1
|
Naseer A, Singh VV, Sellamuthu G, Synek J, Mogilicherla K, Kokoska L, Roy A. Insights into the Detoxification of Spruce Monoterpenes by the Eurasian Spruce Bark Beetle. Int J Mol Sci 2024; 25:10209. [PMID: 39337695 PMCID: PMC11432361 DOI: 10.3390/ijms251810209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Plant defence mechanisms, including physical barriers like toughened bark and chemical defences like allelochemicals, are essential for protecting them against pests. Trees allocate non-structural carbohydrates (NSCs) to produce secondary metabolites like monoterpenes, which increase during biotic stress to fend off pests like the Eurasian spruce bark beetle, ESBB (Ips typographus). Despite these defences, the ESBB infests Norway spruce, causing significant ecological damage by exploiting weakened trees and using pheromones for aggregation. However, the mechanism of sensing and resistance towards host allelochemicals in ESBB is poorly understood. We hypothesised that the exposure of ESBB to spruce allelochemicals, especially monoterpenes, leads to an upsurge in the important detoxification genes like P450s, GSTs, UGTs, and transporters, and at the same time, genes responsible for development must be compromised. The current study demonstrates that exposure to monoterpenes like R-limonene and sabiene effectively elevated detoxification enzyme activities. The differential gene expression (DGE) analysis revealed 294 differentially expressed (DE) detoxification genes in response to R-limonene and 426 DE detoxification genes in response to sabiene treatments, with 209 common genes between the treatments. Amongst these, genes from the cytochrome P450 family 4 and 6 genes (CP4 and CP6), esterases, glutathione S-transferases family 1 (GSTT1), UDP-glucuronosyltransferase 2B genes (UDB), and glucose synthesis-related dehydrogenases were highly upregulated. We further validated 19 genes using RT-qPCR. Additionally, we observed similar high expression levels of detoxification genes across different monoterpene treatments, including myrcene and α-pinene, suggesting a conserved detoxification mechanism in ESBB, which demands further investigation. These findings highlight the potential for molecular target-based beetle management strategies targeting these key detoxification genes.
Collapse
Affiliation(s)
- Aisha Naseer
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Vivek Vikram Singh
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
- Institute of Forest Ecology, Slovak Academy of Sciences, Štúrova 2, 960 53 Zvolen, Slovakia
| | - Gothandapani Sellamuthu
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Jiří Synek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad 500030, Telangana, India
| | - Ladislav Kokoska
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| |
Collapse
|
2
|
Ashraf MZ, Mogilicherla K, Sellamuthu G, Siino V, Levander F, Roy A. Comparative gut proteomics study revealing adaptive physiology of Eurasian spruce bark beetle, Ips typographus (Coleoptera: Scolytinae). FRONTIERS IN PLANT SCIENCE 2023; 14:1157455. [PMID: 38078109 PMCID: PMC10703158 DOI: 10.3389/fpls.2023.1157455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/01/2023] [Indexed: 01/23/2024]
Abstract
The bark beetle, Ips typographus (L.), is a major pest of Norway spruce, Picea abies (L.), causing enormous economic losses globally. The adult stage of the I. typographus has a complex life cycle (callow and sclerotized); the callow beetles feed ferociously, whereas sclerotized male beetles are more aggressive and pioneers in establishing new colonies. We conducted a comparative proteomics study to understand male and female digestion and detoxification processes in callow and sclerotized beetles. Proteome profiling was performed using high-throughput liquid chromatography-mass spectrometry. A total of >3000 proteins were identified from the bark beetle gut, and among them, 539 were differentially abundant (fold change ±2, FDR <0.05) between callow and sclerotized beetles. The differentially abundant proteins (DAPs) mainly engage with binding, catalytic activity, anatomical activity, hydrolase activity, metabolic process, and carbohydrate metabolism, and hence may be crucial for growth, digestion, detoxification, and signalling. We validated selected DAPs with RT-qPCR. Gut enzymes such as NADPH-cytochrome P450 reductase (CYC), glutathione S-transferase (GST), and esterase (EST) play a crucial role in the I. typographus for detoxification and digesting of host allelochemicals. We conducted enzyme activity assays with them and observed a positive correlation of CYC and GST activities with the proteomic results, whereas EST activity was not fully correlated. Furthermore, our investigation revealed that callow beetles had an upregulation of proteins associated with juvenile hormone (JH) biosynthesis and chitin metabolism, whereas sclerotized beetles exhibited an upregulation of proteins linked to fatty acid metabolism and the TCA cycle. These distinctive patterns of protein regulation in metabolic and functional processes are specific to each developmental stage, underscoring the adaptive responses of I. typographicus in overcoming conifer defences and facilitating their survival. Taken together, it is the first gut proteomic study comparing males and females of callow and sclerotized I. typographus, shedding light on the adaptive ecology at the molecular level. Furthermore, the information about bark beetle handling of nutritionally limiting and defence-rich spruce phloem diet can be utilized to formulate RNAi-mediated beetle management.
Collapse
Affiliation(s)
- Muhammad Zubair Ashraf
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Gothandapani Sellamuthu
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
3
|
Liu B, Fu D, Ning H, Tang M, Chen H. Knockdown of CYP6CR2 and CYP6DE5 reduces tolerance to host plant allelochemicals in the Chinese white pine beetle Dendroctonus armandi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105180. [PMID: 36127042 DOI: 10.1016/j.pestbp.2022.105180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Bark beetles rely on detoxifying enzymes to resist the defensive terpenoids of the host tree. Insect cytochrome P450 (CYPs) plays a key role in the detoxification of pesticides and plant allelochemicals. CYP6 family is unique to Insecta, and its biochemical function is basically related to the metabolism of exogenous substances. In this study, we sequenced and characterized the full-length cDNAs of two CYP6 genes from Chinese white pine beetle, Dendroctonus armandi. Spatiotemporal expression profiling revealed that the expression of CYP6CR2 and CYP6DE5 was higher in larval and adult stages of D. armandi than that in other developmental stages, and that two genes predominantly expressed in brain, midgut, fat body, Malpighian tubules or hemolymph. The expression of CYP6CR2 and CYP6DE5 was significantly induced after feeding on the phloem of Pinus armandii and exposure to six stimuli [(±)- α -pinene, (-)-α-pinene, (-)-β-pinene, (+)-3-carene, (±)-limonene and turpentine]. Importantly, silencing CYP6CR2 and CYP6DE5 separately could increase the sensitivity, led to a significant reduction of the activity of P450, resulting a significant increase in adult mortality after treatment with terpenoids. The comprehensive results of this study showed that in the process of host selection and colonization, the functions of CYPs were mainly to hydrolyze the chemical defense of the host and degrade odor molecules. These findings may help to develop new treatments to control this important pest.
Collapse
Affiliation(s)
- Bin Liu
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Danyang Fu
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Hang Ning
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Ming Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; College of Forestry, Northwest A&F University, Yangling 712100, China.
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; College of Forestry, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Chiu CC, Bohlmann J. Mountain Pine Beetle Epidemic: An Interplay of Terpenoids in Host Defense and Insect Pheromones. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:475-494. [PMID: 35130442 DOI: 10.1146/annurev-arplant-070921-103617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mountain pine beetle epidemic has highlighted the complex interactions of bark beetles with conifer host defenses. In these interactions, oleoresin terpenoids and volatiles, produced and released by the host tree, can be both harmful and beneficial to the beetle's success in colonizing a tree and completing its life cycle. The insect spends almost its entire life, from egg to adult, within the bark and phloem of a pine host, exposed to large quantities of complex mixtures of oleoresin terpenoids. Conifer oleoresin comprises mostly monoterpenes and diterpene resin acids as well as many different sesquiterpenes. It functions as a major chemical and physical defense system. However, the insect has evolved host colonization behavior and enzymes for terpenoid metabolism and detoxification that allow it to overcome some of the terpenoid defenses and, importantly, to co-opt pine monoterpenes as cues for host search and as a precursor for its own pheromone system. The insect-associated microbiome also plays a role in the metabolism of conifer terpenoids.
Collapse
Affiliation(s)
- Christine C Chiu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada;
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
5
|
Lazarević J, Jevremović S, Kostić I, Vuleta A, Manitašević Jovanović S, Kostić M, Šešlija Jovanović D. Assessment of Sex-Specific Toxicity and Physiological Responses to Thymol in a Common Bean Pest Acanthoscelides obtectus Say. Front Physiol 2022; 13:842314. [PMID: 35250641 PMCID: PMC8892178 DOI: 10.3389/fphys.2022.842314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acanthoscelides obtectus Say (Coleoptera: Chrysomelidae: Bruchinae), is one of the most important pests of the common bean Phaseolus vulgaris L. Without appropriate management it may cause significant seed loss in storages. In search for means of environmentally safe and effective protection of beans we assessed biological activity of thymol, an oxygenated monoterpene present in essential oils of many aromatic plants. We studied contact toxicity of thymol on bean seeds and its effects on adult longevity and emergence in F1 generation. Furthermore, we determined acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT), mixed-function oxidase (MFO), carboxylesterases (CarE) and glutathione S-transferase (GST) activities in response to 24 h exposure of beetles to sublethal and lethal thymol concentrations. Our results showed that thymol decreased adult survival, longevity and percentage of adult emergence. Higher median lethal concentration (LC50) was recorded in females indicating their higher tolerance comparing to males. Overall, activities of SOD, CAT and CarE increased at sublethal and MFO increased at both sublethal and lethal thymol concentrations. On the other hand, GST and AChE activities decreased along with the increase in thymol concentrations from sublethal (1/5 of LC50, 1/2 of LC50) to lethal (LC50). Enzyme responses to the presence of thymol on bean seed were sex-specific. In the control group females had lower CarE and higher SOD, CAT and GST activity than males. In treatment groups, females had much higher CAT activity and much lower CarE activity than males. Our results contribute to deeper understanding of physiological mechanisms underlying thymol toxicity and tolerance which should be taken into account in future formulation of a thymol-based insecticide.
Collapse
|
6
|
Torres-Banda V, Obregón-Molina G, Viridiana Soto-Robles L, Albores-Medina A, Fernanda López M, Zúñiga G. Gut transcriptome of two bark beetle species stimulated with the same kairomones reveals molecular differences in detoxification pathways. Comput Struct Biotechnol J 2022; 20:3080-3095. [PMID: 35782727 PMCID: PMC9233182 DOI: 10.1016/j.csbj.2022.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Dendroctonus bark beetles are the most destructive agents in coniferous forests. These beetles come into contact with the toxic compounds of their host's chemical defenses throughout their life cycle, some of which are also used by the insects as kairomones to select their host trees during the colonization process. However, little is known about the molecular mechanisms by which the insects counteract the toxicity of these compounds. Here, two sibling species of bark beetles, D. valens and D. rhizophagus, were stimulated with vapors of a blend of their main kairomones (α-pinene, β-pinene and 3-carene), in order to compare the transcriptional response of their gut. A total of 48 180 unigenes were identified in D. valens and 43 704 in D. rhizophagus, in response to kairomones blend. The analysis of differential gene expression showed a transcriptional response in D. valens (739 unigenes, 0.58–10.36 Log2FC) related to digestive process and in D. rhizophagus (322 unigenes 0.87–13.08 Log2FC) related to xenobiotics metabolism. The expression profiles of detoxification genes mainly evidenced the up-regulation of COEs and GSTs in D. valens, and the up-regulation of P450s in D. rhizophagus. Results suggest that terpenes metabolism comes accompanied by an integral hormetic response, result of compensatory mechanisms, including the activation of other metabolic pathways, to ensure the supply of energy and the survival of organisms which is specific for each species, according to its life history and ecological strategy.
Collapse
Affiliation(s)
- Verónica Torres-Banda
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - Gabriel Obregón-Molina
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - L. Viridiana Soto-Robles
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - Arnulfo Albores-Medina
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City, CP 07360, Mexico
| | - María Fernanda López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
- Corresponding authors.
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
- Corresponding authors.
| |
Collapse
|
7
|
Shegelski VA, Evenden ML, Huber DPW, Sperling FAH. Identification of genes and gene expression associated with dispersal capacity in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). PeerJ 2021; 9:e12382. [PMID: 34754626 PMCID: PMC8555496 DOI: 10.7717/peerj.12382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Dispersal flights by the mountain pine beetle have allowed range expansion and major damage to pine stands in western Canada. We asked what the genetic and transcriptional basis of mountain pine beetle dispersal capacity is. Using flight mills, RNA-seq and a targeted association study, we compared strong-flying, weak-flying, and non-flying female beetles from the recently colonized northern end of their range. Nearly 3,000 genes were differentially expressed between strong and weak flying beetles, while weak fliers and nonfliers did not significantly differ. The differentially expressed genes were mainly associated with lipid metabolism, muscle maintenance, oxidative stress response, detoxification, endocrine function, and flight behavior. Three variant loci, two in the coding region of genes, were significantly associated with flight capacity but these genes had no known functional link to flight. Several differentially expressed gene systems may be important for sustained flight, while other systems are downregulated during dispersal and likely to conserve energy before host colonization. The candidate genes and SNPs identified here will inform further studies and management of mountain pine beetle, as well as contribute to understanding the mechanisms of insect dispersal flights.
Collapse
Affiliation(s)
- Victor A Shegelski
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Maya L Evenden
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dezene P W Huber
- Faculty of Environment, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Keeling CI, Campbell EO, Batista PD, Shegelski VA, Trevoy SAL, Huber DPW, Janes JK, Sperling FAH. Chromosome-level genome assembly reveals genomic architecture of northern range expansion in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Mol Ecol Resour 2021; 22:1149-1167. [PMID: 34637588 DOI: 10.1111/1755-0998.13528] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Genome sequencing methods and assembly tools have improved dramatically since the 2013 publication of draft genome assemblies for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). We conducted proximity ligation library sequencing and scaffolding to improve contiguity, and then used linkage mapping and recent bioinformatic tools for correction and further improvement. The new assemblies have dramatically improved contiguity and gaps compared to the originals: N50 values increased 26- to 36-fold, and the number of gaps were reduced by half. Ninety per cent of the content of the assemblies is now contained in 12 and 11 scaffolds for the female and male assemblies, respectively. Based on linkage mapping information, the 12 largest scaffolds in both assemblies represent all 11 autosomal chromosomes and the neo-X chromosome. These assemblies now have nearly chromosome-sized scaffolds and will be instrumental for studying genomic architecture, chromosome evolution, population genomics, functional genomics, and adaptation in this and other pest insects. We also identified regions in two chromosomes, including the ancestral-X portion of the neo-X chromosome, with elevated differentiation between northern and southern Canadian populations.
Collapse
Affiliation(s)
- Christopher I Keeling
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Québec, QC, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, QC, Canada
| | - Erin O Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Philip D Batista
- Faculty of Environment, University of Northern British Columbia, Prince George, BC, Canada
| | - Victor A Shegelski
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Stephen A L Trevoy
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dezene P W Huber
- Faculty of Environment, University of Northern British Columbia, Prince George, BC, Canada
| | - Jasmine K Janes
- Biology Department, Vancouver Island University, Nanaimo, BC, Canada.,School of Environmental and Rural Studies, University of New England, Armidale, NSW, Australia
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Dai L, Gao H, Chen H. Expression Levels of Detoxification Enzyme Genes from Dendroctonus armandi (Coleoptera: Curculionidae) Fed on a Solid Diet Containing Pine Phloem and Terpenoids. INSECTS 2021; 12:insects12100926. [PMID: 34680695 PMCID: PMC8541301 DOI: 10.3390/insects12100926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The bark beetle is the most well-known pest in coniferous trees worldwide. These insects only leave the host pine bark when they disperse to locate a new host. Determining how Dendroctonus armandi overcome the trees’ terpene-based defense systems has been the key problem in the study of bark beetles. Therefore, the aim of this study was to discover the molecular mechanism of insect detoxification enzymes’ ability to confer resistance to terpenes. For this purpose, the genes of cytochrome P450s, glutathione S-transferases, and carboxylesterases were studied in beetles given diets containing terpenes. The results suggest that beetles express different genes in response to terpenoids, and the responses of multiple detoxifying enzymes indicate these insects’ adaption to their chemical environment. Abstract Bark beetles overcome the toxic terpenoids produced by pine trees by both detoxifying and converting them into a pheromone system. Detoxification enzymes such as cytochrome P450s, glutathione S-transferases, and carboxylesterases are involved in the ability of Dendroctonus armandi to adapt to its chemical environment. Ten genes from these three major classes of detoxification enzymes were selected to study how these enzymes help D. armandi to respond to the host defenses. The expression profile of these detoxification enzyme genes was observed in adult beetles after feeding on different types of diet. Significant differences were observed between two types of seminatural diet containing the phloem of pines, and a purely artificial diet containing five monoterpenes ((−)-α-pinene, (−)-β-pinene, (+)-3-carene, (±)-limonene, and turpentine oil) also caused differential transcript levels in the detoxification enzyme genes. The results suggest that monoterpenes enter the beetles through different routes (i.e., respiratory and digestive systems) and cause the expression of different genes in response, which might be involved in pheromone metabolism. In addition, the xenobiotic metabolism in bark beetles should be considered as a system comprising multiple detoxifying enzymes.
Collapse
Affiliation(s)
- Lulu Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210000, China;
| | - Haiming Gao
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-020-85280256
| |
Collapse
|
10
|
Joga MR, Mogilicherla K, Smagghe G, Roy A. RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype? FRONTIERS IN PLANT SCIENCE 2021; 12:733608. [PMID: 34567044 PMCID: PMC8461336 DOI: 10.3389/fpls.2021.733608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 06/01/2023]
Abstract
Forest insects are emerging in large extension in response to ongoing climatic changes, penetrating geographic barriers, utilizing novel hosts, and influencing many hectares of conifer forests worldwide. Current management strategies have been unable to keep pace with forest insect population outbreaks, and therefore novel and aggressive management strategies are urgently required to manage forest insects. RNA interference (RNAi), a Noble Prize-winning discovery, is an emerging approach that can be used for forest protection. The RNAi pathway is triggered by dsRNA molecules, which, in turn, silences genes and disrupts protein function, ultimately causing the death of the targeted insect. RNAi is very effective against pest insects; however, its proficiency varies significantly among insect species, tissues, and genes. The coleopteran forest insects are susceptible to RNAi and can be the initial target, but we lack practical means of delivery, particularly in systems with long-lived, endophagous insects such as the Emerald ash borer, Asian longhorn beetles, and bark beetles. The widespread use of RNAi in forest pest management has major challenges, including its efficiency, target gene selection, dsRNA design, lack of reliable dsRNA delivery methods, non-target and off-target effects, and potential resistance development in wood-boring pest populations. This review focuses on recent innovations in RNAi delivery that can be deployed against forest pests, such as cationic liposome-assisted (lipids), nanoparticle-enabled (polymers or peptides), symbiont-mediated (fungi, bacteria, and viruses), and plant-mediated deliveries (trunk injection, root absorption). Our findings guide future risk analysis of dsRNA-based forest protection products (FPPs) and risk assessment frameworks incorporating sequence complementarity-based analysis for off-target predictions. This review also points out barriers to further developing RNAi for forest pest management and suggests future directions of research that will build the future use of RNAi against wood-boring coleopterans.
Collapse
Affiliation(s)
- Mallikarjuna Reddy Joga
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kanakachari Mogilicherla
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Amit Roy
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
11
|
Gao H, Dai L, Fu D, Sun Y, Chen H. Isolation, Expression Profiling, and Regulation via Host Allelochemicals of 16 Glutathione S-Transferases in the Chinese White Pine Beetle, Dendroctonus armandi. Front Physiol 2020; 11:546592. [PMID: 33281609 PMCID: PMC7689161 DOI: 10.3389/fphys.2020.546592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
The Chinese white pine beetle (Dendroctonus armandi) is undoubtedly one of the most important pests causing ecological damage in the Qinling Mountains. When bark beetles invade conifers, they must overcome host tree defenses, including primary resistance and induced resistance responses. Moreover, this induced resistance occurs following herbivory by bark beetles. Bark beetles have a corresponding defense mechanism for degrading toxic compounds, and glutathione S-transferases (GSTs) can catalyze the binding of endogenous substances that reduce glutathione (GSH) to various harmful electrophilic substrates, increasing their solubility and facilitating their excretion from cells. In this experiment, we successfully obtained sixteen full-length sequences of D. armandi, which belonged to four GST categories (delta, epsilon, sigma, and theta). The transcript levels of sixteen GSTs in D. armandi were compared at four developmental stages (larvae, pupae, teneral adults, and adults), three different tissues (antennae, gut, and reproductive organs), and under various levels of terpenoid stimuli during feeding on phloem tissue to evaluate the various relevant modes of action. This study aids in the understanding of the interaction between monoterpenes and beetles, and beetles’ detoxification through GSTs.
Collapse
Affiliation(s)
- Haiming Gao
- College of Forestry, Northwest A&F University, Yangling, China
| | - Lulu Dai
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Danyang Fu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yaya Sun
- College of Forestry, Northwest A&F University, Yangling, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Dai L, Wang Y, Chen H. Molecular characterization and expression of two enzymes from Dendroctonus armandi, with phloem feeding and juvenile hormone. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110537. [PMID: 33227420 DOI: 10.1016/j.cbpb.2020.110537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
The Chinese white pine beetle, Dendroctonus armandi Tsai and Li, is a serious native pest in the Qinling Mountains of China. exo-Bevicomin, as the main component of bark beetle pheromone, is released by the female D. armandi. In this paper, we identified two genes encoding, (Z)-6-nonen-2-ol dehydrogenase and CYP6CR, that are known to be involved in xo-brevicomin synthesis to improve the understanding of exo-brevicomin biosynthesis in the Chinese white pine beetle. The two protiens had high homology with their orthologs in the exo-brevicomin biosynthesis pathway from D. ponderosae. The expression profiles of CYP6CR12 and DaZnoDH in D. armandi females are closely correlated with exo-brevicomin biosynthesis. The expression levels of CYP6CR12 and DaZnoDH are also regulated by feeding behavior and juvenile hormone levels. Since they are also expressed in males, CYP6CR12 and DaZnoDH are not only important for exo-brevicomin biosynthesis that this might be potential role for the semichemical biosysthesis pathways.
Collapse
Affiliation(s)
- Lulu Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210000, China
| | - Yuanyuan Wang
- College of Forestry, Northwest A and F University, Yangling, Shaanxi 712100, China
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Molecular Cloning and Characterization of Five Glutathione S-Transferase Genes and Promoters from Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) and Their Response to Tannic Acid Stress. INSECTS 2020; 11:insects11060339. [PMID: 32492871 PMCID: PMC7349759 DOI: 10.3390/insects11060339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
Plants accumulate phenolic compounds such as tannic acid to resist insect herbivores. The survival of insects exposed to toxic secondary metabolites depends on the detoxification metabolism mediated by limited groups of glutathione S-transferases (GSTs). Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) is an important foliar pest of poplar trees. GSTs play an important role in xenobiotic detoxification in M. troglodyta. Five GST genes were identified in M. troglodyta and were classified into five different cytosolic GST classes, delta, omega, sigma, theta, and zeta. Real-time fluorescent quantitative polymerase chain reaction (qPCR) was used to determine the mRNA expression of the five cloned GSTs in the midguts and fat bodies of M. troglodyta. The mRNA expression of the five GSTs was significantly induced when M. troglodyta was exposed to tannic acid. To further understand the tannic acid regulatory cascade, the 5′-flanking promoter sequences of the five MtGSTs were isolated by genome walking methods, and the promoters were very active and induced by tannic acid. In summary, the induction of GST mRNA expression was due to the response of five MtGST promoters to tannic acid. Therefore, MtGST promoters play an important role in the regulation of GST transcription.
Collapse
|
14
|
Gene Expression and Diet Breadth in Plant-Feeding Insects: Summarizing Trends. Trends Ecol Evol 2019; 35:259-277. [PMID: 31791830 DOI: 10.1016/j.tree.2019.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 11/20/2022]
Abstract
Transcriptomic studies lend insights into the role of transcriptional plasticity in adaptation and specialization. Recently, there has been growing interest in understanding the relationship between variation in herbivorous insect gene expression and the evolution of diet breadth. We review the studies that have emerged on insect gene expression and host plant use, and outline the questions and approaches in the field. Many candidate genes underlying herbivory and specialization have been identified, and a few key studies demonstrate increased transcriptional plasticity associated with generalist compared with specialist species. Addressing the roles that transcriptional variation plays in insect diet breadth will have important implications for our understanding of the evolution of specialization and the genetic and environmental factors that govern insect-plant interactions.
Collapse
|
15
|
Soto-Robles LV, Torres-Banda V, Rivera-Orduña FN, Curiel-Quesada E, Hidalgo-Lara ME, Zúñiga G. An Overview of Genes From Cyberlindnera americana, a Symbiont Yeast Isolated From the Gut of the Bark Beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae), Involved in the Detoxification Process Using Genome and Transcriptome Data. Front Microbiol 2019; 10:2180. [PMID: 31611850 PMCID: PMC6777644 DOI: 10.3389/fmicb.2019.02180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022] Open
Abstract
Bark beetles from Dendroctonus genus promote ecological succession and nutrient cycling in coniferous forests. However, they can trigger outbreaks leading to important economic losses in the forest industry. Conifers have evolved resistance mechanisms that can be toxic to insects but at the same time, bark beetles are capable of overcoming tree barriers and colonize these habitats. In this sense, symbiont yeasts present in the gut of bark beetles have been suggested to play a role in the detoxification process of tree defensive chemicals. In the present study, genes related to this process were identified and their response to a terpene highly toxic to bark beetles and their symbionts was analyzed in the Cyberlindnera americana yeast. The genome and transcriptome of C. americana (ChDrAdgY46) isolated from the gut of Dendroctonus rhizophagus were presented. Genome analysis identified 5752 protein-coding genes and diverse gene families associated with the detoxification process. The most abundant belonged to the Aldo-Keto Reductase Superfamily, ATP-binding cassette Superfamily, and the Major Facilitator Superfamily transporters. The transcriptome analysis of non-α-pinene stimulated and α-pinene stimulated yeasts showed a significant expression of genes belonging to these families. The activities demonstrated by the genes identified as Aryl-alcohol dehydrogenase and ABC transporter under (+)-α-pinene suggest that they are responsible, that C. americana is a dominant symbiont that resists high amounts of monoterpenes inside the gut of bark beetles.
Collapse
Affiliation(s)
- L Viridiana Soto-Robles
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Verónica Torres-Banda
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Flor N Rivera-Orduña
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Everardo Curiel-Quesada
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Gerardo Zúñiga
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
16
|
Functions of mountain pine beetle cytochromes P450 CYP6DJ1, CYP6BW1 and CYP6BW3 in the oxidation of pine monoterpenes and diterpene resin acids. PLoS One 2019; 14:e0216753. [PMID: 31071168 PMCID: PMC6508646 DOI: 10.1371/journal.pone.0216753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/26/2019] [Indexed: 01/17/2023] Open
Abstract
The mountain pine beetle (MPB; Dendroctonus ponderosae) is a forest insect pest that attacks several different pine (Pinus) species in its native range of distribution in western North America. MPB are exposed for most of their life cycle to the chemical defenses of their hosts. These defenses are dominated by oleoresin secretions containing mostly various monoterpenes and diterpene resin acids (DRAs). Cytochrome P450 enzymes (P450s) of the MPB are thought to be involved in the metabolism of at least some of these defense compounds. Here we describe the cloning and characterization of three MPB P450s, CYP6DJ1, CYP6BW1 and CYP6BW3, and their functions in the oxidation of various monoterpenes and diterpene resin acids. CYP6DJ1 oxidizes the monoterpenes (+)-(4R)-limonene, (-)-(4S)-limonene and terpinolene and produces (4R,8R)-limonene-8,9-epoxide, (4R,8S)-limonene-8,9-epoxide, (4S,8S)-limonene-8,9-epoxide, (4S,8R)-limonene-8,9-epoxide, perilla alcohol and several unidentified oxidized compounds. These products of CYP6DJ1 were also identified in extracts of MPB treated with the same monoterpenes. CYP6BW1 and CYP6BW3 both oxidize the DRAs abietic acid, dehydroabietic acid, neoabietic acid, levopimaric acid, palustric acid, and isopimaric acid, producing hydroxylated and epoxidized DRAs. CYP6DJ1, CYP6BW1 and CYP6BW3 appear to contribute to the metabolism of oleoresin terpenes as part of the MPB's ability to cope with host defenses.
Collapse
|
17
|
Sarabia LE, López MF, Pineda-Mendoza RM, Obregón-Molina G, Gonzalez-Escobedo R, Albores-Medina A, Zúñiga G. Time-Course of CYP450 Genes Expression From Dendroctonus rhizophagus (Curculionidae: Scolytinae) During Early Hours of Drilling Bark and Settling Into the Host Tree. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5494808. [PMID: 31115475 PMCID: PMC6529903 DOI: 10.1093/jisesa/iez046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Dendroctonus bark beetles (Scolytinae) are one of the most important disturbance agents of coniferous forests in North and Central America. These beetles spend their lives almost entirely under the tree bark, and their survival and reproductive success depend on their ability to overcome the toxic effect of the trees' oleoresin. The cytochromes P450 (CYPs) are associated with the detoxification process of xenobiotics, as well as other physiological processes. Different cytochromes (families 4, 6, and 9) in the Dendroctonus species have been expressed under several experimental conditions; nevertheless, the expression time-course of these genes is unknown. To explore the induction speed of CYPs, we evaluated the relative expression of the CYP6BW5, CYP6DG1, CYP6DJ2, CYP9Z18, and CYP9Z20 genes at the early hours of drilling and settling into a tree (1, 2, 4, 6, 8, 12, 18 h) both in females and males, solitary or paired, of the bark beetle Dendroctonus rhizophagus Thomas and Bright. Our findings show that the five genes were rapidly overexpressed in the early hours (1 to 6 h) in both sexes and in solitary and paired conditions, suggesting their participation in the detoxification process. Additionally, the CYPs expression shows up- and down-regulation patterns through these short times, suggesting their probable participation in other physiological processes as the biosynthesis of hormones, pheromones or compounds related to reproduction.
Collapse
Affiliation(s)
- Laura E Sarabia
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, Mexico
| | - María F López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, Mexico
| | - Rosa M Pineda-Mendoza
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, Mexico
| | - Gabriel Obregón-Molina
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, Mexico
| | - Roman Gonzalez-Escobedo
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, Mexico
| | - Arnulfo Albores-Medina
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City, Mexico
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, Mexico
| |
Collapse
|
18
|
Dai L, Gao H, Ye J, Fu D, Sun Y, Chen H. Isolation of CarE genes from the Chinese white pine beetle Dendroctonus armandi (Curculionidae: Scolytinae) and their response to host chemical defense. PEST MANAGEMENT SCIENCE 2019; 75:986-997. [PMID: 30204286 DOI: 10.1002/ps.5205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Bark beetles rely on detoxifying enzymes to resist the defensive terpenoids of their host trees. Research on carboxylesterases (CarEs) has focused on their multiple functions in the metabolic detoxification of pesticides and plant allelochemicals, drug resistance, and juvenile hormone and pheromone degradation. RESULT We identified eight new CarE genes in the Chinese white pine beetle (Dendroctonus armandi) and carried out bioinformatics analysis on the deduced full-length amino acid sequences. Differential transcript levels of CarE genes were observed between sexes; within these levels, significant differences were found among the different development stages, and between insects fed on the phloem of Pinus armandi and exposed to five stimuli [(-)-α-pinene, (-)-β-pinene, (+)-3-carene, limonene and turpentine] at 8 and 24 h. CONCLUSION Transcription levels of CarE genes suggest some relationship with the detoxification of terpenoids released by host trees. The functions of bark beetle esterase are mainly in hydrolyzing the host chemical defense and degrading odorant molecules during host selection and colonization. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lulu Dai
- College of Forestry, Northwest A&F University, Yangling, China
| | - Haiming Gao
- College of Forestry, Northwest A&F University, Yangling, China
| | - Jiaqi Ye
- College of Forestry, Northwest A&F University, Yangling, China
| | - Danyang Fu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yaya Sun
- College of Forestry, Northwest A&F University, Yangling, China
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Mukrimin M, Kovalchuk A, Neves LG, Jaber EHA, Haapanen M, Kirst M, Asiegbu FO. Genome-Wide Exon-Capture Approach Identifies Genetic Variants of Norway Spruce Genes Associated With Susceptibility to Heterobasidion parviporum Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:793. [PMID: 29946332 PMCID: PMC6005875 DOI: 10.3389/fpls.2018.00793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/24/2018] [Indexed: 05/03/2023]
Abstract
Root and butt rot caused by members of the Heterobasidion annosum species complex is the most economically important disease of conifer trees in boreal forests. Wood decay in the infected trees dramatically decreases their value and causes considerable losses to forest owners. Trees vary in their susceptibility to Heterobasidion infection, but the genetic determinants underlying the variation in the susceptibility are not well-understood. We performed the identification of Norway spruce genes associated with the resistance to Heterobasidion parviporum infection using genome-wide exon-capture approach. Sixty-four clonal Norway spruce lines were phenotyped, and their responses to H. parviporum inoculation were determined by lesion length measurements. Afterwards, the spruce lines were genotyped by targeted resequencing and identification of genetic variants (SNPs). Genome-wide association analysis identified 10 SNPs located within 8 genes as significantly associated with the larger necrotic lesions in response to H. parviporum inoculation. The genetic variants identified in our analysis are potential marker candidates for future screening programs aiming at the differentiation of disease-susceptible and resistant trees.
Collapse
Affiliation(s)
- Mukrimin Mukrimin
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Department of Forestry, Faculty of Forestry, Hasanuddin University, Makassar, Indonesia
| | - Andriy Kovalchuk
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | | | - Emad H. A. Jaber
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Matti Haapanen
- Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Itoh H, Tago K, Hayatsu M, Kikuchi Y. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep 2018; 35:434-454. [DOI: 10.1039/c7np00051k] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Symbiotic microorganisms degrade natural and artificial toxic compounds, and confer toxin resistance on insect hosts.
Collapse
Affiliation(s)
- Hideomi Itoh
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
| | - Kanako Tago
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Masahito Hayatsu
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
- Graduate School of Agriculture
| |
Collapse
|
21
|
Chiu CC, Keeling CI, Bohlmann J. Toxicity of Pine Monoterpenes to Mountain Pine Beetle. Sci Rep 2017; 7:8858. [PMID: 28821756 PMCID: PMC5562797 DOI: 10.1038/s41598-017-08983-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022] Open
Abstract
The mountain pine beetle (Dendroctonus ponderosae; MPB) is an eruptive bark beetle species affecting pine forests of western North America. MPB are exposed to volatile monoterpenes, which are important host defense chemicals. We assessed the toxicity of the ten most abundant monoterpenes of lodgepole pine (Pinus contorta), a major host in the current MPB epidemic, against adult MPB from two locations in British Columbia, Canada. Monoterpenes were tested as individual volatiles and included (-)-β-phellandrene, (+)-3-carene, myrcene, terpinolene, and both enantiomers of α-pinene, β-pinene and limonene. Dose-mortality experiments identified (-)-limonene as the most toxic (LC50: 32 μL/L), and (-)-α-pinene (LC50: 290 μL/L) and terpinolene (LC50: >500 μL/L) as the least toxic. MPB body weight had a significant positive effect on the ability to survive most monoterpene volatiles, while sex did not have a significant effect with most monoterpenes. This study helps to quantitatively define the effects of individual monoterpenes towards MPB mortality, which is critical when assessing the variable monoterpene chemical defense profiles of its host species.
Collapse
Affiliation(s)
- Christine C Chiu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T, 1Z4, Canada
- Botany Department, University of British Columbia, 6270 University Blvd, Vancouver, B.C., V6T 1Z4, Canada
| | - Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T, 1Z4, Canada
- Laurentian Forestry Centre, Natural Resources Canada, P.O. Box 10380, Stn. Sainte-Foy, 1055 du P.E.P.S., Quebec City, QC, G1V 4C7, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T, 1Z4, Canada.
- Botany Department, University of British Columbia, 6270 University Blvd, Vancouver, B.C., V6T 1Z4, Canada.
| |
Collapse
|
22
|
Nadeau JA, Petereit J, Tillett RL, Jung K, Fotoohi M, MacLean M, Young S, Schlauch K, Blomquist GJ, Tittiger C. Comparative transcriptomics of mountain pine beetle pheromone-biosynthetic tissues and functional analysis of CYP6DE3. BMC Genomics 2017; 18:311. [PMID: 28427347 PMCID: PMC5397757 DOI: 10.1186/s12864-017-3696-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/11/2017] [Indexed: 12/14/2022] Open
Abstract
Background The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) is a highly destructive pest of pine forests in western North America. During flight to a new host tree and initiation of feeding, mountain pine beetles release aggregation pheromones. The biosynthetic pathways of these pheromones are sex-specific and localized in the midgut and fat body, but the enzymes involved have not all been identified or characterized. Results We used a comparative RNA-Seq analysis between fed and unfed male and female MPB midguts and fat bodies to identify candidate genes involved in pheromone biosynthesis. The 13,407 potentially unique transcripts showed clear separation based on feeding state and gender. Gene co-expression network construction and examination using petal identified gene groups that were tightly connected. This, as well as other co-expression and gene ontology analyses, identified all four known pheromone biosynthetic genes, confirmed the tentative identification of four others from a previous study, and suggested nine novel candidates. One cytochrome P450 monooxygenase, CYP6DE3, identified as a possible exo-brevicomin-biosynthetic enzyme in this study, was functionally characterized and likely is involved in resin detoxification rather than pheromone biosynthesis. Conclusions Our analysis supported previously characterized pheromone-biosynthetic genes involved in exo-brevicomin and frontalin biosynthesis and identified a number of candidate cytochrome P450 monooxygenases and a putative cyclase for further studies. Functional analyses of CYP6DE3 suggest its role in resin detoxification and underscore the limitation of using high-throughput data to tentatively identify candidate genes. Further functional analyses of candidate genes found in this study should lead to the full characterization of MPB pheromone biosynthetic pathways and the identification of molecular targets for possible pest management strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3696-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J A Nadeau
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - J Petereit
- Biomedical Engineering Department, University of Nevada, Reno, NV, 89557, USA
| | - R L Tillett
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV, 89557, USA
| | - K Jung
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - M Fotoohi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - M MacLean
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - S Young
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - K Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - G J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - C Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
23
|
Reid ML, Sekhon JK, LaFramboise LM. Toxicity of Monoterpene Structure, Diversity and Concentration to Mountain Pine Beetles, Dendroctonus ponderosae: Beetle Traits Matter More. J Chem Ecol 2017; 43:351-361. [DOI: 10.1007/s10886-017-0824-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/02/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023]
|
24
|
Dendroctonus armandi (Curculionidae: Scolytinae) cytochrome P450s display tissue specificity and responses to host terpenoids. Comp Biochem Physiol B Biochem Mol Biol 2016; 201:1-11. [DOI: 10.1016/j.cbpb.2016.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 01/09/2023]
|
25
|
Robert JA, Bonnett T, Pitt C, Spooner LJ, Fraser J, Yuen MMS, Keeling CI, Bohlmann J, Huber DPW. Gene expression analysis of overwintering mountain pine beetle larvae suggests multiple systems involved in overwintering stress, cold hardiness, and preparation for spring development. PeerJ 2016; 4:e2109. [PMID: 27441109 PMCID: PMC4941763 DOI: 10.7717/peerj.2109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/16/2016] [Indexed: 11/30/2022] Open
Abstract
Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period—early-autumn, late-autumn, early-spring, and late-spring. Changing transcript profiles over the winter indicates a multipronged physiological response from larvae that is broadly characterized by gene transcripts involved in insect immune responses and detoxification during the autumn. In the spring, although transcripts associated with developmental process are present, there was no particular biological process dominating the transcriptome.
Collapse
Affiliation(s)
- Jeanne A Robert
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Tiffany Bonnett
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Caitlin Pitt
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Luke J Spooner
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Jordie Fraser
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Macaire M S Yuen
- Department of Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher I Keeling
- Department of Michael Smith Laboratories, University of British Columbia,Vancouver,British Columbia,Canada; Department of Biological Sciences, Simon Fraser University,Burnaby,British Columbia,Canada
| | - Jörg Bohlmann
- Department of Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dezene P W Huber
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
26
|
Dai L, Ma J, Ma M, Zhang H, Shi Q, Zhang R, Chen H. Characterisation of GST genes from the Chinese white pine beetle Dendroctonus armandi (Curculionidae: Scolytinae) and their response to host chemical defence. PEST MANAGEMENT SCIENCE 2016; 72:816-827. [PMID: 26079390 DOI: 10.1002/ps.4059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/24/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Bark beetles rely on their detoxifying enzymes to resist the defensive terpenoids of host trees. Glutathione S-transferases (GSTs) conjugate xenobiotic compounds with a glutathione moiety (GSH) and often work in tandem with cytochromes P450 or other enzymes that aid in the detoxification, sequestration or excretion of toxic compounds. RESULT We identified nine new GST genes in the Chinese white pine beetle (Dendroctonus armandi) and carried out a bioinformatics analysis on the deduced full-length amino acid sequences. These genes belong to four different classes (epsilon, sigma, omega and theta). Differential transcript levels of each class of GST genes were observed between sexes, and, within these levels, significant differences were found among the different adult substages that were fed phloem of Pinus armandi and exposed to six stimuli [(±)-α-pinene, (-)-α-pinene, (-)-β-pinene, (+)-3-carene, (±)-limonene and turpentine] at 8 and 24 h. CONCLUSION The increased transcription levels of GST genes suggested that they have some relationship with the detoxification of terpenoids that are released by host trees. The mediating oxidative stress that is caused by monoterpene might be the main role of the bark beetle GSTs.
Collapse
Affiliation(s)
- Lulu Dai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Junning Ma
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingyuan Ma
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Shi
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Ranran Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
27
|
Keeling CI, Li M, Sandhu HK, Henderson H, Yuen MMS, Bohlmann J. Quantitative metabolome, proteome and transcriptome analysis of midgut and fat body tissues in the mountain pine beetle, Dendroctonus ponderosae Hopkins, and insights into pheromone biosynthesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:170-183. [PMID: 26792242 DOI: 10.1016/j.ibmb.2016.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 06/05/2023]
Abstract
Bark beetles (Coleoptera: Scolytinae) are pests of many forests around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant pest of western North American pine forests. The MPB is able to overcome the defences of pine trees through pheromone-assisted aggregation that results in a mass attack of host trees. These pheromones, both male and female produced, are believed to be biosynthesized in the midgut and/or fat bodies of these insects. We used metabolite analysis, quantitative proteomics (iTRAQ) and transcriptomics (RNA-seq) to identify proteins and transcripts differentially expressed between sexes and between tissues when treated with juvenile hormone III. Juvenile hormone III induced frontalin biosynthesis in males and trans-verbenol biosynthesis in females, as well as affected the expression of many proteins and transcripts in sex- and tissue-specific ways. Based on these analyses, we identified candidate genes involved in the biosynthesis of frontalin, exo-brevicomin, and trans-verbenol pheromones.
Collapse
Affiliation(s)
- Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4.
| | - Maria Li
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4
| | - Harpreet K Sandhu
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4
| | - Hannah Henderson
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4
| | - Macaire Man Saint Yuen
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4
| |
Collapse
|
28
|
Dai L, Ma M, Wang C, Shi Q, Zhang R, Chen H. Cytochrome P450s from the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae): Expression profiles of different stages and responses to host allelochemicals. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:35-46. [PMID: 26319543 DOI: 10.1016/j.ibmb.2015.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/17/2015] [Accepted: 08/21/2015] [Indexed: 06/04/2023]
Abstract
Bark beetles oxidize the defensive allelochemicals from their host trees to both detoxify and convert these materials into components of their pheromone system. The ability of this insect to adapt to its chemical environment might be explained by the action of major detoxification enzymes such as cytochrome P450s (or CYPs). Sixty-four sequences coding for P450s were identified, and most of the transcripts were found to be expressed in the larvae, pupae and adults of Dendroctonus armandi. To gain information on how these genes help D. armandi overcome the host defense, differential transcript levels of the CYP genes were observed between sexes and within the sexes. Significant differences were observed among developmental stages, in feeding on the phloem of Pinus armandi and in exposure to stimuli ((±)-α-pinene, (S)-(-)-α-pinene, (S)-(-)-β-pinene, (+)-3-carene, (±)-limonene and turpentine oil) for 8 h. We investigated the effect of sex and generations on the survivorship of individual D. armandi that were exposed to host volatiles at concentrations comparable to constitutive and induced levels of defense using fumigant exposure to understand the ability of the beetles to tolerate host defensive chemicals. The differential transcript accumulation patterns of CYP genes of these bark beetle provided insight into the ecological interactions of D. armandi with its host pine.
Collapse
Affiliation(s)
- Lulu Dai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingyuan Ma
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunyan Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Shi
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ranran Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
29
|
Pitt C, Robert JA, Bonnett TR, Keeling CI, Bohlmann J, Huber DPW. Proteomics indicators of the rapidly shifting physiology from whole mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), adults during early host colonization. PLoS One 2014; 9:e110673. [PMID: 25360753 PMCID: PMC4215907 DOI: 10.1371/journal.pone.0110673] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/16/2014] [Indexed: 01/08/2023] Open
Abstract
We developed proteome profiles for host colonizing mountain pine beetle adults, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Adult insects were fed in pairs on fresh host lodgepole pine, Pinus contorta Dougl. ex Loud, phloem tissue. The proteomes of fed individuals were monitored using iTRAQ and compared to those of starved beetles, revealing 757 and 739 expressed proteins in females and males, respectively, for which quantitative information was obtained. Overall functional category distributions were similar for males and females, with the majority of proteins falling under carbohydrate metabolism (glycolysis, gluconeogenesis, citric acid cycle), structure (cuticle, muscle, cytoskeleton), and protein and amino acid metabolism. Females had 23 proteins with levels that changed significantly with feeding (p<0.05, FDR<0.20), including chaperones and enzymes required for vitellogenesis. In males, levels of 29 proteins changed significantly with feeding (p<0.05, FDR<0.20), including chaperones as well as motor proteins. Only two proteins, both chaperones, exhibited a significant change in both females and males with feeding. Proteins with differential accumulation patterns in females exhibited higher fold changes with feeding than did those in males. This difference may be due to major and rapid physiological changes occurring in females upon finding a host tree during the physiological shift from dispersal to reproduction. The significant accumulation of chaperone proteins, a cytochrome P450, and a glutathione S-transferase, indicate secondary metabolite-induced stress physiology related to chemical detoxification during early host colonization. The females' activation of vitellogenin only after encountering a host indicates deliberate partitioning of resources and a balancing of the needs of dispersal and reproduction.
Collapse
Affiliation(s)
- Caitlin Pitt
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
- * E-mail: (DH); (CP)
| | - Jeanne A. Robert
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | - Tiffany R. Bonnett
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | | | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Dezene P. W. Huber
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
- * E-mail: (DH); (CP)
| |
Collapse
|
30
|
Song M, Delaplain P, Nguyen TT, Liu X, Wickenberg L, Jeffrey C, Blomquist GJ, Tittiger C. exo-Brevicomin biosynthetic pathway enzymes from the Mountain Pine Beetle, Dendroctonus ponderosae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 53:73-80. [PMID: 25138711 DOI: 10.1016/j.ibmb.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
exoBrevicomin (exo-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octane) is an important semiochemical for a number of beetle species, including the highly destructive Mountain Pine Beetle (Dendroctonus ponderosae). It is also found in other insects and the African elephant. Despite its significance, very little is known about its biosynthesis. A recent microarray analysis implicated a small cluster of three D. ponderosae genes in exo-brevicomin biosynthesis, two of which had identifiable open reading frames (Aw et al., 2010; BMC Genomics 11:215). Here we report further expression profiling of two genes in that cluster and functional analysis of their recombinantly-produced enzymes. One encodes a short-chain dehydrogenase that used NAD(P)(+) as a co-factor to catalyze the oxidation of (Z)-6-nonen-2-ol to (Z)-6-nonen-2-one. We therefore named the enzyme (Z)-6-nonen-2-ol dehydrogenase (ZnoDH). The other encodes the cytochrome P450, CYP6CR1, which epoxidized (Z)-6-nonen-2-one to 6,7-epoxynonan-2-one with very high specificity and substrate selectivity. Both the substrates and products of the two enzymes are intermediates in the exo-brevicomin biosynthetic pathway. Thus, ZnoDH and CYP6CR1 are enzymes that apparently catalyze the antepenultimate and penultimate steps in the exo-brevicomin biosynthetic pathway, respectively.
Collapse
Affiliation(s)
- Minmin Song
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Patrick Delaplain
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Trang T Nguyen
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA.
| | - Xibei Liu
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA.
| | - Leah Wickenberg
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | | | - Gary J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Claus Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
31
|
Dermauw W, Van Leeuwen T. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:89-110. [PMID: 24291285 DOI: 10.1016/j.ibmb.2013.11.001] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 05/26/2023]
Abstract
About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority of ABC proteins function as primary-active transporters that bind and hydrolyze ATP while transporting a large diversity of substrates across lipid membranes. Although extremely well studied in vertebrates for their role in drug resistance, less is known about the role of this family in the transport of endogenous and exogenous substances in arthropods. The ABC families of five insect species, a crustacean and a chelicerate have been annotated in some detail. We conducted a thorough phylogenetic analysis of the seven arthropod and human ABC protein subfamilies, to infer orthologous relationships that might suggest conserved function. Most orthologous relationships were found in the ABCB half transporter, ABCD, ABCE and ABCF subfamilies, but specific expansions within species and lineages are frequently observed and discussed. We next surveyed the role of ABC transporters in the transport of xenobiotics/plant allelochemicals and their involvement in insecticide resistance. The involvement of ABC transporters in xenobiotic resistance in arthropods is historically not well documented, but an increasing number of studies using unbiased differential gene expression analysis now points to their importance. We give an overview of methods that can be used to link ABC transporters to resistance. ABC proteins have also recently been implicated in the mode of action and resistance to Bt toxins in Lepidoptera. Given the enormous interest in Bt toxicology in transgenic crops, such findings will provide an impetus to further reveal the role of ABC transporters in arthropods.
Collapse
Affiliation(s)
- Wannes Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Keeling CI, Henderson H, Li M, Dullat HK, Ohnishi T, Bohlmann J. CYP345E2, an antenna-specific cytochrome P450 from the mountain pine beetle, Dendroctonus ponderosae Hopkins, catalyses the oxidation of pine host monoterpene volatiles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1142-1151. [PMID: 24139909 DOI: 10.1016/j.ibmb.2013.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/27/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) is a significant pest of western North American pine forests. This beetle responds to pheromones and host volatiles in order to mass attack and thus overcome the terpenoid chemical defences of its host. The ability of MPB antennae to rapidly process odorants is necessary to avoid odorant receptor saturation and thus the enzymes responsible for odorant clearance are an important aspect of host colonization. An antenna-specific cytochrome P450, DponCYP345E2, is the most highly expressed transcript in adult MPB antenna. In in vitro assays with recombinant enzyme, DponCYP345E2 used several pine host monoterpenes as substrates, including (+)-(3)-carene, (+)-β-pinene, (-)-β-pinene, (+)-limonene, (-)-limonene, (-)-camphene, (+)-α-pinene, (-)-α-pinene, and terpinolene. The substrates were epoxidized or hydroxylated, depending upon the substrate. To complement DponCYP345E2, we also functionally characterized the NADPH-dependent cytochrome P450 reductase and the cytochrome b5 from MPB. DponCYP345E2 is the first cytochrome P450 to be functionally characterized in insect olfaction and in MPB.
Collapse
Affiliation(s)
- Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4.
| | | | | | | | | | | |
Collapse
|