1
|
Rolles B, Tometten M, Meyer R, Kirschner M, Beier F, Brümmendorf TH. Inherited Telomere Biology Disorders: Pathophysiology, Clinical Presentation, Diagnostics, and Treatment. Transfus Med Hemother 2024; 51:292-309. [PMID: 39371255 PMCID: PMC11452174 DOI: 10.1159/000540109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 10/08/2024] Open
Abstract
Background Telomeres are the end-capping structures of all eukaryotic chromosomes thereby protecting the genome from damage and degradation. During the aging process, telomeres shorten continuously with each cell division until critically short telomeres prevent further proliferation whereby cells undergo terminal differentiation, senescence, or apoptosis. Premature aging due to critically short telomere length (TL) can also result from pathogenic germline variants in the telomerase complex or related genes that typically counteract replicative telomere shortening in germline and certain somatic cell populations, e.g., hematopoetic stem cells. Inherited diseases that result in altered telomere maintenance are summarized under the term telomere biology disorder (TBD). Summary Since TL both reflects but more importantly restricts the replicative capacity of various human tissues, a sufficient telomere reserve is particularly important in cells with high proliferative activity (e.g., hematopoiesis, immune cells, intestinal cells, liver, lung, and skin). Consequently, altered telomere maintenance as observed in TBDs typically results in premature replicative cellular exhaustion in the respective organ systems eventually leading to life-threatening complications such as bone marrow failure (BMF), pulmonary fibrosis, and liver cirrhosis. Key Messages The recognition of a potential congenital origin in approximately 10% of adult patients with clinical BMF is of utmost importance for the proper diagnosis, appropriate patient and family counseling, to prevent the use of inefficient treatment and to avoid therapy-related toxicities including appropriate donor selection when patients have to undergo stem cell transplantation from related donors. This review summarizes the current state of knowledge about TBDs with particular focus on the clinical manifestation patterns in children (termed early onset TBD) compared to adults (late-onset TBD) including typical treatment- and disease course-related complications as well as their prognosis and adequate therapy. Thereby, it aims to raise awareness for a disease group that is currently still highly underdiagnosed particularly when it first manifests itself in adulthood.
Collapse
Affiliation(s)
- Benjamin Rolles
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Mareike Tometten
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Robert Meyer
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| |
Collapse
|
2
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Zhou A, Wang D. Structural characterization of Russula griseocarnosa polysaccharide and its improvement on hematopoietic function. Int J Biol Macromol 2024; 263:130355. [PMID: 38395281 DOI: 10.1016/j.ijbiomac.2024.130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The hematopoietic function of a polysaccharide derived from Russula griseocarnosa was demonstrated in K562 cells, and subsequently purified through chromatography to obtain RGP1. RGP1 is a galactan composed of 1,6-α-D-Galp as the main chain, with partial substitutions. A -CH3 substitution was detected at O-3 of 1,6-α-D-Galp. The possible branches at O-2 of 1,6-α-D-Galp was α-L-Fucp. In mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction, RGP1 alleviated bone marrow damage and multinucleated giant cell infiltration of the spleen, increased the number of long-term hematopoietic stem cells, and regulated the levels of myeloid cells in the peripheral blood. Furthermore, RGP1 promoted the differentiation of activated T cells and CD4+ T cells without affecting natural killer cells and B cells. Proteomic analysis, detection of cytokines, and western blotting revealed that RGP1 could alleviate hematopoietic dysfunction by promoting the activation of CD4+ T cells and the Janus kinase/ signal transducer and activator of transcription 3 pathway. The present study provides experimental evidence to support the application of RGP1 in CTX-induced hematopoietic dysfunction.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Andong Zhou
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Westin ER, Khodadadi-Jamayran A, Pham LK, Tung ML, Goldman FD. CRISPR screen identifies CEBPB as contributor to dyskeratosis congenita fibroblast senescence via augmented inflammatory gene response. G3 (BETHESDA, MD.) 2023; 13:jkad207. [PMID: 37717172 PMCID: PMC10627266 DOI: 10.1093/g3journal/jkad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/18/2023]
Abstract
Aging is the consequence of intra- and extracellular events that promote cellular senescence. Dyskeratosis congenita (DC) is an example of a premature aging disorder caused by underlying telomere/telomerase-related mutations. Cells from these patients offer an opportunity to study telomere-related aging and senescence. Our previous work has found that telomere shortening stimulates DNA damage responses (DDRs) and increases reactive oxygen species (ROS), thereby promoting entry into senescence. This work also found that telomere elongation via TERT expression, the catalytic component of the telomere-elongating enzyme telomerase, or p53 shRNA could decrease ROS by disrupting this telomere-DDR-ROS pathway. To further characterize this pathway, we performed a CRISPR/Cas9 knockout screen to identify genes that extend life span in DC cells. Of the cellular clones isolated due to increased life span, 34% had a guide RNA (gRNA) targeting CEBPB, while gRNAs targeting WSB1, MED28, and p73 were observed multiple times. CEBPB is a transcription factor associated with activation of proinflammatory response genes suggesting that inflammation may be present in DC cells. The inflammatory response was investigated using RNA sequencing to compare DC and control cells. Expression of inflammatory genes was found to be significantly elevated (P < 0.0001) in addition to a key subset of these inflammation-related genes [IL1B, IL6, IL8, IL12A, CXCL1 (GROa), CXCL2 (GROb), and CXCL5]. which are regulated by CEBPB. Exogenous TERT expression led to downregulation of RNA/protein CEBPB expression and the inflammatory response genes suggesting a telomere length-dependent mechanism to regulate CEBPB. Furthermore, unlike exogenous TERT and p53 shRNA, CEBPB shRNA did not significantly decrease ROS suggesting that CEBPB's contribution in DC cells' senescence is ROS independent. Our findings demonstrate a key role for CEBPB in engaging senescence by mobilizing an inflammatory response within DC cells.
Collapse
Affiliation(s)
- Erik R Westin
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Cancer Precision Medicine, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Alireza Khodadadi-Jamayran
- Genome Technology Center, Applied Bioinformatics Laboratories, NYU Langone Medical Center, New York, NY 10016, USA
| | - Linh K Pham
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Moon Ley Tung
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa, Iowa City, IA 52242, USA
| | - Frederick D Goldman
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Belli V, Maiello D, Di Lorenzo C, Furia M, Vicidomini R, Turano M. New Insights into Dyskerin-CypA Interaction: Implications for X-Linked Dyskeratosis Congenita and Beyond. Genes (Basel) 2023; 14:1766. [PMID: 37761906 PMCID: PMC10531313 DOI: 10.3390/genes14091766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The highly conserved family of cyclophilins comprises multifunctional chaperones that interact with proteins and RNAs, facilitating the dynamic assembly of multimolecular complexes involved in various cellular processes. Cyclophilin A (CypA), the predominant member of this family, exhibits peptidyl-prolyl cis-trans isomerase activity. This enzymatic function aids with the folding and activation of protein structures and often serves as a molecular regulatory switch for large multimolecular complexes, ensuring appropriate inter- and intra-molecular interactions. Here, we investigated the involvement of CypA in the nucleus, where it plays a crucial role in supporting the assembly and trafficking of heterogeneous ribonucleoproteins (RNPs). We reveal that CypA is enriched in the nucleolus, where it colocalizes with the pseudouridine synthase dyskerin, the catalytic component of the multifunctional H/ACA RNPs involved in the modification of cellular RNAs and telomere stability. We show that dyskerin, whose mutations cause the X-linked dyskeratosis (X-DC) and the Hoyeraal-Hreidarsson congenital ribosomopathies, can directly interact with CypA. These findings, together with the remark that substitution of four dyskerin prolines are known to cause X-DC pathogenic mutations, lead us to indicate this protein as a CypA client. The data presented here suggest that this chaperone can modulate dyskerin activity influencing all its partecipated RNPs.
Collapse
Affiliation(s)
- Valentina Belli
- Istituto Nazionale Tumori—IRCSS—Fondazione G. Pascale, 80131 Naples, Italy;
| | - Daniela Maiello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
| | - Concetta Di Lorenzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Furia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mimmo Turano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
| |
Collapse
|
5
|
Patient-Derived iPSCs Reveal Evidence of Telomere Instability and DNA Repair Deficiency in Coats Plus Syndrome. Genes (Basel) 2022; 13:genes13081395. [PMID: 36011306 PMCID: PMC9407572 DOI: 10.3390/genes13081395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Coats plus (CP) syndrome is an inherited autosomal recessive condition that results from mutations in the conserved telomere maintenance component 1 gene (CTC1). The CTC1 protein functions as a part of the CST protein complex, a protein heterotrimer consisting of CTC1-STN1-TEN1 which promotes telomere DNA synthesis and inhibits telomerase-mediated telomere elongation. However, it is unclear how CTC1 mutations may have an effect on telomere structure and function. For that purpose, we established the very first induced pluripotent stem cell lines (iPSCs) from a compound heterozygous patient with CP carrying deleterious mutations in both alleles of CTC1. Telomere dysfunction and chromosomal instability were assessed in both circulating lymphocytes and iPSCs from the patient and from healthy controls of similar age. The circulating lymphocytes and iPSCs from the CP patient were characterized by their higher telomere length heterogeneity and telomere aberrations compared to those in control cells from healthy donors. Moreover, in contrast to iPSCs from healthy controls, the high levels of telomerase were associated with activation of the alternative lengthening of telomere (ALT) pathway in CP-iPSCs. This was accompanied by inappropriate activation of the DNA repair proteins γH2AX, 53BP1, and ATM, as well as with accumulation of DNA damage, micronuclei, and anaphase bridges. CP-iPSCs presented features of cellular senescence and increased radiation sensitivity. Clonal dicentric chromosomes were identified only in CP-iPSCs after exposure to radiation, thus mirroring the role of telomere dysfunction in their formation. These data demonstrate that iPSCs derived from CP patients can be used as a model system for molecular studies of the CP syndrome and underscores the complexity of telomere dysfunction associated with the defect of DNA repair machinery in the CP syndrome.
Collapse
|
6
|
Tummala H, Walne A, Buccafusca R, Alnajar J, Szabo A, Robinson P, McConkie-Rosell A, Wilson M, Crowley S, Kinsler V, Ewins AM, Madapura PM, Patel M, Pontikos N, Codd V, Vulliamy T, Dokal I. Germline thymidylate synthase deficiency impacts nucleotide metabolism and causes dyskeratosis congenita. Am J Hum Genet 2022; 109:1472-1483. [PMID: 35931051 PMCID: PMC9388389 DOI: 10.1016/j.ajhg.2022.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
Dyskeratosis congenita (DC) is an inherited bone-marrow-failure disorder characterized by a triad of mucocutaneous features that include abnormal skin pigmentation, nail dystrophy, and oral leucoplakia. Despite the identification of several genetic variants that cause DC, a significant proportion of probands remain without a molecular diagnosis. In a cohort of eight independent DC-affected families, we have identified a remarkable series of heterozygous germline variants in the gene encoding thymidylate synthase (TYMS). Although the inheritance appeared to be autosomal recessive, one parent in each family had a wild-type TYMS coding sequence. Targeted genomic sequencing identified a specific haplotype and rare variants in the naturally occurring TYMS antisense regulator ENOSF1 (enolase super family 1) inherited from the other parent. Lymphoblastoid cells from affected probands have severe TYMS deficiency, altered cellular deoxyribonucleotide triphosphate pools, and hypersensitivity to the TYMS-specific inhibitor 5-fluorouracil. These defects in the nucleotide metabolism pathway resulted in genotoxic stress, defective transcription, and abnormal telomere maintenance. Gene-rescue studies in cells from affected probands revealed that post-transcriptional epistatic silencing of TYMS is occurring via elevated ENOSF1. These cell and molecular abnormalities generated by the combination of germline digenic variants at the TYMS-ENOSF1 locus represent a unique pathogenetic pathway for DC causation in these affected individuals, whereas the parents who are carriers of either of these variants in a singular fashion remain unaffected.
Collapse
Affiliation(s)
- Hemanth Tummala
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK.
| | - Amanda Walne
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Roberto Buccafusca
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End, London E1 4NS, UK
| | - Jenna Alnajar
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Anita Szabo
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, 11-43 Bath St, London EC1V 9EL, UK
| | - Peter Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT 06032, USA
| | | | - Meredith Wilson
- Department of Clinical Genetics, The Children's Hospital at Westmead, Sydney, Australia
| | - Suzanne Crowley
- Department of Paediatrics, St George's Healthcare NHS Trust, London, UK
| | - Veronica Kinsler
- Department of Paediatric Dermatology, Great Ormond Street Hospital, The Francis Crick Institute, London, UK
| | - Anna-Maria Ewins
- Haematology/Oncology Department, Royal Hospital for Sick Children, Glasgow, UK
| | - Pradeepa M Madapura
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Manthan Patel
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Nikolas Pontikos
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, 11-43 Bath St, London EC1V 9EL, UK
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Tom Vulliamy
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Inderjeet Dokal
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK; Barts Health NHS Trust, London, UK
| |
Collapse
|
7
|
Dyskerin Downregulation Can Induce ER Stress and Promote Autophagy via AKT-mTOR Signaling Deregulation. Biomedicines 2022; 10:biomedicines10051092. [PMID: 35625829 PMCID: PMC9138296 DOI: 10.3390/biomedicines10051092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Dyskerin is an evolutionarily conserved nucleolar protein implicated in a wide range of fundamental biological roles, including telomere maintenance and ribosome biogenesis. Germline mutations of DKC1, the human gene encoding dyskerin, cause the hereditary disorders known as X-linked dyskeratosis congenita (X-DC). Moreover, dyskerin is upregulated in several cancers. Due to the pleiotropic functions of dyskerin, the X-DC clinical features overlap with those of both telomeropathies and ribosomopathies. In this paper, we evaluate the telomerase-independent effects of dyskerin depletion on cellular physiology by using inducible DCK1 knockdown. This system allows the downregulation of DKC1 expression within a short timeframe. We report that, in these cellular systems, dyskerin depletion induces the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum, which in turn induces the activation of the PERK branch of the unfolded protein response. We also demonstrate that the PERK-eIF2a-ATF4-CHOP signaling pathway, activated by dyskerin downregulation, triggers a functional autophagic flux through the inhibition of the PI3K/AKT/mTOR pathway. By revealing a novel unpredicted connection between the loss of dyskerin, autophagy and UPR, our results establish a firm link between the lowering of dyskerin levels and the activation of the ER stress response, that plays a key role in the pathogenesis of several diseases.
Collapse
|
8
|
Gueiderikh A, Maczkowiak-Chartois F, Rosselli F. A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Rev 2021; 52:100904. [PMID: 34750031 DOI: 10.1016/j.blre.2021.100904] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Frédérique Maczkowiak-Chartois
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
9
|
Bhoopalan SV, Wlodarski M, Reiss U, Triplett B, Sharma A. Reduced-intensity conditioning-based hematopoietic cell transplantation for dyskeratosis congenita: Single-center experience and literature review. Pediatr Blood Cancer 2021; 68:e29177. [PMID: 34086408 DOI: 10.1002/pbc.29177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Bone marrow failure in dyskeratosis congenita (DKC) is progressive, and allogeneic hematopoietic cell transplantation (HCT) is the only curative treatment. However, outcomes after HCT are suboptimal because of mucosal, vascular, pulmonary, and hepatic fragility, which can be exacerbated by chemotherapy conditioning and graft-versus-host disease (GVHD). These toxicities can be mitigated by reducing the intensity of the conditioning regimen. PROCEDURES We performed a retrospective analysis on pediatric patients with DKC who underwent HCT at our institution between 2008 and 2019. RESULTS We identified nine patients (median age, 5.7 years) who underwent HCT with a fludarabine-based reduced-intensity conditioning (RIC) regimen. GVHD prophylaxis consisted of tacrolimus plus mycophenolate mofetil (MMF) (n = 8), tacrolimus/pentostatin (n = 1), or cyclosporine/MMF (n = 1). The median time to neutrophil engraftment was 19 days (range, 13-26 days), and the median time to platelet engraftment was 18 days (range, 17-43 days). Lung function, as measured by spirometry in six patients, remained stable during post-HCT observation. Six patients (67%) remain alive, with a median follow-up of 73.5 months. CONCLUSION Because of toxicity after myeloablative conditioning, RIC is becoming standard for HCT in DKC. These results suggest that RIC regimen is feasible and safe for patients with DKC and does not accelerate pulmonary damage in the short-to-medium term after HCT.
Collapse
Affiliation(s)
| | - Marcin Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ulrike Reiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brandon Triplett
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
10
|
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 2021; 6:323. [PMID: 34462428 PMCID: PMC8405630 DOI: 10.1038/s41392-021-00728-8] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Jian Kang
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Natalie Brajanovski
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Keefe T. Chan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Jiachen Xuan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Richard B. Pearson
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elaine Sanij
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Clinical Pathology, University of Melbourne, Melbourne, VIC Australia ,grid.1073.50000 0004 0626 201XSt. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| |
Collapse
|
11
|
Ibáñez-Cabellos JS, Seco-Cervera M, Picher-Latorre C, Pérez-Machado G, García-Giménez JL, Pallardó FV. Acute depletion of telomerase components DKC1 and NOP10 induces oxidative stress and disrupts ribosomal biogenesis via NPM1 and activation of the P53 pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118845. [DOI: 10.1016/j.bbamcr.2020.118845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
|
12
|
Leukocyte telomere length is associated with iron overload in male adults with hereditary hemochromatosis. Biosci Rep 2020; 40:226596. [PMID: 33026063 PMCID: PMC7584811 DOI: 10.1042/bsr20201916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Hereditary hemochromatosis (HH) is a primary iron overload (IO) condition. Absolute telomere length (ATL) is a marker of cellular aging and DNA damage associated with chronic diseases and mortality. Aim: To evaluate the relationship between ATL and IO in patients with HH. Methods: Cross-sectional study including 25 patients with HH: 8 with IO and 17 without IO (ferritin < 300 ng/ml) and 25 healthy controls. Inclusion criteria were: age > 18 years, male sex and HH diagnosis. Patients with diabetes or other endocrine and autoimmune diseases were excluded. ATL was measured by real-time PCR. Results: HH patients with IO were older (P<0.001) and showed higher ferritin concentration (P<0.001). Patients with HH, disregarding the iron status, showed higher glucose and body mass index (BMI) than controls (both P<0.01). ATL was shorter in patients with IO than controls [with IO: 8 (6–14), without IO: 13 (9–20), and controls: 19 (15–25) kilobase pairs, P<0.01]; with a linear trend within groups (P for trend <0.01). Differences in ATL remained statistically significant after adjusting by age, BMI and glucose (P<0.05). Discussion: Patients with IO featured shorter ATL while patients without IO showed only mild alterations vs. controls. Screening for IO is encouraged to prevent iron-associated cellular damage and early telomere attrition.
Collapse
|
13
|
AlSabbagh MM. Dyskeratosis congenita: ein Literaturüberblick. J Dtsch Dermatol Ges 2020; 18:943-968. [PMID: 32985809 DOI: 10.1111/ddg.14268_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
|
14
|
AlSabbagh MM. Dyskeratosis congenita: a literature review. J Dtsch Dermatol Ges 2020; 18:943-967. [PMID: 32930426 DOI: 10.1111/ddg.14268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/29/2020] [Indexed: 12/26/2022]
Abstract
Dyskeratosis congenita is a rare hereditary disease that occurs predominantly in males and manifests clinically as the classic triad of reticulate hyperpigmentation, nail dystrophy and leukoplakia. It increases the risk of malignancy and other potentially lethal complications such as bone marrow failure, lung and liver diseases. Mutations in 19 genes are associated with dyskeratosis congenita, and a fifth of the pathogenic mutations are found in DKC1, the gene coding for dyskerin. This review aims to address the clinical and genetic aspects of the disease.
Collapse
|
15
|
Kampen KR, Sulima SO, Vereecke S, De Keersmaecker K. Hallmarks of ribosomopathies. Nucleic Acids Res 2020; 48:1013-1028. [PMID: 31350888 PMCID: PMC7026650 DOI: 10.1093/nar/gkz637] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Ribosomopathies are diseases caused by defects in ribosomal constituents or in factors with a role in ribosome assembly. Intriguingly, congenital ribosomopathies display a paradoxical transition from early symptoms due to cellular hypo-proliferation to an elevated cancer risk later in life. Another association between ribosome defects and cancer came into view after the recent discovery of somatic mutations in ribosomal proteins and rDNA copy number changes in a variety of tumor types, giving rise to somatic ribosomopathies. Despite these clear connections between ribosome defects and cancer, the molecular mechanisms by which defects in this essential cellular machinery are oncogenic only start to emerge. In this review, the impact of ribosomal defects on the cellular function and their mechanisms of promoting oncogenesis are described. In particular, we discuss the emerging hallmarks of ribosomopathies such as the appearance of ‘onco-ribosomes’ that are specialized in translating oncoproteins, dysregulation of translation-independent extra-ribosomal functions of ribosomal proteins, rewired cellular protein and energy metabolism, and extensive oxidative stress leading to DNA damage. We end by integrating these findings in a model that can provide an explanation how ribosomopathies could lead to the transition from hypo- to hyper-proliferation in bone marrow failure syndromes with elevated cancer risk.
Collapse
Affiliation(s)
- Kim R Kampen
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Sergey O Sulima
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Stijn Vereecke
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Daniels EG, Alders M, Lezzerini M, McDonald A, Peters M, Kuijpers TW, Lakeman P, Houtkooper RH, MacInnes AW. A uniparental isodisomy event introducing homozygous pathogenic variants drives a multisystem metabolic disorder. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004457. [PMID: 31653659 PMCID: PMC6913148 DOI: 10.1101/mcs.a004457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/07/2019] [Indexed: 01/08/2023] Open
Abstract
Uniparental isodisomy (UPiD) is a rare genetic event that occurs when two identical copies of a single chromosome are inherited from one parent. Here we report a patient with a severe, multisystem metabolic disorder who inherited two copies of Chromosome 12 from her father. He was a heterozygous carrier of a variant in the muscle-specific enzyme 6-phosphofructokinase (PFKM) gene and of a truncating variant in the pseudouridine synthase 1 (PUS1) gene (both on Chromosome 12), resulting in a homozygous state of these mutations in his daughter. The PFKM gene functions in glycolysis and is linked to Tarui syndrome. The PUS1 gene functions in mitochondrial tRNA processing and is linked to myopathy, lactic acidosis, and sideroblastic anemia (MLASA). Analysis of human dermal fibroblasts, which do not express PFKM, revealed a loss of PUS1 mRNA and PUS1 protein only in the patient cells compared to healthy controls. The patient cells also revealed a reduction of the mitochondrial-encoded protein MTCO1, whereas levels of the nuclear-encoded SDHA remained unchanged, suggesting a specific impairment of mitochondrial translation. Further destabilization of these cells is suggested by the altered levels of BAX, BCL-2, and TP53 proteins, alterations that become augmented upon exposure of the cells to DNA damage. The results illustrate the efficacy of UPiD events to reveal rare pathogenic variants in human disease and demonstrate how these events can lead to cellular destabilization.
Collapse
Affiliation(s)
- Eileen G Daniels
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Marielle Alders
- Department of Clinical Genetics, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Marco Lezzerini
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Andrew McDonald
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Marjolein Peters
- Department of Pediatric Hematology, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Phillis Lakeman
- Department of Clinical Genetics, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Alyson W MacInnes
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| |
Collapse
|
17
|
Belli V, Matrone N, Sagliocchi S, Incarnato R, Conte A, Pizzo E, Turano M, Angrisani A, Furia M. A dynamic link between H/ACA snoRNP components and cytoplasmic stress granules. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118529. [DOI: 10.1016/j.bbamcr.2019.118529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
|
18
|
Shimokawa T, Yoshida M, Fukuta T, Tanaka T, Inagi T, Kogure K. Efficacy of high-affinity liposomal astaxanthin on up-regulation of age-related markers induced by oxidative stress in human corneal epithelial cells. J Clin Biochem Nutr 2018; 64:27-35. [PMID: 30705509 PMCID: PMC6348414 DOI: 10.3164/jcbn.18-27] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Decreases in tear volume, unstable tear films and excessive tear evaporation are known to cause desiccation and hyperosmolar stress. These, in turn, induce oxidative stress that is thought to cause dry eye, which is also considered to be age-related disease. We hypothesized that oxidative stress induces up-regulation of age-related markers, and that the antioxidant astaxanthin prepared as a liposomal formulation may be a candidate for the treatment of dry eye. Herein, we examined age-related markers in an in vitro dry eye model, and evaluated the efficacy of high-affinity liposomes containing astaxanthin. The in vitro dry eye model showed desiccation time-dependent increases in reactive oxygen species. We confirmed the up-regulation of p53, p21 and p16 as a function of desiccation time. Pretreatment with both neutral and slightly-positively-charged astaxanthin liposomal formulations showed significant suppression of up-regulation of all markers, with the positively-charged liposomes exhibiting the greatest efficacy. Furthermore, positively-charged liposomes labeled with fluorescent dyes demonstrated much higher affinity to normal human corneal epithelial cells (HCECs) than neutral liposomes. Taken together, we confirmed the up-regulation of age-related markers, especially p16, in an in vitro dry eye model, and demonstrated the potential of high-affinity liposomal astaxanthin for the treatment of dry eye.
Collapse
Affiliation(s)
- Tatsuharu Shimokawa
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 1 Shomachi, Tokushima 770-8505, Japan.,Fuji Research Laboratories Pharmaceutical Division, Kowa Company, Ltd., 332-1 Ohnoshinden, Shizuoka 417-8650, Japan
| | - Mai Yoshida
- Kyoto Pharmaceutical University, Misasagi-Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan
| | - Tatsuya Fukuta
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 1 Shomachi, Tokushima 770-8505, Japan
| | - Tamotsu Tanaka
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 1 Shomachi, Tokushima 770-8505, Japan
| | - Toshio Inagi
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 1 Shomachi, Tokushima 770-8505, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 1 Shomachi, Tokushima 770-8505, Japan
| |
Collapse
|
19
|
Jose SS, Tidu F, Burilova P, Kepak T, Bendickova K, Fric J. The Telomerase Complex Directly Controls Hematopoietic Stem Cell Differentiation and Senescence in an Induced Pluripotent Stem Cell Model of Telomeropathy. Front Genet 2018; 9:345. [PMID: 30210531 PMCID: PMC6123533 DOI: 10.3389/fgene.2018.00345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/09/2018] [Indexed: 01/16/2023] Open
Abstract
Telomeropathies are rare disorders associated with impaired telomere length control mechanisms that frequently result from genetic mutations in the telomerase complex. Dyskeratosis congenita is a congenital progressive telomeropathy in which mutation in the telomerase RNA component (TERC) impairs telomere maintenance leading to accelerated cellular senescence and clinical outcomes resembling premature aging. The most severe clinical feature is perturbed hematopoiesis and bone-marrow failure, but the underlying mechanisms are not fully understood. Here, we developed a model of telomerase function imbalance using shRNA to knockdown TERC expression in human induced pluripotent stem cells (iPSCs). We then promoted in vitro hematopoiesis in these cells to analyze the effects of TERC impairment. Reduced TERC expression impaired hematopoietic stem-cell (HSC) differentiation and increased the expression of cellular senescence markers and production of reactive oxygen species. Interestingly, telomere length was unaffected in shTERC knockdown iPSCs, leading to conclusion that the phenotype is controlled by non-telomeric functions of telomerase. We then assessed the effects of TERC-depletion in THP-1 myeloid cells and again observed reduced hematopoietic and myelopoietic differentiative potential. However, these cells exhibited impaired telomerase activity as verified by accelerated telomere shortening. shTERC-depleted iPSC-derived and THP-1-derived myeloid precursors had lower phagocytic capacity and increased ROS production, indicative of senescence. These findings were confirmed using a BIBR1532 TERT inhibitor, suggesting that these phenotypes are dependent on telomerase function but not directly linked to telomere length. These data provide a better understanding of the molecular processes driving the clinical signs of telomeropathies and identify novel roles of the telomerase complex other than regulating telomere length.
Collapse
Affiliation(s)
- Shyam Sushama Jose
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Federico Tidu
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Burilova
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomas Kepak
- Pediatric Oncology Translational Research, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Pediatric Hematology and Oncology, The University Hospital Brno, Brno, Czechia
| | - Kamila Bendickova
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jan Fric
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
20
|
Homozygous OB-fold variants in telomere protein TPP1 are associated with dyskeratosis congenita-like phenotypes. Blood 2018; 132:1349-1353. [PMID: 30064976 DOI: 10.1182/blood-2018-03-837799] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
21
|
Wang X, Chu Q, Jiang X, Yu Y, Wang L, Cui Y, Lu J, Teng L, Wang D. Sarcodon imbricatus polysaccharides improve mouse hematopoietic function after cyclophosphamide-induced damage via G-CSF mediated JAK2/STAT3 pathway. Cell Death Dis 2018; 9:578. [PMID: 29784961 PMCID: PMC5962553 DOI: 10.1038/s41419-018-0634-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
Sarcodon imbricatus, a rare medicinal and edible fungus, has various pharmacological bioactivities. We investigated the effects of S. imbricatus polysaccharides (SIPS) on hematopoietic function and identified the underlying mechanisms using in vitro experiments with CHRF, K562, and bone marrow mononuclear cells (BMMNCs) and in vivo experiments with a mouse model of cyclophosphamide-induced hematopoietic dysfunction. We found that SIPS induced proliferation and differentiation of CHRF and K562 cells and upregulated the expression of hematopoietic-related proteins, including p90 ribosomal S6 kinases (RSK1p90), c-Myc, and ETS transcription factor, in the two cell lines. After 28 days of treatment, SIPS enhanced the bodyweight and thymus indices of the mice, alleviated enlargement of the spleen and liver, and contributed to the recovery of peripheral blood to normal levels. More importantly, the percentages of B lymphocytes and hematopoietic stem cells or hematopoietic progenitor cells were significantly elevated in bone marrow. Based on an antibody chip analysis and enzyme-linked immunosorbent assay, SIPS were found to successfully regulate 12 cytokines to healthy levels in serum and spleen. The cytokines included the following: interleukins 1Ra, 2, 3, 4, 5, and 6, tumor necrosis factor α, interferon−γ, granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF), C-C motif chemokine1, and monocyte chemoattractant protein−1. Moreover, SIPS upregulated the phosphorylation levels of janus kinase 2 (JAK2) and the signal transducer and activator of transcription 3 (STAT3) in the spleen, and similar results were validated in CHRF cells, K562 cells, and BMMNCs. The data indicate that SIPS activated the JAK2/STAT3 pathway, possibly by interactions among multiple cytokines, particularly G-CSF. We found that SIPS was remarkably beneficial to the bone marrow hematopoietic system, and we anticipate that it could improve myelosuppression induced by long-term radiotherapy or chemotherapy.
Collapse
Affiliation(s)
- Xue Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Qiubo Chu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xue Jiang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yue Yu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Libian Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yaqi Cui
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiahui Lu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lirong Teng
- School of Life Sciences, Jilin University, Changchun, 130012, China. .,Zhuhai College of Jilin University, Jilin University, Zhuhai, 519041, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China. .,Zhuhai College of Jilin University, Jilin University, Zhuhai, 519041, China.
| |
Collapse
|
22
|
Ibáñez-Cabellos JS, Pérez-Machado G, Seco-Cervera M, Berenguer-Pascual E, García-Giménez JL, Pallardó FV. Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening. Redox Biol 2017; 14:398-408. [PMID: 29055871 PMCID: PMC5650655 DOI: 10.1016/j.redox.2017.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/13/2023] Open
Abstract
Loss of function of dyskerin (DKC1), NOP10 and TIN2 are responsible for different inheritance patterns of Dyskeratosis congenita (DC; ORPHA1775). They are key components of telomerase (DKC1 and NOP10) and shelterin (TIN2), and play an important role in telomere homeostasis. They participate in several fundamental cellular processes by contributing to Dyskeratosis congenita through mechanisms that are not fully understood. Presence of oxidative stress was postulated to result from telomerase ablation. However, the resulting disturbed redox status can promote telomere attrition by generating a vicious circle, which promotes cellular senescence. This fact prompted us to study if acute loss of DKC1, NOP10 and TINF2 can promote redox disequilibrium as an early event when telomere shortening has not yet taken place. We generated siRNA-mediated (DKC1, NOP10 and TINF2) cell lines by RNA interference, which was confirmed by mRNA and protein expression analyses. No telomere shortening occurred in any silenced cell line. Depletion of H/ACA ribonucleoproteins DKC1 and NOP10 diminished telomerase activity via TERC down-regulation, and produced alterations in pseudouridylation and ribosomal biogenesis. An increase in the GSSG/GSH ratio, carbonylated proteins and oxidized peroxiredoxin-6 was observed, in addition to MnSOD and TRX1 overexpression in the siRNA DC cells. Likewise, high PARylation levels and high PARP1 protein expression were detected. In contrast, the silenced TINF2 cells did not alter any evaluated oxidative stress marker. Altogether these findings lead us to conclude that loss of DKC1 and NOP10 functions induces oxidative stress in a telomere shortening independent manner. Transient silencing of DKC1 and NOP10 genes produce oxidative stress. Cells depleted of DKC1 and NOP10 are susceptible to DNA damage. Acute DKC1 and NOP10 depletion disrupts RNA maturation. Oxidative stress is an early event previous to telomere shortening.
Collapse
Affiliation(s)
- José Santiago Ibáñez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Giselle Pérez-Machado
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Marta Seco-Cervera
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Ester Berenguer-Pascual
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| |
Collapse
|
23
|
Pulmonary complications post hematopoietic stem cell transplant in dyskeratosis congenita: analysis of oxidative stress in lung fibroblasts. Bone Marrow Transplant 2017; 52:765-768. [PMID: 28092351 DOI: 10.1038/bmt.2016.353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Degan P, Ravera S, Cappelli E. Why is an energy metabolic defect the common outcome in BMFS? Cell Cycle 2016; 15:2571-2575. [PMID: 27579499 PMCID: PMC5053575 DOI: 10.1080/15384101.2016.1218103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022] Open
Abstract
Inherited bone marrow failure syndromes (BMFS) are rare, distressing, inherited blood disorders of children. Although the genetic origin of these pathologies involves genes with different functions, all are associated with progressive haematopoietic impairment and an excessive risk of malignancies. Defects in energy metabolism induce oxidative stress, impaired energy production and an unbalanced ratio between ATP and AMP. This assumes an important role in self-renewal and differentiation in haematopoietic stem cells (HSC) and can play an important role in bone marrow failure. Defects in energetic/respiratory metabolism, in particular in FA and SDS cells, have been described recently and seem to be a pertinent argument in the discussion of the haematopoietic defect in BMFS, as an alternative to the hypotheses already established on this subject, which may shed new light on the evolution of these diseases.
Collapse
Affiliation(s)
- Paolo Degan
- S. C. Mutagenesis, IRCCS AOU San Martino – IST (Istituto Nazionale per la Ricerca sul Cancro), CBA Torre A2, Genova, Italy
| | - Silvia Ravera
- DIFAR-Biochemistry Lab., Department of Pharmacy, University of Genova, Genova, Italy
| | | |
Collapse
|
25
|
Walne AJ, Collopy L, Cardoso S, Ellison A, Plagnol V, Albayrak C, Albayrak D, Kilic SS, Patıroglu T, Akar H, Godfrey K, Carter T, Marafie M, Vora A, Sundin M, Vulliamy T, Tummala H, Dokal I. Marked overlap of four genetic syndromes with dyskeratosis congenita confounds clinical diagnosis. Haematologica 2016; 101:1180-1189. [PMID: 27612988 DOI: 10.3324/haematol.2016.147769] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/21/2016] [Indexed: 11/09/2022] Open
Abstract
Dyskeratosis congenita is a highly pleotropic genetic disorder. This heterogeneity can lead to difficulties in making an accurate diagnosis and delays in appropriate management. The aim of this study was to determine the underlying genetic basis in patients presenting with features of dyskeratosis congenita and who were negative for mutations in the classical dyskeratosis congenita genes. By whole exome and targeted sequencing, we identified biallelic variants in genes that are not associated with dyskeratosis congenita in 17 individuals from 12 families. Specifically, these were homozygous variants in USB1 (8 families), homozygous missense variants in GRHL2 (2 families) and identical compound heterozygous variants in LIG4 (2 families). All patients had multiple somatic features of dyskeratosis congenita but not the characteristic short telomeres. Our case series shows that biallelic variants in USB1, LIG4 and GRHL2, the genes mutated in poikiloderma with neutropenia, LIG4/Dubowitz syndrome and the recently recognized ectodermal dysplasia/short stature syndrome, respectively, cause features that overlap with dyskeratosis congenita. Strikingly, these genes also overlap in their biological function with the known dyskeratosis congenita genes that are implicated in telomere maintenance and DNA repair pathways. Collectively, these observations demonstrate the marked overlap of dyskeratosis congenita with four other genetic syndromes, confounding accurate diagnosis and subsequent management. This has important implications for establishing a genetic diagnosis when a new patient presents in the clinic. Patients with clinical features of dyskeratosis congenita need to have genetic analysis of USB1, LIG4 and GRHL2 in addition to the classical dyskeratosis congenita genes and telomere length measurements.
Collapse
Affiliation(s)
- Amanda J Walne
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, London, UK
| | - Laura Collopy
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, London, UK
| | - Shirleny Cardoso
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, London, UK
| | - Alicia Ellison
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, London, UK
| | | | - Canan Albayrak
- Department of Pediatric Hematology, Ondokuz Mayis University, Samsun, Turkey
| | - Davut Albayrak
- Department of Pediatric Hematology, Ondokuz Mayis University, Samsun, Turkey
| | | | - Turkan Patıroglu
- Department of Pediatric Immunology Erciyes University Medical Facility, Kayseri, Turkey
| | - Haluk Akar
- Department of Pediatric Immunology Erciyes University Medical Facility, Kayseri, Turkey
| | - Keith Godfrey
- Department of Pediatric Dermatology and NIHR Southampton Biomedical Research Center, University Hospital, Southampton and University of Southampton, UK
| | - Tina Carter
- Department of Oncology and Haematology, Princess Margaret Hospital, Perth, WA, Australia
| | - Makia Marafie
- Clinical Cancer and Community Genetics, Kuwait Medical Genetics Center, Al-Sabah Medical area, Kuwait
| | - Ajay Vora
- Department of Haematology, Sheffield Children's NHS foundation Trust, Sheffield, UK
| | - Mikael Sundin
- Section of Pediatric Hematology/Immunology/SCT, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden Division of Pediatrics, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, London, UK
| | - Hemanth Tummala
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, London, UK
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, London, UK
| |
Collapse
|
26
|
Pereboeva L, Hubbard M, Goldman FD, Westin ER. Robust DNA Damage Response and Elevated Reactive Oxygen Species in TINF2-Mutated Dyskeratosis Congenita Cells. PLoS One 2016; 11:e0148793. [PMID: 26859482 PMCID: PMC4747510 DOI: 10.1371/journal.pone.0148793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022] Open
Abstract
Dyskeratosis Congenita (DC) is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF) syndromes, converges on the DNA damage response (DDR) pathway and subsequent elevation of reactive oxygen species (ROS). Historically, DC patients have had poor outcomes following bone marrow transplantation (BMT), perhaps as a consequence of an underlying DNA hypersensitivity to cytotoxic agents. Previously, we demonstrated an activated DDR and increased ROS, augmented by chemotherapy and radiation, in somatic cells isolated from DC patients with a mutation in the RNA component of telomerase, TERC. The current study was undertaken to determine whether previous findings related to ROS and DDR in TERC patients’ cells could be extended to other DC mutations. Of particular interest was whether an antioxidant approach could counter increased ROS and decrease DC pathologies. To test this, we examined lymphocytes from DC patients from different DC mutations (TERT, TINF2, and TERC) for the presence of an active DDR and increased ROS. All DC mutations led to increased steady-state p53 (2-fold to 10-fold) and ROS (1.5-fold to 2-fold). Upon exposure to ionizing radiation (XRT), DC cells increased in both DDR and ROS to a significant degree. Exposing DC cells to hydrogen peroxide also revealed that DC cells maintain a significant oxidant burden compared to controls (1.5-fold to 3-fold). DC cell culture supplemented with N-acetylcysteine, or alternatively grown in low oxygen, afforded significant proliferative benefits (proliferation: maximum 2-fold increase; NAC: 5-fold p53 decrease; low oxygen: maximum 3.5-fold p53 decrease). Together, our data supports a mechanism whereby telomerase deficiency and subsequent shortened telomeres initiate a DDR and create a pro-oxidant environment, especially in cells carrying the TINF2 mutations. Finally, the ameliorative effects of antioxidants in vitro suggest this could translate to therapeutic benefits in DC patients.
Collapse
Affiliation(s)
- Larisa Pereboeva
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Meredith Hubbard
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama, Birmingham, Alabama, United States of America
| | - Frederick D. Goldman
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama, Birmingham, Alabama, United States of America
| | - Erik R. Westin
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
27
|
The Sub-Cellular Localization of WRAP53 Has Prognostic Impact in Breast Cancer. PLoS One 2015; 10:e0139965. [PMID: 26460974 PMCID: PMC4603798 DOI: 10.1371/journal.pone.0139965] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022] Open
Abstract
WRAP53 protein controls intracellular trafficking of DNA repair proteins, the telomerase enzyme, and splicing factors. Functional loss of the protein has been linked to carcinogenesis, premature aging and neurodegeneration. The aim of this study was to investigate the prognostic significance of WRAP53 protein expression in breast cancer. A tissue microarray was constructed from primary breast tumors and immunostained by a polyclonal WRAP53 antibody to assess the protein expression pattern. Two different patient cohorts with long term follow-up were studied; a test- and a validation set of 154 and 668 breast tumor samples respectively. Breast cancer patients with tumor cells lacking the expression of WRAP53 in the nucleus had a significantly poorer outcome compared to patients with tumor cells expressing this protein in the nuclei (HR = 1.95, 95%CI = 1.09-3.51, p = 0.025). Nuclear localization of WRAP53 was further shown to be an independent marker of prognosis in multivariate analysis (HR = 2.57, 95%CI = 1.27-5.19, p = 0.008), and also significantly associated with better outcome in patients with TP53 mutation. Here we show that the sub-cellular localization of the WRAP53 protein has a significant impact on breast cancer survival, and thus has a potential as a clinical marker in diagnostics and treatment.
Collapse
|
28
|
Goodson WH, Lowe L, Carpenter DO, Gilbertson M, Manaf Ali A, Lopez de Cerain Salsamendi A, Lasfar A, Carnero A, Azqueta A, Amedei A, Charles AK, Collins AR, Ward A, Salzberg AC, Colacci A, Olsen AK, Berg A, Barclay BJ, Zhou BP, Blanco-Aparicio C, Baglole CJ, Dong C, Mondello C, Hsu CW, Naus CC, Yedjou C, Curran CS, Laird DW, Koch DC, Carlin DJ, Felsher DW, Roy D, Brown DG, Ratovitski E, Ryan EP, Corsini E, Rojas E, Moon EY, Laconi E, Marongiu F, Al-Mulla F, Chiaradonna F, Darroudi F, Martin FL, Van Schooten FJ, Goldberg GS, Wagemaker G, Nangami GN, Calaf GM, Williams G, Wolf GT, Koppen G, Brunborg G, Lyerly HK, Krishnan H, Ab Hamid H, Yasaei H, Sone H, Kondoh H, Salem HK, Hsu HY, Park HH, Koturbash I, Miousse IR, Scovassi AI, Klaunig JE, Vondráček J, Raju J, Roman J, Wise JP, Whitfield JR, Woodrick J, Christopher JA, Ochieng J, Martinez-Leal JF, Weisz J, Kravchenko J, Sun J, Prudhomme KR, Narayanan KB, Cohen-Solal KA, Moorwood K, Gonzalez L, Soucek L, Jian L, D'Abronzo LS, Lin LT, Li L, Gulliver L, McCawley LJ, Memeo L, Vermeulen L, Leyns L, Zhang L, Valverde M, Khatami M, Romano MF, Chapellier M, Williams MA, Wade M, Manjili MH, Lleonart ME, Xia M, Gonzalez MJ, Karamouzis MV, Kirsch-Volders M, Vaccari M, Kuemmerle NB, Singh N, Cruickshanks N, Kleinstreuer N, van Larebeke N, Ahmed N, Ogunkua O, Krishnakumar PK, Vadgama P, Marignani PA, Ghosh PM, Ostrosky-Wegman P, Thompson PA, Dent P, Heneberg P, Darbre P, Sing Leung P, Nangia-Makker P, Cheng QS, Robey RB, Al-Temaimi R, Roy R, Andrade-Vieira R, Sinha RK, Mehta R, Vento R, Di Fiore R, Ponce-Cusi R, Dornetshuber-Fleiss R, Nahta R, Castellino RC, Palorini R, Abd Hamid R, Langie SAS, Eltom SE, Brooks SA, Ryeom S, Wise SS, Bay SN, Harris SA, Papagerakis S, Romano S, Pavanello S, Eriksson S, Forte S, Casey SC, Luanpitpong S, Lee TJ, Otsuki T, Chen T, Massfelder T, Sanderson T, Guarnieri T, Hultman T, Dormoy V, Odero-Marah V, Sabbisetti V, Maguer-Satta V, Rathmell WK, Engström W, Decker WK, Bisson WH, Rojanasakul Y, Luqmani Y, Chen Z, Hu Z. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis 2015; 36 Suppl 1:S254-96. [PMID: 26106142 PMCID: PMC4480130 DOI: 10.1093/carcin/bgv039] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Low-dose exposures to common environmental chemicals that are deemed safe individually may be combining to instigate carcinogenesis, thereby contributing to the incidence of cancer. This risk may be overlooked by current regulatory practices and needs to be vigorously investigated. Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.
Collapse
Affiliation(s)
- William H Goodson
- California Pacific Medical Center Research Institute, 2100 Webster Street #401, San Francisco, CA 94115, USA, Getting to Know Cancer, Room 229A, 36 Arthur Street, Truro, Nova Scotia B2N 1X5, Canada, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK, Institute for Health and the Environment, University at Albany, 5 University Pl., Rensselaer, NY 12144, USA, Getting to Know Cancer, Guelph N1G 1E4, Canada, School of Biotechnology, Faculty of Agriculture Biotechnology and Food Sciences, Sultan Zainal Abidin University, Tembila Campus, 22200 Besut, Terengganu, Malaysia, Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31008, Spain, Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA, Instituto de Biomedicina de Sevilla, Consejo Superior de Investigaciones Cientificas. Hospital Universitario Virgen del Rocio, Univ. de Sevilla., Avda Manuel Siurot sn. 41013 Sevilla, Spain, Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy, School of Biological Sciences, University of Reading, Hopkins Building, Reading, Berkshire RG6 6UB, UK, Department of Nutrition, University of Oslo, Oslo, Norway, Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK, Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy, Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway, Planet Biotechnologies Inc., St Albert, Alberta T8N 5K4, Canada, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA, Spanish National Cancer Research Centre, CNI
| | - Leroy Lowe
- Getting to Know Cancer, Room 229A, 36 Arthur Street, Truro, Nova Scotia B2N 1X5, Canada, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Pl., Rensselaer, NY 12144, USA
| | | | - Abdul Manaf Ali
- School of Biotechnology, Faculty of Agriculture Biotechnology and Food Sciences, Sultan Zainal Abidin University, Tembila Campus, 22200 Besut, Terengganu, Malaysia
| | | | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, Consejo Superior de Investigaciones Cientificas. Hospital Universitario Virgen del Rocio, Univ. de Sevilla., Avda Manuel Siurot sn. 41013 Sevilla, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31008, Spain
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amelia K Charles
- School of Biological Sciences, University of Reading, Hopkins Building, Reading, Berkshire RG6 6UB, UK
| | | | - Andrew Ward
- Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Anna C Salzberg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - Arthur Berg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Barry J Barclay
- Planet Biotechnologies Inc., St Albert, Alberta T8N 5K4, Canada
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
| | - Carmen Blanco-Aparicio
- Spanish National Cancer Research Centre, CNIO, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Carolyn J Baglole
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Chenfang Dong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
| | - Chiara Mondello
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Chia-Wen Hsu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Colleen S Curran
- Department of Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Daniel C Koch
- Stanford University Department of Medicine, Division of Oncology, Stanford, CA 94305, USA
| | - Danielle J Carlin
- Superfund Research Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27560, USA
| | - Dean W Felsher
- Department of Medicine, Oncology and Pathology, Stanford University, Stanford, CA 94305, USA
| | - Debasish Roy
- Department of Natural Science, The City University of New York at Hostos Campus, Bronx, NY 10451, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA
| | - Edward Ratovitski
- Department of Head and Neck Surgery/Head and Neck Cancer Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Emilio Rojas
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO Centre of Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Firouz Darroudi
- Human Safety and Environmental Research, Department of Health Sciences, College of North Atlantic, Doha 24449, State of Qatar
| | - Francis L Martin
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK
| | - Frederik J Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht 6200, The Netherlands
| | - Gary S Goldberg
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Gerard Wagemaker
- Hacettepe University, Center for Stem Cell Research and Development, Ankara 06640, Turkey
| | - Gladys N Nangami
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Gloria M Calaf
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA, Instituto de Alta Investigacion, Universidad de Tarapaca, Arica, Chile
| | - Graeme Williams
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| | - Gregory T Wolf
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gudrun Koppen
- Environmental Risk and Health Unit, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - H Kim Lyerly
- Department of Surgery, Pathology, Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Harini Krishnan
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Hasiah Ab Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hemad Yasaei
- Department of Life Sciences, College of Health and Life Sciences and the Health and Environment Theme, Institute of Environment, Health and Societies, Brunel University Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK
| | - Hideko Sone
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibraki 3058506, Japan
| | - Hiroshi Kondoh
- Department of Geriatric Medicine, Kyoto University Hospital 54 Kawaharacho, Shogoin, Sakyo-ku Kyoto, 606-8507, Japan
| | - Hosni K Salem
- Department of Urology, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 11559, Egypt
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien 970, Taiwan
| | - Hyun Ho Park
- School of Biotechnology, Yeungnam University, Gyeongbuk 712-749, South Korea
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - A Ivana Scovassi
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - James E Klaunig
- Department of Environmental Health, Indiana University, School of Public Health, Bloomington, IN 47405, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Jesse Roman
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA, Robley Rex VA Medical Center, Louisville, KY 40202, USA
| | - John Pierce Wise
- Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth St., Portland, ME 04104, USA
| | - Jonathan R Whitfield
- Mouse Models of Cancer Therapies Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Joseph A Christopher
- Cancer Research UK. Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Josiah Ochieng
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | | | - Judith Weisz
- Departments of Obstetrics and Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey PA 17033, USA
| | - Julia Kravchenko
- Department of Surgery, Pathology, Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jun Sun
- Department of Biochemistry, Rush University, Chicago, IL 60612, USA
| | - Kalan R Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | | | - Karine A Cohen-Solal
- Department of Medicine/Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Kim Moorwood
- Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Laura Soucek
- Mouse Models of Cancer Therapies Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain, Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Le Jian
- School of Public Health, Curtin University, Bentley, WA 6102, Australia, Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Leandro S D'Abronzo
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lin Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People's Republic of China
| | - Linda Gulliver
- Faculty of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Lisa J McCawley
- Department of Biomedical Engineering and Cancer Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, Viagrande (CT) 95029, Italy
| | - Louis Vermeulen
- Center for Experimental Molecular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Mahara Valverde
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Mahin Khatami
- Inflammation and Cancer Research, National Cancer Institute (NCI) (Retired), National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Marion Chapellier
- Centre De Recherche En Cancerologie, De Lyon, Lyon, U1052-UMR5286, France
| | - Marc A Williams
- United States Army Institute of Public Health, Toxicology Portfolio-Health Effects Research Program, Aberdeen Proving Ground, Edgewood, MD 21010-5403, USA
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milano, Italy
| | - Masoud H Manjili
- Department of Microbiology and Immunology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23298, USA
| | - Matilde E Lleonart
- Institut De Recerca Hospital Vall D'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Michael J Gonzalez
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan 00921, Puerto Rico
| | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, Institute of Molecular Medicine and Biomedical Research, 10676 Athens, Greece
| | | | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Nancy B Kuemmerle
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh 226 003, India
| | - Nichola Cruickshanks
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, RTP, NC 27709, USA
| | - Nik van Larebeke
- Analytische, Milieu en Geochemie, Vrije Universiteit Brussel, Brussel B1050, Belgium
| | - Nuzhat Ahmed
- Department of Obstetrics and Gynecology, University of Melbourne, Victoria 3052, Australia
| | - Olugbemiga Ogunkua
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - P K Krishnakumar
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 3126, Saudi Arabia
| | - Pankaj Vadgama
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Paola A Marignani
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paramita M Ghosh
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Patricia A Thompson
- Department of Pathology, Stony Brook School of Medicine, Stony Brook University, The State University of New York, Stony Brook, NY 11794-8691, USA
| | - Paul Dent
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, CZ-100 00 Prague 10, Czech Republic
| | - Philippa Darbre
- School of Biological Sciences, The University of Reading, Whiteknights, Reading RG6 6UB, England
| | - Po Sing Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People's Republic of China
| | | | - Qiang Shawn Cheng
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
| | - R Brooks Robey
- White River Junction Veterans Affairs Medical Center, White River Junction, VT 05009, USA, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Rabeah Al-Temaimi
- Human Genetics Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya 13110, Kuwait
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Rafaela Andrade-Vieira
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ranjeet K Sinha
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rekha Mehta
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Renza Vento
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, Palermo 90127, Italy , Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Riccardo Di Fiore
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, Palermo 90127, Italy
| | | | - Rita Dornetshuber-Fleiss
- Department of Pharmacology and Toxicology, University of Vienna, Vienna A-1090, Austria, Institute of Cancer Research, Department of Medicine, Medical University of Vienna, Wien 1090, Austria
| | - Rita Nahta
- Departments of Pharmacology and Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Robert C Castellino
- Division of Hematology and Oncology, Department of Pediatrics, Children's Healthcare of Atlanta, GA 30322, USA, Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Roberta Palorini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, SYSBIO Centre of Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Roslida Abd Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sabine A S Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Sakina E Eltom
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Samira A Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra S Wise
- Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth St., Portland, ME 04104, USA
| | - Sarah N Bay
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Shelley A Harris
- Population Health and Prevention, Research, Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, M5G 2L7, Canada, Departments of Epidemiology and Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada
| | - Silvana Papagerakis
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Staffan Eriksson
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, PO Box 7011, VHC, Almas Allé 4, SE-756 51, Uppsala, Sweden
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, Viagrande (CT) 95029, Italy
| | - Stephanie C Casey
- Stanford University Department of Medicine, Division of Oncology, Stanford, CA 94305, USA
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Thierry Massfelder
- INSERM U1113, team 3 'Cell Signalling and Communication in Kidney and Prostate Cancer', University of Strasbourg, Faculté de Médecine, 67085 Strasbourg, France
| | - Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Tiziana Guarnieri
- Department of Biology, Geology and Environmental Sciences, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi, 3, 40126 Bologna, Italy, Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Via Massarenti, 9, 40126 Bologna, Italy, National Institute of Biostructures and Biosystems, Viale Medaglie d' Oro, 305, 00136 Roma, Italy
| | - Tove Hultman
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden
| | - Valérian Dormoy
- INSERM U1113, team 3 'Cell Signalling and Communication in Kidney and Prostate Cancer', University of Strasbourg, Faculté de Médecine, 67085 Strasbourg, France, Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Valerie Odero-Marah
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Venkata Sabbisetti
- Harvard Medical School/Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Veronique Maguer-Satta
- United States Army Institute of Public Health, Toxicology Portfolio-Health Effects Research Program, Aberdeen Proving Ground, Edgewood, MD 21010-5403, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Wilhelm Engström
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden
| | | | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Yunus Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110, Kuwait and
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Zhiwei Hu
- Department of Surgery, The Ohio State University College of Medicine, The James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Kravchenko J, Corsini E, Williams MA, Decker W, Manjili MH, Otsuki T, Singh N, Al-Mulla F, Al-Temaimi R, Amedei A, Colacci AM, Vaccari M, Mondello C, Scovassi AI, Raju J, Hamid RA, Memeo L, Forte S, Roy R, Woodrick J, Salem HK, Ryan EP, Brown DG, Bisson WH, Lowe L, Lyerly HK. Chemical compounds from anthropogenic environment and immune evasion mechanisms: potential interactions. Carcinogenesis 2015; 36 Suppl 1:S111-27. [PMID: 26002081 DOI: 10.1093/carcin/bgv033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 01/19/2015] [Indexed: 02/07/2023] Open
Abstract
An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist in the environment and appear to have some potential interfere with the host immune response, therefore potentially contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and progression.
Collapse
Affiliation(s)
- Julia Kravchenko
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
| | - Emanuela Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, School of Pharmacy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marc A Williams
- MEDCOM Army Institute of Public Health, Toxicology Portfolio - Health Effects Research Program, Aberdeen Proving Ground, Edgewood, Baltimore, MD 21010, USA
| | - William Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Masoud H Manjili
- Department of Microbiology and Immunology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Neetu Singh
- Advanced Molecular Science Research Centre, King George's Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Faha Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Hosni K Salem
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO, 80523-1680, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO, 80523-1680, USA
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA,
| | - Leroy Lowe
- Getting to Know Cancer, Nova Scotia, Canada and
| | - H Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
30
|
Tummala H, Walne A, Collopy L, Cardoso S, de la Fuente J, Lawson S, Powell J, Cooper N, Foster A, Mohammed S, Plagnol V, Vulliamy T, Dokal I. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J Clin Invest 2015; 125:2151-60. [PMID: 25893599 DOI: 10.1172/jci78963] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/12/2015] [Indexed: 11/17/2022] Open
Abstract
Dyskeratosis congenita (DC) and related syndromes are inherited, life-threatening bone marrow (BM) failure disorders, and approximately 40% of cases are currently uncharacterized at the genetic level. Here, using whole exome sequencing (WES), we have identified biallelic mutations in the gene encoding poly(A)-specific ribonuclease (PARN) in 3 families with individuals exhibiting severe DC. PARN is an extensively characterized exonuclease with deadenylation activity that controls mRNA stability in part and therefore regulates expression of a large number of genes. The DC-associated mutations identified affect key domains within the protein, and evaluation of patient cells revealed reduced deadenylation activity. This deadenylation deficiency caused an early DNA damage response in terms of nuclear p53 regulation, cell-cycle arrest, and reduced cell viability upon UV treatment. Individuals with biallelic PARN mutations and PARN-depleted cells exhibited reduced RNA levels for several key genes that are associated with telomere biology, specifically TERC, DKC1, RTEL1, and TERF1. Moreover, PARN-deficient cells also possessed critically short telomeres. Collectively, these results identify a role for PARN in telomere maintenance and demonstrate that it is a disease-causing gene in a subset of patients with severe DC.
Collapse
|
31
|
Cellular oxidative stress response mediates radiosensitivity in Fus1-deficient mice. Cell Death Dis 2015; 6:e1652. [PMID: 25695605 PMCID: PMC4669799 DOI: 10.1038/cddis.2014.593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/08/2014] [Accepted: 12/19/2014] [Indexed: 01/26/2023]
Abstract
Mechanism of radiosensitivity of normal tissues, a key factor in determining the toxic side effects of cancer radiotherapy, is not fully understood. We recently demonstrated that deficiency of mitochondrial tumor suppressor, Fus1, increases radiosensitivity at the organismal, tissue and cellular levels. Since Fus1-deficient mice and cells exhibit high levels of oxidative stress, we hypothesized that dysregulation of cellular antioxidant defenses may contribute to the increased radiosensitivity. To address this potential mechanism, we treated the Fus1 KO mice with an inhibitor of pathogenic oxidative reactions, pyridoxamine (PM). Treatment with PM ameliorated IR-induced damage to GI epithelium of Fus1 KO mice and significantly increased the survival of irradiated mice. In cultured Fus1 KO epithelial cells, IR-induced oxidative stress was enhanced because of inadequate cellular antioxidant defenses, such as low levels and/or activities of cytochrome C, Sod 2 and STAT3. This resulted in dysregulation of IR-induced DNA-damage response and DNA synthesis. Treatment of Fus1 KO cells with PM or Sod 2 mimetic Tempol normalized the oxidative stress response, thus compensating to a significant degree for inadequate antioxidant response. Our findings using Fus1 KO radiosensitive mice suggest that radiosensitivity is mediated via dysregulation of antioxidant response and defective redox homeostasis.
Collapse
|
32
|
Sklavos MM, Stratton P, Giri N, Alter BP, Savage SA, Pinto LA. Reduced serum levels of anti-Müllerian hormone in females with inherited bone marrow failure syndromes. J Clin Endocrinol Metab 2015; 100:E197-203. [PMID: 25405500 PMCID: PMC4318906 DOI: 10.1210/jc.2014-2838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/13/2014] [Indexed: 11/19/2022]
Abstract
CONTEXT Previously, reduced levels of anti-Müllerian hormone (AMH), a circulating marker of ovarian reserve, were found in females with Fanconi anemia (FA). FA, dyskeratosis congenita (DC), and Diamond-Blackfan anemia (DBA) are inherited bone marrow failure syndromes (IBMFS) associated with high risks of bone marrow failure, leukemia, and solid tumors. OBJECTIVE The objective of the study was to assess AMH levels in females with DC or DBA. DESIGN AND SETTING This observational study used the National Cancer Institute's inherited bone marrow failure syndrome cohort at the National Institutes of Health Clinical Center. PARTICIPANTS The study included females with DC, unaffected female relatives of patients with DC, females with DBA, unaffected female relatives of patients with DBA, and unrelated healthy female volunteers younger than 41 years of age. MAIN OUTCOME MEASURE Serum AMH levels were measured. RESULTS Females with DC had significantly lower levels of AMH (median 0.55 ng/mL) compared with unaffected relatives (median 2.28 ng/mL, P = .004) or unrelated healthy volunteers (median 2.69 ng/mL, P = .005). Females with DBA showed a nonsignificant trend for lower levels of AMH (median 0.89 ng/mL) compared with unaffected relatives (median 1.71 ng/mL, P = .21) or unrelated healthy volunteers (P = .11). Patients with DC and DBA had significantly higher levels of AMH (P = .013, P = .003) compared with FA (median 0.05 ng/mL). CONCLUSIONS Our findings suggest that women with IBMFS have lower levels of AMH than unaffected women. This AMH deficiency could be a primary ovarian defect or a consequence of the pathophysiology of the syndromes. Additional studies of AMH and ovarian function in women with IBMFS are warranted to better understand the underlying biology.
Collapse
Affiliation(s)
- Martha M Sklavos
- Human Papillomavirus Immunology Laboratory (M.M.S., L.A.P.), Leidos Biomedical Research, Incorporated, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702; Program in Reproductive and Adult Endocrinology (P.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; and Clinical Genetics Branch (N.G., B.P.A., S.A.S.), Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20852
| | | | | | | | | | | |
Collapse
|
33
|
Vadukoot AK, AbdulSalam SF, Wunderlich M, Pullen ED, Landero-Figueroa J, Mulloy JC, Merino EJ. Design of a hydrogen peroxide-activatable agent that specifically targets cancer cells. Bioorg Med Chem 2014; 22:6885-92. [PMID: 25464887 PMCID: PMC4292800 DOI: 10.1016/j.bmc.2014.10.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/10/2014] [Accepted: 10/19/2014] [Indexed: 01/21/2023]
Abstract
Some cancers, like acute myeloid leukemia (AML), use reactive oxygen species to endogenously activate cell proliferation and angiogenic signaling cascades. Thus many cancers display increases in reactive oxygen like hydrogen peroxide concentrations. To translate this finding into a therapeutic strategy we designed new hydrogen peroxide-activated agents with two key molecular pharmacophores. The first pharmacophore is a peroxide-acceptor and the second is a pendant amine. The acceptor is an N-(2,5-dihydroxyphenyl)acetamide susceptible to hydrogen peroxide oxidation. We hypothesized that selectivity between AML and normal cells could be achieved by tuning the pendant amine. Synthesis and testing of fourteen compounds that differed at the pendent amine led to the identification of an agent (14) with 2μM activity against AML cancer cells and an eleven fold-lower activity in healthy CD34+ blood stem cells. Interestingly, analysis shows that upon oxidation the pendant amine cyclizes, ejecting water, with the acceptor to give a bicyclic compound capable of reacting with nucleophiles. Preliminary mechanistic investigations show that AML cells made from addition of two oncogenes (NrasG12D and MLL-AF9) increase the ROS-status, is initially an anti-oxidant as hydrogen peroxide is consumed to activate the pro-drug, and cells respond by upregulating electrophilic defense as visualized by Western blotting of KEAP1. Thus, using this chemical approach we have obtained a simple, potent, and selective ROS-activated anti-AML agent.
Collapse
Affiliation(s)
- Anish K Vadukoot
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, United States
| | - Safnas F AbdulSalam
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, United States
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Eboni D Pullen
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, United States
| | - Julio Landero-Figueroa
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, United States
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Eddie J Merino
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, United States
| |
Collapse
|
34
|
Fernández García MS, Teruya-Feldstein J. The diagnosis and treatment of dyskeratosis congenita: a review. J Blood Med 2014; 5:157-67. [PMID: 25170286 PMCID: PMC4145822 DOI: 10.2147/jbm.s47437] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dyskeratosis congenita (DC) is an inherited bone marrow failure (BMF) syndrome characterized by the classic triad of abnormal skin pigmentation, nail dystrophy, and oral leukoplakia. However, patients usually develop BMF and are predisposed to cancer, with increased risk for squamous cell carcinoma and hematolymphoid neoplasms. DC is a disease of defective telomere maintenance and is heterogeneous at the genetic level. It can be inherited in X-linked, autosomal dominant, or autosomal recessive patterns. Mutations in at least ten telomere- and telomerase-associated genes have been described in DC. There are no targeted therapies for DC and patients usually die of BMF due to a deficient renewing capability of hematopoietic stem cells. Allogeneic hematopoietic stem cell transplantation is the only curative treatment for BMF.
Collapse
Affiliation(s)
- M Soledad Fernández García
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA ; Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | |
Collapse
|
35
|
Manguan-Garcia C, Pintado-Berninches L, Carrillo J, Machado-Pinilla R, Sastre L, Pérez-Quilis C, Esmoris I, Gimeno A, García-Giménez JL, Pallardó FV, Perona R. Expression of the genetic suppressor element 24.2 (GSE24.2) decreases DNA damage and oxidative stress in X-linked dyskeratosis congenita cells. PLoS One 2014; 9:e101424. [PMID: 24987982 PMCID: PMC4079255 DOI: 10.1371/journal.pone.0101424] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/06/2014] [Indexed: 01/10/2023] Open
Abstract
The predominant X-linked form of Dyskeratosis congenita results from mutations in DKC1, which encodes dyskerin, a protein required for ribosomal RNA modification that is also a component of the telomerase complex. We have previously found that expression of an internal fragment of dyskerin (GSE24.2) rescues telomerase activity in X-linked dyskeratosis congenita (X-DC) patient cells. Here we have found that an increased basal and induced DNA damage response occurred in X-DC cells in comparison with normal cells. DNA damage that is also localized in telomeres results in increased heterochromatin formation and senescence. Expression of a cDNA coding for GSE24.2 rescues both global and telomeric DNA damage. Furthermore, transfection of bacterial purified or a chemically synthesized GSE24.2 peptide is able to rescue basal DNA damage in X-DC cells. We have also observed an increase in oxidative stress in X-DC cells and expression of GSE24.2 was able to diminish it. Altogether our data indicated that supplying GSE24.2, either from a cDNA vector or as a peptide reduces the pathogenic effects of Dkc1 mutations and suggests a novel therapeutic approach.
Collapse
Affiliation(s)
- Cristina Manguan-Garcia
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
- CIBER de Enfermedades Raras, Valencia, Spain
| | | | - Jaime Carrillo
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
| | - Rosario Machado-Pinilla
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
- CIBER de Enfermedades Raras, Valencia, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
- CIBER de Enfermedades Raras, Valencia, Spain
| | - Carme Pérez-Quilis
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Isabel Esmoris
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Amparo Gimeno
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Jose Luis García-Giménez
- CIBER de Enfermedades Raras, Valencia, Spain
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Federico V. Pallardó
- CIBER de Enfermedades Raras, Valencia, Spain
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
- CIBER de Enfermedades Raras, Valencia, Spain
- * E-mail:
| |
Collapse
|
36
|
Moinho R, Brett A, Ferreira G, Lemos S. Pneumococcal vaccine failure: can it be a primary immunodeficiency? BMJ Case Rep 2014; 2014:bcr2014204714. [PMID: 24925540 PMCID: PMC4069748 DOI: 10.1136/bcr-2014-204714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2014] [Indexed: 12/25/2022] Open
Abstract
Vaccine failure is a rare condition and the need to investigate a primary immunodeficiency is controversial. We present the case of a 4-year-old boy, with complete antipneumococcal vaccination, who had necrotising pneumonia with pleural effusion and severe pancytopaenia with need for transfusion. A vaccine-serotype Streptococcus pneumoniae was isolated in the blood culture. On follow-up, detailed medical history, laboratory and genetic investigation led to the diagnosis of X linked dyskeratosis congenita. Dyskeratosis congenita is an inherited disorder that causes shortening or dysfunction of telomeres, affecting mainly rapidly dividing cells (particularly in the skin and haematopoietic system). It leads to bone marrow failure, combined immunodeficiency and predisposition to cancer. The confirmation of this diagnosis allows genetic counselling and medical monitoring of these patients, in order to detect early complications such as bone marrow aplasia or malignancies.
Collapse
Affiliation(s)
- Rita Moinho
- Hospital Pediátrico de Coimbra, Centro Hospitalar e Universitário de coimbra, Coimbra, Portugal
| | - Ana Brett
- Hospital Pediátrico de Coimbra, Centro Hospitalar e Universitário de coimbra, Coimbra, Portugal
| | - Gisela Ferreira
- Department of Serviço de Hematologia, Centro Hospitalar e Universitário de coimbra, Coimbra, Portugal
| | - Sónia Lemos
- Hospital Pediátrico de Coimbra, Centro Hospitalar e Universitário de coimbra, Coimbra, Portugal
| |
Collapse
|
37
|
Heijnen HF, van Wijk R, Pereboom TC, Goos YJ, Seinen CW, van Oirschot BA, van Dooren R, Gastou M, Giles RH, van Solinge W, Kuijpers TW, Gazda HT, Bierings MB, Da Costa L, MacInnes AW. Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway. PLoS Genet 2014; 10:e1004371. [PMID: 24875531 PMCID: PMC4038485 DOI: 10.1371/journal.pgen.1004371] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/24/2014] [Indexed: 12/19/2022] Open
Abstract
Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA), for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP) genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS). The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS). We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies. Diseases linked to mutations affecting the ribosome, ribosomopathies, have an exceptionally wide range of phenotypes. However, many ribosomopathies have some features in common including cytopenia and growth defects. Our study aims to clarify the mechanisms behind these common phenotypes. We find that mutations in ribosomal protein genes result in a series of aberrant signaling events that cause cells to start recycling and consuming their own intracellular contents. This basic mechanism of catabolism is activated when cells are starving for nutrients, and also during the tightly regulated process of blood cell maturation. The deregulation of this mechanism provides an explanation as to why blood cells are so acutely affected by mutations in genes that impair the ribosome. Moreover, we find that the signals activating this catabolism are coupled to impairment of the highly conserved insulin-signaling pathway that is essential for growth. Taken together, our in-depth description of the pathways involved as the result of mutations affecting the ribosome increases our understanding about the etiology of these diseases and opens up previously unknown avenues of potential treatment.
Collapse
Affiliation(s)
- Harry F. Heijnen
- Cell Microscopy Center, Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tamara C. Pereboom
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands
| | - Yvonne J. Goos
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands
| | - Cor W. Seinen
- Cell Microscopy Center, Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Brigitte A. van Oirschot
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rowie van Dooren
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands
| | - Marc Gastou
- U1009, Institut Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Rachel H. Giles
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Taco W. Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Hanna T. Gazda
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Marc B. Bierings
- Department of Pediatric Hematology/Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lydie Da Costa
- AP-HP, Service d'Hématologie Biologique, Hôpital Robert Debré, Paris, France
- Université Paris VII-Denis Diderot, Sorbonne Paris Cité, Paris, France
- U773, CRB3, Paris, France
| | - Alyson W. MacInnes
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
38
|
Tummala H, Kirwan M, Walne AJ, Hossain U, Jackson N, Pondarre C, Plagnol V, Vulliamy T, Dokal I. ERCC6L2 mutations link a distinct bone-marrow-failure syndrome to DNA repair and mitochondrial function. Am J Hum Genet 2014; 94:246-56. [PMID: 24507776 PMCID: PMC3928664 DOI: 10.1016/j.ajhg.2014.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/10/2014] [Indexed: 10/25/2022] Open
Abstract
Exome sequencing was performed in three index cases with bone marrow failure and neurological dysfunction and whose parents are first-degree cousins. Homozygous truncating mutations were identified in ERCC6L2 in two of the individuals. Both of these mutations affect the subcellular localization and stability of ERCC6L2. We show here that knockdown of ERCC6L2 in human A549 cells significantly reduced their viability upon exposure to the DNA-damaging agents mitomycin C and Irofulven, but not etoposide and camptothecin, suggesting a role in nucleotide excision repair. ERCC6L2-knockdown cells also displayed H2AX phosphorylation, which significantly increased upon genotoxic stress, suggesting an early DNA-damage response. Intriguingly, ERCC6L2 was seen to translocate to the mitochondria and the nucleus in response to DNA damage, and ERCC6L2 knockdown induced intracellular reactive oxygen species (ROS). Treatment with the ROS scavenger N-acetyl cysteine attenuated the Irofulven-induced cytotoxicity in ERCC6L2-knockdown cells and abolished ERCCGL2 traffic to the mitochondria and nucleus in response to this DNA-damaging agent. Collectively, these observations identify a distinct bone-marrow-failure syndrome due to mutations in ERCC6L2, a gene implicated in DNA repair and mitochondrial function.
Collapse
Affiliation(s)
- Hemanth Tummala
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Michael Kirwan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Amanda J Walne
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Upal Hossain
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Barts Health NHS Trust, London E1 1BB, UK
| | - Nicholas Jackson
- Department of Haematology, University Hospital, Coventry CV2 2DX, UK
| | - Corinne Pondarre
- Institute of Pediatric Hematology and Oncology, Lyon I University, Lyon 69008, France
| | - Vincent Plagnol
- University College London Genetics Institute, London WC1E 6BT, UK
| | - Tom Vulliamy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Inderjeet Dokal
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Barts Health NHS Trust, London E1 1BB, UK
| |
Collapse
|