1
|
Pan MH, Xu R, Zheng Z, Xiong J, Dong H, Wei Q, Ma B. The formins inhibitor SMIFH2 inhibits the cytoskeleton dynamics and mitochondrial function during goat oocyte maturation. Theriogenology 2023; 211:40-48. [PMID: 37562190 DOI: 10.1016/j.theriogenology.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The cytoskeleton plays a crucial role in facilitating the successful completion of the meiotic maturation of oocytes. Its influence extends to the process of oocyte nuclear maturation and the proper functioning of various organelles during cytoplasmic maturation. The formin family of proteins plays a crucial role in the molecular regulation of cytoskeletal assembly and organization; however, its role in goat oocytes are not fully understood. Our study examined the inhibition of formins activity, which revealed its crucial role in the maturation of goat oocytes. We observed that the inhibition of formins resulted in meiotic defects in goat oocytes, as evidenced by the hindered extrusion of polar bodies and the expansion of cumulus cells. Additionally, the oocytes exhibited altered actin dynamics and compromised spindle/chromosome structure upon formins inhibition. The results of the transcriptomic analysis highlighted a noteworthy alteration in the mRNA levels of genes implicated in mitochondrial functions and oxidative phosphorylation in formins inhibited oocytes. Validation experiments provided evidence that the meiotic defects observed in these oocytes were due to the excessive early apoptosis induced by reactive oxygen species (ROS). Our findings demonstrate that the involvement of formins in sustaining the cytoskeletal dynamics and mitochondrial function is crucial for the successful meiotic maturation of goat oocytes.
Collapse
Affiliation(s)
- Meng-Hao Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Zhi Zheng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jinfeng Xiong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Haiying Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
2
|
Loss of DIAPH3, a Formin Family Protein, Leads to Cytokinetic Failure Only under High Temperature Conditions in Mouse FM3A Cells. Int J Mol Sci 2020; 21:ijms21228493. [PMID: 33187357 PMCID: PMC7696919 DOI: 10.3390/ijms21228493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
Cell division is essential for the maintenance of life and involves chromosome segregation and subsequent cytokinesis. The processes are tightly regulated at both the spatial and temporal level by various genes, and failures in this regulation are associated with oncogenesis. Here, we investigated the gene responsible for defects in cell division by using murine temperature-sensitive (ts) mutant strains, tsFT101 and tsFT50 cells. The ts mutants normally grow in a low temperature environment (32 °C) but fail to divide in a high temperature environment (39 °C). Exome sequencing and over-expression analyses identified Diaph3, a member of the formin family, as the cause of the temperature sensitivity observed in tsFT101 and tsFT50 cells. Interestingly, Diaph3 knockout cells showed abnormality in cytokinesis at 39 °C, and the phenotype was rescued by re-expression of Diaph3 WT, but not Diaph1 and Diaph2, other members of the formin family. Furthermore, Diaph3 knockout cells cultured at 39 °C showed a significant increase in the level of acetylated α-tubulin, an index of stabilized microtubules, and the level was reduced by Diaph3 expression. These results suggest that Diaph3 is required for cytokinesis only under high temperature conditions. Therefore, our study provides a new insight into the mechanisms by which regulatory factors of cell division function in a temperature-dependent manner.
Collapse
|
3
|
Um DE, Shin H, Park D, Ahn JM, Kim J, Song H, Lim HJ. Molecular analysis of lipid uptake- and necroptosis-associated factor expression in vitrified-warmed mouse oocytes. Reprod Biol Endocrinol 2020; 18:37. [PMID: 32366306 PMCID: PMC7199370 DOI: 10.1186/s12958-020-00588-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND We had previously demonstrated that vitrification reduces the levels of certain phospholipid classes, and that oocytes from aged mice show a similar lipidome alteration, even without vitrification. In the current investigation, we examined if vitrification-warming of mouse oocytes from young and aged mice causes any changes in molecular aspects of lipid-associated features. METHODS Metaphase II (MII) stage oocytes were harvested from young (10-14-week-old) and aged (45-54-week-old) mice by a superovulation regime with PMSG followed by hCG. We examined the status of the intracellular lipid pool and the integrity of the plasma membrane by staining oocytes with BODIPY 500/510 and CellMask live dyes. Expression of lipid uptake- and necroptosis-associated genes was assessed by quantitative PCR analyses, in oocytes from young and old mice, before and after vitrification. Localization patterns of two crucial necroptosis proteins, phosphorylated MLKL (pMLKL) and phosphorylated RIPK1 (pRIPK1) were examined in mouse oocytes by immunofluorescence staining. Necrostain-1 (Nec1), an inhibitor of RIPK1, was used to examine if RIPK1 activity is required to maintain oocyte quality during vitrification. RESULTS We confirmed that vitrified-warmed oocytes from aged mice showed noticeable decrease in both CellMask and BODIPY 500/510 dyes. Among the lipid uptake-associated genes, Cd36 expression was higher in oocytes from aged mice. Necroptosis is a type of programmed cell death that involves damage to the plasma membrane, eventually resulting in cell rupture. The expression of necroptosis-associated genes did not significantly differ among groups. We observed that localization patterns of pMLKL and pRIPK1 were unique in mouse oocytes, showing association with microtubule organizing centers (MTOCs) and spindle poles. pMLKL was also localized on kinetochores of MII chromosomes. Oocytes treated with Nec1 during vitrification showed a decreased survival rate, indicating the importance of RIPK1 activity in oocyte vitrification. CONCLUSIONS We report that oocytes from aged mice show differential expression of CD36, which suggests that CD36-mediated lipid uptake may be influenced by age. We also show for the first time that pMLKL and pRIPK1 exhibit unique localization pattern in mouse oocytes and this may suggest role(s) for these factors in non-necroptosis-associated cellular processes.
Collapse
Affiliation(s)
- Da-Eun Um
- Department of Biomedical Science & Technology, Institute of Biomedical Science & Technology, Konkuk University, Seoul, South Korea
- Present Address: Maria Fertility Hospital, 20 Cheonho-daero, Dongdaemon-gu, Seoul, 02586, South Korea
| | - Hyejin Shin
- Department of Biomedical Science & Technology, Institute of Biomedical Science & Technology, Konkuk University, Seoul, South Korea
| | - Dayoung Park
- Department of Veterinary Medicine, School of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Jeong Min Ahn
- Department of Biomedical Science & Technology, Institute of Biomedical Science & Technology, Konkuk University, Seoul, South Korea
| | - Jayeon Kim
- Department of Obstetrics and Gynecology, CHA Fertility Center at Seoul Station, CHA University, Seoul, South Korea
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Sungnam, Gyeonggi-do, 13884, South Korea.
| | - Hyunjung Jade Lim
- Department of Biomedical Science & Technology, Institute of Biomedical Science & Technology, Konkuk University, Seoul, South Korea.
- Department of Veterinary Medicine, School of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
4
|
Kim HC, Jo YJ, Kim NH, Namgoong S. Small molecule inhibitor of formin homology 2 domains (SMIFH2) reveals the roles of the formin family of proteins in spindle assembly and asymmetric division in mouse oocytes. PLoS One 2015; 10:e0123438. [PMID: 25837661 PMCID: PMC4383420 DOI: 10.1371/journal.pone.0123438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
Dynamic actin reorganization is the main driving force for spindle migration and asymmetric cell division in mammalian oocytes. It has been reported that various actin nucleators including Formin-2 are involved in the polarization of the spindle and in asymmetric cell division. In mammals, the formin family is comprised of 15 proteins. However, their individual roles in spindle migration and/or asymmetric division have not been elucidated yet. In this study, we employed a newly developed inhibitor for formin family proteins, small molecule inhibitor of formin homology 2 domains (SMIFH2), to assess the functions of the formin family in mouse oocyte maturation. Treatment with SMIFH2 during in vitro maturation of mouse oocytes inhibited maturation by decreasing cytoplasmic and cortical actin levels. In addition, treatment with SMIFH2, especially at higher concentrations (500 μM), impaired the proper formation of meiotic spindles, indicating that formins play a role in meiotic spindle formation. Knockdown of the mDia2 formins caused a similar decrease in oocyte maturation and abnormal spindle morphology, mimicking the phenotype of SMIFH2-treated cells. Collectively, these results suggested that besides Formin-2, the other proteins of the formin, including mDia family play a role in asymmetric division and meiotic spindle formation in mammalian oocytes.
Collapse
Affiliation(s)
- Hak-Cheol Kim
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungBuk, Republic of Korea
| | - Yu-Jin Jo
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungBuk, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungBuk, Republic of Korea
- * E-mail: (SN); (NHK)
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungBuk, Republic of Korea
- * E-mail: (SN); (NHK)
| |
Collapse
|
5
|
Zhang Y, Wang F, Niu YJ, Liu HL, Rui R, Cui XS, Kim NH, Sun SC. Formin mDia1, a downstream molecule of FMNL1, regulates Profilin1 for actin assembly and spindle organization during mouse oocyte meiosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:317-27. [PMID: 25447542 DOI: 10.1016/j.bbamcr.2014.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/06/2014] [Accepted: 11/04/2014] [Indexed: 02/07/2023]
Abstract
Mammalian diaphanous1 (mDia1) is a homologue of Drosophila diaphanous and belongs to the Formin-homology family of proteins that catalyze actin nucleation and polymerization. Although Formin family proteins, such as Drosophila diaphanous, have been shown to be essential for cytokinesis, whether and how mDia1 functions during meiosis remain uncertain. In this study, we explored possible roles and the signaling pathway involved for mDia1 using a mouse oocyte model. mDia1 depletion reduced polar body extrusion, which may have been due to reduced cortical actin assembly. mDia1 and Profilin1 had similar localization patterns in mouse oocytes and mDia1 knockdown resulted in reduced Profilin1 expression. Depleting FMNL1, another Formin family member, resulted in reduced mDia1 expression, while RhoA inhibition did not alter mDia1 expression, which indicated that there was a FMNL1-mDia1-Profilin1 signaling pathway in mouse oocytes. Additionally, mDia1 knockdown resulted in disrupting oocyte spindle morphology, which was confirmed by aberrant p-MAPK localization. Thus, these results demonstrated indispensable roles for mDia1 in regulating mouse oocyte meiotic maturation through its effects on actin assembly and spindle organization.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying-Jie Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Rui
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Bang S, Shin H, Song H, Suh CS, Lim HJ. Autophagic activation in vitrified-warmed mouse oocytes. Reproduction 2014; 148:11-9. [PMID: 24760879 DOI: 10.1530/rep-14-0036] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vitrification involves the use of cryoprotectants (CPAs) and liquid nitrogen (LN2), which may cause osmotic damage and cryoinjury to oocytes. Autophagy is widely recognized as a survival or response mechanism elicited by various environmental and cellular stressors. However, the induction of autophagy in vitrified-warmed oocytes has not been examined. In this work, we investigated whether the vitrification-warming process induces autophagy in mouse oocytes. Metaphase II (MII) oocytes that were vitrified and stored in LN2 for at least 2 weeks were used in the study. In RT-PCR analyses, we observed that several Atg genes such as Atg5, Atg7, Atg12, LC3a (Map1lc3a), LC3b (Map1lc3b), and Beclin1 were expressed in MII mouse oocytes. Slight reduction in mRNA levels of Atg7 and Atg12 in vitrified-warmed oocytes was noted, and expression of these genes was not significantly influenced. Confocal live imaging analysis using oocytes from GFP-LC3 transgenic mice revealed that vitrified-warmed oocytes had a significantly higher number of GFP-LC3 puncta in comparison to fresh oocytes. The expression of BECLIN1 protein was also increased in vitrified-warmed oocytes. Treatment with 3-methyladenine, an inhibitor of autophagy, did not significantly affect the rates of oocyte survival, IVF, and embryonic development after warming and IVF. The results suggest that the observed autophagic activation in vitrified-warmed oocytes is a natural adaptive response to cold stress. Collectively, we show for the first time that vitrified-warmed mouse oocytes exhibit autophagic activation during warming and that this response is not induced by CPA-containing solutions. The induction of autophagy by cold temperature is first reported herein.
Collapse
Affiliation(s)
- Soyoung Bang
- Department of Biomedical Science and TechnologyInstitute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, KoreaDepartment of Biomedical ScienceCollege of Life Science, CHA University, Seoul 135-913, KoreaDepartment of Obstetrics and GynecologySeoul National University Bundang Hospital, Seongnam, Gyeonggi-do 463-707, Korea
| | - Hyejin Shin
- Department of Biomedical Science and TechnologyInstitute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, KoreaDepartment of Biomedical ScienceCollege of Life Science, CHA University, Seoul 135-913, KoreaDepartment of Obstetrics and GynecologySeoul National University Bundang Hospital, Seongnam, Gyeonggi-do 463-707, Korea
| | - Haengseok Song
- Department of Biomedical Science and TechnologyInstitute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, KoreaDepartment of Biomedical ScienceCollege of Life Science, CHA University, Seoul 135-913, KoreaDepartment of Obstetrics and GynecologySeoul National University Bundang Hospital, Seongnam, Gyeonggi-do 463-707, Korea
| | - Chang Suk Suh
- Department of Biomedical Science and TechnologyInstitute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, KoreaDepartment of Biomedical ScienceCollege of Life Science, CHA University, Seoul 135-913, KoreaDepartment of Obstetrics and GynecologySeoul National University Bundang Hospital, Seongnam, Gyeonggi-do 463-707, Korea
| | - Hyunjung Jade Lim
- Department of Biomedical Science and TechnologyInstitute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, KoreaDepartment of Biomedical ScienceCollege of Life Science, CHA University, Seoul 135-913, KoreaDepartment of Obstetrics and GynecologySeoul National University Bundang Hospital, Seongnam, Gyeonggi-do 463-707, Korea
| |
Collapse
|
7
|
Shin H, Kwon S, Song H, Lim HJ. The transcription factor Egr3 is a putative component of the microtubule organizing center in mouse oocytes. PLoS One 2014; 9:e94708. [PMID: 24722338 PMCID: PMC3983223 DOI: 10.1371/journal.pone.0094708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/17/2014] [Indexed: 11/19/2022] Open
Abstract
The early growth response (Egr) family of zinc finger transcription factors consists of 4 members. During an investigation of Egr factor localization in mouse ovaries, we noted that Egr3 exhibits a subcellular localization that overlaps with the meiotic spindle in oocytes. Using Egr3-specific antibodies, we establish that Egr3 co-localizes with the spindle and cytosolic microtubule organizing centers (MTOCs) in oocytes during meiotic maturation. Notably, the Egr3 protein appears to accumulate around γ-tubulin in MTOCs. Nocodazole treatment, which induces microtubule depolymerization, resulted in the disruption of spindle formation and Egr3 localization, suggesting that Egr3 localization is dependent on the correct configuration of the spindle. Shortly after warming of vitrified oocytes, growing arrays of microtubules were observed near large clusters of Egr3. An in vitro microtubule interaction assay showed that Egr3 does not directly interact with polymerized microtubules. Egr3 localization on the spindle was sustained in early preimplantation mouse embryos, but this pattern did not persist until the blastocyst stage. Collectively, our result shows for the first time that the Egr3 a transcription factor may play a novel non-transcriptional function during microtubule organization in mouse oocytes.
Collapse
Affiliation(s)
- Hyejin Shin
- Department of Biomedical Science & Technology, Institute of Biomedical Science & Technology, Konkuk University, Seoul, Korea
| | - Sojung Kwon
- Department of Biomedical Science & Technology, Institute of Biomedical Science & Technology, Konkuk University, Seoul, Korea
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Hyunjung Jade Lim
- Department of Biomedical Science & Technology, Institute of Biomedical Science & Technology, Konkuk University, Seoul, Korea
- * E-mail:
| |
Collapse
|