-28B SNPs with the risk of CMV replication after transplantation. Next, we examined the effect of IL-28B genotypes on IL-28B, and IFN-stimulated gene (ISG) expression, and CMV replication in human foreskin fibroblast (HFF) and peripheral blood mononuclear cells (PBMCs). RESULTS Transplant recipients with an IL-28B SNP (rs8099917) had significantly less CMV replication (P = .036). Both HFF-cells and PBMCs with a SNP showed lower IL-28B expression during infection with CMV, but higher "antiviral" ISG expression (eg, OAS1). Fibroblasts with a SNP had a 3-log reduction of CMV replication at day 4 (P = .004). IL-28B pretreatment induced ISG expression in noninfected fibroblasts, but a relative decrease of ISG expression could be observed in CMV-infected fibroblasts. The inhibitory effects of IL-28B could be abolished by siRNA or antagonistic peptides against the IL-28 receptor. In fibroblasts, inhibition of IL-28 signaling resulted in an increase of ISG expression and 3-log reduction of CMV-replication (P = .01). CONCLUSIONS We postulate that IL-28B may act as a key regulator of ISG expression during primary CMV infection. IL-28B SNPs may be associated with higher antiviral ISG expression, which results in better replication control.
Collapse
Affiliation(s)
- Adrian Egli
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada Infection Biology, Department Biomedicine, University of Basel, Switzerland
| | - Aviad Levin
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Deanna M Santer
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Joyce
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Daire O'Shea
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Brad S Thomas
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Luiz F Lisboa
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled Barakat
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada Department of Engineering Mathematics and Physics, Fayoum University, Egypt
| | - Rakesh Bhat
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Karl P Fischer
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - D Lorne Tyrrell
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Deepali Kumar
- Department of Medicine and Multi-organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Atul Humar
- Department of Medicine and Multi-organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Chinnaswamy S. Genetic variants at the IFNL3 locus and their association with hepatitis C virus infections reveal novel insights into host-virus interactions. J Interferon Cytokine Res 2014; 34:479-97. [PMID: 24555572 PMCID: PMC4080901 DOI: 10.1089/jir.2013.0113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022] Open
Abstract
Human genetic variation plays a critical role in both spontaneous clearance of and response to interferon (IFN)-based therapies against hepatitis C virus (HCV) as shown by the success of recent genome-wide association studies (GWAS). Several GWAS and later validation studies have shown that single nucleotide polymorphisms (SNPs) at the IFNL3 (formerly IL28B) locus on chromosome 19 are involved in eliminating HCV in human patients. No doubt that this information is helping clinicians worldwide in making better clinical decisions in anti-HCV therapy, but the biological mechanisms involving the SNPs leading to differential responses to therapy and spontaneous clearance of HCV remain elusive. Recent reports including the discovery of a novel IFN (IFN-λ4) gene at the IFNL3 locus and in vitro functional studies implicating 2 SNPs as causal variants lead to novel conclusions and perhaps to new directions in research. An attempt is made in this review to summarize the major findings of the GWAS, the efforts involved in the discovery of causal SNPs; and to explain the biological basis for spontaneous clearance and response to treatment in HCV infections.
Collapse
|
22
|
Egli A, Santer DM, O'Shea D, Tyrrell DL, Houghton M. The impact of the interferon-lambda family on the innate and adaptive immune response to viral infections. Emerg Microbes Infect 2014; 3:e51. [PMID: 26038748 PMCID: PMC4126180 DOI: 10.1038/emi.2014.51] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/06/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022]
Abstract
Type-III interferons (IFN-λ, IFNL) are the most recently described family of IFNs. This family of innate cytokines are increasingly being ascribed pivotal roles in host-pathogen interactions. Herein, we will review the accumulating evidence detailing the immune biology of IFNL during viral infection, and the implications of this novel information on means to advance the development of therapies and vaccines against existing and emerging pathogens. IFNLs exert antiviral effects via induction of IFN-stimulated genes. Common single nucleotide polymorphisms (SNPs) in the IFNL3, IFNL4 and the IFNL receptor α-subunit genes have been strongly associated with IFN-α-based treatment of chronic hepatitis C virus infection. The clinical impact of these SNPs may be dependent on the status of viral infection (acute or chronic) and the potential to develop viral resistance. Another important function of IFNLs is macrophage and dendritic cell polarization, which prime helper T-cell activation and proliferation. It has been demonstrated that IFNL increase Th1- and reduce Th2-cytokines. Therefore, can such SNPs affect the IFNL signaling and thereby modulate the Th1/Th2 balance during infection? In turn, this may influence the subsequent priming of cytotoxic T cells versus antibody-secreting B cells, with implications for the breadth and durability of the host response.
Collapse
Affiliation(s)
- Adrian Egli
- Infection Biology, Department of Biomedicine, University Hospital of Basel , 4031 Basel, Switzerland ; Clinical Microbiology, University Hospital of Basel , 4031 Basel, Switzerland
| | - Deanna M Santer
- Department of Medical Microbiology and Immunology, and Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Daire O'Shea
- Department of Medical Microbiology and Immunology, and Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Alberta T6G 2E1, Canada ; Division of Infectious Diseases, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, and Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Michael Houghton
- Department of Medical Microbiology and Immunology, and Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|