1
|
Sethi N, Khokhar M, Mathur M, Batra Y, Mohandas A, Tomo S, Rao M, Banerjee M. Therapeutic Potential of Nutraceuticals against Drug-Induced Liver Injury. Semin Liver Dis 2024. [PMID: 39393795 DOI: 10.1055/s-0044-1791559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Drug-induced liver injury (DILI) continues to be a major concern in clinical practice, thus necessitating a need for novel therapeutic approaches to alleviate its impact on hepatic function. This review investigates the therapeutic potential of nutraceuticals against DILI, focusing on examining the underlying molecular mechanisms and cellular pathways. In preclinical and clinical studies, nutraceuticals, such as silymarin, curcumin, and N-acetylcysteine, have demonstrated remarkable efficacy in attenuating liver injury induced by diverse pharmaceutical agents. The molecular mechanisms underlying these hepatoprotective effects involve modulation of oxidative stress, inflammation, and apoptotic pathways. Furthermore, this review examines cellular routes affected by these nutritional components focusing on their influence on hepatocytes, Kupffer cells, and stellate cells. Key evidence highlights that autophagy modulation as well as unfolded protein response are essential cellular processes through which nutraceuticals exert their cytoprotective functions. In conclusion, nutraceuticals are emerging as promising therapeutic agents for mitigating DILI, by targeting different molecular pathways along with cell processes involved in it concurrently.
Collapse
Affiliation(s)
- Namya Sethi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mitali Mathur
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Yashi Batra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Amal Mohandas
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
2
|
Pichler WJ. Delayed drug hypersensitivity reactions: How p-i transforms pharmacology into immunology. Allergol Int 2024:S1323-8930(24)00088-1. [PMID: 39294038 DOI: 10.1016/j.alit.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/20/2024] Open
Abstract
Delayed drug hypersensitivity reactions (dDHRs) are iatrogenic diseases, which are mostly due to non-covalent interactions of a drug with the immune receptors HLA and/or TCR causing T-cell activation. This is also known as pharmacological interaction with immune receptors or p-i. P-i activation differs from classical antigen-driven immune reactions: a) drug binding induces structural changes in TCR-HLA proteins which make them look like allo-like TCR-HLA-complexes, able to elicit allo-like stimulations of T cells with cytotoxicity and IFNγ production, notably without the involvement of innate immunity; b) drug binding to TCR and/or HLA can increase the affinity of TCR-HLA interactions, which may affect signaling and IL-5 production by CD4+ T cells, and thus contribute to eosinophilia commonly found in dDHRs or induce oligoclonal T cell expansions; c) Both, antigen and p-i stimulations can induce eosinophil- or neutrophil-rich inflammations; but these stimulations should be distinguished as their underlying mechanism and development differ; and d) p-i stimulation can - like graft versus host reactions - result in long-lasting T-cell activations, which can lead to viremia, occasional autoimmunity, or a new syndrome characterized by multiple drug hypersensitivity (MDH). In summary, dDHRs are not allergic reactions but represent peculiar T-cell activations, similar to allo-like stimulations. Understanding and considering the p-i mechanism is needed for preventive measures and optimal treatments of dDHR. In addition, it may help to understand TCR signaling, alloreactivity, and may even open a new way of specific immune stimulations.
Collapse
|
3
|
Molatefi R, Talebi S, Samei A, Roshanravan N, Manshouri S, Hashemi B, Ghobadi Dana V, Mosharkesh E, Bahar MA, Khajoei S, Seif F. Clues of HLAs, metabolic SNPs, and epigenetic factors in T cell-mediated drug hypersensitivity reactions. Heliyon 2024; 10:e33976. [PMID: 39100437 PMCID: PMC11296025 DOI: 10.1016/j.heliyon.2024.e33976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Drug hypersensitivities are common reactions due to immunologic responses. They are of utmost importance because they may generate severe and fatal outcomes. Some drugs may cause Adverse Drug Reactions (ADRs), such as drug hypersensitivity reactions (DHRs), which can occur due to the interaction of intact drugs or their metabolites with Human Leukocyte Antigens (HLAs) and T cell receptors (TCRs). This type develops over a period of 24-72 h after exposure and is classified as type IV of DHRs. Acute generalized exanthematic pustulosis (AGEP), Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS) are types of Severe Cutaneous Adverse Reactions (SCARs). In this review, we aim to discuss the types of ADRs, the mechanisms involved in their development, and the role of immunogenetic factors, such as HLAs in type IV DHRs, single-nucleotide polymorphisms (SNPs), and some epigenetic modifications, e.g., DNA/histone methylation in a variety of genes and their promoters which may predispose subjects to DHRs. In conclusion, development of promising novel in vitro or in vivo diagnostic and prognostic markers is essential for identifying susceptible subjects or providing treatment protocols to work up patients with drug allergies as personalized medicine.
Collapse
Affiliation(s)
- Rasol Molatefi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sedighe Talebi
- Department of Traditional Medicine, School of Persian Medicine, Shahed University, Tehran, Iran
| | - Azam Samei
- Department of Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Manshouri
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Baran Hashemi
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Ghobadi Dana
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Erfan Mosharkesh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad Ali Bahar
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sholeh Khajoei
- Clinical Research Development Center, Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Department of Photodynamic Therapy, Medical Laser Research Center, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| |
Collapse
|
4
|
Wu PC, Chen WT, Huang IH, Chen CB, Wang CW, Tai CC, Chung WH, Chi CC. Human Leukocyte Antigens and Sulfamethoxazole/Cotrimoxazole-Induced Severe Cutaneous Adverse Reactions: A Systematic Review and Meta-Analysis. JAMA Dermatol 2024; 160:525-534. [PMID: 38568509 PMCID: PMC10993165 DOI: 10.1001/jamadermatol.2024.0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/11/2024] [Indexed: 04/06/2024]
Abstract
Importance Sulfamethoxazole (SMX) and cotrimoxazole (CTX), a fixed-dose combination of SMX and trimethoprim in a 5:1 ratio, are antibacterial sulfonamides commonly used for treating various diseases. A substantial prevalence of severe cutaneous adverse reactions (SCARs) following the administration of these drugs has been reported. However, the association between human leukocyte antigen (HLA) genotypes and SMX/CTX-induced SCARs has remained unclear. Objective To investigate the association between HLA genotypes and SMX/CTX-induced SCARs. Data sources A comprehensive search was conducted in CENTRAL (Cochrane Library), MEDLINE, and Embase from inception to January 17, 2023. Study Selection Case-control studies that recruited patients who had experienced SCARs following SMX or CTX were included, and HLA alleles were analyzed. Data Extraction and Synthesis Two independent authors extracted data on study characteristics and outcome data. The Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting guideline and the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines were followed. The Newcastle-Ottawa Scale for case-control studies was used to assess study quality. Odds ratios (ORs) were calculated using a random-effects model for meta-analysis. Main Outcomes and Measures The prespecified outcome was the OR comparing SMX/CTX-induced SCARs with healthy or SMX/CTX-tolerant controls based on different HLA alleles. Results Six studies involving 322 patients with SCAR were included, including 236 patients with Stevens-Johnson syndrome/toxic epidermal necrolysis, 86 with drug reaction with eosinophilia and systemic symptoms, 8448 healthy controls, and 229 tolerant controls. Significant associations were found in HLA-A*11:01 (OR, 2.10; 95% CI, 1.11-4.00), HLA-B*13:01 (OR, 5.96; 95% CI, 1.58-22.56), HLA-B*15:02 (OR, 2.23; 95% CI, 1.20-4.14), HLA-B*38:02 (OR, 3.47; 95% CI, 1.42-8.48), and HLA-C*08:01 (OR, 2.63; 95% CI, 1.07-6.44) compared with tolerant controls. In the Stevens-Johnson syndrome/toxic epidermal necrolysis subgroup, significant associations were found in HLA-B*15:02 (OR, 3.01; 95% CI, 1.56-5.80) and HLA-B*38:02 (OR, 5.13; 95% CI, 1.96-13.47). In the drug reaction with eosinophilia and systemic symptoms subgroup, significant associations were found in HLA-A*68:01 (OR, 12.86; 95% CI, 1.09-151.34), HLA-B*13:01 (OR, 23.09; 95% CI, 3.31-161.00), HLA-B*39:01 (OR, 4.56; 95% CI, 1.31-15.82). Conclusions and Relevance The results of this systematic review and meta-analysis suggest that multiple HLA alleles (HLA-A*11:01, HLA-B*13:01, HLA-B*15:02, HLA-B*38:02, and HLA-C*0801) are associated with SMX/CTX-induced SCARs.
Collapse
Affiliation(s)
- Po-Chien Wu
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Wei-Ti Chen
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- VNUS Dermatology Clinic, Taipei, Taiwan
| | - I-Hsin Huang
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chun-Bing Chen
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chen Tai
- Medical Library, Department of Medical Education, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chi Chi
- Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Luo L, Chen N, Li Z, Zhao C, Dong Y, Wang L, Li X, Zhou W, Li Y, Gao C, Guo X. Knowledge mapping and global trends of drug hypersensitivity from 2013 to 2023: A bibliometric analysis. Immun Inflamm Dis 2024; 12:e1245. [PMID: 38629759 PMCID: PMC11022627 DOI: 10.1002/iid3.1245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/27/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Drug hypersensitivity is a major global public health issue with a significant increase in prevalence in populations. Here, we provide a deep insight into the frontier hotspot and future direction in the field of drug hypersensitivity. METHODS A knowledge map is portrayed based on publications related to drug hypersensitivity from Web of Science Core Collection using CiteSpace. Co-occurrence relationships of countries, institutes, authors, journals, references, and keywords are constructed. According to the co-occurrence relationships, hotspots and future trends are overviewed. RESULTS The United States ranked first in the world and China with the second highest publications was the only developing country. Torres, Mayorga, and Blanca were highly productive authors. Harvard University was the institution with the most research publications. Keywords co-occurrence analysis suggested applications in emerging causes, potential mechanisms, and clinical diagnosis as the research hotspots and development frontiers. CONCLUSION Research on drug hypersensitivity is in a rapid development stage and an emerging trend in reports of anaphylaxis to polyethylene glycols is identified. Developing algorithms for understanding the standardization process of culprit drugs, clinical manifestations, and diagnostic methods will be the focus of future direction. In addition, a better understanding of the mechanisms to culprit drugs with immunological precise phenotypic definitions and high-throughput platforms is needed.
Collapse
Affiliation(s)
- Li Luo
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Niannian Chen
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Zhanpeng Li
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Chunmei Zhao
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Yiming Dong
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Likai Wang
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Xiaoqian Li
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Wenchao Zhou
- School of Public Health, Academy of Medical ScienceShanxi Medical UniversityTaiyuanChina
| | - Yingna Li
- First Clinical Medical CollegeShanxi Medical UniversityTaiyuanChina
| | - Cairong Gao
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Xiangjie Guo
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
- Translational Medicine Research CenterShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
6
|
Zhu X, Luo G, Zheng L. Update on HLA-B*15:02 allele associated with adverse drug reactions. Pharmacogenomics 2024; 25:97-111. [PMID: 38305022 DOI: 10.2217/pgs-2023-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
HLA alleles, part of the major histocompatibility complex, are strongly associated with adverse drug reactions (ADRs). This review focuses on HLA-B*15:02 and explores its association with ADRs in various ethnic populations and with different drugs, aiming to provide insights into the safe clinical use of drugs and minimize the occurrence of ADRs. Furthermore, the review explores the potential mechanisms by which HLA-B*15:02 may be associated with ADRs, aiming to gain new insights into drug modification and identification of haptens. In addition, it analyzes the frequency of the HLA-B*15:02, genotyping methods, cost-effectiveness and treatment measures for adverse reactions, thereby providing a theoretical basis for formulating clinical treatment plans.
Collapse
Affiliation(s)
- Xueting Zhu
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guanghua Luo
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lu Zheng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
7
|
Pichler WJ, Thoo L, Yerly D. Drug hypersensitivity and eosinophilia: The decisive role of p-i stimulation. Allergy 2023; 78:2596-2605. [PMID: 37395496 DOI: 10.1111/all.15795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Eosinophilia is a common finding in drug hypersensitivity reactions (DHR). Its cause is unclear, as neither antigen/allergen-driven inflammation nor clonal expansion is involved. Most delayed-DHRs are due to p-i (pharmacologic interaction of drugs with immune receptors). These are off-target activities of drugs with immune receptors that result in various types of T-cell stimulation, some of which involve excessive IL-5 production. Functional and phenotypic studies of T-cell clones and their TCR-transfected hybridoma cell lines revealed that some p-i-induced drug stimulations occur without CD4/ CD8 co-receptor engagement. The CD4/CD8 co-receptors link Lck (lymphocyte-specific protein tyrosine kinase) and LAT (linker for activation of T cells) to the TCR. Alteration of Lck or LAT can result in a TCR signalosome with enhanced IL-5 production. Thus, if a more affine TCR-[drug/peptide/HLA] interaction allows bypassing the CD4 co-receptor, a modified Lck/LAT activation may lead to a TCR signalosome with elevated IL-5 production. This "IL-5-TCR-signalosome" hypothesis could also explain eosinophilia in superantigen or allo-stimulation (graft-versus-host disease), in which evasion of CD4/CD8 co-receptors has also been described. It may open new therapeutic possibilities in certain eosinophilic diseases by directly targeting the IL-5-TCR signalosome.
Collapse
|
8
|
Gibson A, Deshpande P, Campbell CN, Krantz MS, Mukherjee E, Mockenhaupt M, Pirmohamed M, Palubinsky AM, Phillips EJ. Updates on the immunopathology and genomics of severe cutaneous adverse drug reactions. J Allergy Clin Immunol 2023; 151:289-300.e4. [PMID: 36740326 PMCID: PMC9976545 DOI: 10.1016/j.jaci.2022.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 02/05/2023]
Abstract
Severe cutaneous adverse reactions (SCARs) such as Stevens-Johnson syndrome, toxic epidermal necrolysis (SJS/TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS)/drug-induced hypersensitivity syndrome (DIHS) cause significant morbidity and mortality and impede new drug development. HLA class I associations with SJS/TEN and drug reaction with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome have aided preventive efforts and provided insights into immunopathogenesis. In SJS/TEN, HLA class I-restricted oligoclonal CD8+ T-cell responses occur at the tissue level. However, specific HLA risk allele(s) and antigens driving this response have not been identified for most drugs. HLA risk alleles also have incomplete positive and negative predictive values, making truly comprehensive screening currently challenging. Although, there have been key paradigm shifts in knowledge regarding drug hypersensitivity, there are still many open and unanswered questions about SCAR immunopathogenesis, as well as genetic and environmental risk. In addition to understanding the cellular and molecular basis of SCAR at the single-cell level, identification of the MHC-restricted drug-reactive self- or viral peptides driving the hypersensitivity reaction will also be critical to advancing premarketing strategies to predict risk at an individual and drug level. This will also enable identification of biologic markers for earlier diagnosis and accurate prognosis, as well as drug causality and targeted therapeutics.
Collapse
Affiliation(s)
- Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Chelsea N Campbell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Matthew S Krantz
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Eric Mukherjee
- Department of Dermatology, Vanderbilt University Medical Center, Nashville; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Maja Mockenhaupt
- Dokumentationszentrum schwerer Hautreaktionen Department of Dermatologie, Medical Center and Medical Faculty, University of Freiburg, Freiberg, Germany
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Amy M Palubinsky
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Dermatology, Vanderbilt University Medical Center, Nashville; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tenn.
| |
Collapse
|
9
|
Watkins SL. Current Trends and Changes in Use of Membrane Molecular Dynamics Simulations within Academia and the Pharmaceutical Industry. MEMBRANES 2023; 13:148. [PMID: 36837651 PMCID: PMC9961006 DOI: 10.3390/membranes13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
There has been an almost exponential increase in the use of molecular dynamics simulations in basic research and industry over the last 5 years, with almost a doubling in the number of publications each year. Many of these are focused on neurological membranes, and biological membranes in general, applied to the medical industry. A smaller portion have utilized membrane simulations to answer more basic questions related to the function of specific proteins, chemicals or biological processes. This review covers some newer studies, alongside studies from the last two decades, to determine changes in the field. Some of these are basic, while others are more profound, such as multi-component embedded membrane machinery. It is clear that many facets of the discipline remain the same, while the focus on and uses of the technology are broadening in scope and utilization as a general research tool. Analysis of recent literature provides an overview of the current methodologies, covers some of the recent trends or advances and tries to make predictions of the overall path membrane molecular dynamics will follow in the coming years. In general, the overview presented is geared towards the general scientific community, who may wish to introduce the use of these methodologies in light of these changes, making molecular dynamic simulations more feasible for general scientific or medical research.
Collapse
Affiliation(s)
- Stephan L Watkins
- Plant Pathology and CRGB, Oregon State University, 2701 SW Campus Way, Corvallis, OR 97331, USA
| |
Collapse
|
10
|
Chu MT, Chang WC, Pao SC, Hung SI. Delayed Drug Hypersensitivity Reactions: Molecular Recognition, Genetic Susceptibility, and Immune Mediators. Biomedicines 2023; 11:biomedicines11010177. [PMID: 36672685 PMCID: PMC9855900 DOI: 10.3390/biomedicines11010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Drug hypersensitivity reactions are classified into immediate and delayed types, according to the onset time. In contrast to the immediate type, delayed drug hypersensitivity mainly involves T lymphocyte recognition of the drug antigens and cell activation. The clinical presentations of such hypersensitivity are various and range from mild reactions (e.g., maculopapular exanthema (MPE) and fixed drug eruption (FDE)), to drug-induced liver injury (DILI) and severe cutaneous adverse reactions (SCARs) (e.g., Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), and acute generalized exanthematous pustulosis (AGEP)). The common culprits of delayed drug hypersensitivity include anti-epileptics, antibiotics, anti-gout agents, anti-viral drugs, etc. Delayed drug hypersensitivity is proposed to be initiated by different models of molecular recognition, composed of drug/metabolite antigen and endogenous peptide, HLA presentation, and T cell receptor (TCR) interaction. Increasing the genetic variants of HLA loci and drug metabolic enzymes has been identified to be responsible for delayed drug hypersensitivity. Furthermore, preferential TCR clonotypes, and the activation of cytotoxic proteins/cytokines/chemokines, are also involved in the pathogenesis of delayed drug hypersensitivity. This review provides a summary of the current understanding of the molecular recognition, genetic susceptibility, and immune mediators of delayed drug hypersensitivity.
Collapse
Affiliation(s)
- Mu-Tzu Chu
- Cancer Vaccine & Immune Cell Therapy Core Lab, Department of Medical Research, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Wan-Chun Chang
- Division of Translational Therapeutics, Department of Paediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shih-Cheng Pao
- Cancer Vaccine & Immune Cell Therapy Core Lab, Department of Medical Research, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shuen-Iu Hung
- Cancer Vaccine & Immune Cell Therapy Core Lab, Department of Medical Research, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Correspondence: or ; Tel.: +886-3-3281200 (ext. 7806)
| |
Collapse
|
11
|
Joshi SR, Salinas W, Khan DA. Drug Hypersensitivity. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
12
|
Pichler WJ, Brüggen MC. Viral infections and drug hypersensitivity. Allergy 2023; 78:60-70. [PMID: 36264263 DOI: 10.1111/all.15558] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 12/30/2022]
Abstract
Virus infections and T-cell-mediated drug hypersensitivity reactions (DHR) can influence each other. In most instances, systemic virus infections appear first. They may prime the reactivity to drugs in two ways: First, by virus-induced second signals: certain drugs like β-lactam antibiotics are haptens and covalently bind to various soluble and tissue proteins, thereby forming novel antigens. Under homeostatic conditions, these neo-antigens do not induce an immune reaction, probably because co-stimulation is missing. During a virus infection, the hapten-modified peptides are presented in an immune-stimulatory environment with co-stimulation. A drug-specific immune reaction may develop and manifest as exanthema. Second, by increased pharmacological interactions with immune receptors (p-i): drugs tend to bind to proteins and may even bind to immune receptors. Without viral infections, this low affine binding may be insufficient to elicit T-cell activation. During a viral infection, immune receptors are more abundantly expressed and allow more interactions to occur. This increases the overall avidity of p-i reactions and may even be sufficient for T-cell activation and symptoms. There is a situation where the virus-DHR sequence of events is inversed: in drug reaction with eosinophilia and systemic symptoms (DRESS), a severe DHR can precede reactivation and viremia of various herpes viruses. One could explain this phenomenon by the massive p-i mediated immune stimulation during acute DRESS, which coincidentally activates many herpes virus-specific T cells. Through p-i stimulation, they develop a cytotoxic activity by killing herpes peptide-expressing cells and releasing herpes viruses. These concepts could explain the often transient nature of DHR occurring during viral infections and the often asymptomatic herpes-virus viraemia after DRESS.
Collapse
Affiliation(s)
| | - Marie-Charlotte Brüggen
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland.,Faculty of Medicine, University Zürich, Zürich, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
13
|
Riedel F, Aparicio-Soto M, Curato C, Münch L, Abbas A, Thierse HJ, Peitsch WK, Luch A, Siewert K. Unique and common TCR repertoire features of Ni 2+ -, Co 2+ -, and Pd 2+ -specific human CD154 + CD4+ T cells. Allergy 2023; 78:270-282. [PMID: 36005389 DOI: 10.1111/all.15494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Apart from Ni2+ , Co2+ , and Pd2+ ions commonly trigger T cell-mediated allergic contact dermatitis. However, in vitro frequencies of metal-specific T cells and the mechanisms of antigen recognition remain unclear. METHODS Here, we utilized a CD154 upregulation assay to quantify Ni2+ -, Co2+ -, and Pd2+ -specific CD4+ T cells in peripheral blood mononuclear cells (PBMC). Involved αβ T cell receptor (TCR) repertoires were analyzed by high-throughput sequencing. RESULTS Peripheral blood mononuclear cells incubation with NiSO4 , CoCl2 , and PdCl2 increased frequencies of CD154 + CD4+ memory T cells that peaked at ~400 μM. Activation was TCR-mediated as shown by the metal-specific restimulation of T cell clones. Most abundant were Pd2+ -specific T cells (mean 3.5%, n = 19), followed by Co2+ - and Ni2+ -specific cells (0.6%, n = 18 and 0.3%, n = 20) in both allergic and non-allergic individuals. A strong overrepresentation of the gene segment TRAV9-2 was unique for Ni2+ -specific TCR (28% of TCR) while Co2+ and Pd2+ -specific TCR favorably expressed TRAV2 (8%) and the TRBV4 gene segment family (21%), respectively. As a second, independent mechanism of metal ion recognition, all analyzed metal-specific TCR showed a common overrepresentation of a histidine in the complementarity determining region 3 (CDR3; 15% of α-chains, 34% of β-chains). The positions of the CDR3 histidine among metal-specific TCR mirrored those in random repertoires and were conserved among cross-reactive clonotypes. CONCLUSIONS Induced CD154 expression allows a fast and comprehensive detection of Ni2+ -, Co2+ -, and Pd2+ -specific CD4+ T cells. Distinct TCR repertoire features underlie the frequent activation and cross-reactivity of human metal-specific T cells.
Collapse
Affiliation(s)
- Franziska Riedel
- Dermatotoxicology Study Centre, German Federal Institute for Risk Assessment, Berlin, Germany.,Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marina Aparicio-Soto
- Dermatotoxicology Study Centre, German Federal Institute for Risk Assessment, Berlin, Germany.,Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Caterina Curato
- Dermatotoxicology Study Centre, German Federal Institute for Risk Assessment, Berlin, Germany.,Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Lucas Münch
- Dermatotoxicology Study Centre, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Amro Abbas
- Dermatotoxicology Study Centre, German Federal Institute for Risk Assessment, Berlin, Germany.,German Rheumatism Research Center (DRFZ), Berlin, Germany
| | - Hermann-Josef Thierse
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Wiebke K Peitsch
- Department of Dermatology and Phlebology, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Katherina Siewert
- Dermatotoxicology Study Centre, German Federal Institute for Risk Assessment, Berlin, Germany.,Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
14
|
Thomson P, Hammond S, Naisbitt DJ. Pathology of drug hypersensitivity reactions and mechanisms of immune tolerance. Clin Exp Allergy 2022; 52:1379-1390. [PMID: 36177544 DOI: 10.1111/cea.14235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 01/26/2023]
Abstract
Immune-mediated type IV adverse drug reactions are idiosyncratic in nature, generally not related to the primary or secondary pharmacology of the drug. Due to their complex nature and rarity, these iatrogenic reactions are seldom predicted or encountered during preclinical/early clinical development stages, and often precipitate upon exposure to wider populations (i.e. phase III onwards). They confer a burden on the healthcare sector in both a clinical and financial sense presenting a severe impediment to the drug discovery and development process. Research over the past 50 years has improved our understanding of these reactions markedly as both in vitro and in vivo studies have placed the role of the immune system, in particular; drug-responsive T cells, firmly in the spotlight as the mediators of these reactions. Indeed, the role of different populations of T cells in adverse events and the interaction of drug molecules with HLA proteins expressed on the surface of antigen-presenting cells is of considerable interest. Herein, this review examines the pathways of immune-mediated adverse events including the various T cell subtypes implicated and the mechanisms of T cell activation. Additionally, we address the enigma of immunological tolerance and explore the role tolerance plays in determination of susceptibility to such adverse events even in individuals carrying immunogenic liabilities.
Collapse
Affiliation(s)
- Paul Thomson
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Sean Hammond
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK.,ApconiX, Alderley Park, Alderley Edge, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Elzagallaai AA, Rieder MJ. Genetic markers of drug hypersensitivity in pediatrics: current state and promise. Expert Rev Clin Pharmacol 2022; 15:715-728. [DOI: 10.1080/17512433.2022.2100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Abdelbaset A Elzagallaai
- Department of Paediatrics Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Rieder
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
16
|
Hernandez-Jaimes OA, Cazares-Olvera DV, Line J, Moreno-Eutimio MA, Gómez-Castro CZ, Naisbitt DJ, Castrejón-Flores JL. Advances in Our Understanding of the Interaction of Drugs with T-cells: Implications for the Discovery of Biomarkers in Severe Cutaneous Drug Reactions. Chem Res Toxicol 2022; 35:1162-1183. [PMID: 35704769 DOI: 10.1021/acs.chemrestox.1c00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drugs can activate different cells of the immune system and initiate an immune response that can lead to life-threatening diseases collectively known as severe cutaneous adverse reactions (SCARs). Antibiotics, anticonvulsants, and antiretrovirals are involved in the development of SCARs by the activation of αβ naïve T-cells. However, other subsets of lymphocytes known as nonconventional T-cells with a limited T-cell receptor repertoire and innate and adaptative functions also recognize drugs and drug-like molecules, but their role in the pathogenesis of SCARs has only just begun to be explored. Despite 30 years of advances in our understanding of the mechanisms in which drugs interact with T-cells and the pathways for tissue injury seen during T-cell activation, at present, the development of useful clinical biomarkers for SCARs or predictive preclinical in vitro assays that could identify immunogenic moieties during drug discovery is an unmet goal. Therefore, the present review focuses on (i) advances in the understanding of the pathogenesis of SCARs reactions, (ii) a description of the interaction of drugs with conventional and nonconventional T-cells, and (iii) the current state of soluble blood circulating biomarker candidates for SCARs.
Collapse
Affiliation(s)
| | - Diana Valeria Cazares-Olvera
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City 07340, México
| | - James Line
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - José Luis Castrejón-Flores
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City 07340, México
| |
Collapse
|
17
|
Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis in the Era of Systems Medicine. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2486:37-54. [PMID: 35437717 DOI: 10.1007/978-1-0716-2265-0_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) are severe mucocutaneous bullous disorders characterized by widespread skin and mucosal necrosis and detachment, which are most commonly triggered by medications. Despite their rarity, these severe cutaneous adverse drug reactions will result in high mortality and morbidity as well as long-term sequela. The immunopathologic mechanisms is mainly cell-mediated cytotoxic reaction against keratinocytes leading to massive skin necrolysis. Subsequent studies have demonstrated that immune synapse composed of cytotoxic T cells with drug-specific human leukocyte antigen (HLA) class I restriction and T cell receptors (TCR) repertoire is the key pathogenic for SJS/TEN. Various cytotoxic proteins and cytokines such as soluble granulysin, perforin, granzyme B, interleukin-15, Fas ligand, interferon-γ, tumor necrosis factor-α have been as mediators involved in the pathogenesis of SJS/TEN. Early recognition and immediate withdrawal of causative agents, and critical multidisciplinary supportive care are key management of SJS/TEN. To date, there is yet to be a sufficient consensus or recommendation for the immunomodulants of the treatment in SJS/TEN. Systemic corticosteroids remain one of the most common treatment options for SJS/TEN, though the efficacy remain uncertain. Currently, there is increasing evidence showing that cyclosporine and TNF-α inhibitors decrease the mortality of SJS/TEN. Further multicenter double-blinded, randomized, placebo-controlled trials are required to confirm the efficacy and safety.
Collapse
|
18
|
Fernandez‐Santamaria R, Ariza A, Fernandez TD, Cespedes JA, Labella M, Mayorga C, Torres MJ. Advances and highlights in T and B cell responses to drug antigens. Allergy 2022; 77:1129-1138. [PMID: 34617287 DOI: 10.1111/all.15126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/31/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022]
Abstract
The immunological mechanisms involved in drug hypersensitivity reactions (DHRs) are complex, and despite important advances, multiple aspects remain poorly understood. These not fully known aspects are mainly related to the factors that drive towards either a tolerant or a hypersensitivity response and specifically regarding the role of B and T cells. In this review, we focus on recent findings on this knowledge area within the last 2 years. We highlight new evidences of covalent and non-covalent interactions of drug antigen with proteins, as well as the very first characterization of naturally processed flucloxacillin-haptenated human leukocyte antigen (HLA) ligands. Moreover, we have analysed new insights into the identification of risk factors associated with the development of DHRs, such as the role of oxidative metabolism of drugs in the activation of the immune system and the discovery of new associations between DHRs and HLA variants. Finally, evidence of IgG-mediated anaphylaxis in humans and the involvement of specific subpopulations of effector cells associated with different clinical entities are also topics explored in this review. All these recent findings are relevant for the underlying pathology mechanisms and advance the field towards a more precise diagnosis, management and treatment approach for DHRs.
Collapse
Affiliation(s)
| | - Adriana Ariza
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
| | - Tahia D. Fernandez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Departamento de Biología Celular Genética y Fisiología Universidad de Málaga Málaga Spain
| | - José A Cespedes
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
| | - Marina Labella
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
| | - Cristobalina Mayorga
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
| | - María J Torres
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
- Departamento de Medicina Universidad de Málaga Málaga Spain
| |
Collapse
|
19
|
Pichler WJ, Watkins S, Yerly D. Risk Assessment in Drug Hypersensitivity: Detecting Small Molecules Which Outsmart the Immune System. FRONTIERS IN ALLERGY 2022; 3:827893. [PMID: 35386664 PMCID: PMC8974731 DOI: 10.3389/falgy.2022.827893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Drug hypersensitivity (DH) reactions are clinically unusual because the underlying immune stimulations are not antigen-driven, but due to non-covalent drug-protein binding. The drugs may bind to immune receptors like HLA or TCR which elicits a strong T cell reaction (p-i concept), the binding may enhance the affinity of antibodies (enhanced affinity model), or drug binding may occur on soluble proteins which imitate a true antigen (fake antigen model). These novel models of DH could have a major impact on how to perform risk assessments in drug development. Herein, we discuss the difficulties of detecting such non-covalent, labile and reversible, but immunologically relevant drug-protein interactions early on in drug development. The enormous diversity of the immune system, varying interactions, and heterogeneous functional consequences make it to a challenging task. We propose that a realistic approach to detect clinically relevant non-covalent drug interactions for a new drug could be based on a combination of in vitro cell culture assays (using a panel of HLA typed donor cells) and functional analyses, supplemented by structural analysis (computational data) of the reactive cells/molecules. When drug-reactive cells/molecules with functional impact are detected in these risk assessments, a close clinical monitoring of the drug may reveal the true incidence of DH, as suppressing but also enhancing factors occurring in vivo can influence the clinical manifestation of a DH.
Collapse
|
20
|
Curato C, Aparicio-Soto M, Riedel F, Wehl I, Basaran A, Abbas A, Thierse HJ, Luch A, Siewert K. Frequencies and TCR Repertoires of Human 2,4,6-Trinitrobenzenesulfonic Acid-specific T Cells. FRONTIERS IN TOXICOLOGY 2022; 4:827109. [PMID: 35295228 PMCID: PMC8915883 DOI: 10.3389/ftox.2022.827109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Allergic contact dermatitis is a widespread T cell-mediated inflammatory skin disease, but in vitro monitoring of chemical-specific T cells remains challenging. We here introduce short-term CD154/CD137 upregulation to monitor human T cell responses to the experimental sensitizer 2,4,6-trinitrobenzenesulfonic acid (TNBS). Peripheral blood mononuclear cells (PBMC) from healthy donor buffy coats were TNBS-modified and incubated with unmodified PBMC. After 5 and 16 h, we detected TNBS-specific activated CD154+CD4+ and CD137+CD8+ T cells by multi-parameter flow cytometry, respectively. Activated cells were sorted for restimulation and bulk T cell receptor (TCR) high-throughput sequencing (HTS). Stimulation with TNBS-modified cells (3 mM) induced CD154 expression on 0.04% of CD4+ and CD137 expression on 0.60% of CD8+ memory T cells, respectively (means, n = 11-17 donors). CD69 co-expression argued for TCR-mediated activation, which was further supported by TNBS-specific restimulation of 10/13 CD154+CD4+ and 11/15 CD137+CD8+ T cell clones and lines. Major histocompatibility complex (MHC) blocking antibodies prevented activation, illustrating MHC restriction. The high frequencies of TNBS-specific T cells were associated with distinct common changes in the TCR β-chain repertoire. We observed an overrepresentation of tryptophan and lysine in the complementarity determining regions 3 (CDR3) (n = 3-5 donors), indicating a preferential interaction of these amino acids with the TNBS-induced epitopes. In summary, the detection of TNBS-specific T cells by CD154/CD137 upregulation is a fast, comprehensive and quantitative method. Combined with TCR HTS, the mechanisms of chemical allergen recognition that underlie unusually frequent T cell activation can be assessed. In the future, this approach may be adapted to detect T cells activated by additional chemical sensitizers.
Collapse
Affiliation(s)
- Caterina Curato
- Dermatotoxicology Study Centre, Berlin, Germany
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Marina Aparicio-Soto
- Dermatotoxicology Study Centre, Berlin, Germany
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Franziska Riedel
- Dermatotoxicology Study Centre, Berlin, Germany
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ingrun Wehl
- Dermatotoxicology Study Centre, Berlin, Germany
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Alev Basaran
- Dermatotoxicology Study Centre, Berlin, Germany
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Amro Abbas
- Dermatotoxicology Study Centre, Berlin, Germany
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- German Rheumatism Research Center (DRFZ), Berlin, Germany
| | - Hermann-Josef Thierse
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Andreas Luch
- Dermatotoxicology Study Centre, Berlin, Germany
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Katherina Siewert
- Dermatotoxicology Study Centre, Berlin, Germany
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
21
|
Pichler WJ. The important role of non-covalent drug-protein interactions in drug hypersensitivity reactions. Allergy 2022; 77:404-415. [PMID: 34037262 PMCID: PMC9291849 DOI: 10.1111/all.14962] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Drug hypersensitivity reactions (DHR) are heterogeneous and unusual immune reactions with rather unique clinical presentations. Accumulating evidence indicates that certain non-covalent drug-protein interactions are able to elicit exclusively effector functions of antibody reactions or complete T-cell reactions which contribute substantially to DHR. Here, we discuss three key interactions; (a) mimicry: whereby soluble, non-covalent drug-protein complexes ("fake antigens") mimic covalent drug-protein adducts; (b) increased antibody affinity: for example, in quinine-type immune thrombocytopenia where the drug gets trapped between antibody and membrane-bound glycoprotein; and (c) p-i-stimulation: where naïve and memory T cells are activated by direct binding of drugs to the human leukocyte antigen and/or T-cell receptors. This transient drug-immune receptor interaction initiates a polyclonal T-cell response with mild-to-severe DHR symptoms. Notable complications arising from p-i DHR can include viral reactivations, autoimmunity, and multiple drug hypersensitivity. In conclusion, DHR is characterized by abnormal immune stimulation driven by non-covalent drug-protein interactions. This contrasts DHR from "normal" immunity, which relies on antigen-formation by covalent hapten-protein adducts and predominantly results in asymptomatic immunity.
Collapse
|
22
|
Moyer AM, Gandhi MJ. Human Leukocyte Antigen (HLA) Testing in Pharmacogenomics. Methods Mol Biol 2022; 2547:21-45. [PMID: 36068459 DOI: 10.1007/978-1-0716-2573-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The genetic region on the short arm of chromosome 6 where the human leukocyte antigen (HLA) genes are located is the major histocompatibility complex. The genes in this region are highly polymorphic, and some loci have a high degree of homology with other genes and pseudogenes. Histocompatibility testing has traditionally been performed in the setting of transplantation and involves determining which specific alleles are present. Several HLA alleles have been associated with disease risk or increased risk of adverse drug reaction (ADR) when treated with certain medications. Testing for these applications differs from traditional histocompatibility in that the desired result is simply presence or absence of the allele of interest, rather than determining which allele is present. At present, the majority of HLA typing is done by molecular methods using commercially available kits. A subset of pharmacogenomics laboratories has developed their own methods, and in some cases, query single nucleotide variants associated with certain HLA alleles rather than directly testing for the allele. In this chapter, a brief introduction to the HLA system is provided, followed by an overview of a variety of testing technologies including those specifically used in pharmacogenomics, and the chapter concludes with details regarding specific HLA alleles associated with ADR.
Collapse
Affiliation(s)
- Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Manish J Gandhi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
23
|
The Immunogenetics of Cutaneous Drug Reactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:411-431. [DOI: 10.1007/978-3-030-92616-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Aparicio-Soto M, Curato C, Riedel F, Thierse HJ, Luch A, Siewert K. In Vitro Monitoring of Human T Cell Responses to Skin Sensitizing Chemicals-A Systematic Review. Cells 2021; 11:cells11010083. [PMID: 35011644 PMCID: PMC8750770 DOI: 10.3390/cells11010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Chemical allergies are T cell-mediated diseases that often manifest in the skin as allergic contact dermatitis (ACD). To prevent ACD on a public health scale and avoid elicitation reactions at the individual patient level, predictive and diagnostic tests, respectively, are indispensable. Currently, there is no validated in vitro T cell assay available. The main bottlenecks concern the inefficient generation of T cell epitopes and the detection of rare antigen-specific T cells. Methods: Here, we systematically review original experimental research papers describing T cell activation to chemical skin sensitizers. We focus our search on studies published in the PubMed and Scopus databases on non-metallic allergens in the last 20 years. Results: We identified 37 papers, among them 32 (86%) describing antigen-specific human T cell activation to 31 different chemical allergens. The remaining studies measured the general effects of chemical allergens on T cell function (five studies, 14%). Most antigen-specific studies used peripheral blood mononuclear cells (PBMC) as antigen-presenting cells (APC, 75%) and interrogated the blood T cell pool (91%). Depending on the individual chemical properties, T cell epitopes were generated either by direct administration into the culture medium (72%), separate modification of autologous APC (29%) or by use of hapten-modified model proteins (13%). Read-outs were mainly based on proliferation (91%), often combined with cytokine secretion (53%). The analysis of T cell clones offers additional opportunities to elucidate the mechanisms of epitope formation and cross-reactivity (13%). The best researched allergen was p-phenylenediamine (PPD, 12 studies, 38%). For this and some other allergens, stronger immune responses were observed in some allergic patients (15/31 chemicals, 48%), illustrating the in vivo relevance of the identified T cells while detection limits remain challenging in many cases. Interpretation: Our results illustrate current hardships and possible solutions to monitoring T cell responses to individual chemical skin sensitizers. The provided data can guide the further development of T cell assays to unfold their full predictive and diagnostic potential, including cross-reactivity assessments.
Collapse
Affiliation(s)
- Marina Aparicio-Soto
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Caterina Curato
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Franziska Riedel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Hermann-Josef Thierse
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Correspondence: ; Tel.: +49-(0)30-18412-57001
| |
Collapse
|
25
|
Bechara R, Feray A, Pallardy M. Drug and Chemical Allergy: A Role for a Specific Naive T-Cell Repertoire? Front Immunol 2021; 12:653102. [PMID: 34267746 PMCID: PMC8276071 DOI: 10.3389/fimmu.2021.653102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023] Open
Abstract
Allergic reactions to drugs and chemicals are mediated by an adaptive immune response involving specific T cells. During thymic selection, T cells that have not yet encountered their cognate antigen are considered naive T cells. Due to the artificial nature of drug/chemical-T-cell epitopes, it is not clear whether thymic selection of drug/chemical-specific T cells is a common phenomenon or remains limited to few donors or simply does not exist, suggesting T-cell receptor (TCR) cross-reactivity with other antigens. Selection of drug/chemical-specific T cells could be a relatively rare event accounting for the low occurrence of drug allergy. On the other hand, a large T-cell repertoire found in multiple donors would underline the potential of a drug/chemical to be recognized by many donors. Recent observations raise the hypothesis that not only the drug/chemical, but also parts of the haptenated protein or peptides may constitute the important structural determinants for antigen recognition by the TCR. These observations may also suggest that in the case of drug/chemical allergy, the T-cell repertoire results from particular properties of certain TCR to recognize hapten-modified peptides without need for previous thymic selection. The aim of this review is to address the existence and the role of a naive T-cell repertoire in drug and chemical allergy. Understanding this role has the potential to reveal efficient strategies not only for allergy diagnosis but also for prediction of the immunogenic potential of new chemicals.
Collapse
Affiliation(s)
- Rami Bechara
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexia Feray
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Marc Pallardy
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| |
Collapse
|
26
|
Gerussi A, Natalini A, Antonangeli F, Mancuso C, Agostinetto E, Barisani D, Di Rosa F, Andrade R, Invernizzi P. Immune-Mediated Drug-Induced Liver Injury: Immunogenetics and Experimental Models. Int J Mol Sci 2021; 22:4557. [PMID: 33925355 PMCID: PMC8123708 DOI: 10.3390/ijms22094557] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is a challenging clinical event in medicine, particularly because of its ability to present with a variety of phenotypes including that of autoimmune hepatitis or other immune mediated liver injuries. Limited diagnostic and therapeutic tools are available, mostly because its pathogenesis has remained poorly understood for decades. The recent scientific and technological advancements in genomics and immunology are paving the way for a better understanding of the molecular aspects of DILI. This review provides an updated overview of the genetic predisposition and immunological mechanisms behind the pathogenesis of DILI and presents the state-of-the-art experimental models to study DILI at the pre-clinical level.
Collapse
Affiliation(s)
- Alessio Gerussi
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Clara Mancuso
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Elisa Agostinetto
- Academic Trials Promoting Team, Institut Jules Bordet, L’Universite’ Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
- Medical Oncology and Hematology Unit, Humanitas Clinical and Research Center—IRCCS, Humanitas Cancer Center, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Donatella Barisani
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Raul Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), UGC Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29016 Málaga, Spain;
| | - Pietro Invernizzi
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| |
Collapse
|
27
|
Cheng L. Current Pharmacogenetic Perspective on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Front Pharmacol 2021; 12:588063. [PMID: 33981213 PMCID: PMC8107822 DOI: 10.3389/fphar.2021.588063] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Adverse drug reactions are a public health issue that draws widespread attention, especially for Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) which have high mortality and lack of efficacious treatment. Though T-cell-mediated HLA-interacted immune response has been extensively studied, our understanding of the mechanism is far from satisfactory. This review summarizes infection (virus, bacterial, and mycoplasma infection), an environmental risk factor, as a trigger for SJS/TEN. The mutations or polymorphisms of drug metabolic enzymes, transporters, receptors, the immune system genes, and T-cell-mediated apoptosis signaling pathways that contribute to SJS/TEN are discussed and summarized. Epigenetics, metabolites, and mobilization of regulatory T cells and tolerogenic myeloid precursors are emerged directions to study SJS/TEN. Ex vivo lymphocyte transformation test has been exploited to aid in identifying the causative drugs. Critical questions on the pathogenesis of SJS/TEN underlying gene polymorphisms and T cell cytotoxicity remain: why some of the patients carrying the risky genes tolerate the drug and do not develop SJS/TEN? What makes the skin and mucous membrane so special to be targeted? Do they relate to skin/mucous expression of transporters? What is the common machinery underlying different HLA-B alleles associated with SJS/TEN and common metabolites?
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Goh SJR, Tuomisto JEE, Purcell AW, Mifsud NA, Illing PT. The complexity of T cell-mediated penicillin hypersensitivity reactions. Allergy 2021; 76:150-167. [PMID: 32383256 DOI: 10.1111/all.14355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
Abstract
Penicillin refers to a group of beta-lactam antibiotics that are the first-line treatment for a range of infections. However, they also possess the ability to form novel antigens, or neoantigens, through haptenation of proteins and can stimulate a range of immune-mediated adverse reactions-collectively known as drug hypersensitivity reactions (DHRs). IgE-mediated reactions towards these neoantigens are well studied; however, IgE-independent reactions are less well understood. These reactions usually manifest in a delayed manner as different forms of cutaneous eruptions or liver injury consistent with priming of an immune response. Ex vivo studies have confirmed the infiltration of T cells into the site of inflammation, and the subsets of T cells involved appear dependent on the nature of the reaction. Here, we review the evidence that has led to our current understanding of these immune-mediated reactions, discussing the nature of the lesional T cells, the characterization of drug-responsive T cells isolated from patient blood, and the potential mechanisms by which penicillins enter the antigen processing and presentation pathway to stimulate these deleterious responses. Thus, we highlight the need for a more comprehensive understanding of the underlying genetic and molecular basis of penicillin-induced DHRs.
Collapse
Affiliation(s)
- Shawn J. R. Goh
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Johanna E. E. Tuomisto
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Anthony W. Purcell
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Nicole A. Mifsud
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Patricia T. Illing
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| |
Collapse
|
29
|
Whole genome sequencing identifies genetic variants associated with co-trimoxazole hypersensitivity in Asians. J Allergy Clin Immunol 2020; 147:1402-1412. [PMID: 32791162 DOI: 10.1016/j.jaci.2020.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Co-trimoxazole, a sulfonamide antibiotic, is used to treat a variety of infections worldwide, and it remains a common first-line medicine for prophylaxis against Pneumocystis jiroveci pneumonia. However, it can cause severe cutaneous adverse reaction (SCAR), including Stevens-Johnson syndrome, toxic epidermal necrolysis, and drug reaction with eosinophilia and systemic symptoms. The pathomechanism of co-trimoxazole-induced SCAR remains unclear. OBJECTIVE We aimed to investigate the genetic predisposition of co-trimoxazole-induced SCAR. METHODS We conducted a multicountry case-control association study that included 151 patients with of co-trimoxazole-induced SCAR and 4631 population controls from Taiwan, Thailand, and Malaysia, as well as 138 tolerant controls from Taiwan. Whole-genome sequencing was performed for the patients and population controls from Taiwan; it further validated the results from Thailand and Malaysia. RESULTS The whole-genome sequencing study (43 case patients vs 507 controls) discovered that the single-nucleotide polymorphism rs41554616, which is located between the HLA-B and MICA loci, had the strongest association with co-trimoxazole-induced SCAR (P = 8.2 × 10-9; odds ratio [OR] = 7.7). There were weak associations of variants in co-trimoxazole-related metabolizing enzymes (CYP2D6, GSTP1, GCLC, N-acetyltransferase [NAT2], and CYP2C8). A replication study using HLA genotyping revealed that HLA-B∗13:01 was strongly associated with co-trimoxazole-induced SCAR (the combined sample comprised 91 case patients vs 2545 controls [P = 7.2 × 10-21; OR = 8.7]). A strong HLA association was also observed in the case patients from Thailand (P = 3.2 × 10-5; OR = 3.6) and Malaysia (P = .002; OR = 12.8), respectively. A meta-analysis and phenotype stratification study further indicated a strong association between HLA-B∗13:01 and co-trimoxazole-induced drug reaction with eosinophilia and systemic symptoms (P = 4.2 × 10-23; OR = 40.1). CONCLUSION This study identified HLA-B∗13:01 as an important genetic factor associated with co-trimoxazole-induced SCAR in Asians.
Collapse
|
30
|
Lin CC, Chen CB, Wang CW, Hung SI, Chung WH. Stevens-Johnson syndrome and toxic epidermal necrolysis: risk factors, causality assessment and potential prevention strategies. Expert Rev Clin Immunol 2020; 16:373-387. [DOI: 10.1080/1744666x.2020.1740591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chu-Chi Lin
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Bing Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shuen-Iu Hung
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
| |
Collapse
|
31
|
Ariza A, Fernández T, Bogas G, Torres M, Mayorga C. How Mechanism Knowledge Can Help to Management of Drug Hypersensitivity. CURRENT TREATMENT OPTIONS IN ALLERGY 2020. [DOI: 10.1007/s40521-020-00244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Pan RY, Chu MT, Wang CW, Lee YS, Lemonnier F, Michels AW, Schutte R, Ostrov DA, Chen CB, Phillips EJ, Mallal SA, Mockenhaupt M, Bellón T, Tassaneeyakul W, White KD, Roujeau JC, Chung WH, Hung SI. Identification of drug-specific public TCR driving severe cutaneous adverse reactions. Nat Commun 2019; 10:3569. [PMID: 31395875 PMCID: PMC6687717 DOI: 10.1038/s41467-019-11396-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
Drug hypersensitivity such as severe cutaneous adverse reactions (SCAR), including Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), could be life-threatening. Here, we enroll SCAR patients to investigate the T cell receptor (TCR) repertoire by next-generation sequencing. A public αβTCR is identified from the cytotoxic T lymphocytes of patients with carbamazepine-SJS/TEN, with its expression showing drug/phenotype-specificity and an bias for HLA-B*15:02. This public αβTCR has binding affinity for carbamazepine and its structural analogs, thereby mediating the immune response. Adoptive transfer of T cell expressing this public αβTCR to HLA-B*15:02 transgenic mice receiving oral administration of carbamazepine induces multi-organ injuries and symptoms mimicking SCAR, including hair loss, erythema, increase of inflammatory lymphocytes in the skin and blood, and liver and kidney dysfunction. Our results not only demonstrate an essential role of TCR in the immune synapse mediating SCAR, but also implicate potential clinical applications and development of therapeutics. Severe cutaneous adverse reactions (SCAR) is a T cell-mediated, potentially lethal drug hypersensitivity (DH). Here, the authors identify a carbamazepine-specific TCR common among patients with carbamazepine-induced SCAR that confers SCAR-like pathology in mice upon carbamazepine exposure, thereby implicating specific TCRs in DH etiology.
Collapse
Affiliation(s)
- Ren-You Pan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Keelung, Taoyuan, 333, Taiwan
| | - Mu-Tzu Chu
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan, 333, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Keelung, Taoyuan, 333, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan, 333, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming Chuan University, Taoyuan, 333, Taiwan
| | - Francois Lemonnier
- INSERM U1016, Institut Cochin, Equipe Immunologie du Diabète, Hôpital Saint-Vincent-de-Paul, 75674, Paris, Cedex 14, France
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, 80204, USA
| | - Ryan Schutte
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - David A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Chun-Bing Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Keelung, Taoyuan, 333, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan, 333, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Elizabeth Jane Phillips
- Departments of Medicine and Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, 37235, USA.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, 6150, WA, Australia
| | - Simon Alexander Mallal
- Departments of Medicine and Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, 37235, USA.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, 6150, WA, Australia
| | - Maja Mockenhaupt
- Dokumentationszentrum schwerer Hautreaktionen (dZh), Department of Dermatology, Medical Center and Medical Faculty, University of Freiburg, Freiburg, 79085, Germany
| | - Teresa Bellón
- Research Unit, Hospital Universitario La Paz-Idi PAZ, Madrid, 28046, Spain
| | - Wichittra Tassaneeyakul
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Katie D White
- Departments of Medicine and Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jean-Claude Roujeau
- Emeritus Professor of Dermatology, Université Paris-Est Créteil (UPEC), Créteil, 94000, France
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Keelung, Taoyuan, 333, Taiwan. .,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan, 333, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, 361028, China. .,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, 204, Taiwan.
| | - Shuen-Iu Hung
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan, 333, Taiwan. .,Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
33
|
Pichler WJ. Immune pathomechanism and classification of drug hypersensitivity. Allergy 2019; 74:1457-1471. [PMID: 30843233 DOI: 10.1111/all.13765] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 12/17/2022]
Abstract
Drug hypersensitivity reactions (DHR) are based on distinct mechanisms and are clinically heterogeneous. Taking into account that also off-target activities of drugs may lead to stimulations of immune or inflammatory cells, three forms of DHR were discriminated: the allergic-immune mechanism relies on the covalent binding of drugs/chemicals to proteins, which thereby form new antigens, to which a humoural and/or cellular immune response can develop. In IgE-mediated drug allergies, a possible tolerance mechanism to the drug during sensitization and the need of a covalent hapten-carrier link for initiation, but not for elicitation of IgE-mediated reactions is discussed. The p-i ("pharmacological interaction with immune receptor") concept represents an off-target activity of drugs with immune receptors (HLA or TCR), which can result in unorthodox, alloimmune-like stimulations of T cells. Some of these p-i stimulations occur only in carriers of certain HLA alleles and can result in clinically severe reactions. The third form of DHR ("pseudo-allergy") is represented by drug interactions with receptors or enzymes of inflammatory cells, which may lead to their direct activation or enhanced levels of inflammatory products. Specific IgE or T cells are not involved. This classification is based on the action of drugs and is clinically useful, as it can explain differences in sensitizations, unusual clinical symptoms, dependence on drug concentrations, predictability and immunological and pharmacological cross-reactivities in DHR.
Collapse
|
34
|
Lauschke VM, Zhou Y, Ingelman-Sundberg M. Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. Pharmacol Ther 2019; 197:122-152. [PMID: 30677473 PMCID: PMC6527860 DOI: 10.1016/j.pharmthera.2019.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Individuals differ substantially in their response to pharmacological treatment. Personalized medicine aspires to embrace these inter-individual differences and customize therapy by taking a wealth of patient-specific data into account. Pharmacogenomic constitutes a cornerstone of personalized medicine that provides therapeutic guidance based on the genomic profile of a given patient. Pharmacogenomics already has applications in the clinics, particularly in oncology, whereas future development in this area is needed in order to establish pharmacogenomic biomarkers as useful clinical tools. In this review we present an updated overview of current and emerging pharmacogenomic biomarkers in different therapeutic areas and critically discuss their potential to transform clinical care. Furthermore, we discuss opportunities of technological, methodological and institutional advances to improve biomarker discovery. We also summarize recent progress in our understanding of epigenetic effects on drug disposition and response, including a discussion of the only few pharmacogenomic biomarkers implemented into routine care. We anticipate, in part due to exciting rapid developments in Next Generation Sequencing technologies, machine learning methods and national biobanks, that the field will make great advances in the upcoming years towards unlocking the full potential of genomic data.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
35
|
Sullivan A, Watkinson J, Waddington J, Park BK, Naisbitt DJ. Implications of HLA-allele associations for the study of type IV drug hypersensitivity reactions. Expert Opin Drug Metab Toxicol 2018; 14:261-274. [DOI: 10.1080/17425255.2018.1441285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- A. Sullivan
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, England
| | - J. Watkinson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, England
| | - J. Waddington
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, England
| | - B. K. Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, England
| | - D. J. Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, England
| |
Collapse
|
36
|
An Updated Review of the Molecular Mechanisms in Drug Hypersensitivity. J Immunol Res 2018; 2018:6431694. [PMID: 29651444 PMCID: PMC5830968 DOI: 10.1155/2018/6431694] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
Drug hypersensitivity may manifest ranging from milder skin reactions (e.g., maculopapular exanthema and urticaria) to severe systemic reactions, such as anaphylaxis, drug reactions with eosinophilia and systemic symptoms (DRESS)/drug-induced hypersensitivity syndrome (DIHS), or Stevens–Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN). Current pharmacogenomic studies have made important strides in the prevention of some drug hypersensitivity through the identification of relevant genetic variants, particularly for genes encoding drug-metabolizing enzymes and human leukocyte antigens (HLAs). The associations identified by these studies are usually drug, phenotype, and ethnic specific. The drug presentation models that explain how small drug antigens might interact with HLA and T cell receptor (TCR) molecules in drug hypersensitivity include the hapten theory, the p-i concept, the altered peptide repertoire model, and the altered TCR repertoire model. The broad spectrum of clinical manifestations of drug hypersensitivity involving different drugs, as well as the various pathomechanisms involved, makes the diagnosis and management of it more challenging. This review highlights recent advances in our understanding of the predisposing factors, immune mechanisms, pathogenesis, diagnostic tools, and therapeutic approaches for drug hypersensitivity.
Collapse
|
37
|
Yamagami J, Nakamura Y, Nagao K, Funakoshi T, Takahashi H, Tanikawa A, Hachiya T, Yamamoto T, Ishida-Yamamoto A, Tanaka T, Fujimoto N, Nishigori C, Yoshida T, Ishii N, Hashimoto T, Amagai M. Vancomycin Mediates IgA Autoreactivity in Drug-Induced Linear IgA Bullous Dermatosis. J Invest Dermatol 2018; 138:1473-1480. [PMID: 29410066 DOI: 10.1016/j.jid.2017.12.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 11/28/2022]
Abstract
Vancomycin (VCM) is known to induce linear IgA bullous dermatosis (LAD). However, in contrast to conventional LAD, in which circulating IgA autoantibodies against basement membrane proteins are commonly detected, patient sera from VCM-induced LAD yields negative results in indirect immunofluorescence microscopy, and the targeted autoantigen remains undetermined. By using sera from a typical patient with VCM-induced LAD, we identified that co-incubation of sera with VCM resulted in linear IgA deposition at the basement membrane zone by indirect immunofluorescence. Patient sera reacted with the dermal side of 1 mol/L NaCl-split skin and with the recombinant noncollagenous (i.e., NC1) domain of type VII collagen by both immunoblot and ELISA in the presence of VCM. The investigation of an additional 13 patients with VCM-induced LAD showed that 10 out of the 14 sera (71.4%) reacted with the NC1 domain of type VII collagen by ELISA when spiked with VCM, whereas only 4 (28.6%) tested positive without it. The enhancement of reactivity to NC1 by VCM, as determined by optical density via ELISA, was observed in 10 out of the 14 sera (71.4%). These findings indicate that type VII collagen is a target autoantigen in VCM-induced LAD and that VCM mediates IgA autoreactivity against type VII collagen, providing an insight into mechanisms involved in drug-induced autoimmune disease.
Collapse
Affiliation(s)
- Jun Yamagami
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| | - Yoshio Nakamura
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Nagao
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Hayato Takahashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Akiko Tanikawa
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | | | - Toshiyuki Yamamoto
- Department of Dermatology, Fukushima Medical University, Fukushima, Japan
| | | | - Toshihiro Tanaka
- Department of Dermatology, Shiga University of Medical Science, Otsu, Japan
| | - Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Otsu, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tetsuya Yoshida
- Department of Dermatology, Tokyo Medical Center, Tokyo, Japan
| | - Norito Ishii
- Department of Dermatology, Kurume University School of Medicine, Fukuoka, Japan
| | - Takashi Hashimoto
- Department of Dermatology, Kurume University School of Medicine, Fukuoka, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Uhlemann T, Seidel S, Müller CW. Site-specific binding of a water molecule to the sulfa drugs sulfamethoxazole and sulfisoxazole: a laser-desorption isomer-specific UV and IR study. Phys Chem Chem Phys 2018; 20:6891-6904. [DOI: 10.1039/c7cp08579f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Using isomer-specific IR spectroscopy, we show that sulfamethoxazole and sulfisoxazole exhibit distinct site specificities for binding a water molecule.
Collapse
Affiliation(s)
- Thomas Uhlemann
- Ruhr-Universität Bochum
- Fakultät für Chemie und Biochemie
- D-44780 Bochum
- Germany
| | - Sebastian Seidel
- Ruhr-Universität Bochum
- Fakultät für Chemie und Biochemie
- D-44780 Bochum
- Germany
| | - Christian W. Müller
- Ruhr-Universität Bochum
- Fakultät für Chemie und Biochemie
- D-44780 Bochum
- Germany
| |
Collapse
|
39
|
HLA Association with Drug-Induced Adverse Reactions. J Immunol Res 2017; 2017:3186328. [PMID: 29333460 PMCID: PMC5733150 DOI: 10.1155/2017/3186328] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022] Open
Abstract
Adverse drug reactions (ADRs) remain a common and major problem in healthcare. Severe cutaneous adverse drug reactions (SCARs), such as Stevens–Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) with mortality rate ranges from 10% to more than 30%, can be life threatening. A number of recent studies demonstrated that ADRs possess strong genetic predisposition. ADRs induced by several drugs have been shown to have significant associations with specific alleles of human leukocyte antigen (HLA) genes. For example, hypersensitivity to abacavir, a drug used for treating of human immunodeficiency virus (HIV) infection, has been proposed to be associated with allele 57:01 of HLA-B gene (terms HLA-B∗57:01). The incidences of abacavir hypersensitivity are much higher in Caucasians compared to other populations due to various allele frequencies in different ethnic populations. The antithyroid drug- (ATDs- ) induced agranulocytosis are strongly associated with two alleles: HLA-B∗38:02 and HLA-DRB1∗08:03. In addition, HLA-B∗15:02 allele was reported to be related to carbamazepine-induced SJS/TEN, and HLA-B∗57:01 in abacavir hypersensitivity and flucloxacillin induced drug-induced liver injury (DILI). In this review, we summarized the alleles of HLA genes which have been proposed to have association with ADRs caused by different drugs.
Collapse
|
40
|
Alzahrani A, Ogese M, Meng X, Waddington JC, Tailor A, Farrell J, Maggs JL, Betts C, Park BK, Naisbitt D. Dapsone and Nitroso Dapsone Activation of Naı̈ve T-Cells from Healthy Donors. Chem Res Toxicol 2017; 30:2174-2186. [PMID: 29045131 DOI: 10.1021/acs.chemrestox.7b00263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dapsone (DDS) causes hypersensitivity reactions in 0.5-3.6% of patients. Although clinical diagnosis is indicative of a hypersensitivity reaction, studies have not been performed to define whether dapsone or a metabolite activates specific T-cells. Thus, the aims of this study were to explore the immunogenicity DDS and nitroso DDS (DDS-NO) using peripheral blood mononuclear cells from healthy donors and splenocytes from mice and generate human T-cell clones to characterize mechanisms of T-cell activation. DDS-NO was synthesized from DDS-hydroxylamine and shown to bind to the thiol group of glutathione and human and mouse albumin through sulfonamide and N-hydroxyl sulphonamide adducts. Naïve T-cell priming to DDS and DDS-NO was successful in three human donors. DDS-specific CD4+ T-cell clones were stimulated to proliferate in response to drug via a MHC class II restricted direct binding interaction. Cross reactivity with DDS-NO, DDS-analogues, and sulfonamides was not observed. DDS-NO clones were CD4+ and CD8+, MHC class II and I restricted, respectively, and activated via a pathway dependent on covalent binding and antigen processing. DDS and DDS-NO-specific clones secreted a mixture of Th1 and Th2 cytokines, but not granzyme-B. Splenocytes from mice immunized with DDS-NO were stimulated to proliferate in vitro with the nitroso metabolite, but not DDS. In contrast, immunization with DDS did not activate T-cells. These data show that DDS- and DDS-NO-specific T-cell responses are readily detectable.
Collapse
Affiliation(s)
- Abdulaziz Alzahrani
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , Liverpool L69 3GE, United Kingdom
| | - Monday Ogese
- Pathology Sciences, Drug Safety and Metabolism, AstraZeneca R&D , Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , Liverpool L69 3GE, United Kingdom
| | - James C Waddington
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , Liverpool L69 3GE, United Kingdom
| | - Arun Tailor
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , Liverpool L69 3GE, United Kingdom
| | - John Farrell
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , Liverpool L69 3GE, United Kingdom
| | - James L Maggs
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , Liverpool L69 3GE, United Kingdom
| | - Catherine Betts
- Pathology Sciences, Drug Safety and Metabolism, AstraZeneca R&D , Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, United Kingdom
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , Liverpool L69 3GE, United Kingdom
| | - Dean Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , Liverpool L69 3GE, United Kingdom
| |
Collapse
|
41
|
Illing PT, Purcell AW, McCluskey J. The role of HLA genes in pharmacogenomics: unravelling HLA associated adverse drug reactions. Immunogenetics 2017; 69:617-630. [DOI: 10.1007/s00251-017-1007-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 12/17/2022]
|
42
|
Pan RY, Dao RL, Hung SI, Chung WH. Pharmacogenomic Advances in the Prediction and Prevention of Cutaneous Idiosyncratic Drug Reactions. Clin Pharmacol Ther 2017; 102:86-97. [PMID: 28295240 DOI: 10.1002/cpt.683] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/15/2022]
Abstract
Cutaneous idiosyncratic drug reactions (CIDRs) are usually unpredictable, ranging from mild maculopapular exanthema (MPE) to severe cutaneous adverse drug reactions (SCARs) such as drug reaction with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN). Increasing evidence suggests that HLA alleles are strongly associated with drug-induced-CIDRs. The pathomechanisms for CIDRs include genetic polymorphisms affecting complex immune-specific HLA/drug antigen/T-cell receptor interactions and drug metabolism. Pharmacogenomic tests to prevent CIDRs have been widely implemented in clinical practice in recent years.
Collapse
Affiliation(s)
- R-Y Pan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - R-L Dao
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou, Taiwan
| | - S-I Hung
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - W-H Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Dermatology, Xiamen Chang Gung Hospital, China.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
43
|
Macy E, Romano A, Khan D. Practical Management of Antibiotic Hypersensitivity in 2017. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 5:577-586. [DOI: 10.1016/j.jaip.2017.02.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
|
44
|
Vukmanović S, Sadrieh N. Skin sensitizers in cosmetics and beyond: potential multiple mechanisms of action and importance of T-cell assays for in vitro screening. Crit Rev Toxicol 2017; 47:415-432. [DOI: 10.1080/10408444.2017.1288025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stanislav Vukmanović
- Cosmetics Division, Office of Cosmetics and Colors (OCAC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), MD, USA
| | - Nakissa Sadrieh
- Cosmetics Division, Office of Cosmetics and Colors (OCAC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), MD, USA
| |
Collapse
|
45
|
Pichler WJ, Hausmann O. Classification of Drug Hypersensitivity into Allergic, p-i, and Pseudo-Allergic Forms. Int Arch Allergy Immunol 2016; 171:166-179. [PMID: 27960170 DOI: 10.1159/000453265] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Drug hypersensitivity reactions (DHR) are clinically and functionally heterogeneous. Different subclassifications based on timing of symptom appearance or type of immune mechanism have been proposed. Here, we show that the mode of action of drugs leading to immune/inflammatory cell stimulation is a further decisive factor in understanding and managing DHR. Three mechanisms can be delineated: (a) some drugs have or gain the ability to bind covalently to proteins, form new antigens, and thus elicit immune reactions to hapten-carrier complexes (allergic/immune reaction); (b) a substantial part of immune-mediated DHR is due to a typical off-target activity of drugs on immune receptors like HLA and TCR (pharmacological interaction with immune receptors, p-i reactions); such p-i reactions are linked to severe DHR; and (c) symptoms of DHR can also appear if the drug stimulates or inhibits receptors or enzymes of inflammatory cells (pseudo-allergy). These three distinct ways of stimulations of immune or inflammatory cells differ substantially in clinical manifestations, time of appearance, dose dependence, predictability, and cross-reactivity, and thus need to be differentiated.
Collapse
|
46
|
Chung WH, Wang CW, Dao RL. Severe cutaneous adverse drug reactions. J Dermatol 2016; 43:758-66. [PMID: 27154258 DOI: 10.1111/1346-8138.13430] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/16/2016] [Indexed: 12/17/2022]
Abstract
The clinical manifestations of drug eruptions can range from mild maculopapular exanthema to severe cutaneous adverse drug reactions (SCAR), including drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms, Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) which are rare but occasionally fatal. Some pathogens may induce skin reactions mimicking SCAR. There are several models to explain the interaction of human leukocyte antigen (HLA), drug and T-cell receptor (TCR): (i) the "hapten/prohapten" theory; (ii) the "p-i concept"; (iii) the "altered peptide repertoire"; and (iv) the "altered TCR repertoire". The checkpoints of molecular mechanisms of SCAR include specific drug antigens interacting with the specific HLA loci (e.g. HLA-B*15:02 for carbamazepine-induced SJS/TEN and HLA-B*58:01 for allopurinol-induced SCAR), involvement of specific TCR, induction of T-cell-mediated responses (e.g. granulysin, Fas ligand, perforin/granzyme B and T-helper 1/2-associated cytokines) and cell death mechanism (e.g. miR-18a-5p-induced apoptosis; annexin A1 and formyl peptide receptor 1-induced necroptosis in keratinocytes). In addition to immune mechanism, metabolism has been found to play a role in the pathogenesis of SCAR, such as recent findings of strong association of CYP2C9*3 with phenytoin-induced SCAR and impaired renal function with allopurinol SCAR. With a better understanding of the mechanisms, effective therapeutics and prevention for SCAR can be improved.
Collapse
Affiliation(s)
- Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospitals, Tapei, Linko and Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospitals, Tapei, Linko and Keelung, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ro-Lan Dao
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospitals, Tapei, Linko and Keelung, Taiwan
| |
Collapse
|
47
|
Candidate HLA genes for prediction of co-trimoxazole-induced severe cutaneous reactions. Pharmacogenet Genomics 2016; 25:402-11. [PMID: 26086150 DOI: 10.1097/fpc.0000000000000153] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Co-trimoxazole is a sulfonamide-containing antibiotic that is effective in the treatment of several infections and for prophylaxis of Pneumocystis jiroveci pneumonia. This drug has been reported as a common culprit drug for the Stevens-Johnson syndrome (SJS) and for toxic epidermal necrolysis (TEN). Human leukocyte antigens (HLAs) play a key role in the immunopathogenesis of severe cutaneous reactions induced by several drugs. This study investigated the association between the HLA class I and HLA-DRB1 polymorphisms and co-trimoxazole-induced SJS/TEN in a Thai population. METHODS Forty-three patients with co-trimoxazole-induced SJS/TEN and 91 co-trimoxazole-tolerant patients were enrolled in the study. HLA class I and HLA-DRB1 were genotyped using the reverse sequence-specific oligonucleotide probe method. RESULTS The frequencies of three alleles of HLA, namely HLA-B*15:02, HLA-C*06:02, and HLA-C*08:01, were significantly higher in the co-trimoxazole-induced SJS/TEN group compared with controls. The risks for co-trimoxazole-induced SJS/TEN in patients with the HLA-B*15:02, HLA-C*06:02, or HLA-C*08:01 allele were about 3-11-fold higher when compared with those who did not carry one of these alleles. Individuals who carried the HLA-B*15:02-C*08:01 haplotype had a 14-fold higher risk for co-trimoxazole-induced SJS/TEN. CONCLUSION Evidence of associations between co-trimoxazole-induced SJS/TEN and HLA alleles including HLA-B*15:02, HLA-C*06:02, and HLA-C*08:01 were found in the study population. These findings may suggest that apart from the HLA molecules, other molecules involved in the molecular pathogenesis of these severe cutaneous adverse drug reactions may play an important role in the susceptibility of individuals to SJS/TEN caused by co-trimoxazole.
Collapse
|
48
|
Yun J, Cai F, Lee FJ, Pichler WJ. T-cell-mediated drug hypersensitivity: immune mechanisms and their clinical relevance. Asia Pac Allergy 2016; 6:77-89. [PMID: 27141480 PMCID: PMC4850339 DOI: 10.5415/apallergy.2016.6.2.77] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 12/27/2022] Open
Abstract
T-cell-mediated drug hypersensitivity represents a significant proportion of immune mediated drug hypersensitivity reactions. In the recent years, there has been an increase in understanding the immune mechanisms behind T-cell-mediated drug hypersensitivity. According to hapten mechanism, drug specific T-cell response is stimulated by drug-protein conjugate presented on major histocompatibility complex (MHC) as it is presented as a new antigenic determinant. On the other hand, p-i concept suggests that a drug can stimulate T cells via noncovalent direct interaction with T-cell receptor and/or peptide-MHC. The drug binding site is quite variable and this leads to several different mechanisms within p-i concept. Altered peptide repertoire can be regarded as an 'atypical' subset of p-i concept since the mode of the drug binding and the binding site are essentially identical to p-i concept. However, the intracellular binding of abacavir to HLA-B(*)57:01 additionally results in alteration in peptide repertoire. Furthermore the T-cell response to altered peptide repertoire model is only shown for abacavir and HLA-B(*)57:01 and therefore it may not be generalised to other drug hypersensitivity. Danger hypothesis has been postulated to play an important role in drug hypersensitivity by providing signal 2 but its experimental data is lacking at this point in time. Furthermore, the recently described allo-immune response suggests that danger signal may be unnecessary. Finally, in view of these new understanding, the classification and the definition of type B adverse drug reaction should be revised.
Collapse
Affiliation(s)
- James Yun
- Department of Clinical Immunology and Allergy, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Fenfen Cai
- Department of Clinical Immunology and Allergy, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Frederick J Lee
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | | |
Collapse
|
49
|
Pichler WJ, Adam J, Watkins S, Wuillemin N, Yun J, Yerly D. Drug Hypersensitivity: How Drugs Stimulate T Cells via Pharmacological Interaction with Immune Receptors. Int Arch Allergy Immunol 2015; 168:13-24. [DOI: 10.1159/000441280] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
50
|
Wheatley LM, Plaut M, Schwaninger JM, Banerji A, Castells M, Finkelman FD, Gleich GJ, Guttman-Yassky E, Mallal SAK, Naisbitt DJ, Ostrov DA, Phillips EJ, Pichler WJ, Platts-Mills TAE, Roujeau JC, Schwartz LB, Trepanier LA. Report from the National Institute of Allergy and Infectious Diseases workshop on drug allergy. J Allergy Clin Immunol 2015; 136:262-71.e2. [PMID: 26254053 DOI: 10.1016/j.jaci.2015.05.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 02/07/2023]
Abstract
Allergic reactions to drugs are a serious public health concern. In 2013, the Division of Allergy, Immunology, and Transplantation of the National Institute of Allergy and Infectious Diseases sponsored a workshop on drug allergy. International experts in the field of drug allergy with backgrounds in allergy, immunology, infectious diseases, dermatology, clinical pharmacology, and pharmacogenomics discussed the current state of drug allergy research. These experts were joined by representatives from several National Institutes of Health institutes and the US Food and Drug Administration. The participants identified important advances that make new research directions feasible and made suggestions for research priorities and for development of infrastructure to advance our knowledge of the mechanisms, diagnosis, management, and prevention of drug allergy. The workshop summary and recommendations are presented herein.
Collapse
Affiliation(s)
- Lisa M Wheatley
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md.
| | - Marshall Plaut
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Julie M Schwaninger
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Aleena Banerji
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Mariana Castells
- Drug Hypersensitivity and Desensitization Center, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Fred D Finkelman
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, University of Cincinnati College of Medicine, the Department of Medicine, Cincinnati Veterans Affairs Medical Center, and the Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gerald J Gleich
- Departments of Dermatology and Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Emma Guttman-Yassky
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai Medical Center, New York, NY
| | - Simon A K Mallal
- Center for Translational Immunology and Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Dean J Naisbitt
- Medical Research Council Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - David A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, Division of Experimental Pathology, University of Florida College of Medicine, Gainesville, Fla
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia; Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | | | - Thomas A E Platts-Mills
- Asthma and Allergic Diseases Center, Department of Medicine, University of Virginia, Charlottesville, Va
| | | | - Lawrence B Schwartz
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Va
| | - Lauren A Trepanier
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wis
| |
Collapse
|