1
|
Woo J, Choi HZ, Kang J. Intentionally self-injured patients have lower mortality when treated at trauma centers versus non-trauma centers in South Korea. Trauma Surg Acute Care Open 2024; 9:e001258. [PMID: 38779365 PMCID: PMC11110604 DOI: 10.1136/tsaco-2023-001258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
Objective This study investigated the characteristics and survival rates of patients with intentional severe trauma (self-harm or suicide) who were transported to either a regional trauma center (TC) or a non-TC facility. Methods This retrospective, national, population-based, observational, case-control study included patients who sustained intentional severe trauma and had an abnormal Revised Trauma Score at the injury site between January 2018 and December 2019. The data were a community-based severe trauma survey based on data collected from severe injury and multiple casualty patients transported by 119 emergency medical services (EMS), distributed by the Korea Disease Control and Prevention Agency. The treatment hospitals were divided into two types, TC and non-TCs, and several variables, including in-hospital mortality, were compared. Propensity score matching (PSM) was used to mitigate the influence of confounding variables on the survival outcomes. Results Among the 3864 patients, 872 and 2992 visited TC and non-TC facilities, respectively. The injury severity did not differ significantly between patients treated at TCs and non-TCs (TC, 9; non-TC, 9; p=0.104). However, compared with those treated at non-TCs, patients treated at TCs had a higher rate of surgery or transcatheter arterial embolization (14.2% vs 38.4%; p<0.001) and a higher admission rate to the emergency department (34.4% vs 60.6%; p<0.001). After PSM, 872 patients from both groups were analyzed. Patients treated at TCs exhibited a higher overall survival rate than those treated at non-TCs (76.1% vs 66.9%; p<0.001), and multiple variable logistic regression analysis demonstrated that the causes of injury and transport to the TC were significantly associated. Conclusion Using Korean EMS data, the results of this study revealed that initial transport to TCs was associated with reduced mortality rates. However, considering the limitations of using data from only 2 years and the retrospective design, further research is warranted. Study type Retrospective national, population-based observational case-control study. Level of evidence Level III.
Collapse
Affiliation(s)
- Jin Woo
- Department of Emergency Medicine, Kyung Hee University Hospital at Gangdong, Gangdong-gu, Korea (the Republic of)
| | - Han Zo Choi
- Department of Emergency Medicine, Kyung Hee University Hospital at Gangdong, Gangdong-gu, Korea (the Republic of)
| | - Jongkyeong Kang
- Department of Information Statistics, Kangwon National University, Chuncheon, Korea (the Republic of)
| |
Collapse
|
2
|
Dinh DD, Wan H, Lidington D, Bolz SS. Female mice display sex-specific differences in cerebrovascular function and subarachnoid haemorrhage-induced injury. EBioMedicine 2024; 102:105058. [PMID: 38490104 PMCID: PMC10955634 DOI: 10.1016/j.ebiom.2024.105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND In male mice, a circadian rhythm in myogenic reactivity influences the extent of brain injury following subarachnoid haemorrhage (SAH). We hypothesized that female mice have a different cerebrovascular phenotype and consequently, a distinct SAH-induced injury phenotype. METHODS SAH was modelled by pre-chiasmatic blood injection. Olfactory cerebral resistance arteries were functionally assessed by pressure myography; these functional assessments were related to brain histology and neurobehavioral assessments. Cystic fibrosis transmembrane conductance regulator (CFTR) expression was assessed by PCR and Western blot. We compared non-ovariectomized and ovariectomized mice. FINDINGS Cerebrovascular myogenic reactivity is not rhythmic in females and no diurnal differences in SAH-induced injury are observed; ovariectomy does not unmask a rhythmic phenotype for any endpoint. CFTR expression is rhythmic, with similar expression levels compared to male mice. CFTR inhibition studies, however, indicate that CFTR activity is lower in female arteries. Pharmacologically increasing CFTR expression in vivo (3 mg/kg lumacaftor for 2 days) reduces myogenic tone at Zeitgeber time 11, but not Zeitgeber time 23. Myogenic tone is not markedly augmented following SAH in female mice and lumacaftor loses its ability to reduce myogenic tone; nevertheless, lumacaftor confers at least some injury benefit in females with SAH. INTERPRETATION Female mice possess a distinct cerebrovascular phenotype compared to males, putatively due to functional differences in CFTR regulation. This sex difference eliminates the CFTR-dependent cerebrovascular effects of SAH and may alter the therapeutic efficacy of lumacaftor compared to males. FUNDING Brain Aneurysm Foundation, Heart and Stroke Foundation and Ted Rogers Centre for Heart Research.
Collapse
Affiliation(s)
- Danny D Dinh
- Department of Physiology, University of Toronto, Toronto, Canada; Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, Canada
| | - Hoyee Wan
- Department of Physiology, University of Toronto, Toronto, Canada; Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, Canada
| | - Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, Canada; Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, Canada; Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, Canada; Heart & Stroke / Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Becker K. Animal Welfare Aspects in Planning and Conducting Experiments on Rodent Models of Subarachnoid Hemorrhage. Cell Mol Neurobiol 2023; 43:3965-3981. [PMID: 37861870 PMCID: PMC11407738 DOI: 10.1007/s10571-023-01418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Subarachnoid hemorrhage is an acute life-threatening cerebrovascular disease with high socio-economic impact. The most frequent cause, the rupture of an intracerebral aneurysm, is accompanied by abrupt changes in intracerebral pressure, cerebral perfusion pressure and, consequently, cerebral blood flow. As aneurysms rupture spontaneously, monitoring of these parameters in patients is only possible with a time delay, upon hospitalization. To study alterations in cerebral perfusion immediately upon ictus, animal models are mandatory. This article addresses the points necessarily to be included in an animal project proposal according to EU directive 2010/63/EU for the protection of animals used for scientific purposes and herewith offers an insight into animal welfare aspects of using rodent models for the investigation of cerebral perfusion after subarachnoid hemorrhage. It compares surgeries, model characteristics, advantages, and drawbacks of the most-frequently used rodent models-the endovascular perforation model and the prechiasmatic and single or double cisterna magna injection model. The topics of discussing anesthesia, advice on peri- and postanesthetic handling of animals, assessing the severity of suffering the animals undergo during the procedure according to EU directive 2010/63/EU and weighing the use of these in vivo models for experimental research ethically are also presented. In conclusion, rodent models of subarachnoid hemorrhage display pathophysiological characteristics, including changes of cerebral perfusion similar to the clinical situation, rendering the models suited to study the sequelae of the bleeding. A current problem is low standardization of the models, wherefore reporting according to the ARRIVE guidelines is highly recommended. Animal welfare aspects of rodent models of subarachnoid hemorrhage. Rodent models for investigation of cerebral perfusion after subarachnoid hemorrhage are compared regarding surgeries and model characteristics, and 3R measures are suggested. Anesthesia is discussed, and advice given on peri- and postanesthetic handling. Severity of suffering according to 2010/63/EU is assessed and use of these in vivo models weighed ethically.
Collapse
Affiliation(s)
- Katrin Becker
- Institute for Translational Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
- Institute for Cardiovascular Sciences, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
4
|
Hao G, Conzen-Dilger C, Schmidt TP, Harder E, Schöps M, Clauser JC, Schubert GA, Lindauer U. Effect of isolated intracranial hypertension on cerebral perfusion within the phase of primary disturbances after subarachnoid hemorrhage in rats. Front Cell Neurosci 2023; 17:1115385. [PMID: 37502465 PMCID: PMC10368889 DOI: 10.3389/fncel.2023.1115385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/05/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction Elevated intracranial pressure (ICP) and blood components are the main trigger factors starting the complex pathophysiological cascade following subarachnoid hemorrhage (SAH). It is not clear whether they independently contribute to tissue damage or whether their impact cannot be differentiated from each other. We here aimed to establish a rat intracranial hypertension model that allows distinguishing the effects of these two factors and investigating the relationship between elevated ICP and hypoperfusion very early after SAH. Methods Blood or four different types of fluids [gelofusine, silicone oil, artificial cerebrospinal fluid (aCSF), aCSF plus xanthan (CX)] were injected into the cisterna magna in anesthetized rats, respectively. Arterial blood pressure, ICP and cerebral blood flow (CBF) were continuously measured up to 6 h after injection. Enzyme-linked immunosorbent assays were performed to measure the pro-inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in brain cortex and peripheral blood. Results Silicone oil injection caused deaths of almost all animals. Compared to blood, gelofusine resulted in lower peak ICP and lower plateau phase. Artificial CSF reached a comparable ICP peak value but failed to reach the ICP plateau of blood injection. Injection of CX with comparable viscosity as blood reproduced the ICP course of the blood injection group. Compared with the CBF course after blood injection, CX induced a comparable early global ischemia within the first minutes which was followed by a prompt return to baseline level with no further hypoperfusion despite an equal ICP course. The inflammatory response within the tissue did not differ between blood or blood-substitute injection. The systemic inflammation was significantly more pronounced in the CX injection group compared with the other fluids including blood. Discussion By cisterna magna injection of blood substitution fluids, we established a subarachnoid space occupying rat model that exactly mimicked the course of ICP in the first 6 h following blood injection. Fluids lacking blood components did not induce the typical prolonged hypoperfusion occurring after blood-injection in this very early phase. Our study strongly suggests that blood components rather than elevated ICP play an important role for early hypoperfusion events in SAH.
Collapse
Affiliation(s)
- Guangshan Hao
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Catharina Conzen-Dilger
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tobias Philip Schmidt
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ekaterina Harder
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Malte Schöps
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Johanna Charlotte Clauser
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Gerrit Alexander Schubert
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Ute Lindauer
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Oxidative Stress and Intracranial Hypertension after Aneurysmal Subarachnoid Hemorrhage. Antioxidants (Basel) 2022; 11:antiox11122423. [PMID: 36552631 PMCID: PMC9774559 DOI: 10.3390/antiox11122423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Intracranial hypertension is a common phenomenon in patients with aneurysmal subarachnoid hemorrhage (aSAH). Elevated intracranial pressure (ICP) plays an important role in early brain injuries and is associated with unfavorable outcomes. Despite advances in the management of aSAH, there is no consensus about the mechanisms involved in ICP increases after aSAH. Recently, a growing body of evidence suggests that oxidative stress (OS) may play a crucial role in physio-pathological changes following aSAH, which may also contribute to increased ICP. Herein, we discuss a potential relation between increased ICP and OS, and resultantly propose antioxidant mechanisms as a potential therapeutic strategy for the treatment of ICP elevation following aSAH.
Collapse
|
6
|
Bömers JP, Grell AS, Edvinsson L, Johansson SE, Haanes KA. The MEK Inhibitor Trametinib Improves Outcomes following Subarachnoid Haemorrhage in Female Rats. Pharmaceuticals (Basel) 2022; 15:ph15121446. [PMID: 36558896 PMCID: PMC9785726 DOI: 10.3390/ph15121446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Aneurysmal subarachnoid haemorrhage (SAH) is a haemorrhagic stroke that causes approximately 5% of all stroke incidents. We have been working on a treatment strategy that targets changes in cerebrovascular contractile receptors, by blocking the MEK/ERK1/2 signalling pathway. Recently, a positive effect of trametinib was found in male rats, but investigations of both sexes in pre-clinical studies are an important necessity. In the current study, a SAH was induced in female rats, by autologous blood-injection into the pre-chiasmatic cistern. This produces a dramatic, transient increase in intracranial pressure (ICP) and an acute and prolonged decrease in cerebral blood flow. Rats were then treated with either vehicle or three doses of 0.5 mg/kg trametinib (specific MEK/ERK1/2 inhibitor) intraperitoneally at 3, 9, and 24 h after the SAH. The outcome was assessed by a panel of tests, including intracranial pressure (ICP), sensorimotor tests, a neurological outcome score, and myography. We observed a significant difference in arterial contractility and a reduction in subacute increases in ICP when the rats were treated with trametinib. The sensory motor and neurological outcomes in trametinib-treated rats were significantly improved, suggesting that the improved outcome in females is similar to that of males treated with trametinib.
Collapse
Affiliation(s)
- Jesper Peter Bömers
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
- Department of Neurosurgery, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Anne-Sofie Grell
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, 221 84 Lund, Sweden
| | - Sara Ellinor Johansson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
- Correspondence:
| |
Collapse
|
7
|
Carazo A, Hrubša M, Konečný L, Skořepa P, Paclíková M, Musil F, Karlíčková J, Javorská L, Matoušová K, Krčmová LK, Parvin MS, Šmahelová A, Blaha V, Mladěnka P. Sex-Related Differences in Platelet Aggregation: A Literature Review Supplemented with Local Data from a Group of Generally Healthy Individuals. Semin Thromb Hemost 2022. [PMID: 36206768 DOI: 10.1055/s-0042-1756703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
The process of platelet aggregation is often influenced by several factors including sex and age. A literature review confirmed the existence of sex-related differences in platelet aggregation. Although 68 out of 78 papers found such differences, there are still some controversies regarding these differences, which can be due to multiple factors (age, trigger, concomitant disease, sample handling, etc.). These outcomes are discussed in line with novel results obtained from a local study, in which blood samples from a total of 53 overall healthy women and men with ages ranging from 20 to 66 years were collected. Aggregation was induced with seven different triggers (ristocetin, thrombin receptor activating peptide 6 [TRAP-6], arachidonic acid [AA], platelet-activating factor 16 [PAF-16], ADP, collagen, or thromboxane A2 analog U-46619) ex vivo. In addition, three FDA-approved antiplatelet drugs (vorapaxar, ticagrelor, or acetylsalicylic acid [ASA]) were also tested. In general, women had higher aggregation responses to some agonists (ADP, TRAP), as well as lower benefit from inhibitors (ASA, vorapaxar). The aggregatory responses to AA and TRAP decreased with age in both sexes, while responses to ADP, U-46619, and PAF were affected by age only in women. In conclusion, more studies are needed to decipher the biological importance of sex-related differences in platelet aggregation in part to enable personalized antiplatelet treatment.
Collapse
Affiliation(s)
- Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lukáš Konečný
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Pavel Skořepa
- 3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic.,Department of Military Internal Medicine and Military Hygiene, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - Markéta Paclíková
- 3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - František Musil
- Department of Occupational Medicine, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jana Karlíčková
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic.,Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Mst Shamima Parvin
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Alena Šmahelová
- 3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Vladimír Blaha
- 3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
8
|
Zheng Y, Tang W, Zeng H, Peng Y, Yu X, Yan F, Cao S. Probenecid-Blocked Pannexin-1 Channel Protects Against Early Brain Injury via Inhibiting Neuronal AIM2 Inflammasome Activation After Subarachnoid Hemorrhage. Front Neurol 2022; 13:854671. [PMID: 35401398 PMCID: PMC8983901 DOI: 10.3389/fneur.2022.854671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Aim Previous studies have proved that inhibiting inflammasome activation provides neuroprotection against early brain injury (EBI) after subarachnoid hemorrhage (SAH), which is mainly focused on the microglial inflammatory response, but the potential role of neuronal inflammasome activation in EBI has not been clearly identified. This study examined whether the pannexin-1 channel inhibitor probenecid could reduce EBI after SAH by inhibiting neuronal AIM2 inflammasome activation. Methods There are in vivo and in vitro parts in this study. First, adult male SD rats were subjected to the endovascular perforation mode of SAH. The time course of pannexin-1 and AIM2 expressions were determined after SAH in 72 h. Brain water content, neurological function, AIM2 inflammasome activation, and inflammatory response were evaluated at 24 h after SAH in sham, SAH, and SAH + probenecid groups. In the in vitro part, HT22 cell treated with hemin was applied to mimic SAH. The expression of AIM2 inflammasome was detected by immunofluorescence staining. Neuronal death and mitochondrial dysfunction were determined by the LDH assay kit and JC-1 staining. Results The pannexin-1 and AIM2 protein levels were upregulated after SAH. Pannexin-1 channel inhibitor probenecid attenuated brain edema and improved neurological dysfunction by reducing AIM2 inflammasome activation and reactive oxygen species (ROS) generation after SAH in rats. Treating HT22 cells with hemin for 12 h resulted in AIM2 and caspase-1 upregulation and increased mitochondrial dysfunction and neuronal cell death. Probenecid significantly attenuated the hemin-induced AIM2 inflammasome activation and neuronal death. Conclusions AIM2 inflammasome is activated in neurons after SAH. Pharmacological inhibition of the pannexin-1 channel by probenecid attenuated SAH-induced AIM2 inflammasome activation and EBI in vivo and hemin-induced AIM2 inflammasome activation and neuronal death in vitro.
Collapse
Affiliation(s)
- Yonghe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenwen Tang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobo Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
10
|
Zhang J, Peng K, Ye F, Koduri S, Hua Y, Keep RF, Xi G. Acute T2*-Weighted Magnetic Resonance Imaging Detectable Cerebral Thrombosis in a Rat Model of Subarachnoid Hemorrhage. Transl Stroke Res 2022; 13:188-196. [PMID: 34076826 PMCID: PMC9793692 DOI: 10.1007/s12975-021-00918-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 02/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) is associated with a high incidence of morbidity and mortality, particularly within the first 72 h after aneurysm rupture. We recently found ultra-early cerebral thrombosis, detectable on T2* magnetic resonance imaging (MRI), in a mouse SAH model at 4 h after onset. The current study examined whether such changes also occur in rat at 24 h after SAH, the vessels involved, whether the degree of thrombosis varied with SAH severity and brain injury, and if it differed between male and female rats. Adult Sprague Dawley rats were subjected to an endovascular perforation SAH model or sham surgery and underwent T2 and T2* MRI 24 h later. Following SAH, increased numbers of T2* hypointense vessels were detected on MRI. The number of such vessels correlated with SAH severity, as assessed by MRI-based grading of bleeding. Histologically, thrombotic vessels were found on hematoxylin and eosin staining, had a single layer of smooth muscle cells on alpha-smooth muscle actin immunostaining, and had laminin 2α/fibrinogen double labeling, suggesting venule thrombosis underlies the T2*-positive vessels on MRI. Capillary thrombosis was also detected which may follow the venous thrombosis. In both male and female rats, the number of T2*-positive thrombotic vessels correlated with T2 lesion volume and neurological function, and the number of such vessels was significantly greater in female rats. In summary, this study identified cerebral venous thrombosis 24 h following SAH in rats that could be detected with T2* MRI imaging and may contribute to SAH-induced brain injury.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Kang Peng
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fenghui Ye
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sravanthi Koduri
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA,Corresponding author: Guohua Xi, M.D. Address: R5018, BSRB, Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States. Tel.: +1 734 764 1207, Fax: +1 734 763 7322
| |
Collapse
|
11
|
Si Larbi MT, Al Mangour W, Saba I, Al Naqeb D, Faisal ZS, Omar S, Ibrahim F. Ischemic and Non-ischemic Stroke in Young Adults - A Look at Risk Factors and Outcome in a Developing Country. Cureus 2021; 13:e17079. [PMID: 34527467 PMCID: PMC8432428 DOI: 10.7759/cureus.17079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 11/05/2022] Open
Abstract
Objective Stroke among young adults is the leading cause of disability worldwide. Efforts are being taken to control stroke in the general population, but in parallel, there is an increasing trend of stroke among the young population. These patients are often affected by physical disability, cognitive impairment, and loss of productivity, all of which have personal, social, and economic implications. The main aim of this study was to determine the risk factors associated with stroke among young patients admitted to a tertiary care rehabilitation center and determine the effect of rehabilitation on the outcome of their daily life activities. Materials and Methods A retrospective hospital-based cohort study was conducted between January 2015 to December 2019. Prevalence of stroke-related risk factors like hypertension, hyperlipidemia, diabetes, and cardiac disease was assessed. Results Out of 710 young stroke adults, 71.97% were described as ischemic, and 28.03% reported as non-ischemic. Mean age (SD) was found to be 44.54 ± 9.3. Univariate analysis demonstrated that hyperlipidemia, cardiac disease, and diabetes indicated a significantly higher risk for ischemic stroke with an OR (95% CI) at 2.5 (1.7-3.7), 2.11 (1.2-3.6), and 1.66 (1.2-2.3) respectively. A significant improvement was observed in their Functional Independence Measure (FIM0 score after their rehabilitation irrespective of age and gender. Conclusion Association of risk factors associated with stroke should be subjected to close follow-up and management, thus reducing the risk of developing long-lasting disabilities at a young age. The identification of risk factors for young stroke incidence is a step towards improving health in the young adult population.
Collapse
Affiliation(s)
| | - Waleed Al Mangour
- Medical Affairs, Sultan Bin Abdulaziz Humanitarian City, Riyadh, SAU
| | - Iram Saba
- Research, Sultan Bin Abdulaziz Rehabilitation Center Riyadh, Riyadh, SAU
| | - Dhekra Al Naqeb
- Research and Scientific Center, Sultan Bin Abdulaziz Humanitarian City, Riyadh, SAU
| | | | - Sana Omar
- Medical Affairs, Sultan Bin Abdulaziz Humanitarian City, Riyadh, SAU
| | - Fatima Ibrahim
- Medical Affairs, Sultan Bin Abdulaziz Humanitarian City, Riyadh, SAU
| |
Collapse
|
12
|
Peng K, Koduri S, Xia F, Gao F, Hua Y, Keep RF, Xi G. Impact of sex differences on thrombin-induced hydrocephalus and white matter injury: the role of neutrophils. Fluids Barriers CNS 2021; 18:38. [PMID: 34399800 PMCID: PMC8365969 DOI: 10.1186/s12987-021-00273-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Thrombin has been implicated in playing a role in hydrocephalus development following intraventricular hemorrhage (IVH). However, the mechanisms underlying the sex differences to the detrimental effects of thrombin post-IVH remain elusive. METHOD Three-month old male and female Sprague-Dawley rats underwent unilateral intracerebroventricular (ICV) injections of 3U or 5U thrombin, or saline, to examine differences in thrombin-induced hydrocephalus and white matter injury. Mortality, and lateral ventricle volume and white matter injury were measured on magnetic resonance imaging evaluation at 24 h post-injection. In addition, male rats were pretreated with 17-β estradiol (E2, 5 mg/kg) or vehicle at 24 and 2 h prior to ICV injection of 3U thrombin. All rats were euthanized at 24 h post-injection for histology and immunohistochemistry. RESULTS ICV injection of 5U thrombin caused 100 and 0% mortality in female and male rats, respectively. 3U of thrombin resulted in significant ventricular dilation and white matter damage at 24 h in both male and female rats, but both were worse in females (p < 0.05). Furthermore, neutrophil infiltration into choroid plexus and periventricular white matter was enhanced in female rats and may play a critical role in the sex difference in brain injury. Pre-treating male rats with E2, increased thrombin (3U)-induced hydrocephalus, periventricular white matter injury and neutrophil infiltration into the choroid plexus and white matter. CONCLUSIONS ICV thrombin injection induced more severe ventricular dilation and white matter damage in female rats compared to males. Estrogen appears to contribute to this difference which may involve greater neutrophil infiltration in females. Understanding sex differences in thrombin-induced brain injury may shed light on future interventions for hemorrhagic stroke.
Collapse
Affiliation(s)
- Kang Peng
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Sravanthi Koduri
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Fan Xia
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Feng Gao
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
13
|
Role of Anesthetics and Their Adjuvants in Neurovascular Protection in Secondary Brain Injury after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2021; 22:ijms22126550. [PMID: 34207292 PMCID: PMC8234913 DOI: 10.3390/ijms22126550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Aneurysmal rupture accounts for the majority of subarachnoid hemorrhage and is responsible for most cerebrovascular deaths with high mortality and morbidity. Initial hemorrhage severity and secondary brain injury due to early brain injury and delayed cerebral ischemia are the major determinants of outcomes after aneurysmal subarachnoid hemorrhage. Several therapies have been explored to prevent these secondary brain injury processes after aneurysmal subarachnoid hemorrhage with limited clinical success. Experimental and clinical studies have shown a neuroprotective role of certain anesthetics in cerebrovascular disorders including aneurysmal subarachnoid hemorrhage. The vast majority of aneurysmal subarachnoid hemorrhage patients require general anesthesia for surgical or endovascular repair of their aneurysm. Given the potential impact certain anesthetics have on secondary brain injury after SAH, appropriate selection of anesthetics may prove impactful on overall outcome of these patients. This narrative review focuses on the available evidence of anesthetics and their adjuvants in neurovascular protection in aneurysmal subarachnoid hemorrhage and discusses current impact on clinical care and future investigative directions.
Collapse
|
14
|
Spray S, Haanes KA, Edvinsson L, Johansson SE. Subacute phase of subarachnoid haemorrhage in female rats: Increased intracranial pressure, vascular changes and impaired sensorimotor function. Microvasc Res 2021; 135:104127. [PMID: 33359306 DOI: 10.1016/j.mvr.2020.104127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Early brain injury (EBI) and delayed cerebral ischemia (DCI) after subarachnoid haemorrhage (SAH) has devastating consequences but therapeutic options and the underlying pathogenesis remain poorly understood despite extensive preclinical and clinical research. One of the drawbacks of most preclinical studies to date is that the mechanisms behind DCI after SAH are studied only in male animals. In this study we therefore established a female rat model of SAH in order to determine subacute pathophysiological changes that may contribute to DCI in females. METHODS Experimental SAH was induced in female rats by intracisternal injection of 300 μL of autologous blood. Sham operation served as a control. Neurological deficits and intracranial pressure measurements were evaluated at both 1 and 2 days after surgery. Additionally, changes in cerebral vascular contractility were evaluated 2 days after surgery using wire myography. RESULTS SAH in female rats resulted in sensorimotor deficits and decreased general wellbeing on both day 1 and day 2 after SAH. Intracranial pressure uniformly increased in all rats subjected to SAH on day 1. On day 2 the intracranial pressure had increased further, decreased slightly or remained at the level seen on day 1. Furthermore, female rats subjected to SAH developed cortical brain edema. Cerebral arteries, isolated 2 days after SAH, exhibited increased vascular contractions to endothelin-1 and 5-carboxamidotryptamine. CONCLUSION In the subacute phase after SAH in female rats, we observed increased intracranial pressure, decreased wellbeing, sensorimotor deficits, increased vascular contractility and cortical brain edema. Collectively, these pathophysiological changes may contribute to DCI after SAH in females. Previous studies reported similar pathophysiological changes for male rats in the subacute phase after SAH. Thus, prevention of these gender-independent mechanisms may provide the basis for a universal treatment strategy for DCI after SAH. Nevertheless, preclinical studies of potential therapies should employ both male and female SAH models.
Collapse
Affiliation(s)
- Stine Spray
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup-Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup-Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark.
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup-Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark; Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Sara Ellinor Johansson
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup-Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
| |
Collapse
|
15
|
Chapel JM, Benedito JL, Hernández J, Famigli-Bergamini P, Castillo C. Clinical assessment of acid-base balance in Netherland Dwarf rabbit. BRAZ J BIOL 2021; 81:241-245. [PMID: 32428094 DOI: 10.1590/1519-6984.219754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 12/07/2019] [Indexed: 11/22/2022] Open
Abstract
Pet rabbits have increased their popularity in a lot of countries. However, most of the laboratory profiles in rabbit medicine come from the observations made in rabbit as biomodels or meat production. So that further researches are necessary to obtain reference values for hematology and biochemical profiles in pet rabbits and the different breeds, especially, in relation to acid-base balance. The aim of this report was to offer the mean values of the main parameters connected with acid-base profile in Netherland Dwarf breed. Thirty-five healthy rabbits (15 males and 20 females) were studied. Venous blood sample from lateral saphenous vein was analyzed to measure: haematocrit, haemoglobin, blood urea nitrogen, glucose, blood pH, partial pressure of CO2 (pCO2), total CO2, ions bicarbonate, chloride, sodium, potassium, base excess and anion Gap. Results showed a shorter range that those reported by different researchers. Moreover, differences between genders were showed in pCO2, its values were higher in males. It may be associated with a greater cellular metabolism. Values obtained in this research should be taken into account by veterinary clinicians for this breed in their clinical assessments. Besides, these values provide new results in parameters with few reference values.
Collapse
Affiliation(s)
- J M Chapel
- Department of Animal Pathology, College of Veterinary Medicine, University of Santiago de Compostela, Av. Carballo Calero, s/n, 27002, Lugo, Spain
| | - J L Benedito
- Department of Animal Pathology, College of Veterinary Medicine, University of Santiago de Compostela, Av. Carballo Calero, s/n, 27002, Lugo, Spain
| | - J Hernández
- Department of Animal Pathology, College of Veterinary Medicine, University of Santiago de Compostela, Av. Carballo Calero, s/n, 27002, Lugo, Spain
| | - P Famigli-Bergamini
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - C Castillo
- Department of Animal Pathology, College of Veterinary Medicine, University of Santiago de Compostela, Av. Carballo Calero, s/n, 27002, Lugo, Spain
| |
Collapse
|
16
|
Weyer V, Maros ME, Kronfeld A, Kirschner S, Groden C, Sommer C, Tanyildizi Y, Kramer M, Brockmann MA. Longitudinal imaging and evaluation of SAH-associated cerebral large artery vasospasm in mice using micro-CT and angiography. J Cereb Blood Flow Metab 2020; 40:2265-2277. [PMID: 31752586 PMCID: PMC7585924 DOI: 10.1177/0271678x19887052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 11/15/2022]
Abstract
Longitudinal in vivo imaging studies characterizing subarachnoid hemorrhage (SAH)-induced large artery vasospasm (LAV) in mice are lacking. We developed a SAH-scoring system to assess SAH severity in mice using micro CT and longitudinally analysed LAV by intravenous digital subtraction angiography (i.v. DSA). Thirty female C57Bl/6J-mice (7 sham, 23 SAH) were implanted with central venous ports for repetitive contrast agent administration. SAH was induced by filament perforation. LAV was assessed up to 14 days after induction of SAH by i.v. DSA. SAH-score and neuroscore showed a highly significant positive correlation (rsp = 0.803, p < 0.001). SAH-score and survival showed a negative significant correlation (rsp = -0.71, p < 0.001). LAV peaked between days 3-5 and normalized on days 7-15. Most severe LAV was observed in the internal carotid (Δmax = 30.5%, p < 0.001), anterior cerebral (Δmax = 21.2%, p = 0.014), middle cerebral (Δmax = 28.16%, p < 0.001) and basilar artery (Δmax = 23.49%, p < 0.001). Cerebral perfusion on day 5 correlated negatively with survival time (rPe = -0.54, p = 0.04). Arterial diameter of the left MCA correlated negatively with cerebral perfusion on day 3 (rPe = -0.72, p = 0.005). In addition, pseudoaneurysms arising from the filament perforation site were visualized in three mice using i.v. DSA. Thus, micro-CT and DSA are valuable tools to assess SAH severity and to longitudinally monitor LAV in living mice.
Collapse
Affiliation(s)
- Vanessa Weyer
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
- Medical Faculty Mannheim, Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Máté E Maros
- Medical Faculty Mannheim, Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| | - Stefanie Kirschner
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
- Medical Faculty Mannheim, Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany
| | - Christoph Groden
- Medical Faculty Mannheim, Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center Mainz, Mainz, Germany
| | - Yasemin Tanyildizi
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| | - Martin Kramer
- Department of Veterinary Clinical Sciences, Small Animal Clinic, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
17
|
Hostettler IC, Pavlou M, Ambler G, Alg VS, Bonner S, Walsh DC, Bulters D, Kitchen N, Brown MM, Grieve J, Houlden H, Werring DJ. Assessment of the Subarachnoid Hemorrhage International Trialists (SAHIT) Models for Dichotomized Long-Term Functional Outcome Prediction After Aneurysmal Subarachnoid Hemorrhage in a United Kingdom Multicenter Cohort Study. Neurosurgery 2020; 87:1269-1276. [PMID: 32710767 DOI: 10.1093/neuros/nyaa299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/25/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Long-term outcome after subarachnoid hemorrhage, beyond the first few months, is difficult to predict, but has critical relevance to patients, their families, and carers. OBJECTIVE To assess the performance of the Subarachnoid Hemorrhage International Trialists (SAHIT) prediction models, which were initially designed to predict short-term (90 d) outcome, as predictors of long-term (2 yr) functional outcome after aneurysmal subarachnoid hemorrhage (aSAH). METHODS We included 1545 patients with angiographically-proven aSAH from the Genetic and Observational Subarachnoid Haemorrhage (GOSH) study recruited at 22 hospitals between 2011 and 2014. We collected data on age, WNFS grade on admission, history of hypertension, Fisher grade, aneurysm size and location, as well as treatment modality. Functional outcome was measured by the Glasgow Outcome Scale (GOS) with GOS 1 to 3 corresponding to unfavorable and 4 to 5 to favorable functional outcome, according to the SAHIT models. The SAHIT models were assessed for long-term outcome prediction by estimating measures of calibration (calibration slope) and discrimination (area under the receiver-operating characteristic curve [AUC]) in relation to poor clinical outcome. RESULTS Follow-up was standardized to 2 yr using imputation methods. All 3 SAHIT models demonstrated acceptable predictive performance for long-term functional outcome. The estimated AUC was 0.71 (95% CI: 0.65-0.76), 0.73 (95% CI: 0.68-0.77), and 0.74 (95% CI: 0.69-0.79) for the core, neuroimaging, and full models, respectively; the calibration slopes were 0.86, 0.84, and 0.89, indicating good calibration. CONCLUSION The SAHIT prediction models, incorporating simple factors available on hospital admission, show good predictive performance for long-term functional outcome after aSAH.
Collapse
Affiliation(s)
- Isabel C Hostettler
- Stroke Research Centre, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Menelaos Pavlou
- Department of Statistical Science, University College London, London, United Kingdom
| | - Gareth Ambler
- Department of Statistical Science, University College London, London, United Kingdom
| | - Varinder S Alg
- Stroke Research Centre, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Stephen Bonner
- Critical Care, The James Cook University Hospital, Middlesbrough, United Kingdom
| | - Daniel C Walsh
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom.,Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Diederik Bulters
- Department of Neurosurgery, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Neil Kitchen
- Department of Neurosurgery, The National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Martin M Brown
- Stroke Research Centre, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Joan Grieve
- Department of Neurosurgery, The National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Henry Houlden
- Neurogenetics Laboratory, The National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - David J Werring
- Stroke Research Centre, University College London, Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
18
|
Zhang XH, Peng L, Zhang J, Dong YP, Wang CJ, Liu C, Xia DY, Zhang XS. Berberine Ameliorates Subarachnoid Hemorrhage Injury via Induction of Sirtuin 1 and Inhibiting HMGB1/Nf-κB Pathway. Front Pharmacol 2020; 11:1073. [PMID: 32754040 PMCID: PMC7366844 DOI: 10.3389/fphar.2020.01073] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive cerebral inflammation plays a key role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Berberine, an isoquinoline alkaloid isolated from Chinese herb Coptis chinensis, possesses anti-inflammatory, and neuroprotective effects. Here we evaluated the beneficial effects of berberine against SAH-induced inflammatory response and the subsequent brain injury. Our data showed that berberine treatment significantly inhibited microglia activation and proinflammatory cytokines release. Concomitant with suppressed cerebral inflammation, berberine mitigated the subsequent brain injury as demonstrated by improved neurological behavior, reduced brain edema, and decreased neural apoptosis. Moreover, berberine significantly inhibited high mobile group box 1 (HMGB1)/nuclear factor-κB (Nf-κB)-dependent pathway and enhanced sirtuin 1 (SIRT1) expression after SAH. Treatment with ex527, a selective SIRT1 inhibitor, reversed berberine-induced SIRT1 activation and inhibitory effects on HMGB1/Nf-κB activation. In addition, ex527 pretreatment abated the anti-inflammatory and neuroprotective effects of berberine on SAH. Taken together, these findings suggest that berberine provides beneficial effects against SAH-triggered cerebral inflammation by inhibiting HMGB1/Nf-κB pathway, which may be modulated by SIRT1 activation.
Collapse
Affiliation(s)
- Xiang-Hua Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Peng
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi-Peng Dong
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cheng-Jun Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cang Liu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Da-Yong Xia
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Xiong L, Sun L, Zhang Y, Peng J, Yan J, Liu X. Exosomes from Bone Marrow Mesenchymal Stem Cells Can Alleviate Early Brain Injury After Subarachnoid Hemorrhage Through miRNA129-5p-HMGB1 Pathway. Stem Cells Dev 2020; 29:212-221. [PMID: 31801411 DOI: 10.1089/scd.2019.0206] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Lili Xiong
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Linlin Sun
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yixuan Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jin Peng
- Department of Histology and Embryology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
The Role of Intracranial Pressure and Subarachnoid Blood Clots in Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats. World Neurosurg 2019; 129:e63-e72. [DOI: 10.1016/j.wneu.2019.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/16/2023]
|
21
|
Waweru P, Gatimu SM. Mortality and functional outcomes after a spontaneous subarachnoid haemorrhage: A retrospective multicentre cross-sectional study in Kenya. PLoS One 2019; 14:e0217832. [PMID: 31188844 PMCID: PMC6561561 DOI: 10.1371/journal.pone.0217832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/20/2019] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Despite a reduction in poor outcomes in recent decades, spontaneous subarachnoid haemorrhage (SAH) remains associated with severe disability and high mortality rates. The exact extent of these outcomes is however unknown in Africa. This study aimed to determine the mortality and functional outcomes of patients with SAH in Kenya. METHODS We conducted a retrospective multicentre cross-sectional study involving patients admitted with SAH to three referral hospitals in Nairobi. All patients with a confirmed (primary) discharge diagnosis of first-time SAH between January 2009 and November 2017 were included (n = 158). Patients who had prior head trauma or cerebrovascular disease (n = 53) were excluded. Telephone interviews were conducted with surviving patients or their next of kin to assess out-of-hospital outcomes (including functional outcomes) based on modified Rankin Scale (mRS) scores. Chi-square and Fisher's exact tests were used to assess associations between mortality and functional outcomes and sample characteristics. RESULTS Of the 158 patients sampled, 38 (24.1%) died in hospital and 42 (26.6%) died within 1 month. In total, 87 patients were discharged home and followed-up in this study, of which 72 reported favourable functional outcomes (mRS ≤2). This represented 45.6% of all patients who presented alive, pointing to high numbers of unfavourable outcomes post SAH in Kenya. CONCLUSIONS Mortality following SAH remains high in Kenya. Patients who survive the initial ictus tend to do well after treatment, despite resource constraints. LIMITATIONS The study findings should be interpreted with caution because of unavoidable limitations in the primary data. These include its retrospective nature, the high number of patients lost to follow up, missing records and diagnoses, and/or possible miscoding of cases.
Collapse
Affiliation(s)
- Peter Waweru
- Neurosurgery Department, M.P Shah Hospital, Nairobi, Kenya
| | | |
Collapse
|
22
|
Lai PMR, Du R. Differentially Expressed Genes Associated with the Estrogen Receptor Pathway in Cerebral Aneurysms. World Neurosurg 2019; 126:e557-e563. [DOI: 10.1016/j.wneu.2019.02.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 01/23/2023]
|
23
|
Saand AR, Yu F, Chen J, Chou SHY. Systemic inflammation in hemorrhagic strokes - A novel neurological sign and therapeutic target? J Cereb Blood Flow Metab 2019; 39:959-988. [PMID: 30961425 PMCID: PMC6547186 DOI: 10.1177/0271678x19841443] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing evidences suggest that stroke is a systemic disease affecting many organ systems beyond the brain. Stroke-related systemic inflammatory response and immune dysregulations may play an important role in brain injury, recovery, and stroke outcome. The two main phenomena in stroke-related peripheral immune dysregulations are systemic inflammation and post-stroke immunosuppression. There is emerging evidence suggesting that the spleen contracts following ischemic stroke, activates peripheral immune response and this may further potentiate brain injury. Whether similar brain-immune crosstalk occurs in hemorrhagic strokes such as intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) is not established. In this review, we systematically examined animal and human evidence to date on peripheral immune responses associated with hemorrhagic strokes. Specifically, we reviewed the impact of clinical systemic inflammatory response syndrome (SIRS), inflammation- and immune-associated biomarkers, the brain-spleen interaction, and cellular mediators of peripheral immune responses to ICH and SAH including regulatory T cells (Tregs). While there is growing data suggesting that peripheral immune dysregulation following hemorrhagic strokes may be important in brain injury pathogenesis and outcome, details of this brain-immune system cross-talk remain insufficiently understood. This is an important unmet scientific need that may lead to novel therapeutic strategies in this highly morbid condition.
Collapse
Affiliation(s)
- Aisha R Saand
- 1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fang Yu
- 2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- 2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sherry H-Y Chou
- 1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,3 Department of Neurosurgery, School of Medicine, University of Pittsburgh, PA, USA
| |
Collapse
|
24
|
Influence of sex and hormonal status on initial impact and neurocognitive outcome after subarachnoid haemorrhage in rats. Behav Brain Res 2019; 363:13-22. [PMID: 30703399 DOI: 10.1016/j.bbr.2019.01.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 12/23/2022]
Abstract
The aim of this study was to detect differences in functional outcome after experimental subarachnoid haemorrhage (SAH) in rodents with different hormonal status. For this purpose, the endovascular perforation model was applied to four groups of Sprague-Dawley-Rats: male intact, male neutered, female intact and female neutered animals. Initial impact was measured by ICP, CPP and cerebral blood flow in the first hour after SAH. From day 4-14, the modified hole board test was applied to assess functional and neuro-cognitive outcome. Histological outcome was examined in the motor cortex and hippocampus of each hemisphere. Mortality was highest in the female intact group albeit not statistically significant. Physiologic parameters did not differ significantly between groups either. In the modified hole board test, male intact animals showed a greater impairment of declarative memory than the female intact and neutered groups. However, male intact animals showed greater avoidance behaviour and male animals revealed higher anxiety levels independent of hormonal status. No differences in histological damage of hippocampus and motor cortex between groups could be shown. We therefore speculate that the marginal deficits in cognitive performance that are shown by the male intact group in the modified hole board test are mostly caused by higher anxiety levels and cannot be interpreted as pure cognitive impairment.
Collapse
|
25
|
Liu ZW, Zhao JJ, Pang HG, Song JN. Vascular endothelial growth factor A promotes platelet adhesion to collagen IV and causes early brain injury after subarachnoid hemorrhage. Neural Regen Res 2019; 14:1726-1733. [PMID: 31169190 PMCID: PMC6585561 DOI: 10.4103/1673-5374.257530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The role of vascular endothelial growth factor A in platelet adhesion in cerebral microvessels in the early stage of subarachnoid hemorrhage remains unclear. In this study, the endovascular puncture method was used to produce a rat model of subarachnoid hemorrhage. Then, 30 minutes later, vascular endothelial growth factor A antagonist anti-vascular endothelial growth factor receptor 2 antibody, 10 μg, was injected into the right ventricle. Immunohistochemistry and western blot assay were used to assess expression of vascular endothelial growth factor A, occludin and claudin-5. Immunohistochemical double labeling was conducted to examine co-expression of GP Ia-II integrin and type IV collagen. TUNEL was used to detect apoptosis in the hippocampus. Neurological score was used to assess behavioral performance. After subarachnoid hemorrhage, the expression of vascular endothelial growth factor A increased in the hippocampus, while occludin and claudin-5 expression levels decreased. Co-expression of GP Ia-II integrin and type IV collagen and the number of apoptotic cells increased, whereas behavioral performance was markedly impaired. After treatment with anti-vascular endothelial growth factor receptor 2 antibody, occludin and claudin-5 expression recovered, while co-expression of GP Ia-II integrin and type IV collagen and the number of apoptotic cells decreased. Furthermore, behavioral performance improved notably. Our findings suggest that increased vascular endothelial growth factor A levels promote platelet adhesion and contribute to early brain injury after subarachnoid hemorrhage. This study was approved by the Biomedical Ethics Committee, Medical College of Xi’an Jiaotong University, China in December 2015.
Collapse
Affiliation(s)
- Zun-Wei Liu
- Department of Renal Transplantation, Nephropathy Hospital, the First Affiliated Hospital, Medical College of Xi'an Jiaotong University; Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jun-Jie Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hong-Gang Pang
- The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jin-Ning Song
- Department of Neurosurgery, the First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
26
|
Barrow JW, Turan N, Wangmo P, Roy AK, Pradilla G. The role of inflammation and potential use of sex steroids in intracranial aneurysms and subarachnoid hemorrhage. Surg Neurol Int 2018; 9:150. [PMID: 30105144 PMCID: PMC6080146 DOI: 10.4103/sni.sni_88_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Background Aneurysmal subarachnoid hemorrhage (aSAH) continues to be a devastating neurological condition with a high risk of associated morbidity and mortality. Inflammation has been shown to increase the risk of complications associated with aSAH such as vasospasm and brain injury in animal models and humans. The goal of this review is to discuss the inflammatory mechanisms of aneurysm formation, rupture and vasospasm and explore the role of sex hormones in the inflammatory response to aSAH. Methods A literature review was performed using PubMed using the following search terms: "intracranial aneurysm," "cerebral aneurysm," "dihydroepiandrosterone sulfate" "estrogen," "hormone replacement therapy," "inflammation," "oral contraceptive," "progesterone," "sex steroids," "sex hormones" "subarachnoid hemorrhage," "testosterone." Only studies published in English language were included in the review. Results Studies have shown that administration of sex hormones such as progesterone and estrogen at early stages in the inflammatory cascade can lower the risk and magnitude of subsequent complications. The exact mechanism by which these hormones act on the brain, as well as their role in the inflammatory cascade is not fully understood. Moreover, conflicting results have been published on the effect of hormone replacement therapy in humans. This review will scrutinize the variations in these studies to provide a more detailed understanding of sex hormones as potential therapeutic agents for intracranial aneurysms and aSAH. Conclusion Inflammation may play a role in the pathogenesis of intracranial aneurysm formation and subarachnoid hemorrhage, and administration of sex hormones as anti-inflammatory agents has been associated with improved functional outcome in experimental models. Further studies are needed to determine the therapeutic role of these hormones in the intracranial aneurysms and aSAH.
Collapse
Affiliation(s)
- Jack W Barrow
- Cerebrovascular Research Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Mercer University School of Medicine, Savannah, Georgia, USA
| | - Nefize Turan
- Cerebrovascular Research Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Pasang Wangmo
- Cerebrovascular Research Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anil K Roy
- Cerebrovascular Research Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gustavo Pradilla
- Cerebrovascular Research Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Abstract
Sex and gender, as biological and social factors, significantly influence health outcomes. Among the biological factors, sex differences in vascular physiology may be one specific mechanism contributing to the observed differences in clinical presentation, response to treatment, and clinical outcomes in several vascular disorders. This review focuses on the cerebrovascular bed and summarizes the existing literature on sex differences in cerebrovascular hemodynamics to highlight the knowledge deficit that exists in this domain. The available evidence is used to generate mechanistically plausible and testable hypotheses to underscore the unmet need in understanding sex-specific mechanisms as targets for more effective therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Cristina Duque
- Division of Stroke and Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Neurology, Coimbra University Hospital Center, Coimbra, Portugal
| | - Steven K Feske
- Division of Stroke, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Farzaneh A Sorond
- Division of Stroke and Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
28
|
Turan N, Miller BA, Heider RA, Nadeem M, Sayeed I, Stein DG, Pradilla G. Neurobehavioral testing in subarachnoid hemorrhage: A review of methods and current findings in rodents. J Cereb Blood Flow Metab 2017; 37:3461-3474. [PMID: 27677672 PMCID: PMC5669338 DOI: 10.1177/0271678x16665623] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The most important aspect of a preclinical study seeking to develop a novel therapy for neurological diseases is whether the therapy produces any clinically relevant functional recovery. For this purpose, neurobehavioral tests are commonly used to evaluate the neuroprotective efficacy of treatments in a wide array of cerebrovascular diseases and neurotrauma. Their use, however, has been limited in experimental subarachnoid hemorrhage studies. After several randomized, double-blinded, controlled clinical trials repeatedly failed to produce a benefit in functional outcome despite some improvement in angiographic vasospasm, more rigorous methods of neurobehavioral testing became critical to provide a more comprehensive evaluation of the functional efficacy of proposed treatments. While several subarachnoid hemorrhage studies have incorporated an array of neurobehavioral assays, a standardized methodology has not been agreed upon. Here, we review neurobehavioral tests for rodents and their potential application to subarachnoid hemorrhage studies. Developing a standardized neurobehavioral testing regimen in rodent studies of subarachnoid hemorrhage would allow for better comparison of results between laboratories and a better prediction of what interventions would produce functional benefits in humans.
Collapse
Affiliation(s)
- Nefize Turan
- 1 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Brandon A Miller
- 1 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert A Heider
- 1 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Maheen Nadeem
- 1 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Iqbal Sayeed
- 2 Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald G Stein
- 2 Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Gustavo Pradilla
- 1 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
29
|
Rubbert C, Caspers J, Petridis AK, Turowski B, May R. Dynamics of cerebral perfusion deficits after aneurysmal SAH – predictive value of early MTT for subsequent MTT deterioration. J Neuroradiol 2017; 44:371-376. [DOI: 10.1016/j.neurad.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/21/2017] [Accepted: 06/04/2017] [Indexed: 12/16/2022]
|
30
|
In vitro analysis of platelet function in acute aneurysmal subarachnoid haemorrhage. Neurosurg Rev 2017; 41:531-538. [DOI: 10.1007/s10143-017-0885-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/05/2017] [Accepted: 07/16/2017] [Indexed: 11/28/2022]
|
31
|
Chou SHY, Lan J, Esposito E, Ning M, Balaj L, Ji X, Lo EH, Hayakawa K. Extracellular Mitochondria in Cerebrospinal Fluid and Neurological Recovery After Subarachnoid Hemorrhage. Stroke 2017; 48:2231-2237. [PMID: 28663512 DOI: 10.1161/strokeaha.117.017758] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Recent studies suggest that extracellular mitochondria may be involved in the pathophysiology of stroke. In this study, we assessed the functional relevance of endogenous extracellular mitochondria in cerebrospinal fluid (CSF) in rats and humans after subarachnoid hemorrhage (SAH). METHODS A standard rat model of SAH was used, where an intraluminal suture was used to perforate a cerebral artery, thus leading to blood extravasation into subarachnoid space. At 24 and 72 hours after SAH, neurological outcomes were measured, and the standard JC1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolylcarbocyanineiodide) assay was used to quantify mitochondrial membrane potentials in the CSF. To further support the rat model experiments, CSF samples were obtained from 41 patients with SAH and 27 control subjects. Mitochondrial membrane potentials were measured with the JC1 assay, and correlations with clinical outcomes were assessed at 3 months. RESULTS In the standard rat model of SAH, extracellular mitochondria was detected in CSF at 24 and 72 hours after injury. JC1 assays demonstrated that mitochondrial membrane potentials in CSF were decreased after SAH compared with sham-operated controls. In human CSF samples, extracellular mitochondria were also detected, and JC1 levels were also reduced after SAH. Furthermore, higher mitochondrial membrane potentials in the CSF were correlated with good clinical recovery at 3 months after SAH onset. CONCLUSIONS This proof-of-concept study suggests that extracellular mitochondria may provide a biomarker-like glimpse into brain integrity and recovery after injury.
Collapse
Affiliation(s)
- Sherry H-Y Chou
- From the Neuroprotection Research Laboratories, Departments of Radiology and Neurology (S.H.-Y.C., J.L., E.E., M.N., E.H.L., K.H.) and Clinical Proteomics Research Center, Department of Neurology (M.N., E.H.L.), Massachusetts General Hospital and Harvard Medical School, Boston; Departments of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, PA (S.H.-Y.C.); Department of Neurology, Brigham and Women's Hospital, Boston, MA (S.H.-Y.C.); Cerebrovascular Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China (J.L., X.J.); and Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston (L.B.)
| | - Jing Lan
- From the Neuroprotection Research Laboratories, Departments of Radiology and Neurology (S.H.-Y.C., J.L., E.E., M.N., E.H.L., K.H.) and Clinical Proteomics Research Center, Department of Neurology (M.N., E.H.L.), Massachusetts General Hospital and Harvard Medical School, Boston; Departments of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, PA (S.H.-Y.C.); Department of Neurology, Brigham and Women's Hospital, Boston, MA (S.H.-Y.C.); Cerebrovascular Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China (J.L., X.J.); and Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston (L.B.)
| | - Elga Esposito
- From the Neuroprotection Research Laboratories, Departments of Radiology and Neurology (S.H.-Y.C., J.L., E.E., M.N., E.H.L., K.H.) and Clinical Proteomics Research Center, Department of Neurology (M.N., E.H.L.), Massachusetts General Hospital and Harvard Medical School, Boston; Departments of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, PA (S.H.-Y.C.); Department of Neurology, Brigham and Women's Hospital, Boston, MA (S.H.-Y.C.); Cerebrovascular Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China (J.L., X.J.); and Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston (L.B.)
| | - MingMing Ning
- From the Neuroprotection Research Laboratories, Departments of Radiology and Neurology (S.H.-Y.C., J.L., E.E., M.N., E.H.L., K.H.) and Clinical Proteomics Research Center, Department of Neurology (M.N., E.H.L.), Massachusetts General Hospital and Harvard Medical School, Boston; Departments of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, PA (S.H.-Y.C.); Department of Neurology, Brigham and Women's Hospital, Boston, MA (S.H.-Y.C.); Cerebrovascular Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China (J.L., X.J.); and Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston (L.B.)
| | - Leonora Balaj
- From the Neuroprotection Research Laboratories, Departments of Radiology and Neurology (S.H.-Y.C., J.L., E.E., M.N., E.H.L., K.H.) and Clinical Proteomics Research Center, Department of Neurology (M.N., E.H.L.), Massachusetts General Hospital and Harvard Medical School, Boston; Departments of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, PA (S.H.-Y.C.); Department of Neurology, Brigham and Women's Hospital, Boston, MA (S.H.-Y.C.); Cerebrovascular Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China (J.L., X.J.); and Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston (L.B.)
| | - Xunming Ji
- From the Neuroprotection Research Laboratories, Departments of Radiology and Neurology (S.H.-Y.C., J.L., E.E., M.N., E.H.L., K.H.) and Clinical Proteomics Research Center, Department of Neurology (M.N., E.H.L.), Massachusetts General Hospital and Harvard Medical School, Boston; Departments of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, PA (S.H.-Y.C.); Department of Neurology, Brigham and Women's Hospital, Boston, MA (S.H.-Y.C.); Cerebrovascular Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China (J.L., X.J.); and Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston (L.B.)
| | - Eng H Lo
- From the Neuroprotection Research Laboratories, Departments of Radiology and Neurology (S.H.-Y.C., J.L., E.E., M.N., E.H.L., K.H.) and Clinical Proteomics Research Center, Department of Neurology (M.N., E.H.L.), Massachusetts General Hospital and Harvard Medical School, Boston; Departments of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, PA (S.H.-Y.C.); Department of Neurology, Brigham and Women's Hospital, Boston, MA (S.H.-Y.C.); Cerebrovascular Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China (J.L., X.J.); and Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston (L.B.)
| | - Kazuhide Hayakawa
- From the Neuroprotection Research Laboratories, Departments of Radiology and Neurology (S.H.-Y.C., J.L., E.E., M.N., E.H.L., K.H.) and Clinical Proteomics Research Center, Department of Neurology (M.N., E.H.L.), Massachusetts General Hospital and Harvard Medical School, Boston; Departments of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, PA (S.H.-Y.C.); Department of Neurology, Brigham and Women's Hospital, Boston, MA (S.H.-Y.C.); Cerebrovascular Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China (J.L., X.J.); and Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston (L.B.).
| |
Collapse
|
32
|
Differences between the sexes in motorcycle-related injuries and fatalities at a Taiwanese level I trauma center. Biomed J 2017; 40:113-120. [PMID: 28521902 PMCID: PMC6138601 DOI: 10.1016/j.bj.2016.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/21/2016] [Indexed: 01/20/2023] Open
Abstract
Background Female patients present with unique physiological and behavioral characteristics compared to male patients. The aim of this study was to investigate and compare the injury patterns, injury characteristics, and mortality of male and female patients hospitalized for treatment of motorcycle accident-related trauma in a level I trauma center. Methods Retrospective analysis of motorcycle-related injuries from the Trauma Registry System was performed to identify and compare 4028 male and 2919 female patients hospitalized for treatment between January 1, 2009 and December 31, 2013. Results The female patients were younger, less often drunken, more often wore helmets, were transported by emergency medical services, and arrived at the emergency department between 7 a.m. and 5 p.m. compared to male patients. Analysis of Abbreviated Injury Scale scores revealed that female patients sustained significantly higher rates of injuries to the extremities, but lower rates of injuries to the head/neck, face, and thorax than male patients did. Female patients had a significant lower Injury Severity Score (ISS) and adjusted odds ratio of in-hospital mortality (AOR 0.83, 95% CI: 0.83–0.86) after adjustment by ISS. However, the logistic regression analysis of propensity score-matched patients with adjusted confounders including helmet-wearing status and alcohol intoxication revealed that the gender did not significantly influence mortality (OR 0.82, 95% CI 0.47–1.43; p = 0.475), implying the an associated risky behaviors may attribute to the difference of odds of mortality between the male and female patients. In addition, a significantly fewer female patients were admitted to the intensive care unit (ICU), and female patients had a significantly shorter hospital and ICU length of stay. Conclusion Female motorcycle riders have different injury characteristics, lower ISS and in-hospital mortality, and present with a bodily injury pattern that differs from that of male motorcycle riders. Level of evidence Epidemiologic study, level III.
Collapse
|
33
|
Friedrich V, Bi W, Sehba FA. Sexual dimorphism in gene expression after aneurysmal subarachnoid hemorrhage. Neurol Res 2016; 37:1054-9. [PMID: 26923576 DOI: 10.1080/01616412.2015.1115211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE Inflammation and compromise in structure and function of cerebral parenchymal microvasculature begins early after subarachnoid hemorrhage (SAH). We recently found greater inflammation and greater vascular compromise in male than in female rats following SAH. In this study, we investigated whether this cross-sexual difference in pathology is reflected in expression levels of genes related to vascular inflammation and structural compromise. METHOD Age-matched male and female rats underwent sham surgery or SAH by endovascular perforation. Early physiology (intracranial pressure (ICP), blood pressure (BP), heart rate, and cerebral blood flow) was monitored. Cerebral RNA was extracted at sacrifice 3 h after surgery and assayed for expression of thrombomodulin (Thbd), endothelial nitric oxide synthase (eNos;Nos3), intracellular adhesion molecule-1 (Icam1), vascular endothelial growth factor (Vegf), interleukin-1beta (Il1β) tumor necrosis factor-alpha (Tnf-α), and arginine vasopressin (Avp). RESULTS Increases in ICP and BP at SAH appeared slightly greater in males but the difference did not reach statistical difference, indicating that SAH intensity did not differ significantly between the sexes. Of the seven genes studied two; Tnf-α and Vegf, did not change after injury, while the remainder showed significant responses to SAH. Response of Nos3 and Thbd was markedly different between the sexes, with expression greater in males. CONCLUSION This study finds that sexual dimorphism is present in the response of some but not all genes to SAH. Since products of genes exhibiting sexual dimorphism have anti-inflammatory activities, our results indicate that previously found sex-based differences in vascular pathology are paralleled by sexually dimorphic changes in gene expression following SAH.
Collapse
Affiliation(s)
- Victor Friedrich
- a Department of Neurosurgery, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | | | | |
Collapse
|
34
|
Turan N, Heider RAJ, Zaharieva D, Ahmad FU, Barrow DL, Pradilla G. Sex Differences in the Formation of Intracranial Aneurysms and Incidence and Outcome of Subarachnoid Hemorrhage: Review of Experimental and Human Studies. Transl Stroke Res 2015; 7:12-9. [PMID: 26573918 DOI: 10.1007/s12975-015-0434-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 12/26/2022]
Abstract
Intracranial aneurysms are defined as pathological dilatations of cerebral arteries and rupture of intracranial aneurysms leads to subarachnoid hemorrhage (SAH). The goal of this review was to outline the sex differences in the formation and progression of intracranial aneurysms as well as sex-related differences in incidence and outcome of SAH. The literature review was performed using PubMed with a combination of these search terms: "subarachnoid hemorrhage," "incidence," "outcome," "sex," "gender," "male," "female," "experimental," "mice," and "rats." Studies written in English were used. Female sex is thought to be a risk factor for aneurysm formation, especially in postmenopausal age populations, suggesting the potential protective involvement of sex steroids. Female sex is also considered a risk factor for SAH occurrence. Although incidence and mortality are confirmed to be higher in females in most studies, they elucidated no clear differences in the functional outcome among SAH survivors. The effect of gender on the pathophysiology of SAH is not very well understood; nevertheless, the majority of pre-clinical studies suggest a beneficial effect of sex steroids in experimental SAH. Moreover, conflicting results exist on the role and effect of hormone replacement therapies and oral contraceptive pills on the incidence and outcome of human SAH. Sex differences exist in the formation of aneurysms as well as the incidence and mortality of SAH. Potential therapeutic effects of sex steroids have been replicated in many animal studies, but their potential use in the treatment of acute SAH in human populations needs more future study.
Collapse
Affiliation(s)
- Nefize Turan
- Department of Neurological Surgery, Emory University School of Medicine, 1365 Clifton Rd. NE, Suite B6166, Atlanta, GA, 30322, USA
| | - Robert Allen-James Heider
- Department of Neurological Surgery, Emory University School of Medicine, 1365 Clifton Rd. NE, Suite B6166, Atlanta, GA, 30322, USA
| | - Dobromira Zaharieva
- Department of Neurological Surgery, Emory University School of Medicine, 1365 Clifton Rd. NE, Suite B6166, Atlanta, GA, 30322, USA
| | - Faiz U Ahmad
- Department of Neurological Surgery, Emory University School of Medicine, 1365 Clifton Rd. NE, Suite B6166, Atlanta, GA, 30322, USA
| | - Daniel L Barrow
- Department of Neurological Surgery, Emory University School of Medicine, 1365 Clifton Rd. NE, Suite B6166, Atlanta, GA, 30322, USA
| | - Gustavo Pradilla
- Department of Neurological Surgery, Emory University School of Medicine, 1365 Clifton Rd. NE, Suite B6166, Atlanta, GA, 30322, USA.
| |
Collapse
|
35
|
Shishido H, Egashira Y, Okubo S, Zhang H, Hua Y, Keep RF, Xi G. A magnetic resonance imaging grading system for subarachnoid hemorrhage severity in a rat model. J Neurosci Methods 2015; 243:115-9. [PMID: 25677406 DOI: 10.1016/j.jneumeth.2015.01.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND The endovascular perforation model of subarachnoid hemorrhage (SAH) has a large variation in outcomes. This may reflect differences in the SAH size. NEW METHOD Magnetic resonance imaging (MRI) was performed 24h after endovascular perforation in adult male (n=58) and female (n=58) rats. Rats were divided into five grades according to MRI characteristics: grade 0: no SAH or intraventricular hemorrhage (IVH); grade 1: minimal or thin SAH without IVH; grade 2: minimal or thin SAH with IVH; grade 3: thick SAH without IVH; grade 4: thick SAH with IVH. We investigated whether MRI grading scale reflected severity of SAH (determined post mortem) and neurological score. RESULTS There was a strong correlation between MRI grading scale and current SAH grading scale (P<0.01) and neurological score (P<0.01) in male rats. In female rats, there was also a strong correlation between MRI grading scale and SAH grading scale (P<0.01) but not with neurological score (P=0.24). COMPARISON WITH EXISTING METHODS The current grading system is based on the amount of SAH and needs animal euthanasia to evaluate SAH severity. There is no useful grading system to classify severity of SAH without decapitating animals. CONCLUSIONS We demonstrated a correlation between the MRI grading scale and the current SAH grading scale in an endovascular perforation rat model. The MRI grading scale allows evaluation of SAH severity without euthanizing animals.
Collapse
Affiliation(s)
- Hajime Shishido
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Yusuke Egashira
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Shuichi Okubo
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Haining Zhang
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Rat endovascular perforation model. Transl Stroke Res 2014; 5:660-8. [PMID: 25213427 DOI: 10.1007/s12975-014-0368-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 12/31/2022]
Abstract
Experimental animal models of aneurysmal subarachnoid hemorrhage (SAH) have provided a wealth of information on the mechanisms of brain injury. The rat endovascular perforation (EVP) model replicates the early pathophysiology of SAH and hence is frequently used to study early brain injury following SAH. This paper presents a brief review of historical development of the EVP model and details the technique used to create SAH and considerations necessary to overcome technical challenges.
Collapse
|