1
|
Ji J, Gong X, Liu G, Yin S, Ling F, Wang G. Antiparasitic effect of (+)-catechin derived from Pseudolarix amabilis against Dactylogyrus intermedius in goldfish. Vet Parasitol 2025; 334:110399. [PMID: 39827727 DOI: 10.1016/j.vetpar.2025.110399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Medicinal plants are considered promising candidates for controlling parasitic pathogen in aquaculture. Our previous study demonstrated that the crude extracts of Pseudolarix amabilis exhibit promising anti-Dactylogyrus intermedius activity. However, the specific compounds responsible for the antiparasitic effects of these crude extracts remain elusive. In this study, the bioactive compounds from the ethyl acetate extract of P. amabilis were isolated by the multi-column chromatography and in vivo bioassay-guided methods. Two crystalline compounds were identified as (+)-catechin through the nuclear magnetic resonance spectroscopy and specific rotation analysis. (+)-Catechin showed 98.1 % antiparasitic activity at 20 mg/L with the median effective concentration (EC50) of 4.3 mg/L. The 96 h median lethal concentration (LC50) of (+)-catechin for zebrafish larvae and goldfish was determined to be 32.9 and 152.8 mg/L, respectively. The therapeutic index (TI) of (+)-catechin was 6.8 and 35.5, indicating a potential for safe application in aquaculture. These findings suggest that (+)-catechin could be further developed as a viable therapeutic agent against D. intermedius.
Collapse
Affiliation(s)
- Jie Ji
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, Jiangsu 210023, China.
| | - Xiang Gong
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, Jiangsu 210023, China
| | - Guanglu Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, Jiangsu 210023, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Goyzueta-Mamani LD, Pagliara Lage D, Barazorda-Ccahuana HL, Paco-Chipana M, Candia-Puma MA, Davila-Del-Carpio G, Galdino AS, Machado-de-Avila RA, Cordeiro Giunchetti R, D’Antonio EL, Ferraz Coelho EA, Chávez-Fumagalli MA. Exploring the Potential of Malvidin and Echiodinin as Probable Antileishmanial Agents Through In Silico Analysis and In Vitro Efficacy. Molecules 2025; 30:173. [PMID: 39795229 PMCID: PMC11722285 DOI: 10.3390/molecules30010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Leishmaniasis, a neglected tropical disease caused by Leishmania species, presents serious public health challenges due to limited treatment options, toxicity, high costs, and drug resistance. In this study, the in vitro potential of malvidin and echioidinin is examined as antileishmanial agents against L. amazonensis, L. braziliensis, and L. infantum, comparing their effects to amphotericin B (AmpB), a standard drug. Malvidin demonstrated greater potency than echioidinin across all parasite stages and species. Against L. amazonensis, malvidin's IC50 values were 197.71 ± 17.20 µM (stationary amastigotes) and 258.07 ± 17 µM (axenic amastigotes), compared to echioidinin's 272.99 ± 29.90 μM and 335.96 ± 19.35 μM. AmpB was more potent, with IC50 values of 0.06 ± 0.01 µM and 0.10 ± 0.03 µM. Malvidin exhibited lower cytotoxicity (CC50: 2920.31 ± 80.29 µM) than AmpB (1.06 ± 0.12 µM) and a favorable selectivity index. It reduced infection rates by 35.75% in L. amazonensis-infected macrophages. The in silico analysis revealed strong binding between malvidin and Leishmania arginase, with the residues HIS139 and PRO258 playing key roles. Gene expression analysis indicated malvidin's modulation of oxidative stress and DNA repair pathways, involving genes like GLO1 and APEX1. These findings suggest malvidin's potential as a safe, natural antileishmanial compound, warranting further in vivo studies to confirm its therapeutic efficacy and pharmacokinetics in animal models.
Collapse
Affiliation(s)
- Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| | - Daniela Pagliara Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.P.L.); (E.A.F.C.)
| | - Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| | - Margot Paco-Chipana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| | - Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru;
| | - Gonzalo Davila-Del-Carpio
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru;
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal São João Del-Rei, Divinópolis 35501-296, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biotecnologia Industrial (INCT-BI), Distrito Federal, Brasilia 70070-010, Brazil
| | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador 40110-160, Brazil
| | - Edward L. D’Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA;
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.P.L.); (E.A.F.C.)
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| |
Collapse
|
3
|
Goyzueta-Mamani LD, Barazorda-Ccahuana HL, Candia-Puma MA, Galdino AS, Machado-de-Avila RA, Giunchetti RC, Medina-Franco JL, Florin-Christensen M, Ferraz Coelho EA, Chávez-Fumagalli MA. Targeting Leishmania infantum Mannosyl-oligosaccharide glucosidase with natural products: potential pH-dependent inhibition explored through computer-aided drug design. Front Pharmacol 2024; 15:1403203. [PMID: 38873424 PMCID: PMC11169604 DOI: 10.3389/fphar.2024.1403203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024] Open
Abstract
Visceral Leishmaniasis (VL) is a serious public health issue, documented in more than ninety countries, where an estimated 500,000 new cases emerge each year. Regardless of novel methodologies, advancements, and experimental interventions, therapeutic limitations, and drug resistance are still challenging. For this reason, based on previous research, we screened natural products (NP) from Nuclei of Bioassays, Ecophysiology, and Biosynthesis of Natural Products Database (NuBBEDB), Mexican Compound Database of Natural Products (BIOFACQUIM), and Peruvian Natural Products Database (PeruNPDB) databases, in addition to structural analogs of Miglitol and Acarbose, which have been suggested as treatments for VL and have shown encouraging action against parasite's N-glycan biosynthesis. Using computer-aided drug design (CADD) approaches, the potential inhibitory effect of these NP candidates was evaluated by inhibiting the Mannosyl-oligosaccharide Glucosidase Protein (MOGS) from Leishmania infantum, an enzyme essential for the protein glycosylation process, at various pH to mimic the parasite's changing environment. Also, computational analysis was used to evaluate the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) profile, while molecular dynamic simulations were used to gather information on the interactions between these ligands and the protein target. Our findings indicated that Ocotillone and Subsessiline have potential antileishmanial effects at pH 5 and 7, respectively, due to their high binding affinity to MOGS and interactions in the active center. Furthermore, these compounds were non-toxic and had the potential to be administered orally. This research indicates the promising anti-leishmanial activity of Ocotillone and Subsessiline, suggesting further validation through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
| | - Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
| | - Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa, Peru
| | | | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Brazil
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mónica Florin-Christensen
- Instituto de Patobiología Veterinaria, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Patologia Clínica, Colégio Técnico da Universidade Federal de Minas Gerais (COLTEC), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
| |
Collapse
|
4
|
Rahimi B, Malekifard F, Esmaeilnejad B. In vitro anti-Trichomonas gallinae effects of Ziziphus vulgaris L. and Camellia sinensis (L.) Kuntze extracts. Vet Med Sci 2024; 10:e1432. [PMID: 38527006 PMCID: PMC10962798 DOI: 10.1002/vms3.1432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/17/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Trichomonas gallinae is a parasite that causes canker and severe loss and death, especially in young pigeons. Metronidazole (MTZ) is the recommended drug for treating avian trichomoniasis. Due to drug resistance, non-chemical alternatives, such as medicinal plant extracts, are also considered possible therapies for this disease. OBJECTIVES This study compares the antitrichomonal effects of MTZ with extracts of Camellia sinensis and Ziziphus vulgaris on T. gallinae in vitro. METHODS Samples of T. gallinae were taken from infected pigeons. Multi-well plates with different concentrations (5, 10, 25, 50 and 100 µg/mL) of plant extracts were used for the in vitro study. RESULTS The minimum inhibitory concentration (MIC) of C. sinensis extract was 25 µg/mL over 24 h, compared to 50 µg/mL for MTZ. The MIC value of the Z. vulgaris extracts was 50 µg/mL. CONCLUSIONS The results suggest that the extracts of Z. vulgaris and C. sinensis, as potential natural agents, could have anti-avian trichomoniasis properties. This study also shows that MTZ, C. sinensis and Z. vulgaris are equally effective in preventing the growth of T. gallinae trophozoites in the culture.
Collapse
Affiliation(s)
- Behnam Rahimi
- DVM graduateFaculty of Veterinary MedicineUrmia UniversityUrmiaIran
| | - Farnaz Malekifard
- Department of PathobiologyFaculty of Veterinary MedicineUrmia UniversityUrmiaIran
| | - Bijan Esmaeilnejad
- Department of PathobiologyFaculty of Veterinary MedicineUrmia UniversityUrmiaIran
| |
Collapse
|
5
|
Vargas-Munévar L, Borja-Fajardo J, Sandoval-Aldana A, García WQ, Moreno EM, Henriquez JC, Stashenko E, García LT, García-Beltrán O. Microencapsulation of Theobroma cacao L polyphenols: A high-value approach with in vitro anti-Trypanosoma cruzi, immunomodulatory and antioxidant activities. Biomed Pharmacother 2024; 173:116307. [PMID: 38401521 DOI: 10.1016/j.biopha.2024.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Chagas disease (CHD) is the highest economic burden parasitosis worldwide and the most important cardiac infection, without therapeutic alternatives to halt or reverse its progression. In CHD-experimental models, antioxidant and anti-inflammatory compounds have demonstrated therapeutic potential in cardiac dysfunction. Theobroma cacao polyphenols are potent natural antioxidants with cardioprotective and anti-inflammatory action, which are susceptible to degradation, requiring technological approaches to guarantee their protection, stability, and controlled release. Here, 21 cocoa polyphenol-rich microencapsulates were produced by spray-drying and freeze-drying techniques using two wall materials (maltodextrin and gum arabic). Chemical (total and individual phenolic content and antioxidant activity), structural (morphology), and biological parameters (cytotoxicity, trypanocidal, antioxidant, and immunomodulatory activities) were assessed to determine the most efficient microencapsulation conditions on Trypanosoma cruzi-infected myocardioblast and macrophage cells. Significant antiproliferative properties against infected cells (superior to benznidazole) were found in two microencapsulates which also exhibited cardioprotective properties against oxidative stress, inflammation, and cell death.
Collapse
Affiliation(s)
- Laura Vargas-Munévar
- Posgradute Department in Infectious Disease, Universidad de Santander, Bucaramanga 680006, Colombia
| | | | | | - Wendy Quintero García
- Posgradute Department in Infectious Disease, Universidad de Santander, Bucaramanga 680006, Colombia
| | - Erika Moreno Moreno
- Posgradute Department in Infectious Disease, Universidad de Santander, Bucaramanga 680006, Colombia
| | - Juan Camilo Henriquez
- National Research Center for the Agroindustrialization of Aromatic and Medicinal Tropical Species (CENIVAM), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Elena Stashenko
- National Research Center for the Agroindustrialization of Aromatic and Medicinal Tropical Species (CENIVAM), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Liliana Torcoroma García
- Posgradute Department in Infectious Disease, Universidad de Santander, Bucaramanga 680006, Colombia.
| | - Olimpo García-Beltrán
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O' Higgins, Santiago 8370854, Chile; Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Ibagué 730002, Colombia.
| |
Collapse
|
6
|
Lê HG, Kang JM, Võ TC, Yoo WG, Hong Y, Na BK. (‒)-Epicatechin reveals amoebicidal activity against Acanthamoeba castellanii by activating the programmed cell death pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155389. [PMID: 38306720 DOI: 10.1016/j.phymed.2024.155389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/28/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Acanthamoeba is an opportunistic pathogen that can cause human infections such as granulomatous amebic encephalitis and acanthamoeba keratitis. However, no specific drug to treat the diseases has been developed. Therefore, the discovery or development of novel drugs for treating Acanthamoeba infections is urgently needed. The anti-protozoan activity of (‒)-epicatechin (EC) has been reported, suggesting it is an attractive anti-protozoal drug candidate. In this study, the amoebicidal activity of EC against A. castellanii was assessed and its mechanism of action was unveiled. METHODS The amoebicidal activity of EC against A. castellanii trophozoites and the cytotoxicity of EC in HCE-2 and C6 cells were determined with cell viability assay. The underlying amoebicidal mechanism of EC against A. castellanii was analyzed by the apoptosis/necrosis assay, TUNEL assay, mitochondrial dysfunction assay, caspase-3 assay, and quantitative reverse transcription polymerase chain reaction. The cysticidal activity of EC was also investigated. RESULTS EC revealed amoebicidal activity against A. castellanii trophozoites with an IC50 of 37.01 ± 3.96 µM, but was not cytotoxic to HCE-2 or C6 cells. EC induced apoptotic events such as increases in DNA fragmentation and intracellular reactive oxygen species production in A. castellanii. EC also caused mitochondrial dysfunction in the amoebae, as evidenced by the loss of mitochondrial membrane potential and reductions in ATP production. Caspase-3 activity, autophagosome formation, and the expression levels of autophagy-related genes were also increased in EC-treated amoebae. EC led to the partial death of cysts and the inhibition of excystation. CONCLUSION EC revealed promising amoebicidal activity against A. castellanii trophozoites via programmed cell death events. EC could be a candidate drug or supplemental compound for treating Acanthamoeba infections.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Korea
| | - Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Korea
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Korea.
| |
Collapse
|
7
|
Babalola OO, Iwaloye O, Ottu PO, Aturamu PO, Olawale F. Biological activities of African medicinal plants in the treatment of erectile dysfunction: a mechanistic perspective. Horm Mol Biol Clin Investig 2023; 44:357-370. [PMID: 38221710 DOI: 10.1515/hmbci-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/24/2023] [Indexed: 01/16/2024]
Abstract
The global incidence of erectile dysfunction is increasingly becoming a significant health concern, as its frequency demonstrates a consistent upward trajectory each year. In recent years, FDA-approved drugs like sildenafil among others has been approved to treat this disorder however the drug is not without its own side effects. In a bid to develop alternative therapeutic option, scientists have now turned to traditional medicine in search of a treatment regimen. Africa is blessed with numerous medicinal plants used in the treatment and management of several diseases including erectile dysfunction. Due to limited access to modern medicine and high-quality medical facilities, a significant number of individuals in Africa continue to depend on traditional medicine as a means of addressing critical health issues. Perhaps one of the grossly explored medicinal properties of plants in Africa is for erectile function. Through years of extensive research in medicinal plants, several plants indigenous to Africa have been identified to show profound ability to mitigate erectile dysfunction. While previous reports have indeed corroborated the ability of this plant to abate erectile dysfunction, there is still a dearth of information regarding the mechanistic aspect of these plants. Hence, the current review aims to provide a comprehensive mechanistic perspective to the major African medicinal plant which have been reported to be effective in the treatment of erectile dysfunction.
Collapse
Affiliation(s)
- Olorunfemi Oyewole Babalola
- Department of Chemical Sciences, Biochemistry Unit, Olusegun Agagu University of Science and Technology Okitipupa, Okitipupa, Nigeria
| | - Opeyemi Iwaloye
- Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| | - Paul Olamide Ottu
- Department of Chemical Sciences, Biochemistry Unit, Olusegun Agagu University of Science and Technology Okitipupa, Okitipupa, Nigeria
| | - Precious Olayinka Aturamu
- Department of Chemical Sciences, Biochemistry Unit, Olusegun Agagu University of Science and Technology Okitipupa, Okitipupa, Nigeria
| | - Femi Olawale
- Nanogene and Drug Delivery Group, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Adebayo AA, Ademosun AO, Oboh G. Chemical composition, antioxidant, and enzyme inhibitory properties of Rauwolfia vomitoria extract. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:597-603. [PMID: 37216495 DOI: 10.1515/jcim-2022-0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVES Rauwolfia vomitoria is one ethno-botanicals in Nigeria used by traditional health practitioners in managing several human diseases. However, necessary information regarding its effect on enzymes implicated in the development and progression of erectile dysfunction is missing in the literature. Thus, this study investigated the antioxidant property and impact of Rauwolfia vomitoria extract on erectile dysfunction-related enzymes in vitro. METHODS High performance liquid chromatography was used to identify and quantify Rauwolfia vomitoria's phenolic components. Then, utilizing common antioxidant assays, the extract's antioxidant properties were evaluated and finally the effect of the extract on some enzymes (AChE, arginase and ACE) implicated in erectile dysfunction was investigated in vitro. RESULTS The results showed that the extract inhibited AChE (IC50=388.72 μg/mL), arginase (IC50=40.06 μg/mL) and ACE (IC50=108.64 μg/mL) activities. In addition, phenolic rich extract of Rauvolfia vomitoria scavenged radicals and chelated Fe2+ in concentration dependent manner. Furthermore, rutin, chlorogenic acid, gallic acid, and kaempferol were found in large quantities by HPLC analysis. CONCLUSIONS Therefore, one of the potential reasons driving Rauwolfia vomitoria's use in folk medicine for the treatment of erectile dysfunction could be its antioxidant and inhibitory activities on several enzymes linked to erectile dysfunction in vitro.
Collapse
Affiliation(s)
- Adeniyi A Adebayo
- Chemical Science Department (Biochemistry Unit), Joseph Ayo Babalola University, Ikeji-Arakeji, Nigeria
- Functional Foods and Nutraceutical Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Ayokunle O Ademosun
- Functional Foods and Nutraceutical Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Unit, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
9
|
Salazar PB, Fanzone M, Zabala BA, Rodriguez Vaquero MJ, Cilli E, Barroso PA, Minahk C, Acuña L. A byproduct from the Valles Calchaquíes vineyards (Argentina) rich in phenolic compounds: a tool against endemic Leishmania dissemination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97377-97385. [PMID: 37592068 DOI: 10.1007/s11356-023-29276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Vineyard-derived pomace is a byproduct of the wine industry that can have a negative impact on the environment if it is only disposed of or used as a fertilizer. Owing to its polyphenol content, grape pomace is an alternative to biocontrol undesirable microorganisms. In the present study, we characterized the phenolic composition of red and white grape pomace from Valles Calchaquíes, Argentina, and explored its activity against Leishmania (Leishmania) amazonensis, an etiological agent of American tegumentary leishmaniasis, a neglected endemic disease in northern Argentina. Red and white pomace extracts similarly reduced Leishmania viability after a 48-h treatment, with the fractions containing a higher proportion of phenolic compounds being more active. Both extracts stimulated ATPase activity on the parasite plasma membranes, with white grape pomace having a stronger effect than red grape pomace. In addition, the extracts displayed fairly good anticholinesterase activity, which may have contributed to their anti-Leishmania activity. These results reinforce the potential applicability of grape pomace as an antimicrobial agent for the development of biopesticides.
Collapse
Affiliation(s)
- Paula B Salazar
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Martín Fanzone
- EEA Mendoza INTA (Estación Experimental Agropecuaria Mendoza-Instituto Nacional de Tecnología Agropecuaria), San Martin 3853, Mayor Drummond (5507), Luján de Cuyo, Mendoza, Argentina
| | - Brenda A Zabala
- Unidad de Biotecnología y Protozoarios, Instituto de Patología Experimental "Dr. Miguel Ángel Basombrio", CONICET/Universidad Nacional de Salta (UNSa), A4408FVY, Salta, Argentina
| | - María J Rodriguez Vaquero
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho, 491, San Miguel de Tucumán, Argentina
| | - Eduardo Cilli
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP-Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Paola A Barroso
- Unidad de Biotecnología y Protozoarios, Instituto de Patología Experimental "Dr. Miguel Ángel Basombrio", CONICET/Universidad Nacional de Salta (UNSa), A4408FVY, Salta, Argentina
| | - Carlos Minahk
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina.
| | - Leonardo Acuña
- Unidad de Biotecnología y Protozoarios, Instituto de Patología Experimental "Dr. Miguel Ángel Basombrio", CONICET/Universidad Nacional de Salta (UNSa), A4408FVY, Salta, Argentina
| |
Collapse
|
10
|
Abirami M, Karan Kumar B, Dey S, Johri S, Reguera RM, Balaña-Fouce R, Gowri Chandra Sekhar KV, Sankaranarayanan M. Molecular-level strategic goals and repressors in Leishmaniasis - Integrated data to accelerate target-based heterocyclic scaffolds. Eur J Med Chem 2023; 257:115471. [PMID: 37257213 DOI: 10.1016/j.ejmech.2023.115471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Leishmaniasis is a complex of neglected tropical diseases caused by various species of leishmanial parasites that primarily affect the world's poorest people. A limited number of standard medications are available for this disease that has been used for several decades, these drugs have many drawbacks such as resistance, higher cost, and patient compliance, making it difficult to reach the poor. The search for novel chemical entities to treat leishmaniasis has led to target-based scaffold research. Among several identified potential molecular targets, enzymes involved in the purine salvage pathway include polyamine biosynthetic process, such as arginase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase, trypanothione reductase as well as enzymes in the DNA cell cycle, such as DNA topoisomerases I and II plays vital role in the life cycle survival of leishmanial parasite. This review mainly focuses on various heterocyclic scaffolds, and their specific inhibitory targets against leishmaniasis, particularly those from the polyamine biosynthesis pathway and DNA topoisomerases with estimated activity studies of various heterocyclic analogs in terms of their IC50 or EC50 value, reported molecular docking analysis from available published literatures.
Collapse
Affiliation(s)
- M Abirami
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India; Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Sanchita Dey
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Samridhi Johri
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Rosa M Reguera
- Department of Biomedical Sciences, University of León, 24071, León, Spain
| | | | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, Telangana, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India.
| |
Collapse
|
11
|
Schirmann JG, Bortoleti BTS, Gonçalves MD, Tomiotto-Pellissier F, Camargo PG, Miranda-Sapla MM, Lima CHS, Bispo MLF, Costa IN, Conchon-Costa I, Pavanelli WR, Dekker RFH, Barbosa-Dekker AM. In-vitro biological evaluation of 3,3',5,5'-tetramethoxy-biphenyl-4,4'-diol and molecular docking studies on trypanothione reductase and Gp63 from Leishmania amazonensis demonstrated anti-leishmania potential. Sci Rep 2023; 13:6928. [PMID: 37117253 PMCID: PMC10147928 DOI: 10.1038/s41598-023-34124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
Available treatments for leishmaniasis have been widely used since the 1940s but come at a high cost, variable efficacy, high toxicity, and adverse side-effects. 3,3',5,5'-Tetramethoxy-biphenyl-4,4'-diol (TMBP) was synthesized through laccase-catalysis of 2,6-dimethoxyphenol and displayed antioxidant and anticancer activity, and is considered a potential drug candidate. Thus, this study aimed to evaluate the anti-leishmanial effect of TMBP against promastigote and amastigote forms of Leishmania (L.) amazonensis and investigated the mechanisms involved in parasite death. TMBP treatment inhibited the proliferation (IC50 0.62-0.86 µM) and induced the death of promastigote forms by generating reactive oxygen species and mitochondrial dysfunction. In intracellular amastigotes, TMBP reduced the percentage of infected macrophages, being 62.7 times more selective to the parasite (CC50 53.93 µM). TMBP did not hemolyze sheep erythrocytes; indicative of low cytotoxicity. Additionally, molecular docking analysis on two enzyme targets of L. amazonensis: trypanothione reductase (TR) and leishmanolysin (Gp63), suggested that the hydroxyl group could be a pharmacophoric group due to its binding affinity by hydrogen bonds with residues at the active site of both enzymes. TMBP was more selective to the Gp63 target than TR. This is the first report that TMBP is a promising compound to act as an anti-leishmanial agent.
Collapse
Affiliation(s)
- Jéseka G Schirmann
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| | - Bruna T S Bortoleti
- Fiocruz, Programa de Pós-Graduação em Biociências e Biotecnologia, Instituto Carlos Chagas, Curitiba, PR, Brazil
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Manoela D Gonçalves
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Fiocruz, Programa de Pós-Graduação em Biociências e Biotecnologia, Instituto Carlos Chagas, Curitiba, PR, Brazil
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Priscila G Camargo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Milena M Miranda-Sapla
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Camilo H S Lima
- Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelle L F Bispo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Idessania N Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Wander R Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Robert F H Dekker
- Programa de Pós-Graduação em Engenharia Ambiental, Universidade Tecnológica Federal do Paraná, Câmpus de Londrina, Londrina, PR, Brazil
| | - Aneli M Barbosa-Dekker
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| |
Collapse
|
12
|
Saikia Q, Hazarika A, Kalita JC. Isoliquiritigenin ameliorates paroxetine-induced sexual dysfunction in male albino mice. Reprod Toxicol 2023; 117:108341. [PMID: 36740106 DOI: 10.1016/j.reprotox.2023.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Paroxetine (PRX), a widely prescribed antidepressant, often leads to sexual dysfunction. The available management options such as sildenafil (SDF), are associated with side effects. The present study investigates the fertility-boosting properties of isoliquiritigenin (ISL) on PRX-induced sexual dysfunction in male mice. We allocated fertile mice into six different groups (n = 5): group I- DMSO; group II- PRX; group III- co-administered PRX and SDF; group IV- ISL alone; group V- co-administered PRX and ISL (low dose); and, group VI- co-administered PRX and ISL (high dose). 14 days post treatment, animals were sacrificed, and the weights of the testis and epididymis were evaluated. Furthermore, sperm parameters, testicular and epididymal antioxidant levels, serum testosterone and nitric oxide (NO) levels, histoarchitecture of testis and epididymis, and markers of cellular toxicity were assessed. Results revealed that the PRX administration reduced organ weights, sperm count, intact acrosome, catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), serum testosterone, and NO levels, and increased sperm abnormalities and MDA levels (a biomarker for lipid peroxidation). Additionally, we observed damage in the testis and epididymis. The toxicity biomarker study revealed a higher concentration of SGOT, SGPT, and ALP enzymes in the PRX-treated group. However, the co-administration of PRX with ISL ameliorated the adverse effect of PRX on the parameters mentioned above. The PRX+ISL (high) results were almost at par with the PRX+SDF group. The group that received ISL alone showed overall improvements. In conclusion, our comprehensive panel of tests indicates that ISL could be helpful in managing sexual dysfunction.
Collapse
Affiliation(s)
- Queen Saikia
- Department of Zoology, Gauhati University, Guwahati, Assam, India.
| | - Ajit Hazarika
- Tyagbir Hem Baruah College, Jamugurihat, Sonitpur, Assam, India
| | | |
Collapse
|
13
|
Fraga CG, Trostchansky A, Rocha BS, Laranjinha J, Rubbo H, Galleano M. (Poly)phenols and nitrolipids: Relevant participants in nitric oxide metabolism. Mol Aspects Med 2023; 89:101158. [PMID: 36517273 DOI: 10.1016/j.mam.2022.101158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Nitric oxide (•NO) is an essential molecule able to control and regulate many biological functions. Additionally, •NO bears a potential toxicity or damaging effects under conditions of uncontrolled production, and because of its participation in redox-sensitive pathways and oxidizing reactions. Several plant (poly)phenols present in the diet are able to regulate the enzymes producing •NO (NOSs). In addition, (poly)phenols are implicated in defining •NO bioavailability, especially by regulating NADPH oxidases (NOXs), and the subsequent generation of superoxide and •NO depletion. Nitrolipids are compounds that are present in animal tissues because of dietary consumption, e.g. of olive oil, and/or as result of endogenous production. This endogenous production of nitrolipids is dependent on the nitrate/nitrite presence in the diet. Select nitrolipids, e.g. the nitroalkenes, are able to exert •NO-like signaling actions, and act as •NO reservoirs, becoming relevant for systemic •NO bioavailability. Furthermore, the presence of (poly)phenols in the stomach reduces dietary nitrite to •NO favoring nitrolipids formation. In this review we focus on the capacity of molecules representing these two groups of bioactives, i.e. (poly)phenols and nitrolipids, as relevant participants in •NO metabolism and bioavailability. This participation acquires especial relevance when human homeostasis is lost, for example under inflammatory conditions, in which the protective actions of (poly)phenols and/or nitrolipids have been associated with local and systemic •NO bioavailability.
Collapse
Affiliation(s)
- César G Fraga
- Physical Chemistry, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular-Dr. Alberto Boveris (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina; Department of Nutrition, University of California, Davis, CA, USA
| | - Andrés Trostchansky
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Barbara S Rocha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Homero Rubbo
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Monica Galleano
- Physical Chemistry, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular-Dr. Alberto Boveris (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
14
|
In Vitro and In Silico Analyses of New Cinnamid and Rosmarinic Acid-Derived Compounds Biosynthesized in Escherichia coli as Leishmania amazonensis Arginase Inhibitors. Pathogens 2022; 11:pathogens11091020. [PMID: 36145452 PMCID: PMC9504950 DOI: 10.3390/pathogens11091020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
Arginase is a metalloenzyme that plays a central role in Leishmania infections. Previously, rosmarinic and caffeic acids were described as antileishmanial agents and as Leishmania amazonensis arginase inhibitors. Here, we describe the inhibition of arginase in L. amazonensis by rosmarinic acid analogs (1–7) and new caffeic acid-derived amides (8–10). Caffeic acid esters and amides were produced by means of an engineered synthesis in E. coli and tested against L. amazonensis arginase. New amides (8–10) were biosynthesized in E. coli cultured with 2 mM of different combinations of feeding substrates. The most potent arginase inhibitors showed Ki(s) ranging from 2 to 5.7 μM. Compounds 2–4 and 7 inhibited L. amazonensis arginase (L-ARG) through a noncompetitive mechanism whilst compound 9 showed a competitive inhibition. By applying an in silico protocol, we determined the binding mode of compound 9. The competitive inhibitor of L-ARG targeted the key residues within the binding site of the enzyme, establishing a metal coordination bond with the metal ions and a series of hydrophobic and polar contacts supporting its micromolar inhibition of L-ARG. These results highlight that dihydroxycinnamic-derived compounds can be used as the basis for developing new drugs using a powerful tool based on the biosynthesis of arginase inhibitors.
Collapse
|
15
|
Samokhvalova TV, Kim YA, Korystova AF, Kublik LN, Shaposhnikova VV, Korystov YN. (+)-Catechin Stereoisomer and Gallate Induce Oxidative Stress in Rat Aorta. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113379. [PMID: 35684315 PMCID: PMC9182546 DOI: 10.3390/molecules27113379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
Abstract
The goal of the work was to study changes in the activity of the angiotensin-converting enzyme (ACE) and production of reactive oxygen species (ROS) in the aorta of rats after the intraperitoneal injection of stereoisomers of catechin and gallate. The activity of ACE in the aorta sections was determined by measuring the hydrolysis of hippuryl-l-histidyl-l-leucine. The production of ROS in the aorta sections was estimated from the oxidation of dichlorodihydrofluorescein. The time and dose dependences of the effect of catechin stereoisomers and gallate on ACE activity and ROS production in the aorta were studied. It was shown that (+)-catechin and gallate increased the ACE activity and ROS production, and (-)-catechin and (-)-epicatechin did not influence these parameters. The doses of (+)-catechin and gallate that increased the ACE activity to a half-maximal value (AD50) were 0.04 and 0.03 µg/kg, respectively. Fucoidin, a blocker of leukocyte adhesion to the endothelium, reduced the ACE activity to the control level in the aortas of (+)-catechin-treated rats.
Collapse
Affiliation(s)
- Tamara V. Samokhvalova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (T.V.S.); (A.F.K.); (L.N.K.); (V.V.S.)
| | - Yuri A. Kim
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| | - Antonia F. Korystova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (T.V.S.); (A.F.K.); (L.N.K.); (V.V.S.)
| | - Ludmila N. Kublik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (T.V.S.); (A.F.K.); (L.N.K.); (V.V.S.)
| | - Vera V. Shaposhnikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (T.V.S.); (A.F.K.); (L.N.K.); (V.V.S.)
| | - Yuri N. Korystov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (T.V.S.); (A.F.K.); (L.N.K.); (V.V.S.)
- Correspondence: ; Tel.: +7-4-(95)-6327869; Fax: +7-4-967-330553
| |
Collapse
|
16
|
Betancourt-Conde I, Avitia-Domínguez C, Hernández-Campos A, Castillo R, Yépez-Mulia L, Oria-Hernández J, Méndez ST, Sierra-Campos E, Valdez-Solana M, Martínez-Caballero S, Hermoso JA, Romo-Mancillas A, Téllez-Valencia A. Benzimidazole Derivatives as New and Selective Inhibitors of Arginase from Leishmania mexicana with Biological Activity against Promastigotes and Amastigotes. Int J Mol Sci 2021; 22:ijms222413613. [PMID: 34948408 PMCID: PMC8705706 DOI: 10.3390/ijms222413613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis is a disease caused by parasites of the Leishmania genus that affects 98 countries worldwide, 2 million of new cases occur each year and more than 350 million people are at risk. The use of the actual treatments is limited due to toxicity concerns and the apparition of resistance strains. Therefore, there is an urgent necessity to find new drugs for the treatment of this disease. In this context, enzymes from the polyamine biosynthesis pathway, such as arginase, have been considered a good target. In the present work, a chemical library of benzimidazole derivatives was studied performing computational, enzyme kinetics, biological activity, and cytotoxic effect characterization, as well as in silico ADME-Tox predictions, to find new inhibitors for arginase from Leishmania mexicana (LmARG). The results show that the two most potent inhibitors (compounds 1 and 2) have an I50 values of 52 μM and 82 μM, respectively. Moreover, assays with human arginase 1 (HsARG) show that both compounds are selective for LmARG. According to molecular dynamics simulation studies these inhibitors interact with important residues for enzyme catalysis. Biological activity assays demonstrate that both compounds have activity against promastigote and amastigote, and low cytotoxic effect in murine macrophages. Finally, in silico prediction of their ADME-Tox properties suggest that these inhibitors support the characteristics to be considered drug candidates. Altogether, the results reported in our study suggest that the benzimidazole derivatives are an excellent starting point for design new drugs against leishmanisis.
Collapse
Affiliation(s)
- Irene Betancourt-Conde
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango 34000, Mexico;
| | - Claudia Avitia-Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango 34000, Mexico;
- Correspondence: (C.A.-D.); (A.T.-V.); Tel.: +52-618-812-1687 (A.T.-V.)
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.H.-C.); (R.C.)
| | - Rafael Castillo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.H.-C.); (R.C.)
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Unidad Médica de Alta Especialidad-Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Jesús Oria-Hernández
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (J.O.-H.); (S.T.M.)
| | - Sara T. Méndez
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (J.O.-H.); (S.T.M.)
| | - Erick Sierra-Campos
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35010, Mexico; (E.S.-C.); (M.V.-S.)
| | - Mónica Valdez-Solana
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35010, Mexico; (E.S.-C.); (M.V.-S.)
| | - Siseth Martínez-Caballero
- Departamento de Cristalografía y Biología Estructural, Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain; (S.M.-C.); (J.A.H.)
| | - Juan A. Hermoso
- Departamento de Cristalografía y Biología Estructural, Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain; (S.M.-C.); (J.A.H.)
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico;
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango 34000, Mexico;
- Correspondence: (C.A.-D.); (A.T.-V.); Tel.: +52-618-812-1687 (A.T.-V.)
| |
Collapse
|
17
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
18
|
Minozzo BR, de Andrade EA, Vellosa JCR, Lipinski LC, Fernandes D, Nardi GM, Rodrigues RP, Kitagawa RR, Girard C, Demougeot C, Beltrame FL. Polyphenolic compounds of Euphorbia umbellata (Pax) Bruyns (Euphorbiaceae) improved endothelial dysfunction through arginase inhibition. Phytother Res 2021; 35:2557-2567. [PMID: 33350522 DOI: 10.1002/ptr.6986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 11/30/2023]
Abstract
Euphorbia umbellata is used for its anti-inflammatory properties; however, there are limited data available regarding its effects on vascular function. Its bark is rich in polyphenolic compounds, which potentially improve endothelial dysfunction (ED). This study proposes to investigate the effects of E. umbellata bark extracts and its polyphenolic compounds on arginase (ARG) activity and nitric oxide (NO)-related targets. Chromatographic procedures were used for the chemical characterisation of the extracts. Furthermore, in silico (molecular docking), in vitro (ARG inhibition), in vivo (streptozotocin-induced hyperglycemia model), and ex vivo (l-arginine metabolism, vascular reactivity, western blot, and biochemical) techniques were carried out. Quercetin, gallic acid, and ellagic acid were identified in the extracts. In silico screening predicted that gallic acid and quercetin would have the most promising interactions with ARG -identified cavities. This was confirmed in vitro as both compounds had a direct inhibitory effect on ARG, as was the case regarding the extracts. Oral treatment preserved endothelium-dependent vasodilation through ARG inhibition together with an increase in l-arginine bioavailability and endothelial NO synthase expression. Biochemical parameters determined the lack of toxicity for sub-chronic treatment. E. umbellata bark extracts and its compounds can contribute to ED treatment, at least partly, through the inhibition of vascular ARG.
Collapse
Affiliation(s)
- Bruno Rodrigo Minozzo
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Evelyn Assis de Andrade
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | | | - Daniel Fernandes
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Geisson Marcos Nardi
- Department of Morphology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | - Corine Girard
- PEPITE EA 4267, University Bourgogne Franche-Comté, Besançon, France
| | - Céline Demougeot
- PEPITE EA 4267, University Bourgogne Franche-Comté, Besançon, France
| | - Flávio Luís Beltrame
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
19
|
Amine-Linked Flavonoids as Agents Against Cutaneous Leishmaniasis. Antimicrob Agents Chemother 2021; 65:AAC.02165-20. [PMID: 33685890 PMCID: PMC8092861 DOI: 10.1128/aac.02165-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have designed, synthesized, and characterized a library of 38 novel flavonoid compounds linked with amines. Some of these amine-linked flavonoids have potent in vitro activity against parasites that cause cutaneous leishmaniasis, a tropical disease endemic in 80 countries worldwide. The most promising candidate, FM09h, was highly active with IC50 of 0.3 μM against L. amazonensis, L. tropica and L. braziliensis amastigotes. It was metabolically stable (39% and 66% of FM09h remaining after 30-minute incubation with human and rat liver microsomes respectively). In L. amazonensis LV78 cutaneous leishmaniasis mouse model, intralesional injection of FM09h (10 mg/kg, once every 4 days for 8 times) demonstrated promising effect in reducing the footpad lesion thickness by 72%, displaying an efficacy comparable to SSG (63%).
Collapse
|
20
|
Natural Products That Target the Arginase in Leishmania Parasites Hold Therapeutic Promise. Microorganisms 2021; 9:microorganisms9020267. [PMID: 33525448 PMCID: PMC7911663 DOI: 10.3390/microorganisms9020267] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/03/2023] Open
Abstract
Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans worldwide. Because a vaccine is not available and the currently small number of existing drugs are less than ideal due to lack of specificity and emerging drug resistance, the need for new therapeutic strategies is urgent. Natural products and their derivatives are being used and explored as therapeutics and interest in developing such products as antileishmanials is high. The enzyme arginase, the first enzyme of the polyamine biosynthetic pathway in Leishmania, has emerged as a potential therapeutic target. The flavonols quercetin and fisetin, green tea flavanols such as catechin (C), epicatechin (EC), epicatechin gallate (ECG), and epigallocatechin-3-gallate (EGCG), and cinnamic acid derivates such as caffeic acid inhibit the leishmanial enzyme and modulate the host’s immune response toward parasite defense while showing little toxicity to the host. Quercetin, EGCG, gallic acid, caffeic acid, and rosmarinic acid have proven to be effective against Leishmania in rodent infectivity studies. Here, we review research on these natural products with a focus on their promise for the development of treatment strategies as well as unique structural and pharmacokinetic/pharmacodynamic features of the most promising agents.
Collapse
|
21
|
da Silva ER, Come JAADSS, Brogi S, Calderone V, Chemi G, Campiani G, Oliveira TMFDS, Pham TN, Pudlo M, Girard C, Maquiaveli CDC. Cinnamides Target Leishmania amazonensis Arginase Selectively. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25225271. [PMID: 33198198 PMCID: PMC7696938 DOI: 10.3390/molecules25225271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022]
Abstract
Caffeic acid and related natural compounds were previously described as Leishmania amazonensis arginase (L-ARG) inhibitors, and against the whole parasite in vitro. In this study, we tested cinnamides that were previously synthesized to target human arginase. The compound caffeic acid phenethyl amide (CAPA), a weak inhibitor of human arginase (IC50 = 60.3 ± 7.8 μM) was found to have 9-fold more potency against L-ARG (IC50 = 6.9 ± 0.7 μM). The other compounds that did not inhibit human arginase were characterized as L-ARG, showing an IC50 between 1.3–17.8 μM, and where the most active was compound 15 (IC50 = 1.3 ± 0.1 μM). All compounds were also tested against L. amazonensis promastigotes, and only the compound CAPA showed an inhibitory activity (IC50 = 80 μM). In addition, in an attempt to gain an insight into the mechanism of competitive L-ARG inhibitors, and their selectivity over mammalian enzymes, we performed an extensive computational investigation, to provide the basis for the selective inhibition of L-ARG for this series of compounds. In conclusion, our results indicated that the compounds based on cinnamoyl or 3,4-hydroxy cinnamoyl moiety could be a promising starting point for the design of potential antileishmanial drugs based on selective L-ARG inhibitors.
Collapse
Affiliation(s)
- Edson Roberto da Silva
- Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP 13635-900, Brazil; (J.A.A.d.S.S.C.); (T.M.F.d.S.O.)
- Correspondence: (E.R.d.S.); (S.B.); (C.G.); (C.d.C.M.)
| | - Júlio Abel Alfredo dos Santos Simone Come
- Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP 13635-900, Brazil; (J.A.A.d.S.S.C.); (T.M.F.d.S.O.)
- Departamento de Pré-Clínicas, Universidade Eduardo Mondlane, Faculdade de Veterinária, Av. de Moçambique, Km 1.5, Maputo CP 257, Mozambique
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy;
- Correspondence: (E.R.d.S.); (S.B.); (C.G.); (C.d.C.M.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy;
| | - Giulia Chemi
- Department of Biotechnology, Chemistry, and Pharmacy, DoE Department of Excellence 2018–2022 Università degli Studi di Siena via Aldo Moro 2, 53100 Siena, Italy; (G.C.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry, and Pharmacy, DoE Department of Excellence 2018–2022 Università degli Studi di Siena via Aldo Moro 2, 53100 Siena, Italy; (G.C.); (G.C.)
| | - Trícia Maria Ferrreira de Sousa Oliveira
- Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP 13635-900, Brazil; (J.A.A.d.S.S.C.); (T.M.F.d.S.O.)
| | - Thanh-Nhat Pham
- PEPITE EA4267, University Bourgogne Franche-Comté, F-25000 Besançon, France; (T.-N.P.); (M.P.)
| | - Marc Pudlo
- PEPITE EA4267, University Bourgogne Franche-Comté, F-25000 Besançon, France; (T.-N.P.); (M.P.)
| | - Corine Girard
- PEPITE EA4267, University Bourgogne Franche-Comté, F-25000 Besançon, France; (T.-N.P.); (M.P.)
- Correspondence: (E.R.d.S.); (S.B.); (C.G.); (C.d.C.M.)
| | - Claudia do Carmo Maquiaveli
- Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP 13635-900, Brazil; (J.A.A.d.S.S.C.); (T.M.F.d.S.O.)
- Correspondence: (E.R.d.S.); (S.B.); (C.G.); (C.d.C.M.)
| |
Collapse
|
22
|
Garate-Carrillo A, Navarrete-Yañez V, Ortiz-Vilchis P, Guevara G, Castillo C, Mendoza-Lorenzo P, Ceballos G, Ortiz-Flores M, Najera N, Bustamante-Pozo MM, Rubio-Gayosso I, Villarreal F, Ramirez-Sanchez I. Arginase inhibition by (-)-Epicatechin reverses endothelial cell aging. Eur J Pharmacol 2020; 885:173442. [PMID: 32795514 PMCID: PMC7418791 DOI: 10.1016/j.ejphar.2020.173442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
Endothelial dysfunction (EnD) occurs with aging and endothelial nitric oxide (NO) production by NO synthase (NOS) can be impaired. Low NO levels have been linked to increased arginase (Ar) activity as Ar competes with NOS for L-arginine. The inhibition of Ar activity can reverse EnD and (-)-epicatechin (Epi) inhibits myocardial Ar activity. In this study, through in silico modeling we demonstrate that Epi interacts with Ar similarly to its inhibitor Norvaline (Norv). Using in vitro and in vivo models of aging, we examined Epi and Norv-inhibition of Ar activity and its endothelium-protective effects. Bovine coronary artery endothelial cells (BCAEC) were treated with Norv (10 μM), Epi (1 μM) or the combination (Epi + Norv) for 48 h. Ar activity increased in aged BCAEC, with decreased NO generation. Treatment decreased Ar activity to levels seen in young cells. Epi and Epi + Norv decreased nitrosylated Ar levels by ~25% in aged cells with lower oxidative stress (~25%) (dihydroethidium) levels. In aged cells, Epi and Epi + Norv restored the eNOS monomer/dimer ratio, protein expression levels and NO production to those of young cells. Furthermore, using 18 month old rats 15 days of treatment with either Epi (1 mg/kg), Norv (10 mg/kg) or combo, decreased hypertension and improved aorta vasorelaxation to acetylcholine, blood NO levels and tetra/dihydribiopterin ratios in cultured rat aortic endothelial cells. In conclusion, results provide evidence that inhibiting Ar with Epi reverses aged-related loss of eNOS function and improves vascular function through the modulation of Ar and eNOS protein levels and activity.
Collapse
Affiliation(s)
- Alejandra Garate-Carrillo
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Viridiana Navarrete-Yañez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Pilar Ortiz-Vilchis
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Gustavo Guevara
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Carmen Castillo
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Patricia Mendoza-Lorenzo
- División Académica de Ciencias Básicas, Unidad Chontalpa, Universidad Juárez Autónoma de Tabasco, Tabasco, Mexico
| | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Miguel Ortiz-Flores
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Nayelli Najera
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Moises Muratt Bustamante-Pozo
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Ivan Rubio-Gayosso
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; VA San Diego Health Care, San Diego, CA, USA
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico.
| |
Collapse
|
23
|
Sasidharan S, Saudagar P. Flavones reversibly inhibit Leishmania donovani tyrosine aminotransferase by binding to the catalytic pocket: An integrated in silico-in vitro approach. Int J Biol Macromol 2020; 164:2987-3004. [PMID: 32798546 DOI: 10.1016/j.ijbiomac.2020.08.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
The current drugs for treating Leishmaniasis are toxic, non-economical and with the emergence of drug resistance makes the need for novel therapeutics urgent and necessary. In the current study, we report the identification of compounds TI 1-5 against tyrosine aminotransferase of L. donovani from a curated ZINC15 database containing 183,659 compounds. These flavonoid compounds had binding energies < -8 kcal/mol and interacted with the active site residues S151, K286, C290, and P291. Assessment of physicochemical descriptors and ADMET properties established the drug likeliness of these compounds. The all-atom molecular dynamic simulations of the TAT-TI complexes exhibited stable geometrical properties and further trajectory analysis revealed the high-affinity interactions of TI 1, 3, 4, and 5 with the active site residues. DFT calculations reported the high electrophilic nature of TI 2 while other TI compounds demonstrated good kinetic stability and reactivity. From in vitro studies, TI 3 and TI 4 had the highest inhibition with Ki values of 0.9 ± 0.2 μM and 0.30 ± 0.1 μM, respectively. Taken together, the results from this study indicate the potentiality of TI 1, 3, 4, and 5 as anti-leishmanial leads, and these compounds can be exploited to manage the growing Leishmaniasis crisis in the world.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, 506004, Telangana, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, 506004, Telangana, India.
| |
Collapse
|
24
|
Fakae LB, Stevenson CW, Zhu XQ, Elsheikha HM. In vitro activity of Camellia sinensis (green tea) against trophozoites and cysts of Acanthamoeba castellanii. Int J Parasitol Drugs Drug Resist 2020; 13:59-72. [PMID: 32512260 PMCID: PMC7281304 DOI: 10.1016/j.ijpddr.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 01/06/2023]
Abstract
The effect of Camellia sinensis (green tea) on the growth of Acanthamoeba castellanii trophozoites was examined using a microplate based-Sulforhodamine B (SRB) assay. C. sinensis hot and cold brews at 75% and 100% concentrations significantly inhibited the growth of trophozoites. We also examined the structural alterations in C. sinensis-treated trophozoites using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). This analysis showed that C. sinensis compromised the cell membrane integrity and caused progressive destruction of trophozoites. C. sinensis also significantly inhibited the parasite's ability to form cysts in a dose-dependent manner and reduced the rate of excystation from cysts to trophozoites. C. sinensis exhibited low cytotoxic effects on primary corneal stromal cells. However, cytotoxicity was more pronounced in SV40-immortalized corneal epithelial cells. Chromatographic analysis showed that both hot and cold C. sinensis brews contained the same number and type of chemical compounds. This work demonstrated that C. sinensis has anti-acanthamoebic activity against trophozoite and cystic forms of A. castellanii. Further studies are warranted to identify the exact substances in C. sinensis that have the most potent anti-acanthamoebic effect.
Collapse
Affiliation(s)
- Lenu B Fakae
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK; School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK; Rivers State University, Nkpolu - Oroworukwo P.M.B 5080, Port Harcourt, Rivers State, Nigeria
| | - Carl W Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Hany M Elsheikha
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| |
Collapse
|
25
|
Raj S, Sasidharan S, Balaji SN, Dubey VK, Saudagar P. Review on natural products as an alternative to contemporary anti-leishmanial therapeutics. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42485-020-00035-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Sosa AM, Moya Álvarez A, Bracamonte E, Korenaga M, Marco JD, Barroso PA. Efficacy of Topical Treatment with (-)-Epigallocatechin Gallate, A Green Tea Catechin, in Mice with Cutaneous Leishmaniasis. Molecules 2020; 25:molecules25071741. [PMID: 32290128 PMCID: PMC7180842 DOI: 10.3390/molecules25071741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/28/2023] Open
Abstract
The treatment of leishmaniasis includes pentavalent antimony drugs but, because of the side effects, toxicity and cases of treatment failure or resistance, the search of new antileishmanial compounds are necessary. The aims of this study were to evaluate and compare the in vitro antileishmanial activity of four green tea catechins, and to assess the efficacy of topical (−)-epigallocatechin gallate in a cutaneous leishmaniasis model. The antileishmanial activity of green tea catechins was evaluated against intracellular amastigotes, and cytotoxicity was performed with human monocytic cell line. BALB/c mice were infected in the ear dermis with Leishmania (Leishmania) amazonensis and treated with topical 15% (−)-epigallocatechin gallate, intraperitoneal Glucantime, and control group. The efficacy of treatments was evaluated by quantifying the parasite burden and by measuring the lesions size. (−)-Epigallocatechin gallate and (−)-epigallocatechin were the most active compounds with IC50 values <59.6 µg/mL and with a selectivity index >1. Topical treatment with (−)-epigallocatechin gallate decreased significantly both lesion size and parasite burden (80.4% inhibition) compared to control group (p < 0.05), and moreover (−)-epigallocatechin gallate showed a similar efficacy to Glucantime (85.1% inhibition), the reference drug for leishmaniasis treatment.
Collapse
Affiliation(s)
- Andrea M. Sosa
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta-CONICET, Salta 4400, Argentina; (A.M.S.); (A.M.Á.); (E.B.); (J.D.M.)
| | - Agustín Moya Álvarez
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta-CONICET, Salta 4400, Argentina; (A.M.S.); (A.M.Á.); (E.B.); (J.D.M.)
| | - Estefanía Bracamonte
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta-CONICET, Salta 4400, Argentina; (A.M.S.); (A.M.Á.); (E.B.); (J.D.M.)
| | - Masataka Korenaga
- Department of Parasitology, Kochi Medical School, Kochi University, Okocho Kohasu, Nankoku, Kochi Prefecture 783-8505, Japan;
- Faculty of Health Sciences, Kochi Gakuen University, Asahi-Tenjincho, Kochi, Kochi Prefecture 780-0955, Japan
| | - Jorge D. Marco
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta-CONICET, Salta 4400, Argentina; (A.M.S.); (A.M.Á.); (E.B.); (J.D.M.)
| | - Paola A. Barroso
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta-CONICET, Salta 4400, Argentina; (A.M.S.); (A.M.Á.); (E.B.); (J.D.M.)
- Correspondence:
| |
Collapse
|
27
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
28
|
In silico and in vitro comparative activity of green tea components against Leishmania infantum. J Glob Antimicrob Resist 2019; 18:187-194. [DOI: 10.1016/j.jgar.2019.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/17/2019] [Accepted: 02/12/2019] [Indexed: 01/07/2023] Open
|
29
|
Crizanto de Lima E, Castelo-Branco FS, Maquiaveli CC, Farias AB, Rennó MN, Boechat N, Silva ER. Phenylhydrazides as inhibitors of Leishmania amazonensis arginase and antileishmanial activity. Bioorg Med Chem 2019; 27:3853-3859. [PMID: 31311700 DOI: 10.1016/j.bmc.2019.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 01/20/2023]
Abstract
Searching for new substances with antileishmanial activity, we synthesized and evaluated a series of α,α-difluorohydrazide and α,α-difluoramides against Leishmania amazonensis arginase (LaArg). Four α,α-difluorohydrazide derivatives showed activity against LaArg with Ki in the range of 1.3-26 μM. The study of the kinetics of LaArg inhibition showed that these substances might act via different inhibitory mechanisms or even by a combination of these. The compounds were tested against L. amazonensis promastigotes and the best result was obtained to the compound 4 (EC50 of 12.7 ± 0.3 μM). In addition, in order to obtain further insight into the binding mode of such compounds, molecular docking studies were performed to obtain additional validation of experimental results. Considering these results, it is possible to conclude that α,α-difluorohydrazide derivatives are a promising scaffold in the development of new substances against the etiological agent of leishmaniasis by targeting LaArg.
Collapse
Affiliation(s)
- Evanoel Crizanto de Lima
- Laboratório de Catálise e Síntese de Substâncias Bioativas, Universidade Federal do Rio de Janeiro Campus Macaé Professor Aloísio Teixeira, Estrada do Imburo s/n - Ajuda de Baixo, Macaé, RJ CEP 27979-000, Brazil
| | - Frederico S Castelo-Branco
- Departamento de Sintese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos - FIOCRUZ, Rio de Janeiro, RJ 21041-250, Brazil
| | - Claudia C Maquiaveli
- Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Laboratório de Farmacologia e Bioquímica (LFBq), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil
| | - André B Farias
- Instituto de Biodiversidade e Sustentabilidade NUPEM/UFRJ, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Av. São José do Barreto, 764, Macaé, RJ 27965-045, Brazil
| | - Magdalena N Rennó
- Instituto de Biodiversidade e Sustentabilidade NUPEM/UFRJ, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Av. São José do Barreto, 764, Macaé, RJ 27965-045, Brazil
| | - Nubia Boechat
- Departamento de Sintese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos - FIOCRUZ, Rio de Janeiro, RJ 21041-250, Brazil.
| | - Edson R Silva
- Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Laboratório de Farmacologia e Bioquímica (LFBq), Av. Duque de Caxias Norte, 225, Pirassununga, SP 13635-900, Brazil.
| |
Collapse
|
30
|
Boniface PK, Ferreira EI. Flavonoids as efficient scaffolds: Recent trends for malaria, leishmaniasis, Chagas disease, and dengue. Phytother Res 2019; 33:2473-2517. [PMID: 31441148 DOI: 10.1002/ptr.6383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
Endemic in 149 tropical and subtropical countries, neglected tropical diseases (NTDs) affect more than 1 billion people annually with over 500,000 deaths. Among the NTDs, some of the most severe consist of leishmaniasis, Chagas disease, and dengue. The impact of the combined NTDs closely rivals that of malaria. According to the World Health Organization, 216 million cases of malaria were reported in 2016 with 445,000 deaths. Current treatment options are associated with various limitations including widespread drug resistance, severe adverse effects, lengthy treatment duration, unfavorable toxicity profiles, and complicated drug administration procedures. Flavonoids are a class of compounds that has been the subject of considerable scientific interest. New developments of flavonoids have made promising advances for the potential treatment of malaria, leishmaniasis, Chagas disease, and dengue, with less toxicity, high efficacy, and improved bioavailability. This review summarizes the current standings of the use of flavonoids to treat malaria and neglected diseases such as leishmaniasis, Chagas disease, and dengue. Natural and synthetic flavonoids are leading compounds that can be used for developing antiprotozoal and antiviral agents. However, detailed studies on toxicity, pharmacokinetics, and mechanisms of action of these compounds are required to confirm the in vitro pharmacological claims of flavonoids for pharmaceutical applications. HIGHLIGHTS: In the current review, we have tried to compile recent discoveries on natural and synthetic flavonoids as well as their implication in the treatment of malaria, leishmaniasis, Chagas disease, and dengue. A total of 373 (220 natural and 153 synthetic) flavonoids have been evaluated for antimalarial, antileishmanial, antichagasic, and antidengue activities. Most of these flavonoids showed promising results against the above diseases. Reports on molecular modeling of flavonoid compounds to the disease target indicated encouraging results. Flavonoids can be prospected as potential leads for drug development; however, more rigorously designed studies on toxicity and pharmacokinetics, as well as the quantitative structure-activity relationship studies of these compounds, need to be addressed.
Collapse
Affiliation(s)
- Pone Kamdem Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Garcia AR, Oliveira DMP, Claudia F Amaral A, Jesus JB, Rennó Sodero AC, Souza AMT, Supuran CT, Vermelho AB, Rodrigues IA, Pinheiro AS. Leishmania infantum arginase: biochemical characterization and inhibition by naturally occurring phenolic substances. J Enzyme Inhib Med Chem 2019; 34:1100-1109. [PMID: 31124384 PMCID: PMC6534257 DOI: 10.1080/14756366.2019.1616182] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Inhibition of Leishmania arginase leads to a decrease in parasite growth and infectivity and thus represents an attractive therapeutic strategy. We evaluated the inhibitory potential of selected naturally occurring phenolic substances on Leishmania infantum arginase (ARGLi) and investigated their antileishmanial activity in vivo. ARGLi exhibited a Vmax of 0.28 ± 0.016 mM/min and a Km of 5.1 ± 1.1 mM for L-arginine. The phenylpropanoids rosmarinic acid and caffeic acid (100 µM) showed percentages of inhibition of 71.48 ± 0.85% and 56.98 ± 5.51%, respectively. Moreover, rosmarinic acid and caffeic acid displayed the greatest effects against L. infantum with IC50 values of 57.3 ± 2.65 and 60.8 ± 11 μM for promastigotes, and 7.9 ± 1.7 and 21.9 ± 5.0 µM for intracellular amastigotes, respectively. Only caffeic acid significantly increased nitric oxide production by infected macrophages. Altogether, our results broaden the current spectrum of known arginase inhibitors and revealed promising drug candidates for the therapy of visceral leishmaniasis.
Collapse
Affiliation(s)
- Andreza R Garcia
- a Graduate Program in Pharmaceutical Sciences , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Danielle M P Oliveira
- b Department of Biochemistry , Institute of Chemistry, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Ana Claudia F Amaral
- c Department of Natural Products , Farmanguinhos, FIOCRUZ , Rio de Janeiro , Brazil
| | - Jéssica B Jesus
- d Department of Drugs and Medicines , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Ana Carolina Rennó Sodero
- d Department of Drugs and Medicines , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Alessandra M T Souza
- d Department of Drugs and Medicines , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Claudiu T Supuran
- e Neurofarba Department , Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche , Florence , Italy
| | - Alane B Vermelho
- f Department of General Microbiology , Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Igor A Rodrigues
- a Graduate Program in Pharmaceutical Sciences , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil.,g Department of Natural Products and Food , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Anderson S Pinheiro
- b Department of Biochemistry , Institute of Chemistry, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| |
Collapse
|
32
|
Polisel DA, de Castro AA, Mancini DT, da Cunha EFF, França TCC, Ramalho TC, Kuca K. Slight difference in the isomeric oximes K206 and K203 makes huge difference for the reactivation of organophosphorus-inhibited AChE: Theoretical and experimental aspects. Chem Biol Interact 2019; 309:108671. [PMID: 31207225 DOI: 10.1016/j.cbi.2019.05.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/28/2019] [Accepted: 05/22/2019] [Indexed: 01/26/2023]
Abstract
Studies with oximes have been extensively developed to design new reactivators with better efficiency, and greater spectrum of action. In this study, we aimed to analyze the influence of the Carbamoyl group position change in two isomeric oximes, K203 and K206, on the reactivation percentage of Mus musculus Acetylcholinesterase (MmAChE), inhibited by different nerve agents. Theoretical calculations were performed to assess the difference for the oxime activity with inhibited AChE-complexes and the factors that govern this difference. Comparing theoretical and experimental data, it is possible to observe that this change between the oximes results in different reactivation percentage for the same nerve agent, due to the different interaction modes and activation energy for the studied systems.
Collapse
Affiliation(s)
- Daniel A Polisel
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | | | - Daiana T Mancini
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Elaine F F da Cunha
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil; Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil
| | - Tanos C C França
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Kamil Kuca
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
33
|
Omojokun OS, Famurewa AJ, Jaiyeoba OA, Oboh G, Agbebi OJ. Alkaloid extracts from Bitter leaf (Vernonia amygdalina) and Black nightshade (Solanum nigrum) inhibit phosphodiesterase-5, arginase activities and oxidative stress in rats penile tissue. J Food Biochem 2019; 43:e12889. [PMID: 31353618 DOI: 10.1111/jfbc.12889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
The erectogenic potential of alkaloids extracted from Bitter leaf (Vernonia amygdalina) and Black nightshade (Solanum nigrum) was investigated in this study. Fresh leaves obtained from Bitter leaf and Black night shade were air-dried, pulverized, and extracted for alkaloids. The inhibitory potential of the alkaloid extracts on arginase and phosphodiesterase-5 (PDE-5) activities in rats penile tissue was determined in vitro. The antioxidant properties were also evaluated and the constituent alkaloids quantified using GC-MS. The alkaloid extracts inhibited arginase (0-30.51 μg/ml) and PDE-5 (0-133.69 μg/ml) activities in a concentration-dependent pattern. Similarly, the alkaloid extracts inhibited Fe2+ -induced lipid peroxidation in rats penile tissues, scavenged DPPH, OH, and NO radicals as a function of concentration. GC-MS characterization revealed over 20 alkaloid compounds. The inhibition of PDE-5-, arginase-, pro-oxidant-induced lipid peroxidative-, and free radicals-scavenging activities by the alkaloids is suggestive of putative mechanisms underlying their therapeutic use for managing erectile dysfunction in folklore medicine. PRACTICAL APPLICATIONS: Alkaloids extracted from Black nightshade (Solanum nigrum) and Bitter leaf (Vernonia amygdalina) were characterized and investigated by standard procedures for inhibitory action against key erectile dysfunction-linked enzymes and antioxidant activity. The alkaloids inhibited erectile dysfunction-linked enzymes (arginase and PDE-5) and showed considerable antioxidant activity in a concentration-dependent manner. In view of this, we suggest the application of these results in the development of erectile dysfunction drugs in the pharmaceutical industry, with probable minimal or no adverse effect.
Collapse
Affiliation(s)
- Olasunkanmi S Omojokun
- Biochemistry Unit, Department of Physical & Chemical Sciences, Elizade University, Ilara-mokin, Nigeria.,Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Akindele J Famurewa
- Biochemistry Unit, Department of Physical & Chemical Sciences, Elizade University, Ilara-mokin, Nigeria
| | - Oluwademilade A Jaiyeoba
- Biochemistry Unit, Department of Physical & Chemical Sciences, Elizade University, Ilara-mokin, Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Oluwaseun J Agbebi
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria.,Laboratory Department, Environmental Resources Managers Limited, Lekki, Nigeria
| |
Collapse
|
34
|
Feuser PE, Tonini ML, Jacques AV, Santos da Silva MC, Steindel M, Sayer C, Hermes de Araújo PH. Increased in vitro leishmanicidal activity of octyl gallate loaded poly(methyl methacrylate) nanoparticles. Pharm Dev Technol 2019; 24:593-599. [DOI: 10.1080/10837450.2018.1547747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Paulo Emilio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Maiko Luis Tonini
- Department of Microbiology Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
- Biomedical Sciences Research Complex, University of St Andrews, Fife, UK
| | - Amanda Virtuoso Jacques
- Department of Clinical Analyses, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Mario Steindel
- Department of Microbiology Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
35
|
Ademosun AO, Adebayo AA, Oboh G. Anogeissus leiocarpus attenuates paroxetine-induced erectile dysfunction in male rats via enhanced sexual behavior, nitric oxide level and antioxidant status. Biomed Pharmacother 2019; 111:1029-1035. [DOI: 10.1016/j.biopha.2019.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 01/29/2023] Open
|
36
|
Oboh G, Adebayo AA, Ademosun AO. Phenolic-rich extracts of Eurycoma longifolia and Cylicodiscus gabunensis inhibit enzymes responsible for the development of erectile dysfunction and are antioxidants. J Basic Clin Physiol Pharmacol 2018; 29:689-696. [PMID: 29777610 DOI: 10.1515/jbcpp-2017-0160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Herbs have been used from ages to manage male sexual dysfunction. Hence, this study sought to investigate the effects of Eurycoma longifolia (EL) and Cylicodiscus gabunensis (CG) stem bark extracts on some enzymes implicated in erectile dysfunction in vitro. METHODS The extracts were prepared, and their effects on phosphodiesterase-5 (PDE-5), arginase, and angiotensin-1-converting enzyme (ACE) as well as pro-oxidant-induced lipid peroxidation were assessed. Furthermore, phenolic contents were determined, and their components were characterized and quantified using high-performance liquid chromatography with diode array detector (HPLC-DAD). RESULTS The results revealed that the extracts inhibited PDE-5, arginase, and ACE in a concentration-dependent manner. However, IC50 values revealed that CG had higher inhibitory potential on PDE-5 (IC50=204.4 μg/mL), arginase (IC50=39.01 μg/mL), and ACE (IC50=48.81 μg/mL) than EL. In addition, the extracts inhibited pro-oxidant-induced lipid peroxidation in penile tissue homogenate. HPLC-DAD analysis showed that CG is richer in phenolic compounds than EL, and this could be responsible for higher biological activities observed in CG than EL. CONCLUSIONS Hence, the observed antioxidant property and inhibitory action of CG and EL on enzymes relevant to erectile dysfunction in vitro could be part of possible mechanisms underlying their involvement in traditional medicine for the management of male sexual dysfunction.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria, Phone: +2347031388644
| | - Adeniyi A Adebayo
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ayokunle O Ademosun
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
37
|
da Silva ER, Brogi S, Grillo A, Campiani G, Gemma S, Vieira PC, Maquiaveli CDC. Cinnamic acids derived compounds with antileishmanial activity target Leishmania amazonensis arginase. Chem Biol Drug Des 2018; 93:139-146. [PMID: 30216691 DOI: 10.1111/cbdd.13391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/16/2018] [Accepted: 08/26/2018] [Indexed: 12/28/2022]
Abstract
This study describes the activity of five natural hydroxycinnamic acids and derived compound: caffeic (1), rosmarinic (2), chlorogenic (3), and cryptochlorogenic (4), acids and isoverbascoside (5). All compounds inhibited Leishmania amazonensis arginase with IC50 -in range of 1.5-11 μM. Compounds 2 and 5 also showed activity against promastigotes of L. amazonensis with IC50 = 61 (28-133) μM and IC50 = 14 (9-24) μM, respectively. Further computational studies applying molecular docking simulations were performed on the competitive inhibitors to gain insight into the molecular basis for arginase inhibition and could be exploited to the development of new antileishmanials drug targeting parasite arginase.
Collapse
Affiliation(s)
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena via Aldo Moro 2, Siena, Italy
| | - Alessandro Grillo
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena via Aldo Moro 2, Siena, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena via Aldo Moro 2, Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena via Aldo Moro 2, Siena, Italy
| | - Paulo Cezar Vieira
- Department of Chemistry, Universidade Federal de São Carlos, São Carlos, Brazil
| | | |
Collapse
|
38
|
Olabiyi AA, Carvalho FB, Bottari NB, Lopes TF, da Costa P, Stefanelo N, Morsch VM, Akindahunsi AA, Oboh G, Schetinger MR. Dietary supplementation of tiger nut alters biochemical parameters relevant to erectile function in l -NAME treated rats. Food Res Int 2018; 109:358-367. [DOI: 10.1016/j.foodres.2018.04.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 11/24/2022]
|
39
|
Antileishmanial and Immunomodulatory Effect of Babassu-Loaded PLGA Microparticles: A Useful Drug Target to Leishmania amazonensis Infection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3161045. [PMID: 30046335 PMCID: PMC6036798 DOI: 10.1155/2018/3161045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/03/2018] [Accepted: 05/16/2018] [Indexed: 01/21/2023]
Abstract
The immunological and the anti-Leishmania amazonensis activity of babassu-loaded poly(lactic-co-glycolic acid) [PLGA] microparticles was evaluated. The anti-Leishmania activity was evaluated against promastigotes or amastigotes forms, in Balb/c macrophages. The size of the microparticles ranged from 3 to 6.4 μm, with a zeta potential of −25 mV and encapsulation efficiency of 48%. The anti-Leishmania activity of the PLGA microparticles loaded with the aqueous extract of babassu mesocarp (MMP) (IC50) was 10-fold higher than that free extract (Meso). MMP exhibited overall bioavailability and was very effective in eliminating intracellular parasites. MMP also reduced ex vivo parasite infectivity probably by the increased production of nitric oxide, hydrogen peroxide, and TNF-α indicating the activation of M1 macrophages. The overexpression of TNF-α did not impair cell viability, suggesting antiapoptotic effects of MMP. In conclusion, babassu-loaded microparticles could be useful for drug targeting in the treatment of leishmaniasis, due to the immunomodulatory effect on macrophage polarization and the increased efficacy as an anti-Leishmania product after the microencapsulation. These findings are of great relevance since the development of new drugs for the treatment of neglected diseases is desirable, mainly if we consider the high morbidity and mortality rates of leishmaniasis worldwide.
Collapse
|
40
|
African crocus (Curculigo pilosa) and wonderful kola (Buchholzia coriacea) seeds modulate critical enzymes relevant to erectile dysfunction and oxidative stress. ACTA ACUST UNITED AC 2018; 15:jcim-2016-0159. [DOI: 10.1515/jcim-2016-0159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/15/2018] [Indexed: 11/15/2022]
Abstract
Abstract
Background
The seeds of African crocus (AC) (Curculigo pilosa) and wonderful kola (WK) (Buchholzia coriacea) are commonly used in folklore medicine in managing erectile dysfunction (ED) without the full understanding of the possible mechanism of actions. This study investigated and compared the effects of aqueous extracts from the seeds of AC and WK on arginase and acetylcholinesterase (AChE) activities and some pro-oxidant [FeSO4 and sodium nitroprusside (SNP)]-induced lipid peroxidation in rat penile homogenate in vitro.
Method
Aqueous extracts of AC and WK were prepared, and their effects on arginase and AChE activities as well as FeSO4- and SNP-induced lipid peroxidation in rat penile homogenate were assessed. Furthermore, phenolic constituents of the extract were determined using high-performance liquid chromatography coupled with diode-array detector (HPLC-DAD).
Results
Both extracts exhibited concentration-dependent inhibition on arginase (AC, IC50=0.05 mg/mL; WK, IC50=0.22 mg/mL) and AChE (AC, IC50=0.68 mg/mL; WK, IC50=0.28 mg/mL) activities. The extracts also inhibited FeSO4- and SNP-induced lipid peroxidation in rat penile homogenate. HPLC-DAD analysis revealed the presence of phenolic acids (gallic, caffeic, ellagic and coumaric acids) and flavonoids (catechin, quercetin and apigenin) in AC and WK. AC had higher arginase inhibitory and antioxidative activities but lower AChE inhibitory properties when compared with WK.
Conclusions
These effects could explain the possible mechanistic actions of the seeds in the management/treatment of ED and could be as a result of individual and/or synergistic effect of the constituent phenolic compounds of the seeds.
Collapse
|
41
|
Oyeleye SI, Adebayo AA, Ogunsuyi OB, Dada FA, Oboh G. Phenolic profile and Enzyme Inhibitory activities of Almond (Terminalia catappa) leaf and Stem bark. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1375945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sunday I. Oyeleye
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Adeniyi A. Adebayo
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Opeyemi B. Ogunsuyi
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Felix A. Dada
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
42
|
Oboh G, Ademiluyi AO, Oyeleye SI, Olasehinde TA, Boligon AA. Modulation of some markers of erectile dysfunction and malonaldehyde levels in isolated rat penile tissue with unripe and ripe plantain peels: identification of the constituents of the plants using HPLC. PHARMACEUTICAL BIOLOGY 2017; 55:1920-1926. [PMID: 28651482 PMCID: PMC7011878 DOI: 10.1080/13880209.2017.1340966] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/24/2016] [Accepted: 06/04/2017] [Indexed: 06/11/2023]
Abstract
CONTEXT Plantain fruit pulp has been used as a natural remedy to manage erectile dysfunction (ED) in traditional medicine. However, the potency of the peel has not been examined with respect to ED management. OBJECTIVE This study investigated and compared the inhibitory potential of unripe (UPP) and ripe (RPP) plantain peels on some enzymes associated with ED and Fe2+-induced oxidative stress in albino rat penile homogenate in vitro. MATERIALS AND METHOD Aqueous extract of the peels was prepared and the effect on phosphodiesterase-5 (PDE-5), arginase, acetylcholinesterase (AChE), angiotensin-I converting enzyme (ACE) and Fe2+-induced malonyladehyde in isolated albino rat penile homogenate were investigated. Phenolic constituents of the peels powder were characterized using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). RESULT Extract from UPP had higher PDE-5 (IC50 = 3.10 μg/mL), arginase (IC50 = 0.96 μg/mL), AChE (IC50 = 6.30 μg/mL) and ACE (IC50 = 0.41 μg/mL) inhibitory ability compared with RPP (PDE-5, IC50 = 4.33 μg/mL; arginase, IC50 = 1.34 μg/mL; AChE, IC50 = 8.64 μg/mL; ACE, IC50 = 0.63 μg/mL). The extract from UPP also had higher inhibition of Fe2+-induced lipid peroxidation. HPLC-DAD analysis revealed that gallic and caffeic acids, rutin, quercitrin and quercetin were abundant in UPP, while catechin, kaempferol, chlorogenic and ellagic acids were the dominant phenolic compounds in RPP. DISCUSSION AND CONCLUSION Inhibition of enzymes associated with ED and lipid peroxidation could be linked with the phenolic compounds. However, UPP appeared to be more potent.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | | | - Sunday Idowu Oyeleye
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Tosin Abiola Olasehinde
- Division of Nutrition and Toxicology, Department of Food Technology, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Aline Augusti Boligon
- Phytochemical Research Laboratory, Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
43
|
Odubanjo VO, Olasehinde TA, Oyeleye SI, Oboh G, Boligon AA. Seed extracts from Myristica fragrans
(Nutmeg) and Moringa oleifera
(Drumstick tree) inhibits enzymes relevant to erectile dysfunction and metal-induced oxidative damage in rats' penile tissues. J Food Biochem 2017. [DOI: 10.1111/jfbc.12452] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Veronica O. Odubanjo
- Department of Biochemistry; Adekunle Ajasin University, P.M.B 001; Akungba Akoko Ondo State Nigeria
- Functional Foods and Nutraceuticals, Department of Biochemistry; Federal University of Technology, P.M.B 704, Akure; Ondo State Nigeria
| | - Tosin A. Olasehinde
- Nutrition and Toxicology Division; Federal Institute of Industrial Research Oshodi, PMB 21023, Lagos, Nigeria
| | - Sunday I. Oyeleye
- Functional Foods and Nutraceuticals, Department of Biochemistry; Federal University of Technology, P.M.B 704, Akure; Ondo State Nigeria
- Department of Biomedical Technology; Federal University of Technology; P.M.B 704, Akure, Ondo State Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceuticals, Department of Biochemistry; Federal University of Technology, P.M.B 704, Akure; Ondo State Nigeria
| | - Aline A. Boligon
- Depatamento de Farmacia Industrial; Universidade Federal de Santa Maria; Santa Maria Brazil
| |
Collapse
|
44
|
Olabiyi AA, Oboh G, Akinyemi AJ, Ademiluyi AO, Boligon AA, Anraku de Campos MM. Tiger nut ( Cyperus esculentus L.) supplemented diet modulate key biochemical indices relevant to erectile function in male rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
45
|
MOGHADDAS E, KHAMESIPOUR A, MOHEBALI M, FATA A. Iranian Native Plants on Treatment of Cutaneous Leishmaniosis: A Narrative Review. IRANIAN JOURNAL OF PARASITOLOGY 2017; 12:312-322. [PMID: 28979340 PMCID: PMC5623910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Chemotherapy still relies on the use of pentavalent antimonials, amphotericin B, paromomycin, miltefosin, and allopurinol. In this study, we explained about the native plant that grows in different regions of Iran and used as anti-leishmanial in Iran and even many other countries. METHODS This narrative review covers all information about local herbal medicine in Iran that used in treatment of cutaneous leishmaniasis in all the worlds, published in local and international journals from 1996 to 2015 using various databases including PubMed, SID, Google Scholar, Scopus, and Science Direct. RESULTS Overall, 150 articles in databases were identified. Many local plants grown in some places of Iran were used to treat this endemic disease. CONCLUSION The cutaneous leishmaniasis is also a major health problem in Iran, especially in Mashhad (Northeast of Iran). Therefore, many patients seek for herbal therapy that is cheaper and readily available. This review provides information regarding plant that exists in Iran and exhibiting effects on anti-Leishmania activity. Among the anti-leishmanial mentioned in this review, most have never been tested for cytotoxicity and very few have been tested for in vivo activity.
Collapse
Affiliation(s)
- Elham MOGHADDAS
- Dept. of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali KHAMESIPOUR
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi MOHEBALI
- Dept. of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolmajid FATA
- Dept. of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Skin Diseases and Cutaneous Leishmaniasis Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Correspondence
| |
Collapse
|
46
|
Pudlo M, Demougeot C, Girard-Thernier C. Arginase Inhibitors: A Rational Approach Over One Century. Med Res Rev 2016; 37:475-513. [DOI: 10.1002/med.21419] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Marc Pudlo
- PEPITE - EA4267; University Bourgogne Franche-Comté; Besançon France
| | - Céline Demougeot
- PEPITE - EA4267; University Bourgogne Franche-Comté; Besançon France
| | | |
Collapse
|
47
|
Maquiaveli CDC, Oliveira E Sá AM, Vieira PC, da Silva ER. Stachytarpheta cayennensis extract inhibits promastigote and amastigote growth in Leishmania amazonensis via parasite arginase inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:108-113. [PMID: 27432217 DOI: 10.1016/j.jep.2016.07.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Stachytarpheta cayennensis is a plant that is traditionally used to treat tegumentary leishmaniasis and as an anti-inflammatory agent. AIM OF THE STUDY This study aimed to evaluate the action of S. cayennensis extracts on the Leishmania (Leishmania) amazonensis arginase enzyme. MATERIALS AND METHODS S. cayennensis was collected from the Brazilian Amazon region. Aqueous extracts were fractionated with n-butanol. The leishmanicidal effects of the n-butanolic fraction (BUF) were evaluated in L. (L.) amazonensis promastigotes and amastigotes. BUF was tested against recombinant arginase from both L. (L.) amazonensis and macrophage arginase. Promastigote cultures and infected macrophage cultures were supplemented with L-ornithine to verify arginase inhibition. NMR analysis was used to identify the major components of BUF. RESULTS BUF showed an EC50 of 51 and 32µg/mL against promastigotes and amastigotes of L. (L.) amazonensis, respectively. BUF contains a mixture of verbascoside and isoverbascoside (7:3 ratio) and is a potent L. (L.) amazonensis arginase inhibitor (IC50=1.2µg/mL), while macrophage arginase was weakly inhibited (IC50>1000µg/mL). The inhibition of arginase by BUF in promastigotes and amastigotes could be demonstrated by culture media supplementation with L-ornithine, a product of the hydrolysis of L-arginine by arginase. CONCLUSIONS Leishmanicidal effects of the S. cayennensis BUF fraction on L. (L.) amazonensis are associated with selective parasite arginase inhibition.
Collapse
Affiliation(s)
- Claudia do Carmo Maquiaveli
- Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil.
| | - Amanda Maria Oliveira E Sá
- Departamento de Medicina Veterinária, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil
| | - Paulo Cezar Vieira
- Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Edson Roberto da Silva
- Departamento de Medicina Veterinária, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil.
| |
Collapse
|
48
|
Ogungbe IV, Setzer WN. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Molecules 2016; 21:E1389. [PMID: 27775577 PMCID: PMC6274513 DOI: 10.3390/molecules21101389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Malaria, leishmaniasis, Chagas disease, and human African trypanosomiasis continue to cause considerable suffering and death in developing countries. Current treatment options for these parasitic protozoal diseases generally have severe side effects, may be ineffective or unavailable, and resistance is emerging. There is a constant need to discover new chemotherapeutic agents for these parasitic infections, and natural products continue to serve as a potential source. This review presents molecular docking studies of potential phytochemicals that target key protein targets in Leishmania spp., Trypanosoma spp., and Plasmodium spp.
Collapse
Affiliation(s)
- Ifedayo Victor Ogungbe
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
49
|
Adefegha SA, Oboh G, Oyeleye SI, Ejakpovi I. Erectogenic, Antihypertensive, Antidiabetic, Anti-Oxidative Properties and Phenolic Compositions of Almond Fruit (Terminalia catappaL.) Parts (Hull and Drupe) -in vitro. J Food Biochem 2016. [DOI: 10.1111/jfbc.12309] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Stephen A. Adefegha
- Functional food and Nutraceutical Laboratory, Department of Biochemistry; Federal University of Technology; Akure 340001 Nigeria
| | - Ganiyu Oboh
- Functional food and Nutraceutical Laboratory, Department of Biochemistry; Federal University of Technology; Akure 340001 Nigeria
| | - Sunday I. Oyeleye
- Functional food and Nutraceutical Laboratory, Department of Biochemistry; Federal University of Technology; Akure 340001 Nigeria
| | - Isaac Ejakpovi
- Functional food and Nutraceutical Laboratory, Department of Biochemistry; Federal University of Technology; Akure 340001 Nigeria
| |
Collapse
|
50
|
Maquiaveli CC, Lucon-Júnior JF, Brogi S, Campiani G, Gemma S, Vieira PC, Silva ER. Verbascoside Inhibits Promastigote Growth and Arginase Activity of Leishmania amazonensis. JOURNAL OF NATURAL PRODUCTS 2016; 79:1459-1463. [PMID: 27096224 DOI: 10.1021/acs.jnatprod.5b00875] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Verbascoside (1) is a phenylethanoid glycoside that has antileishmanial activity against Leishmania infantum and Leishmania donovani. In this study, we verified the activity of 1 on Leishmania amazonensis and arginase inhibition. Compound 1 showed an EC50 of 19 μM against L. amazonensis promastigotes and is a competitive arginase inhibitor (Ki = 0.7 μM). Docking studies were performed to assess the interaction of 1 with arginase at the molecular level. Arginase is an enzyme of the polyamine biosynthesis pathway that is important to parasite infectivity, and the results of our study suggest that 1 could be useful to develop new approaches for treating leishmaniasis.
Collapse
Affiliation(s)
- Claudia C Maquiaveli
- Department of Chemistry, Universidade Federal de São Carlos , Rod. Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil
| | - João F Lucon-Júnior
- Department of Veterinary Medicine, Universidade de São Paulo , Avenida Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Paulo C Vieira
- Department of Chemistry, Universidade Federal de São Carlos , Rod. Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Edson R Silva
- Department of Veterinary Medicine, Universidade de São Paulo , Avenida Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil
| |
Collapse
|