1
|
Sumová A, Sládek M. Circadian Disruption as a Risk Factor for Development of Cardiovascular and Metabolic Disorders - From Animal Models to Human Population. Physiol Res 2024; 73:S321-S334. [PMID: 38634651 PMCID: PMC11412342 DOI: 10.33549/physiolres.935304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The lifestyle of human society is drifting apart from the natural environmental cycles that have influenced it since its inception. These cycles were fundamental in structuring the daily lives of people in the pre-industrial era, whether they were seasonal or daily. Factors that disrupt the regularity of human behaviour and its alignment with solar cycles, such as late night activities accompanied with food intake, greatly disturb the internal temporal organization in the body. This is believed to contribute to the rise of the so-called diseases of civilization. In this review, we discuss the connection between misalignment in daily (circadian) regulation and its impact on health, with a focus on cardiovascular and metabolic disorders. Our aim is to review selected relevant research findings from laboratory and human studies to assess the extent of evidence for causality between circadian clock disruption and pathology. Keywords: Circadian clock, Chronodisruption, Metabolism, Cardiovascular disorders, Spontaneously hypertensive rat, Human, Social jetlag, Chronotype.
Collapse
Affiliation(s)
- A Sumová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
2
|
Honzlová P, Novosadová Z, Houdek P, Sládek M, Sumová A. Misaligned feeding schedule elicits divergent circadian reorganizations in endo- and exocrine pancreas clocks. Cell Mol Life Sci 2022; 79:318. [PMID: 35622158 PMCID: PMC11072313 DOI: 10.1007/s00018-022-04354-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
Abstract
Misaligned feeding may lead to pancreatic insufficiency, however, whether and how it affects circadian clock in the exocrine pancreas is not known. We exposed rats to a reversed restricted feeding regimen (rRF) for 10 or 20 days and analyzed locomotor activity, daily profiles of hormone levels (insulin, glucagon, and corticosterone) in plasma, and clock gene expression in the liver and endocrine and exocrine pancreas. In addition, we monitored responses of the exocrine pancreatic clock in organotypic explants of mPer2Luc mice in real time to acetylcholine, insulin, and glucocorticoids. rRF phase-reversed the clock in the endocrine pancreas, similar to the clock in the liver, but completely abolished clock gene rhythmicity and significantly downregulated the expression of Cpb1 and Cel in the exocrine pancreas. rRF desynchronized the rhythms of plasma insulin and corticosterone. Daily profiles of their receptor expression differed in the two parts of the pancreas and responded differently to rRF. Additionally, the pancreatic exocrine clock responded differently to treatments with insulin and the glucocorticoid analog dexamethasone in vitro. Mathematical simulation confirmed that the long-term misalignment between these two hormonal signals, as occurred under rRF, may lead to dampening of the exocrine pancreatic clock. In summary, our data suggest that misaligned meals impair the clock in the exocrine part of the pancreas by uncoupling insulin and corticosterone rhythms. These findings suggest a new mechanism by which adverse dietary habits, often associated with shift work in humans, may impair the clock in the exocrine pancreas and potentially contribute to exocrine pancreatic insufficiency.
Collapse
Affiliation(s)
- Petra Honzlová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Zuzana Novosadová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Pavel Houdek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Martin Sládek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Alena Sumová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.
| |
Collapse
|
3
|
Zhang S, Dai M, Wang X, Jiang SH, Hu LP, Zhang XL, Zhang ZG. Signalling entrains the peripheral circadian clock. Cell Signal 2020; 69:109433. [PMID: 31982551 DOI: 10.1016/j.cellsig.2019.109433] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022]
Abstract
In mammals, 24-h rhythms of behaviour and physiology are regulated by the circadian clock. The circadian clock is controlled by a central clock in the brain's suprachiasmatic nucleus (SCN) that synchronizes peripheral clocks in peripheral tissues. Clock genes in the SCN are primarily entrained by light. Increasing evidence has shown that peripheral clocks are also regulated by light and hormones independent of the SCN. How the peripheral clocks deal with internal signals is dependent on the relevance of a specific cue to a specific tissue. In different tissues, most genes that are under circadian control are not overlapping, revealing the tissue-specific control of peripheral clocks. We will discuss how different signals control the peripheral clocks in different peripheral tissues, such as the liver, gastrointestinal tract, and pancreas, and discuss the organ-to-organ communication between the peripheral clocks at the molecular level.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Dai
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Sládek M, Houdek P, Sumová A. Circadian profiling reveals distinct regulation of endocannabinoid system in the rat plasma, liver and adrenal glands by light-dark and feeding cycles. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158533. [DOI: 10.1016/j.bbalip.2019.158533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
|
5
|
Rumanova VS, Okuliarova M, Molcan L, Sutovska H, Zeman M. Consequences of low-intensity light at night on cardiovascular and metabolic parameters in spontaneously hypertensive rats. Can J Physiol Pharmacol 2019; 97:863-871. [DOI: 10.1139/cjpp-2019-0043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circadian rhythms are an inherent property of physiological processes and can be disturbed by irregular environmental cycles, including artificial light at night (ALAN). Circadian disruption may contribute to many pathologies, such as hypertension, obesity, and type 2 diabetes, but the underlying mechanisms are not understood. Our study investigated the consequences of ALAN on cardiovascular and metabolic parameters in spontaneously hypertensive rats, which represent an animal model of essential hypertension and insulin resistance. Adult males were exposed to a 12 h light − 12 h dark cycle and the ALAN group experienced dim light at night (1–2 lx), either for 2 or 5 weeks. Rats on ALAN showed a loss of light–dark variability for systolic blood pressure, but not for heart rate. Moreover, a gradual increase of systolic blood pressure was recorded over 5 weeks of ALAN. Exposure to ALAN increased plasma insulin and hepatic triglyceride levels. An increased expression of metabolic transcription factors, Pparα and Pparγ, in the epididymal fat and a decreased expression of Glut4 in the heart was found in the ALAN group. Our results demonstrate that low-intensity ALAN can disturb blood pressure control and augment insulin resistance in spontaneously hypertensive rats, and may represent a serious risk factor for cardiometabolic diseases.
Collapse
Affiliation(s)
- Valentina Sophia Rumanova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Monika Okuliarova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lubos Molcan
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Hana Sutovska
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
6
|
Sumová A, Čečmanová V. Mystery of rhythmic signal emergence within the suprachiasmatic nuclei. Eur J Neurosci 2018; 51:300-309. [PMID: 30188597 DOI: 10.1111/ejn.14141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
The circadian system provides organisms with a temporal organization that optimizes their adaptation to environmental fluctuations on a 24-hr basis. In mammals, the circadian clock in the suprachiasmatic nuclei (SCN) develops during the perinatal period. The rhythmicity first appears at the level of individual SCN neurons during the fetal stage, and this step is often misinterpreted as the time of complete SCN clock development. However, the process is only finalized when the SCN begin to play a role of the central clock in the body, that is, when they are able to generate robust rhythmicity at the cell population level, entrain the rhythmic signal with external light-dark cycles and convey this signal to the rest of the body. The development is gradual and correlates with morphological maturation of the SCN structural complexity, which is based on intercellular network formation. The aim of this review is to summarize events related to the first emergence of circadian oscillations in the fetal SCN clock. Although a large amount of data on ontogenesis of the circadian system have been accumulated, how exactly the immature SCN converts into a functional central clock has still remained rather elusive. In this review, the hypothesis of how the SCN attains its rhythmicity at the tissue level is discussed in context with the recent advances in the field. For an extensive summary of the complete ontogenetic development of the circadian system, the readers are referred to other previously published reviews.
Collapse
Affiliation(s)
- Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vendula Čečmanová
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Petrasek T, Vojtechova I, Lobellova V, Popelikova A, Janikova M, Brozka H, Houdek P, Sladek M, Sumova A, Kristofikova Z, Vales K, Stuchlík A. The McGill Transgenic Rat Model of Alzheimer's Disease Displays Cognitive and Motor Impairments, Changes in Anxiety and Social Behavior, and Altered Circadian Activity. Front Aging Neurosci 2018; 10:250. [PMID: 30210330 PMCID: PMC6121039 DOI: 10.3389/fnagi.2018.00250] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
The McGill-R-Thy1-APP transgenic rat is an animal model of the familial form of Alzheimer's disease (AD). This model mirrors several neuropathological hallmarks of the disease, including the accumulation of beta-amyloid and the formation of amyloid plaques (in homozygous animals only), neuroinflammation and the gradual deterioration of cognitive functions even prior to plaque formation, although it lacks the tauopathy observed in human victims of AD. The goal of the present study was a thorough characterization of the homozygous model with emphasis on its face validity in several domains of behavior known to be affected in AD patients, including cognitive functions, motor coordination, emotionality, sociability, and circadian activity patterns. On the behavioral level, we found normal locomotor activity in spontaneous exploration, but problems with balance and gait coordination, increased anxiety and severely impaired spatial cognition in 4–7 month old homozygous animals. The profile of social behavior and ultrasonic communication was altered in the McGill rats, without a general social withdrawal. McGill rats also exhibited changes in circadian profile, with a shorter free-running period and increased total activity during the subjective night, without signs of sleep disturbances during the inactive phase. Expression of circadian clock gene Bmal1 was found to be increased in the parietal cortex and cerebellum, while Nr1d1 expression was not changed. The clock-controlled gene Prok2 expression was found to be elevated in the parietal cortex and hippocampus, which might have contributed to the observed changes in circadian phenotype. We conclude that the phenotype in the McGill rat model is not restricted to the cognitive domain, but also includes gait problems, changes in emotionality, social behavior, and circadian profiles. Our findings show that the model should be useful for the development of new therapeutic approaches targeting not only memory decline but also other symptoms decreasing the quality of life of AD patients.
Collapse
Affiliation(s)
- Tomas Petrasek
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,National Institute of Mental Health, Klecany, Czechia
| | - Iveta Vojtechova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,National Institute of Mental Health, Klecany, Czechia.,First Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Veronika Lobellova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Anna Popelikova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martina Janikova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Brozka
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pavel Houdek
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Sladek
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Alena Sumova
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | | | - Karel Vales
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,National Institute of Mental Health, Klecany, Czechia
| | - Ales Stuchlík
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
8
|
Olejníková L, Polidarová L, Behuliak M, Sládek M, Sumová A. Circadian alignment in a foster mother improves the offspring's pathological phenotype. J Physiol 2018; 596:5757-5775. [PMID: 29748957 DOI: 10.1113/jp275585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS In mammals, the mother-offspring interaction is essential for health later in adulthood. The impact of altered timing and quality of maternal care on the offspring's circadian system was assessed using a cross-strain fostering approach. Better maternal care facilitated the development of amplitudes of Bmal1 clock gene expression in the central clock, as well as the clock-driven activity/rest rhythm, and also its entrainment to the external light/dark cycle. Worse maternal care impaired entrainment of the central clock parameters in the Wistar rat during the early developmental stages. Better maternal care remedied the dampened amplitudes of the colonic clock, as well as cardiovascular functions. The results provide compelling evidence that the circadian phenotype of a foster mother may affect the pathological symptoms of the offspring, even if they are genetically programmed. ABSTRACT In mammals, the mother-offspring interaction is essential for health later in adulthood. Maternal care is determined by the circadian phenotype of the mother. The impact of altered timing and quality of maternal care on the circadian system was assessed using a cross-strain fostering approach, with 'abnormal' (i.e. circadian misaligned) care being represented by spontaneously hypertensive rats (SHR) and 'normal' care by Wistar rats. The SHR mothers worsened synchrony of the central clock in the suprachiasmatic nuclei with the light/dark cycle in Wistar rat pups, although this effect disappeared after weaning. The maternal care provided by Wistar rat mothers to SHR pups facilitated the development of amplitudes of the Bmal1 expression rhythm in the suprachiasmatic nuclei of the hypothalamus, as well as the clock-driven activity/rest rhythm and its entrainment to the external light/dark cycle. The peripheral clocks in the liver and colon responded robustly to cross-strain fostering; the circadian phenotype of the Wistar rat foster mother remedied the dampened amplitudes of the colonic clock in SHR pups and improved their cardiovascular functions. In general, the more intensive maternal care of the Wistar rat mothers improved most of the parameters of the abnormal SHR circadian phenotype in adulthood; conversely, the less frequent maternal care of the SHR mothers worsened these parameters in the Wistar rat during the early developmental stages. Altogether, our data provide compelling evidence that the circadian phenotype of a foster mother may positively and negatively affect the regulatory mechanisms of various physiological parameters, even if the pathological symptoms are genetically programmed.
Collapse
Affiliation(s)
| | | | - Michal Behuliak
- Department of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | | |
Collapse
|
9
|
Olejníková L, Polidarová L, Sumová A. Stress affects expression of the clock gene Bmal1 in the suprachiasmatic nucleus of neonatal rats via glucocorticoid-dependent mechanism. Acta Physiol (Oxf) 2018; 223:e13020. [PMID: 29266826 DOI: 10.1111/apha.13020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/13/2017] [Accepted: 12/08/2017] [Indexed: 11/27/2022]
Abstract
AIM The reactivity of the circadian clock in the suprachiasmatic nuclei (SCN) to stressful stimuli has been controversial but most studies have confirmed the resilience of the SCN to stress. We tested the hypothesis that during a critical period shortly after birth, the developing SCN clock is affected by glucocorticoids. METHODS Mothers of 2 rat strains with different sensitivities to stress, that is Wistar rats and spontaneously hypertensive rats (SHR), and their pups were exposed to stressful stimuli every day from delivery, and clock gene expression profiles were detected in the 4-day-old pups' SCN. Levels of glucocorticoids in plasma were measured by LC-MS/MS. The glucocorticoid receptors antagonist mifepristone was administered to pups to block the effect of the glucocorticoids. RESULTS The glucocorticoid receptors were detected at the mRNA and protein levels in the SCN of 4-day-old pups. The exposure of mothers to stressful stimuli elevated their plasma glucocorticoid levels. In Wistar rat pups, combination of daily maternal stress with their manipulation increased the plasma glucocorticoid levels and shifted the Bmal1 rhythm in the SCN which was completely blocked by mifepristone. In contrast, in SHR pups, maternal stress on its own caused phase shift of the Bmal1 expression rhythm in the SCN but the effect was mediated via glucocorticoid-independent mechanism. The Per1 and Per2 expression profiles remained phase-locked to the light/dark cycle. CONCLUSION The results demonstrate that the SCN is sensitive to stressful stimuli early after birth in pups maintained under light/dark conditions and the effect is mediated via glucocorticoid-dependent pathways.
Collapse
Affiliation(s)
- L. Olejníková
- Department of Neurohumoral Regulations; Institute of Physiology of the Czech Academy of Sciences; Prague Czech Republic
- 2 Faculty of Medicine; Charles University; Prague Czech Republic
| | - L. Polidarová
- Department of Neurohumoral Regulations; Institute of Physiology of the Czech Academy of Sciences; Prague Czech Republic
| | - A. Sumová
- Department of Neurohumoral Regulations; Institute of Physiology of the Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
10
|
Polidarová L, Houdek P, Sládek M, Novosadová Z, Pácha J, Sumová A. Mechanisms of hormonal regulation of the peripheral circadian clock in the colon. Chronobiol Int 2016; 34:1-16. [PMID: 27661138 DOI: 10.1080/07420528.2016.1231198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Colonic function is controlled by an endogenous clock that allows the colon to optimize its function on the daytime basis. For the first time, this study provided evidence that the clock is synchronized by rhythmic hormonal signals. In rat colon, adrenalectomy decreased and repeated applications of dexamethasone selectively rescued circadian rhythm in the expression of the clock gene Per1. Dexamethasone entrained the colonic clock in explants from mPer2Luc mice in vitro. In contrast, pinealectomy had no effect on the rat colonic clock, and repeated melatonin injections were not able to rescue the clock in animals maintained in constant light. Additionally, melatonin did not entrain the clock in colonic explants from mPer2Luc mice in vitro. However, melatonin affected rhythmic regulation of Nr1d1 gene expression in vivo. The findings provide novel insight into possible beneficial effects of glucocorticoids in the treatment of digestive tract-related diseases, greatly exceeding their anti-inflammatory action.
Collapse
Affiliation(s)
| | | | | | | | - Jiří Pácha
- b Department of Epithelial Function, Institute of Physiology , The Czech Academy of Sciences , Videnska , Prague , Czech Republic
| | | |
Collapse
|
11
|
Takeda N, Maemura K. Circadian clock and the onset of cardiovascular events. Hypertens Res 2016; 39:383-90. [PMID: 26888119 DOI: 10.1038/hr.2016.9] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
Abstract
The onset of cardiovascular diseases often shows time-of-day variation. Acute myocardial infarction or ventricular arrhythmia such as ventricular tachycardia occurs mainly in the early morning. Multiple biochemical and physiological parameters show circadian rhythm, which may account for the diurnal variation of cardiovascular events. These include the variations in blood pressure, activity of the autonomic nervous system and renin-angiotensin axis, coagulation cascade, vascular tone and the intracellular metabolism of cardiomyocytes. Importantly, the molecular clock system seems to underlie the circadian variation of these parameters. The center of the biological clock, also known as the central clock, exists in the suprachiasmatic nucleus. In contrast, the molecular clock system is also activated in each cell of the peripheral organs and constitute the peripheral clock. The biological clock system is currently considered to have a beneficial role in maintaining the homeostasis of each organ. Discoordination, however, between the peripheral clock and external environment could potentially underlie the development of cardiovascular events. Therefore, understanding the molecular and cellular pathways by which cardiovascular events occur in a diurnal oscillatory pattern will help the establishment of a novel therapeutic approach to the management of cardiovascular disorders.
Collapse
Affiliation(s)
- Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
12
|
Takeda N, Maemura K. The role of clock genes and circadian rhythm in the development of cardiovascular diseases. Cell Mol Life Sci 2015; 72:3225-34. [PMID: 25972277 PMCID: PMC11113935 DOI: 10.1007/s00018-015-1923-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
The time of onset of cardiovascular disorders such as myocardial infarctions or ventricular arrhythmias exhibits a circadian rhythm. Diurnal variations in autonomic nervous activity, plasma cortisol level or renin-angiotensin activity underlie the pathogenesis of cardiovascular diseases. Transcriptional-translational feedback loop of the clock genes constitute a molecular clock system. In addition to the central clock in the suprachiasmatic nucleus, clock genes are also expressed in a circadian fashion in each organ to make up the peripheral clock. The peripheral clock seems to be beneficial for anticipating external stimuli and thus contributes to the maintenance of organ homeostasis. Loss of synchronization between the central and peripheral clocks also augments disease progression. Moreover, accumulating evidence shows that clock genes affect inflammatory and intracellular metabolic signaling. Elucidating the roles of the molecular clock in cardiovascular pathology through the identification of clock controlled genes will help to establish a novel therapeutic approach for cardiovascular disorders.
Collapse
Affiliation(s)
- Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| |
Collapse
|
13
|
Olejníková L, Polidarová L, Paušlyová L, Sládek M, Sumová A. Diverse development and higher sensitivity of the circadian clocks to changes in maternal-feeding regime in a rat model of cardio-metabolic disease. Chronobiol Int 2015; 32:531-47. [DOI: 10.3109/07420528.2015.1014095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Varcoe TJ, Gatford KL, Voultsios A, Salkeld MD, Boden MJ, Rattanatray L, Kennaway DJ. Rapidly alternating photoperiods disrupt central and peripheral rhythmicity and decrease plasma glucose, but do not affect glucose tolerance or insulin secretion in sheep. Exp Physiol 2014; 99:1214-28. [DOI: 10.1113/expphysiol.2014.080630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tamara J. Varcoe
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - Kathryn L. Gatford
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - Athena Voultsios
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - Mark D. Salkeld
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - Michael J. Boden
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - Leewen Rattanatray
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - David J. Kennaway
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| |
Collapse
|
15
|
Sabath E, Salgado-Delgado R, Guerrero-Vargas NN, Guzman-Ruiz MA, del Carmen Basualdo M, Escobar C, Buijs RM. Food entrains clock genes but not metabolic genes in the liver of suprachiasmatic nucleus lesioned rats. FEBS Lett 2014; 588:3104-10. [DOI: 10.1016/j.febslet.2014.06.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 01/12/2023]
|